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U-STATISTIC HIERARCHICAL CLUSTERING

Roy G. D’ANDRADE
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A monotone invariant method of hierarchical clustering based on the Mann-Whitney U-
statistic is presented. The effectiveness of the complete-link, single-link, and U-statistic methods in
recovering tree structures from error perturbed data are evaluated. The U-statistic method is found
to be consistently more effective in recovering the original tree structures than either the single-link
or complete-link methods.
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Hierarchical clusters consist of nested sets of objects such that any pair of sets are
either disjoint or one includes the other. Hierarchical clusters may be represented by a
rooted tree structure and correspond to a distance metric which satisfies the ultrametric
inequality [Johnson, 1967; Hartigan 1975]. Figure 1 gives an example of a tree structure
for five objects (a, b, ¢, d, e). This tree structure fits a set of distance measurements in
which the two closest pairs are (a, b) and (c, d); the next closest pairs are (€, ¢} and (e, d);
while (a, c), (a, d), (a, ), (b, c), (b, d) and (b, ) are the most distant pairs. Each numbered
node of the tree represents a cluster of objects with the root node representing the most
inclusive cluster, and the terminal nodes representing single-object clusters.

In the social and biological sciences tree structures are potential representations for a
number of different kinds of phenomena, such as historically related languages, biological
and folk taxonomies, phrase structure grammars, and part-whole relationships [Kruskal
and Carroll, 1969, pp. 639-671}. Since in most empirical situations the structure of the set
of objects is unknown, a structure must be constructed from the given set of measure-
ments. When there is no measurement error, and when the proximity values among
objects directly correspond to a tree structure, then any one of a number of clustering
algorithms will be equally effective. At present the best known and most widely used
clustering techniques are the single-link method (also called the minimum distance, nearest
neighbor and connectedness method) and the complete-link method (also called the maxi-
mum distance, furthest neighbor and diameter method).

The complete-link method consists of:

a. Searching a symmetric matrix of distance measurements to determine the least distant
pair of objects.

b. Once found, classing these objects together into a cluster.

c. Constructing a new matrix of distance measurements by selecting from the measure-
ments of the two objects with all other objects in the matrix the most distant
measurement. This maximum distance measurement then becomes the measurement.
which represents the relation of the cluster to the other objects.

d. Repeating the process until all objects and clusters of objects are merged into a single
cluster.

Requests for reprints should be sent to Roy G. D’Andrade, Department of Anthropology, University of
Catifornta, San Diego, La Jolla, CA 92093.
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FIGURE |
Tree structure

The single-link or minimum distance method uses the same operations as the com-
plete-link method except that the minimum distance measurement is selected to represent
the proximity relation of the new cluster-object to every other cluster-object.

Neither the single-link nor the complete-link procedure necessarily constructs the best
possible tree for a given set of input measures. However, Johnson has shown that if the
original data are ultrametric, then both methods will yield the same results [Johnson,
1967]. Unfortunately, for empirical data both methods usually do not give the same
results,

With respect to the problem of how to arrive at a single best solution, Johnson {1967,
pp. 253-254] makes the following comments.

*“...in methods like our Minimum and Maximum Methods, the merging of the two clusters
depends upon a single similarity value (viz., the least or greatest in the appropriate set). [Sokol and
Sneath] suggest that, for greater robustness of the solution, it may sometimes be desirable to use
some sort of average value instead. As we have already noted, to base such a procedure upon
averages of the more obvious types is to lose the invariance, sought here, under monotone transfor-
mation of the similarity values. . .

“Nevertheless, when this seems desirable, the methods described here can be (and, indeed,
have been) modified to yield solutions intermediate between those obtained by these two extreme
methods. J. D. Carroll [Note 1] has suggested an average method based upon medians which, of
course, do have the desired property of monotone invariance. The main problem, in the case of
medians, is the choice of an appropriate procedure for dealing with the ambiguities that tend to
arise when two or more of the initial similarity estimates are tied.”

Developing robust procedures is a basic problem in hierarchical clustering. A major
drawback of the single-link and complete-link methods is that while they are monotone
invariant, cluster formation is fairly sensitive to measurement error. The procedure
presented in this paper appears to be less sensitive to measurement error than either the
single-link or complete-link methods. This procedure is based upon a non-parametric
measure of association, the U-statistic, as defined for the Mann-Whitney test [see Seigel
1967].

