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In studies involving judgments of similarity or dissimilarity, a variety of other variables may 
also be measured. Examples might be direct ratings of the stimuli, pairwise preference judgments, 
and physical measurements of the stimuli with respect to various properties. In such cases, there 
are important advantages to joint analyses of the dissimilarity and collateral variables. A variety 
of models are described for relating these and algorithms described for fitting these to data. A 
number of hypothesis tests are developed and an example offered. 
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1. Introduction 

In many experimental situations it is desirable to collect a number of different kinds 
of  information on subject's perceptions and evaluative reactions to a set of stimuli. Judg- 
ments of  dissimilarity are especially useful for revealing the cognitive aspects of  attitudes 
through multidimensional scaling analysis. On othe other hand, affective or evaluative re- 
actions are usually measured by either direct ratings on "like-dislike" or Likert scales, or 
by judgments of direction and degree of  preference or dominance for one stimulus over 
another for a set of  pairs of  stimuli. Judgments of  this kind are usually analyzed by a vari- 
ety of  unidimensional scaling procedures to yield scale values for each stimulus. Specific 
cognitive aspects may also be measured by direct ratings or pairwise preference or domi- 
nance. In addition to all this, the experimenter may also wish to incorporate various phys- 
ical measurements of  the stimuli into the analysis. 

A central problem in such multivariate experimental designs is to relate the dis- 
similarity data to the direct ratings, pairwise preferences, or physical measurements. 
There is usually some reason for supposing that the processes which give rise to the vari- 
ous types of  judgments or measurements share features in common. In fact, these shared 
features may be exactly what is being investigated, so that the experimenter is interested 
in how the cognitions and physical characteristics of  the stimuli give rise to a particular 
subject's evaluations of  these same stimuli. Or, perhaps, he may be interested in how cer- 
tain physical measurements relate to certain cognitions, with a view to replacing sub- 
jective scaling results by "hard"  measurements in future investigations. 

Here is an experimental situation that illustrates these problems nicely. The Pulp and 
Paper Research Institute of  Canada was concerned about the subjective impact o f  photo- 
graphs printed on various types of  newsprint by various processes. Some types of  repro- 
duction yield pleasing results but are expensive, while others are not as attractive but very 
desirable for economic or ecological reasons. After some speculation as to the aspects of  
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newsprint photographs which give rise to these evaluative reactions on the part of  various 
types of readers, a study was launched in which were collected (a) a number of physical 
measures such as degree of contrast, mottle, "see-through", etc., (b) judgments of dis- 
similarity among eight sample reproductions of a test photograph, and (e) judgments of 
the degree to which one reproduction was preferreA to another for each of the 28 possible 
pairs. The goal was to study the aspects of the samples which led to the preferences ex- 
pressed. The dissimilarity data were included to indicate possible aspects not measured 
physically and to indicate which physical aspects were noticed by the subjects. 

Other studies which are similar to this in design are O'Hare [1976] and Ramsay and 
Case [1970], and Duder and Aronson [1978]. 

There is some literature on techniques for relating these types of data. Bechtel [1976] 
provides a comprehensive overview of previous work and some new contributions. Car- 
roll [1972] deals specifically with the problem of relating direct ratings to the configura- 
tion resulting from a multidimensional scaling analysis. Pairwise preferences and direct 
ratings were related by a combination of multiple regression and factor analysis in Ram- 
say and Case [1970]. 

Two models have been investigated in any detail for the relation between direct rat- 
ings and the configuration of points produced by multidimensional scaling. These are the 
scalar product or linear model and the idealpoint or unfolding model. In the former a pre- 
ferred direction is defined in the configuration and it is postulated that the further along 
in this direction a point is, the more highly the corresponding stimulus will be rated. In 
the latter, a preferred location is defined, and the closer a point is to this ideal point, the 
more highly the stimulus will be rated. If the preferred location is well beyond the config- 
uration of points, the two models become indistinguishable. 

For either model, the estimation of the parameters determining the ideal direction or 
point has usually been conditional on knowing the locations of the points in the configu- 
ration, perhaps as a consequence of a previous multidimensional scaling. A principal 
focus of this paper will be the joint estimation of the positions of these points and the ideal 
direction or point. As will be indicated formally below, the main reason for this approach 
is the superior quality of the resulting estimates. Joint estimation will in general produce 
parameter estimates having less bias and sampling variance because all of the available 
information in the sample is used in their estimation. However, techniques for conditional 
estimation will also be developed. 

