
PSYCHOMETRIKA--VOL. 43, NO. 1 
MARCH, 1978 
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A monotone invariant method of hierarchical clustering based on the Mann-Whitney U- 
statistic is presented. The effectiveness of the complete-link, single-link, and U-statistic methods in 
recovering tree structures from error perturbed data are evaluated. The U-statistic method is found 
to be consistently more effective in recovering the original tree structures than either the single-link 
or complete-link methods. 
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Hierarchical clusters consist of nested sets of objects such that any pair of sets are 
either disjoint or one includes the other. Hierarchical clusters may be represented by a 
rooted tree structure and correspond to a distance metric which satisfies the ultrametric 
inequality [Johnson, 1967; Hartigan 1975]. Figure 1 gives an example of a tree structure 
for five objects (a, b, c, d, e). This tree structure fits a set of distance measurements in 
which the two closest pairs are (a, b) and (c, d); the next closest pairs are (e, c) and (e, d); 
while (a, c), (a, d), (a, e), (b, c), (b, d) and (b, e) are the most distant pairs. Each numbered 
node of the tree represents a cluster of objects with the root node representing the most 
inclusive cluster, and the terminal nodes representing single-object clusters. 

In the social and biological sciences tree structures are potential representations for a 
number of different kinds of phenomena, such as historically related language~, biological 
and folk taxonomies, phrase structure grammars, and part-whole relationships [Kruskal 
and Carroll, 1969, pp. 639-671]. Since in most empirical situations the structure of the set 
of objects is unknown, a structure must be constructed from the given set of measure- 
merits. When there is no measurement error, and when the proximity values among 
objects directly correspond to a tree structure, then any one of a number of clustering 
algorithms will be equally effective. At present the best known and most widely used 
clustering techniques are the single-link method (also called the minimum distance, nearest 
neighbor and connectedness method) and the complete-link method (also called the maxi- 
mum distance, furthest neighbor and diameter method). 

The complete-link method consists of: 
a. Searching a symmetric matrix of distance measurements to determine the least distant 

pair of objects. 
b. Once found, classing these objects together into a cluster. 
c. Constructing a new matrix of distance measurements by selecting from the measure- 

ments of the two objects with all other objects in the matrix the most distant 
measurement. This maximum distance measurement then becomes the measurement. 
which represents the relation of the cluster to the other objects. 

d. Repeating the process until all objects and clusters of objects are merged into a single 
cluster. 

Requests for reprints should be sent to Roy G. D'Andrade, Department of Anthropology, University of 
California, San Diego, La Jolla, CA 92093. 
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FIGURE I 
Tree structure 

The single-link or  min imum distance method uses the same operat ions as the com- 
plete-link method except that the min imum distance measurement  is selected to represent 
the proximity relation o f  the new cluster-object to every other  cluster-object. 

Nei ther  the single-link nor  the complete-l ink procedure  necessarily constructs  the best 
possible tree for a given set o f  input measures. However ,  Johnson  has shown that  if the 
original data  are ultrametric,  then both  methods  will yield the same results [Johnson,  
1967]. Unfor tunate ly ,  for empirical data  both  methods  usually do not give the same 
results. 

With respect to the problem of  how to arrive at a single best solution, Johnson  [1967, 
pp. 253-254] makes the following comments .  

" . . .  in methods like our Minimum and Maximum Methods, the merging of the two clusters 
depends upon a single similarity value (viz., the least or greatest in the appropriate set). [Sokol and 
Sheath] suggest that, for greater robustness of the solution, it may sometimes be desirable to use 
some sort of average value instead. As we have already noted, to base such a procedure upon 
averages of the more obvious types is to lose the invariance, sought here, under monotone transfor- 
mation of the similarity values.,. 

"Nevertheless, when this seems desirable, the methods described here can be (and, indeed, 
have been) modified to yield solutions intermediate between those obtained by these two extreme 
methods. J. D. Carroll [Note 1] has suggested an average method based upon medians which, of 
course, do have the desired property of monotone invariance. The main problem, in the case of 
medians, is the choice of an appropriate procedure for dealing with the ambiguities that tend to 
arise when two or more of the initial similarity estimates are tied." 