To illustrate how the U-statistic is applied to cluster analysis, we begin with a
situation in which a matrix of distance measurements have been grouped by some method
to the point where there are three clusters. (In the example given below the distance
measurements have been selected so that almost any technique of clustering will yield
these three clusters.) The first cluster consists of the objects a, b, and ¢, the second cluster
of the objects d, e, f, and g, and the third cluster of the objects h and i. Table 1 presents the
distance measurements for this example.

The immediate problem is to decide how to proceed with the clustering. From the
data given in Table | different clusters will be formed depending on whether the maxi-
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TABLE 1

Distance Measurements
Cluster 1 Cluster J Cluster K

ta b c'ta e £ gthp i1

B 0 30 45| 80 95 50 88 |55 6L
Cluster I b 30 0 40 ] 97 46 92 83 |62 50

c 45 40 0| 76 9 85 69 |61 81

Kl 80 97 76 0 10 30 u4o lso 57

e 95 46 96| 10 O 20 35 |56 72
Cluster J

£ 50 92 85| 30 20 o0 25 |78 58

LE 88 83 69| 40 35 25 0 |73 60

h 55 62 61 ] 60 56 78 73 | 0 10
Cluster K

3 61 50 81) 57 72 58 60 j10 0

mum, minimum, or median method is used. Table 2 presents the distance measurements
for between cluster pairs of objects, Using the maximum distance method, clusters J and K
would be grouped together. Using the minimum distance method, clusters I and J would
be grouped together. Using the median method, clusters J and K would be grouped
together.

The U-statistic procedure is a method used to determine, for two samples of ordinal
scores, which sample has the overall greater value. As a notational convenience to
illustrate computation of the U-statistic, let ‘1 X J’ represent the set which is composed of
all the distance measurements occurring between those objects where one object comes
from Cluster [ and the other object comes from Cluster J. To determine, given any number
of clusters, which two clusters are closest together we calculate whether a randomly drawn
distance measurement from one pair of clusters is likely to be less than a randomly drawn
distance measurement from another pair of clusters. In the example above there are three
pairs of clusters: I & J; 1 & K; and J & K. To determine whether a randomly drawn
distance measurement from I X J would be likely to be less than a randomly drawn
distance measurement fromJ X K all of the distance measurements from the I X J set are
compared to all the distance measurements from the set J X K. The U-statistic is
computed by taking the number of times the distances from the I X J set are less than the
distances of the J X K set. If the I X J distances are less than the J X K values in the
majority of the comparisons, then clusters J & K are U-closer than clusters { & J. Table 3
presents these comparisons for the distance measurements for I X J,I X K, and J X K.

Using this method we find clusters I & K are U-closer than 1 & J, clusters J & K are
U-closer than 1 & J, and clusters I & K are very slightly U-closer than clusters J & K.
Using ‘C’ to stand for the U-statistic measure of closeness, C(I, K) > C(J, K) > C(1, J).

In the example given above, the clustering procedure began with three fairly large and
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TABLE 2

Rank Ordered Distance Measurements

Cluster I § Cluster J Cluster I & Cluster K Cluster J & Cluster K

Pair of Pair of Pair of
Distance Objects Distance Objects Distance Objects
least ———3 46 bte 50 bei 58 e&h
minimum
distance 50 aé§f 55 aéh 57 dgi
69 cé& g 61 ¢ &h 58 £feEi
median-—3
76 c &d 61 aégi 60 dé&h
least
80 atd 62 b & h Median 44 g6 i
83 b &g 81 c & i 72 e § 1
median ———3
85 c & f 73 g &h
88 aég least—3>78 fég
maximum
92 bé&f distance
95 aée
96 2 & e
97 b&d