The maximum likelihood approach to multidimensional scaling of  Ramsay 
[1977;1978a] will be extended to this situation. The notation to be employed is as follows: 
n stimuli are to be represented as points in a euclidean space of dimensionality k. The lo- 
cation of the i'h point is defined by the coordinates x,m, m = i, .-., k. Data are collected 
from N subjects. These data include the rating of the degree of  dissimilarity d,;, between 
stimuli i and j by subject r. Moreover, ratings or measurements on a set of L properties or 
aspects may be involved. The direct rating of stimulus i on property g by subject r will be 
indicated by uig,. If this is actually a physical measurement, these values will as a rule be 
the same for all subjects, and the subscript r can be dropped. For convenience, we may 
focus on only one property at a time, and the subscript g may then be dropped. The pair- 
wise preference for stimulus i over stimulus j with respect to property g for subject r will 
be indicated by pij~,. 

Each of these pieces of data will be assumed to have a corresponding errorless or 
model value, and this will be indicated by an asterisk. For example, at*, is the model value 
for dissimilarity judgement dij,. 
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The model for dissimilarity that will be considered explicitly in this paper will be that 
referred to by Ramsay [1978a, b] as M2: 

( 1 )  d ,* j ,  = v ,  ( X , m  - -  X~m)  ~ • 
m 

Extension of the following results to other models, such as the individually weighted di- 
mension model M3, are straightforward. 

Likewise, it will be assumed that the dissimilarities have independent lognormal dis- 
tributions about their model values, defined by 

(2) log d o, ~ N(log a*,, o2). 

The extension to nonhomogeneous variances by Ramsay [1978a] can also be incorporated 
into what follows without difficulty. 

2. Direct  Ra t ings  and  Dissimilarit ies 

The relationship between direct ratings and the configuration underlying the dis- 
similarities has been expressed in a variety of ways. The simplest of these is the scalar 
product model: 

k 

( 3 )  * - u,g,- ~ ag,,,:ci,~ + cs,. 
m 

In this model the multipliers a,,m can be interpreted as direction cosines or regression co- 
efficients defining an ideal direction specific to property g and subject r. According to this 
model, if a,,m is positive, the more of aspect m underlying the dissimilarities the stimulus 
has, the more highly it will be rated with respect to property g by subject r. For example, 
if property g is "clarity" of a newsprint photograph, and aspect m as revealed through the 
dissimilarities turns out to be contrast, which for a particular subject is weighted posi- 
tively, then the higher the contrast the higher the subject will rate the clarity. 

From a statistician's point of view, the greatest merit of the model is its simple linear 
structure. Conditional on knowing the coordinates X,m, the estimation of the weights is 
simply a matter of multiple regression. Unfortunately, while useful in many situations, the 
scalar product model has some serious drawbacks from a psychologist's point of view. 
Subjects' likings never increase without limit as the model would suggest, and in some in- 
stances will obviously decrease after a certain point. All children like sweet things and the 
sweeter the better, perhaps without limit. But for most adults there is an optimum amount 
of sugar in anything beyond which utility begins to fall off. 

The ideal point model offsets this problem by postulating an ideal location in the 
space used to represent the stimuli, with the rating for a particular stimulus being a func- 
tion of how far that stimulus is from this ideal location. Let this ideal location for property 
g and subject r be determined by the coordinates yg,m, m = 1, -.-, k. The distance from 
this location to the i ,h point is given by 

(4 )  a t ,  = ( y ~ , m -  x,m) ~ . 
m 

The model used by Carroll [1972] and Bechtel [1976] to relate the errorless rating to dis- 
tance is 

(5) u~, = b~A~, + c~,. 
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The coefficients bg, and cg, are necessary because as a rule direct ratings are assumed to be 
on an interval scale. 

The author prefers a slightly different formulation: 

(6) u,~, ffi -b~r log ~ + C,r. 