Developing robust  procedures is a basic problem in hierarchical clustering. A major  
drawback of  the single-link and complete-l ink methods  is that  while they are m o n o t o n e  
invariant, cluster format ion  is fairly sensitive to measurement  error.  The procedure  
presented in this paper  appears to be less sensitive to measurement  error  than either the 
single-link or complete-link methods.  This procedure is based upon a non-parametr ic  
measure o f  association, the U-statistic, as defined for the Mann-Whi tney  test [see Seigel 
1967]. 

To illustrate how the U-statistic is applied to cluster analysis, we begin with a 
situation in which a matrix o f  distance measurements  have been grouped by some method 
to the point  where there are three clusters. (In the example given below the distance 
measurements  have been selected so that  a lmost  any technique o f  clustering will yield 
these three clusters.) The first cluster consists o f  the objects a, b, and c, the second cluster 
o f  the objects d, e, f, and g, and the third cluster o f  the objects h and i. Table 1 presents the 
distance measurements  for this example. 

The  immediate  problem is to decide how to proceed with the clustering. F rom the 
data  given in Table 1 different clusters will be formed depending on whether the maxi- 
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TABLE1 

Distance Measurements 

Cluster I Cluster J 
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Cluster K 
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0 30 45 80 95 
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55 62 61 

61 50 81 

f 

50 

92 

85 

t g 

88 

83 

69 

0 lO 30 40 

lO 0 20 35 

30 20 0 25 

40 35 25 0 

60 56 78 73 

57 72 58 60 

,h 

55 

62 

61 

i J 

61 

50 

81 

60 57 
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73 60 

0 lO 

i0 0 

mum, minimum, or median method is used. Table 2 presents the distance measurements 
for between cluster pairs of objects. Using the maximum distance method, clusters J and K 
would be grouped together. Using the minimum distance method, clusters I and J would 
be grouped together. Using the median method, clusters J and K would be grouped 
together. 

The U-statistic procedure is a method used to determine, for two samples of ordinal 
scores, which sample has the overall greater value. As a notational convenience to 
illustrate computation of the U-statistic, let 'I X J' represent the set which is composed of 
all the distance measurements occurring between those objects where one object comes 
from Cluster I and the other object comes from Cluster J. To determine, given any number 
of clusters, which two clusters are closest together we calculate whether a randomly drawn 
distance measurement from one pair of clusters is likely to be less than a randomly drawn 
distance measurement from another pair of clusters. In the example above there are three 
pairs of clusters: I & J; I & K; and J & K. To determine whether a randomly drawn 
distance measurement from I X J would be likely to be less than a randomly drawn 
distance measurement from'J X K all of the distance measurements from the I X J set are 
compared to all the distance measurements from the set J x K. The U-statistic is 
computed by taking the number of times the distances from the I x J set are less than the 
distances of the J × K set. If the I X J distances are less than the J X K values in the 
majority of the comparisons, then clusters J & K are U-closer than clusters ! & J. Table 3 
presents these comparisons for the distance measurements for I X J, I X K, and J X K. 

Using this method we find clusters I & K are U-closer than I & J, clusters J & K are 
U-closer than I & J, and clusters 1 & K are very slightly U-closer than clusters J & K. 
Using 'C' to stand for the U-statistic measure of closeness, C(I, K) > C(J, K) > C(I, J). 

In the example given above, the clustering procedure began with three fairly large and 
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TABSE 2 

least, 
minimum 
distance 

median 

Rank Ordered Distance Measurements 

Cluster I & Cluster J Cluster I & Cluster K 

Pair of Pair of 
Distance Objects Distance Objects 

Cluster J & Cluster K 

Pair of 
Distance Objects 

) 45 b & e 50 b & i 56 

50 a & f 55 a & h 57 

69 c & g 61 c & h 58 
median-----) 

76 c ~ d 61 a ~ i 60 
least ) 