already formed clusters. In an actual cluster analysis the procedure begins with the matrix
of distance measurements between the initial objects. Unlike the single-link and complete-
link methods, the U-statistic cluster procedure is too tedious to carry out by hand for all
but the smallest data sets. A computer program for the U-statistic method has been
written in Algol. This program begins with a cluster list, the initial clusters consisting of
just the original objects. Using the U-statistic procedure on the input data matrix of
distance measures, every pair of clusters on the cluster list is compared in order to find the
closest pair of clusters. These two clusters are then combined into a single cluster and
placed on the cluster list, and the old pair of clusters removed from the cluster list. U-
statistic ties between two different pairs of clusters are broken by selecting the pair of
clusters which have the least distant pair of original objects (i.e., the complete-link
method). Clusterings are printed out at each merger. This process is repeated until all
clusters are merged into a single cluster. From the history of the clustering process a tree
structure may be drawn.

The U-statistic method yields what Boorman and Oliver term a ‘bare’ tree, in that
there are no direct measurement related evaluation levels for cluster nodes {[Boorman &
Oliver, 1973]. However, a value may be given to each node by counting the maximum
number of nodes below that node: terminal nodes have a value of zero; nodes which
directly precede only terminal nodes have a value of 1; nodes which directly precede a
node of value 1 but no node of higher value have a value of 2; etc. The cluster rank distance
between any two objects at terminal nodes is then the value of the lowest common
ancestral node connecting these two objects.
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Evaluation of Goodness of Fit

It should be mentioned that the U-statistic.procedure is not the only monotone
invariant technique which uses more than a single value as a basis for cluster merging.
Hubert has presented a procedure, called the objective function method, which is based on
the calculation of a monotone invariant goodness of fit index. This index is composed of
the ratio of the number of actually occurring ‘discrepancies’ to the number of possible
‘discrepancies.” A ‘discrepancy’ occurs at a given level of clustering when the distance
value for some pair of objects contained within a cluster is larger than the distance value
for some pair of objects belonging to distinct clusters [Hubert, 1973]. At each level of
clustering the goodness of fit index is calculated for the merger of every pair of clusters; the
pair of clusters with the best (i.e., smallest) goodness of fit figure are then merged into a
higher level cluster.

Hubert’s objective function differs from the U-statistic procedure in that decisions
about the merger of clusters are based on evaluations of the entire distance matrix rather
than just the object distances between clusters. Since the count of discrepancies is based on
all pairs of objects in which one pair of objects come from within a potential cluster and
the other pair comes from distinct clusters, the goodness of fit index can be affected by
anomalous values not directly connecting the clusters being considered. Because the
objective function method counts more discrepancies when considering the formation of a
large cluster than when considering the formation of a small cluster, a bias is introduced
which is not completely adjusted for in the denominator of the index, which takes into
account the total number of possible discrepancies. This sometimes results in the merger
of small clusters when large clusters are closer together according to the U-statistic
measure (or any other pair based measure of closeness). Since the objective function is not
a pair based comparison procedure, it is not surprising that under certain conditions it
yields outcomes which differ from those of the U-statistic procedure.

The objective function index, in slightly modified form, has proved useful in com-
paring the effectiveness of different hierarchical clustering procedures. To generalize the
objective function index to measure the relation between a matrix of distance values and a
hierarchical clustering structure, a discrepancy is defined as a pair of pairs of objects where
the distance value for one pair of objects is greater than the distance value for the other
pair of objects but the cluster rank of the first pair of objects is less than the cluster rank
of the second pair of objects. A ‘concordancy’ is defined as a pair of pairs of objects where
the distance value for one pair of objects is less than the distance value for the other pair of
objects and the cluster rank of the first pair of objects is less than the cluster rank of the
second pair of objects [Hubert, 1974]. Putting aside those pairs with ties on either distance
values or cluster rank, the number of possible discrepancies equals the number of actual
discrepancies, D, plus the number of actual concordancies, C; the objective function index
equals D/(C + D). This measure is very closely related to Goodman and Kruskal’s
gamma, which is (D — C)/(D + C) [Baker and Hubert, 1975].

One advantage to using gamma is that in comparing input distance values and cluster
rank, gamma has a direct probability interpretation: given randomly selected object pairs
untied on either cluster rank or distance values, gamma equals the probability of a
consistent ranking on both scales minus the probability of an inconsistent ranking. When
gamma is equal to 1.0 then there are no discrepancies. Using gamma as an evaluation
statistic, Hubert found that the complete-link method gave cluster structures which
generally had a better fit to the input measures than the single-link method [Hubert, 1974].