The logarithmic transformation takes the ratio scale quantity d* into an interval scale 
quantity and thus makes it compatible with a linear transformation to the interval scale 
direct rating. Moreover, the Carroll-Bechtel model (5) predicts an upper bound on the rat- 
ing at d* ffi 0 which is inconsistent with the interval scale notion. Under the revised for- 
mulation (6) the regression coefficient bg, is invariant under changes of scale of the dis- 
similarities which can be useful. 

Another relation between direct ratings and distance which has some appeal is 

(7) u*, = b,, exp(-asrd~, ) + cg,. 

This relation accommodates the fact that most response scales are bounded both be- 
low and above, and, moreover, the notion of utility and other subjective dimensions being 
bounded has some appeal on psychological grounds. Although in this paper we shall con- 
fine our attention to relation (6), it must be acknowledged that both (5) and (7) as well as 
other possible relations will seem more reasonable in some situations. The modifications 
in what follows to accommodate these alternatives are comparatively minor. 

These relations imply that the quantities u* depend on the coordinates x,,, via the 
quantities d?~, Thus, the direct ratings contain at least some information about these 
coordinates in addition to that offered by the dissimilarity data. From the standpoint of 
obtaining the best possible estimates of the configuration, therefore, it is important to 
carry out a joint analysis of the direct ratings and dissimilarities. 

The choice of an error distribution for direct ratings of utility involves a variety of 
considerations. The lognormal assumption (2) for dissimilarities was motivated by the fact 
that dissimilarities are defined naturally on the positive real line, and (2) can be thought 
of as arising from a transformation of the response to an interval scale through the use of 
logarithms, and then assuming normality. Since utility is in principle already on an inter- 
val scale, this line of argument would suggest 

(8) u, s, ~ N ( u ~ .  ~) .  

This assumption may not be too bad where plenty of room is allowed on the response 
continuum for relatively extreme responses. However, both (2) and (8) will certainly 
break down where categorical rating scales with a very limited number of categories are 
employed, or in situations where judgments are likely to be extreme rather frequently. 
The appropriate assumption in such cases would have to take into account the restriction 
on the range of responses and their discretization. Takane [1978, Note 2] has taken some 
important steps toward modelling such situations for dissimilarity data. 

The expression of the joint log likelihood for the two sets of data employing (2) and 
(8) can be simplified considerably by defining the following two error sums of squares: 

n n  

(9) Qr = ~% (log d v, - log d*~) 2, 
~ j  

and 

(10) S~r ~,, (u ,g , -  * 2 U i g , )  . 
i 
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The log likelihood for the dissimilarity data then becomes 

1 2 
(11) log La = -Ma  logo - -~o- ~, Q,, 

r 

where M, is the total number of dissimilarity judgments; and the log likelihood for the 
utility data is 

(12) log L~ = - ~ M s log ~ + ~-~ , 
g r 

where Mg is the total number of direct ratings for the gh property. The summations in (9) 
to (12) can be understood to be only over those observations which have been made, so 
that missing data presents no particular problems. If the assumption that the errors for the 
utility judgments are independent of those for the dissimilarities, then the joint likelihood 
is given simply by 

(13) log L -- log Ld + log Lu. 

Maximum likelihood estimates for the dispersion parameters are as follows: 

N 

Qn (14) 

and 
N 

05) e,= M;' 
r 

Thus, their estimation conditional on the coordinates x,,. and the regression coefficients 
ag.,,, bg., and c~, is a simple matter. Likewise, the regression coefficients can be estimated 
by maximum likelihood through the minimizing of the error sum of squares Ss,. Since 
these coefficients enter linearly into u,g.,* this is a conventional linear least squares prob- 
lem. The estimation of the dissimilarity parameters log v. and p. is also a linear least 
squares problem since they enter linearly into log d*.,. 

Consequently, the troublesome parameters in this data analysis problem are the 
coordinates of the ideal points yg,~. An iterative approach must be adopted here, with a 
strategy which updates the configuration and ideal point coordinates each iteration and 
then estimates the remaining parameters conditional on these. 