80 a & d 62 b & h median 60 

83 b & g 81 c % i 72 

85 e % f 73 

88 a ~ g least-.~78 

maximum 
92 b & f distance 

95 a&e 

96 cF . ,e  

97 b&d 

e&h 

d&i 

f&i 

d£h 

g g i  

e&i 

g 6 - h  

f g g  

already formed clusters. In an actual cluster analysis the procedure begins with the matrix 
of distance measurements between the initial objects. Unlike the single-link and complete- 
link methods, the U-statistic cluster procedure is too tedious to carry out by hand for all 
but the smallest data sets. A computer program for the U-statistic method has been 
written in Algol. This program begins with a cluster list, the initial clusters consisting of 
just the original objects. Using the U-statistic procedure on the input data matrix of 
distance measures, every pair of clusters on the cluster list is compared in order to find the 
closest pair of clusters. These two clusters are then combined into a single cluster and 
placed on the cluster list, and the old pair of clusters removed from the cluster list. U- 
statistic ties between two different pairs of clusters are broken by selecting the pair of 
clusters which have the least distant pair of original objects (i.e., the complete-link 
method). Clusterings are printed out at each merger. This process is repeated until all 
clusters are merged into a single cluster. From the history of the clustering process a tree 
structure may be drawn. 

The U-statistic method yields what Boorman and Oliver term a 'bare' tree, in that 
there are no direct measurement related evaluation levels for cluster nodes [Boorman & 
Oliver, 1973]. However, a value may be given to each node by counting the maximum 
number of nodes below that node: terminal nodes have a value of zero; nodes which 
directly precede only terminal nodes have a value of 1; nodes which directly precede a 
node of value 1 but no node of higher value have a value of 2; etc. The cluster rank distance 
between any two objects at terminal nodes is then the value of the lowest common 
ancestral node connecting these two objects. 
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Evaluation of Goodness of Fit 

It should be mentioned that the U-statistic procedure is not the only monotone 
invariant technique which uses more than a single value as a basis for cluster merging. 
Hubert has presented a procedure, called the objective function method, which is based on 
the calculation of a monotone invariant goodness of fit index. This index is composed of 
the ratio of the number of actually occurring 'discrepancies' to the number of possible 
'discrepancies.' A 'discrepancy' occurs at a given level of clustering when the distance 
value for some pair of objects contained within a cluster is larger than the distance value 
for some pair of objects belonging to distinct clusters [Hubert, 1973]. At each level of 
clustering the goodness of fit index is calculated for the merger of every pair of clusters; the 
pair of clusters with the best (i.e., smallest) goodness of fit figure are then merged into a 
higher level cluster. 

Hubert's objective function differs from the U-statistic procedure in that decisions 
about the merger of clusters are based on evaluations of the entire distance matrix rather 
than just the object distances between clusters. Since the count of discrepancies is based on 
all pairs of objects in which one pair of objects come from within a potential cluster and 
the other pair comes from distinct clusters, the goodness of  fit index can be affected by 
anomalous values not directly connecting the clusters being considered. Because the 
objective function method counts more discrepancies when considering the formation of a 
large cluster than when considering the formation of a small cluster, a bias is introduced 
which is not completely adjusted for in the denominator of the index, which takes into 
account the total number of possible discrepancies. This sometimes results in the merger 
of small clusters when large clusters are closer together according to the U-statistic 
measure (or any other pair based measure of closeness). Since the objective function is not 
a pair based comparison procedure, it is not surprising that under certain conditions it 
yields outcomes which differ from those of the U-statistic procedure. 

The objective function index, in slightly modified form, has proved useful in com- 
paring the effectiveness of different hierarchical clustering procedures. To generalize the 
objective function index to measure the relation between a matrix of distance values and a 
hierarchical clustering structure, a discrepancy is defined as a pair of pairs of objects where 
the distance value for one pair of objects is greater than the distance value for the other 
pair of objects but the cluster rank of the first pair of objects is less than the cluster rank 
of the second pair of objects. A 'concordancy' is defined as a pair of pairs of objects where 
the distance value for one pair of objects is tess than the distance value for the other pair of 
objects and the cluster rank of the first pair of objects is less than the cluster rank of the 
second pair of objects [Hubert, 1974]. Putting aside those pairs with ties on either distance 
values or cluster rank, the number of possible discrepancies equals the number of actual 
discrepancies, D, plus the number of actual concordancies, C; the objective function index 
equals D/(C + D). This measure is very closely related to Goodman and Kruskal's 
gamma, which is (D - C)/(D + C) [Baker and Hubert, 1975]. 

One advantage to using gamma is that in comparing input distance values and cluster 
rank, gamma has a direct probability interpretation: given randomly selected object pairs 
untied on either cluster rank or distance values, gamma equals the probability of a 
consistent ranking on both scales minus the probability of an inconsistent ranking. When 
gamma is equal to 1.0 then there are no discrepancies. Using gamma as an evaluation 
statistic, Hubert found that the complete-link method gave cluster structures which 
generally had a better fit to the input measures than the single-link method [Hubert, 1974]. 

