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It is shown that the common and unique variance estimates produced by Martin & McDo- 
nald's Bayesian estimation procedure for the unrestricted common factor model have a predictable 
sum which is always greater than the maximum likelihood estimate of the total variance. This fact 
is used to justify a suggested simple alternative method of specifying the Bayesian parameters 
required by the procedure. 
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Martin & McDonald [1975] have proposed a Bayesian procedure for the unrestricted common factor 
model. There is, however, a certain inconsistency between their equations and one of their numerical examples. 
Although they do not comment on it, the matrix F of estimated factor loadings given in their Table 5(b) and the 
diagonal matrix U 2 of estimated unique variances given in the corresponding column of their Table 4(a) have the 
property that 

(I) H ~ + /..Y = diagA 

within roundoff error, where 

(2) H 2 = diag FF'  

contains the estimates of the common variances, and A is the maximum likelihood estimate of the total 
covariance matrix of the variables. From this one might be led to the conclusion that the Bayesian estimates of 
the communalities and uniquenesses sum to the maximum likelihood estimates of the total variances. Such a 
conclusion would be wrong. 

The proof of this is as follows. For any positive diagonal matrix U ~, let D and E be diagonal matrices of the r 
largest and n - r smallest eigenvalues, respectively, of U-~A U -1, and let V and W be the corresponding matrices 
of column-orthonormal eigenvectors of U - 1 A  U - l ,  so that 

(3) U - ~ A U  -~ = V D V '  + W E W ' .  

Then it is well known that, for any fixed /.fl, the F which conditionally minimizes q~(F, U ~) is given by 

(4) F = U V ( D  - 1) 1/2 . 

Since the Bayesian procedure, as well as the maximum likelihood procedure, seeks such a conditional minimum, 
we may substitute from (4) into (2), yielding 

n - r  

(5) h~j'+ U~j = aj j  - u~j~_~ (e o -- 1)w~o. 

However, minimizing the Bayesian function ~b*(U ~) requires solving for U 2 such that Martin & McDonald's 
expression (20) is zero, which in turn requires (cf. Clarke, 1970, equation 6) 

(6) ~. (1 - eq)w~q _ a j  u~j u~j = 0 
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for allj.  It then follows upon substitution into (5) that 

(7) h~j + u~j = aj~ + c~j. 

Thus in the case at point the sums of  the common and unique variance estimates should be 1.014 rather than 
1.000. Although the difference between the two values is small, it is definitely nonzero and should not be 
attributed to roundoff error. R. P. McDonald has confirmed (private communication) that there was indeed a 
mistake in the computer program that supplied the numerical examples, and that the corrected program gives 
results in agreement with the above conclusion. 

This being the case, some comment is in order regarding the presentation of  results when a factoring of  the 
data "in standard score form" is desired. This is usually what is implied when the only data input to the factoring 
routine is a sample correlation matrix, say R. In such cases it is not only permissible but mandatory to rescale the 
results so that H ~ + U ~ = I. This is in no sense "'cheating". It is merely a recognition of  the fact that R is a 
rescating of  A and that, since the factoring procedure is scale-invariant, we may interpret a factoring of  R as an 
arbitrary rescaling of  a factoring of  A. Had we actually factored A in the first place and then been asked to report 
the results in units of the total standard deviations, there would be no question but that we should rescale so that 
H 2 + U 2 = I. The fact that the factoring was performed using R instead o f  A is therefore irrelevant. 

However, the fact of (7) does allow us to make the following simplifying suggestion regarding the problem 
of arriving at a "reasonable" specification of the a j: always take aj = ajJ(N - 1). The justification for this is that 
(7) guarantees that the estimated total variance will then equal aijN/(N - 1), which is the familiar unbiased 
estimate of the total variance and which is surely always "'reasonable". Should this result in a value of 4~ which is 
excessive, we may conclude that some aspect of  the model is inappropriate for the data at hand. The typical, but 
not necessary, conclusion in such a case would be that the number of factors should be increased. 

In making the above suggestion, it is assumed that the data matrix from which A is obtained has no missing 
entries. Should there be any data missing, then the following modification is suggested. Form A in the usual way 
(e.g., as in Martin & McDonald 's  equation 5), substituting for each missing observation the mean of the non- 
missing observations on that variable. Then take c~j = ajj(N - Nj + I)/(Nj - 1), where Nj is the number of non- 
missing observations on variable/. This will give unbiased total varianceestimates and will reduce to the desired 
form when there are no missing observations. 
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