There are many ways to tackle the problem of estimating the configuration and the 
ideal points. Ramsay [1977, 1978b] adopted an implicit equation approach which had a 
certain relation to the gradient method. This approach has also been called the C-matrix 
method by some authors. It has the advantage of requiring only a moderate amount of 
computer memory, which is an important consideration in view of the very large number 
of parameters that may be involved in some problems. Ramsay [1980] suggests that this 
method converges reliably and reasonably quickly for model M2 in multidimensional 
scaling. 

There are, however, some important advantages to using some variation of  a New- 
ton-Raphson approach. First of all, an estimate of the variance-covariance matrix for 
some or all of the parameter estimates is very conveniently available as a byproduct of 
such iterations. Secondly, it is easier to modify the algorithm to permit equality or in- 
equality constraints on the parameters than in the implicit equation approach. Thirdly, 
such approaches converge much more rapidly when very near the solution to the likeli- 
hood equations. This virtue may be questionable, since parameter estimates need be accu- 
rate in most cases only to about two or three significant digits, and the log likelihood is 
required to no more than one decimal place of accuracy when used to compute chi-square 
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statistics. Also, although far fewer Newton-Raphson iterations are typically required than 
C-matrix iterations, the overhead per iteration can more than offset this saving, and the 
author's experience indicates that there is very seldom any saving in computation time by 
using Newton-Raphson iterations. 

In the case of the ideal point model, there are two sets of parameters which require 
iterative estimation. The approach used by the author has been to update the configura- 
tion coordinates x,,, by either C-matrix or Newton-Raphson iterations, and then to iterate 
to convergence or near convergence for the ideal point coordinate Y~rm- 

In the case of the ideal point model, there are two sets of  parameters which require 
iterative estimation. The approach used by the author has been, for each global or master 
iteration, to proceed through a fixed number of updates of the configuration coordinates 
x,,,, holding the ideal point coordinates Ygrm and all other parameters fixed, and then to 
proceed through a fixed number of ideal point coordinate updates holding the configura- 
tion coordinates fixed. This can be called an alternating least squares approach. Each 
master iteration terminates with the estimation of the regression coefficients and dis- 
persion parameters conditional on the configuration and ideal point estimates. 

The maximum likelihood estimation problem for the configuration and ideal points 
can be reduced in this and the following section to nonlinear least squares problems. If  
Newton-Raphson iterations are to be used, it has turned out to be useful to use the ex- 
pected value of the second derivative matrix or Hessian. This both guarantees positive 
semidefiniteness and reduces the computation load since such a matrix does not depend 
on the data. The use of this matrix to define a direction of search seems to be about as 
effective as that defined by the Hessian itself which, it can be shown, need not be positive 
semidefinite. Finally, the Moore-Penrose inverse of this matrix is an estimate of the 
asymptotic variance-covariance matrix of the parameter estimates [Ramsay, 1978a]. The 
use of the expected second derivative matrix is equivalent to the Gauss-Newton proce- 
dure for solving nonlinear least squares problems and, in this instance, to Fisher's scoring 
method for maximum likehhood estimation. 

The estimation of the ideal point coordinates requires the minimizing of the error 
sum of square S~r defined in (10), and in the case of the relation (6), the first derivatives 
are given by 

(16) aS,. = - 2  (u, , . -  u*.) Oy, r, 
fgYgrq i 

where 

(17) Ou~r = - b g r  (Ygrq - -  Xiq) dig*~, 2" 
Oysrq 

The expected second derivative matrix is given by 

............... #u~s, Ou~s~ 
(18) E Oyg, q Oy,,, = 2 

i OYgrq Oy~. 

Thus, the ideal point for each subject and each directly rated property can be esti- 
mated independently of the other conditional on the configuration coordinates x~m. In the 
author's experience these iterations converge rapidly and reliably unless the starting val- 
ues for these iterations are very unsatisfactory. 

The following procedure seems to yield quite satisfactory starting estimates of the 
ideal points. First, compute the parameters a~.~ in the scalar product model by solving the 
linear least squares problem imphed by minimizing S s, with respect to the as,,~'s. Then 
compute a point in this preferred direction by moving away from the origin in this direc- 
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tion by a judicious amount. Such a point can be produced by using the equation 

(19) ys ,q=as ,qmax  xi,,,] ~ 

assuming that the origin is at the centroid of the configuration. Note that when the true 
location of the ideal point is close to the origin, the scalar product model will be grossly 
inappropriate. As a consequence, the regression coefficients a~.m will be all near zero and 
the estimated ideal point will be near the origin as desired. 