Evaluation of the U-Statistic, Complete.Link 
and Single-Link Methods of Cluster Analysis 

In order to compare the U-statistic clustering method to the single-link and complete- 
link methods with respect to their effectiveness in recovering known tree structures from 
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TABLE 4 

Means and Standard Deviations for Gamma Between Original Tree Dis- 

tances and Cluster Rank Distances, 40 Replications per cell. 

Cluster Method 

U-Statistic Complete-Link Single-Link 

Level of Error Mean S.D. Mean S.D. Mean S.D. 
Gamma Gamma Gamma 

Low .94  .14  .88 .22 .82  .30 

Low-Medium .88 .19 .66 .33 .61 .34 

High-Medium .72 .34 .49 .36 .47 .41 

High .49 .35 .43 .40 .18 .39 

Overall Mean .75 .61 .52 

error perturbed data, four different trees of ten objects were constructed from which 
cluster rank distances were taken (see Figure 2). To each of the four original distance 
matrices 'high,' 'high mid,' 'low mid,' and 'low' degrees of  normally distributed random 
error were added, making a total of sixteen different conditions. The cluster rank distances 
range from 1 to 5, with a standard deviation of 1.35 for Tree 1, 1.21 for Tree 2, .95 for Tree 
3, and 1.08 for Tree 4. For a 'high' degree of  error, the standard deviation for the error 
term was 1.40, for a 'high mid' 1.14, for a 'low mid' .90, and for 'low' .60. 

The U-statistic, single-link and complete-link methods were run for ten trials in each 
of the sixteen conditions. The accuracy with which each method recovered the original tree 
structure from the error perturbed data was evaluated using gamma to measure the degree 
of concordance between the original error free distance measures and the cluster rank 

TABLE 5 

Means and Standard Deviations for Gamma Between Original Tree Dis- 

tances and Cluster Rank Distances, 40 Replications Per Cell. 

U-Statisti c 

Data Set Mean S.D. 
Gamma 

Tree 1 .88 ,19 

Tree 2 .71 .34 

Tree 3 .64 .35 

Tree 4 .78 .3~ 

Overall Mean .75 

Complete-Link Single-Link 

Mean S.D° Mean S.D. 
Gamma Gamma 

.64 .34 .75 .28 

.63 .32 .47 .41 

.46 .47 .35 .45 

.71 ,36 .50 .47 

.61 .52 
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distances. Hubert ' s  use of  gamma was modified in order to take account of the fact that in 
the construction of a 'bare '  tree by means of the U-statistic, cluster rank distances are not 
strictly comparable in disjoint sub-trees. That  is, given two pairs of  objects from disjoint 
subtrees, the relation between the cluster rank distances may be changed if new objects are 
introduced into the cluster analysis. When the two pairs are not disjoint, the relation 
between cluster ranks will remain the same, no matter  how many new objects are 
introduced, since one pair must come from a cluster which is a proper subset of  the cluster 
from which the other pair comes. In the modified calculation of gamma,  only those pairs 
of  pairs of  objects which are not from disjoint sections of a tree are tested for dis- 
crepancies. The results are given in Tables 4 and 5. NO interaction between type of tree and 
level of  error was detected for any of the clustering methods, 

These results indicate that the U-statistic method is consistently more effective in 
recovering the original data structures than either the single-link or complete-link meth- 
ods. The complete-link method is more effective than the single-link method for all 
comparisons except Tree 1 which consists of  'chained'  pairs, supporting the previous 
findings of  Hubert  [1973] and Baker and Hubert  [1975]. 

Viewing the contemporary situation concerning the many competing varieties of  
cluster analysis, it appears unlikely that the relations between different methods and data 
types wilt be untangled solely by formal analyses. A promising approach to understanding 
how these different methods operate is to compare the effectiveness of different methods 
across a variety of data types. Using such an approach,  it is the conclusion of this paper 
that a method which uses all the available measurements concerning the pair-wise rela- 
tions between clusters, such as the U-statistic procedure, provides a more robust method 
for obtaining hierarchical clustering than single-value methods such as the complete-link 
method or single-link method. 
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1. J. D. Carroll, personal communication, 1977. 
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