Evaluation of the U-Statistic, Complete-Link
and Single-Link Methods of Cluster Analysis

In order to compare the U-statistic clustering method to the single-link and complete-
link methods with respect to their effectiveness in recovering known tree structures from
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TABLE 4
Means and Standard Deviations for Gamma Between Original Tree Dis-

tances and Cluster Rank Distances, 40 Replications per cell.

Cluster Method

U-Statistic Complete-Link Single-Link
Level of Error Mean S.D. Mean S.D.. Mean S.D.
Gamma Gamma Gamma
Low .94 L1 .88 .22 .82 .30
Low-Medium .88 .19 .66 .33 .61 .30
High-Medium .72 .34 W49 .36 47 41
High .49 .35 W43 40 .18 .39
Overall Mean .75 .61 .52

error perturbed data, four different trees of ten objects were constructed from which
cluster rank distances were taken (see Figure 2), To each of the four original distance
matrices ‘high,’ ‘high mid,” ‘low mid,” and ‘low’ degrees of normally distributed random
error were added, making a total of sixteen different conditions. The cluster rank distances
range from 1 to 5, with a standard deviation of .35 for Tree [, 1.21 for Tree 2, .95 for Tree
3, and 1.08 for Tree 4. For a ‘high’ degree of error, the standard deviation for the error
term was 1.40, for a ‘high mid’ 1.14, for a ‘low mid’ .90, and for ‘low’ .60.

The U-statistic, single-link and complete-link methods were run for ten trials in each
of the sixteen conditions. The accuracy with which each method recovered the original tree
structure from the error perturbed data was evaluated using gamma to measure the degree
of concordance between the original error free distance measures and the cluster rank

TABLE 5

Means and Standard Deviations for Gamma Between Original Tree Dis-

tances and Cluster Rank Distances, 40 Replications Per Cell.

U-Statistic Complete~Link Single-Link

Data Set Mean S.D. Mean S.D. Mean  S.D.
Gamma Gamma Gamma

Tree 1 .88 .19 R .34 .75 .28

Tree 2 .71 .34 .63 .32 .47 .41

Tree 3 .64 .35 146 47 .35 45

Tree 4 .78 .34 .71 .36 .50 .47

Overall Mean .75 .61 .52



ROY G. D'ANDRADE 67

distances. Hubert’s use of gamma was modified in order to take account of the fact that in
the construction of a ‘bare’ tree by means of the U-statistic, cluster rank distances are not
strictly comparable in disjoint sub-trees. That is, given two pairs of objects from disjoint
subtrees, the relation between the cluster rank distances may be changed if new objects are
introduced into the cluster analysis. When the two pairs are not disjoint, the relation
between cluster ranks will remain the same, no matter how many new objects are
introduced, since one pair must come from a cluster which is a proper subset of the cluster
from which the other pair comes. In the modified calculation of gamma, only those pairs
of pairs of objects which are not from disjoint sections of a tree are tested for dis-
crepancies. The results are given in Tables 4 and 5. No interaction between type of tree and
level of error was detected for any of the clustering methods.

These results indicate that the U-statistic method is consistently more effective in
recovering the original data structures than either the single-link or complete-link meth-
ods. The complete-link method is more effective than the single-link method for all
comparisons except Tree 1 which consists of ‘chained’ pairs, supporting the previous
findings of Hubert [1973] and Baker and Hubert [1975].

Viewing the contemporary situation concerning the many competing varieties of
cluster analysis, it appears unlikely that the relations between different methods and data
types will be untangled solely by formal analyses. A promising approach to understanding
how these different methods operate is to compare the effectiveness of different methods
across a variety of data types. Using such an approach, it is the conclusion of this paper
that a method which uses all the available measurements concerning the pair-wise rela-
tions between clusters, such as the U-statistic procedure, provides a more robust method
for obtaining hierarchical clustering than single-value methods such as the complete-link
method or single-link method.

REFERENCE NOTE

1. J. D. Carroll, personal communication, 1977.
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