We turn now to the problem of estimating the configuration coordinates X,m. Note 
that both of the terms of the log likelihood (13) depend on these coordinates via the two 
sets of  distances d*, and d~j. or, in the scalar product model, via relation 0).  Here a partic- 
ular problem arises; the invariance of the log likelihood with respect to translation and re- 
flection of the coordinates. This arises because it depends on the coordinates only via 
these two types of distance, or via distance within the configuration and relation (3), and 
these quantities are invariant under such transformations. Thus, the expected second de- 
rivative matrix will at best be positive semidefinite, with rank at most nk - k. Since the 
conventional Newton-Raphson approach requires that this matrix be positive definite, 
some modification of this approach is in order. 

The solution to this difficulty is to employ the Moore-Penrose inverse of the expected 
second derivative matrix. This provides an update to the parameter estimates which, 
when close to the solution, provides quadratic convergence to a solution, and at the same 
time provides an update to the current estimate which as minimum length and is therefore 
useful from the standpoint of testing for satisfactory convergence. Moreover, as Ramsay 
[1978a] has shown, the Moore-Penrose inverse provides in a certain sense the asymptotic 
variance-covariance matrix of the estimates. An algorithm for computing the Moore-Pen- 
rose inverse of a symmetric positive semidefinite matrix is described in the appendix. 

The maximum likelihood estimation of the coordinates Xpq then reduces to the mini- 
mization of the following weighted error sum of squares: 

(20) r =  °-2 E Q, + 2 E ss,. 

The first and the expected second derivatives of this quantity depend on the first deriva- 
tives of log d~o., and u*,. For the former quantity this is 

(21) Olog ~ -. 0log a*. _ _ p.(X,q - x,,) 
ox,  ox ,  q Y. (x, . .  - Xjmy 

m 
In the case of the scalar product model the first derivative of u*, is 

(22) Ou~. _ [ as.q, i = p .  

OXpq t O, i # p. 

In the case of the ideal point model, 

= [ - d~s, , i - - p ,  OUi~gr bgrOYgrq Xpq) *--2 
(23) Oxpq [ O, i # p. 

It is worth noting that (20) displays the maximum likelihood estimation process as a 
weighted least squares problem in which the variances appear explicitly. Thus, we cannot 
reduce the objective function to one which does not involve the variance parameters in 
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the way that Ramsay [1977] did, and these must be estimated simultaneously with the 
other parameters in the analysis. This is characteristic of weighted least squares problems 
in which weights must be estimated. 

If one substitutes (14) and (15) into (13), then the final value of the joint log likeli- 
hood reduces to 

This form is useful for constructing various test statistics to be described in the next sec- 
tion. 

3. Testing Various Hypotheses 

One of the main advantages of maximum likelihood estimation is the possibility of 
large-sample tests of restricted models against those of which they are special cases. In the 
case of the models described in this paper, one must proceed with some caution since sub- 
ject-specific parameters are used for modelling both utilities and dissimilarities, implying 
that new parameters are added for each subject as well as with each new stimulus or prop- 
erty being rated. This makes a truly asymptotic sample size impossible since the number 
of parameters cannot be a fixed quantity. Ramsay [1979] has collected Monte Carlo evi- 
dence to show that applying large sample tests in these situations leads to some bias in 
favor of rejections of the null hypothesis. Fortunately, there seems to be some hope that 
the correction for this bias is fairly simple, and these tests can be used profitably if one is 
suitably careful. 

To test whether the fit in k dimensions is superior to that in k - 1 dimensions, twice 
the difference between log hkelihoods can be assessed against a chi squared critical value. 
To compute the appropriate number of degrees of freedom, one must take the difference 
between the number of mathematically independent parameters being fit in each case. 
For k dimensions, there are nk values of x subject to rotational and translational in- 
variance. Thus there are nk - k(k + 1)/2 parameters here. There are also N v,'s and N 
p,'s. However, the constraint Y, log v, = 0 is imposed in order to remove a scale trade-off 
between the v's and the x's.-Finally, there are LN(k + 1) regression coefficients to com- 
pute in the case of the scalar product model, and LN(k + 2) ideal point coordinates and 
regression coefficients for the ideal point model. Thus, for a k-dimensional fit there are a 
total ofnk -k(k  + 1)/2 + 2N - 1 + LN(k + 1) and nk - k(k + 1)/2 + 2N - 1 + LN(k + 
2) parameters for the scalar product and ideal point models, respectively, excluding vari- 
ance parameters. The difference between the number of parameters being estimated for 
fits in k and k - 1 dimensions works out to n - k + LN in either case. 

To test the null hypothesis that the direct ratings are unrelated to the dissimilarity 
judgments, it is necessary to carry out a multidimensional scaling analysis of the dis- 
similarity data alone. This is equivalent to mirfimizing the quantity Y~Q,. Let the value Qr 
obtained by this minimizing with respect to the dissimilarities alone indicated by Q;, while 
the value Q, obtained by the joint analysis of the direct ratings and dissimilarities will be 
indicated simply by Q,. Similarly, let the value of the quantities Sg, obtained by using 
Uig r~t ---- U gr~ the mean direct ratings averaged over stimuli, be indicated by S ; r .  Then the sta- 
tistic which has an asymptotic chi square distribution and which tests the null hypothesis 
that ag,,~ = O, m = 1,  . . . ,  k, in the case of the scalar product model, or b~, = 0 in the case of 
the ideal point model, is given by 

(25) X2= ~ Me(log ~ S'~-log ~Sg,)+M~log ~r Q'--log ~ Q, I. 
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The degrees of freedom for the scalar product model are LNk while for the ideal point 
model they are LN(k + 1). 

Another hypothesis that is of  potential interest is whether or not the ideal point 
model provides a superior fit to that of  the scalar product model. This also can be tested 
by computing a chi square statistic since the former reduces to the latter when the ideal 
point is far away from the configuration. The ideal point has LN more parameters than 
the scalar product model, so that the doubled difference between log likelihoods can be 
assessed against the tabled chi square critical value with this many degrees of  freedom. 

Many investigators will want to carry out these hypothesis tests for each direct rating 
in turn. In such cases, it will be necessary to set L = 1, and carry out a joint analysis for 
each rating separately. However, since direct ratings are usually highly correlated, one 
should remember that such hypothesis tests are not independent of  each other. 

4. Pairwise Preferences and Dissimilarities 

There are some sound reasons for collecting pairwise preference or dominance judg- 
ments with respect to some property rather than ratings with respect to the property di- 
rectly. In such judgments, the subject is presented with stimuli i and j, and asked to rate 
the degree to which he prefers i to j, or the degree to which i has more of the property than 
j.  If, in fact, stimulus j dominates, this rating is given a negative number. Let this rating 
for subject r and property g be indicated by Pijs,. 

One of the advantages of pairwise ratings is that they can be reduced to scale values 
for each stimulus and, in the process, an internal consistency index can be computed 
which has a variety of uses. The usual model for relating preferences to direct ratings is 

(26) * - * -  * Pqsq - -  Uis" U ~ , .  

This is a linear model if the u's are to be estimated, and a multiple correlation coefficient 
can be computed to indicate when subjects are having difficulty with the rating task. An 
F-ratio can be computed to assess inter-group differences and other effects [Bechtel, 1976]. 

Because there are many more possible pairwise preference judgments than direct rat- 
ings, the former offer the advantages of  collecting more data for estimation of  parameters 
of  interest. Finally, subjects often find preference judgments easier to make because the 
elements to be compared are explicitly presented, whereas with direct ratings a stimulus 
has to be compared with an implicit standard which can change from time to time or sub- 
ject to subject. 

The extension of  the scalar product model (3) to preferences yields 

k 

(27) p* = ~ ag,,,(x,m- x:,,), 
m 

while the ideal point model for preferences becomes 

(28) * [d~*'l • Pus, = bs, log ~d*,] 

With the distributional assumption 

(29) P,s. ,:s.. ~ . 

the log likelihood for the data including both preferences and dissimilarities becomes 

N L L 

(30) log L = -Malog o - ½0 -2 ~, Q, - Z Mglog ~s -½ ~, Ss, 
r g r 
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where M, is now the total number of preference observations, and S,, is now 
n n  

(31) Sg, = EE(p, jg ,  - p,+,,)* = . 

As with direct ratings, these are linear models given the configuration coordinates x,,, 

and ideal point coordinates yg,,, and the remaining parameters can be estimated in the 
usual way conditional on these. 

The first derivatives of the quantities S,, which must be minimized with respect to 
ideal point coordinates are 

(32) Oy,,, - 2  (P,/8,-P~,) Op*, 
i#j OYgrq ~ 

where 

(33) Op,j~. Oyg.q = - b g ' [ ( Y s ' q  - X,q) d,g*7 z - (Ysrq - -  Xjq)  dys*~r2]. 

The expected second derivative matrix is 

a s , ,  . .  ap,:,,, 
(34) E Oy~Oy,. ,  = 2 2 2  " 

t,.i Oy,,~Oy,., 

The discussion of techniques for optimization and starting values for the ideal point 
coordinates applies here as wen. 

The estimation of  configuration coordinates x,,, requires the minimization of the 
quantity T defined in (20). The first derivatives ofp*~ for the scalar product and the ideal 
point model are given by the right sides of (22) and (23) respectively, and in both cases. 

(35) op* , = _ op* , 
OXpq -- OXpq 

The remarks in Section 3 concerning hypothesis testing apply to the joint analysis of  
preferences and dissimilarities as well. An additional benefit from obtaining preferences 
as opposed to direct ratings is that one can fit the model (26) to the preferences by a sepa- 
rate analysis. This permits the comparison between the joint model and the model in 
which (27) or (28) is fit to the preferences and Model M2 is fit to the dissimilarities. This 
comparison permits us to see whether there is additional variability in the preferences 
over and above that fit by the joint model. The chi square statistic involved has L N ( n  - 
k - 1) degrees of freedom for the scalar product model and L N ( n  - k - 2) for the unfold- 
ing model. 

5. Physical  Measuremen t s  and  Dissimilarities 

Physical measurements on a set of stimuli can be related to dissimilarity judgments 
by viewing them as direct ratings which are identical for each subject, and employing the 
methods of  Section 2. However, it may also be desirable to view them as coordinates for 
the stimuli and thus as defining locations of a set of points with respect to some coordinate 
system. From this point of view, the dissimilarities are to be related to the interpoint dis- 
tances among these points. 

When physical measurements are viewed as coordinates, there is usually no particu- 
lar reason to suppose that the axes of the space are orthogonal. Indeed, there is usually 
good reason to suppose that a particular pair of measurements are subjectively related. 
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Thus, each subject's metric must be estimated in the following relation between dis- 
similarity and generalized distance: 

I 7"2 

The matrix 14:, defining the metric will be positive semidefinite, and following Bloxom 
[1978] it is convenient to decompose it into 

(37) 14:,-- Z,Z', 

where Z, is lower triangular. The problem of fitting the dissimilarity observations then be- 
comes one of estimating the k(k + 1)/2 elements of Z, as well as the regression coeffi- 
cients v, and exponent p,. 

Under the hypothesis of lognormal distribution of d,j, about d0*.,, the maximum likeli- 
hood estimation of Z, requires the minimization of the function Q, as defined in (9). In 
this instance, the derivative of Q, with respect to zpq,, p _ q, is 

(38) OQ_____:, = 2p, ~ (log d U, - log d*;)d*~-2(x,p - x:p) ~ (x,m - xjm)z~,, 
~Zpqr i~j m~q 

for p _ q, and the expected second derivative matrix is 

(39) ~Q" = 2p, EE di~r4(Xis - Xjs)(Xlp - xjp) 
f ~Zpqr~Zstr i~j 

I I , 
for p >_ q and s >__ t. 

A variety of useful tests can be performed to compare the results of this analysis with 
various others. For example, the fit using k physical measurements can be compared with 
that using k - I measurements, and the resulting chi square statistic will have N k  degrees 
of freedom. The result of a multidimensional scaling analysis using Model M2 can also be 
compared with this analysis for a single subject as a test of whether the physical measure- 
merits used account for all the systematic variation in the dissimilarities. The resulting chi 
square would have nk - 1 degrees of freedom. It must be borne in mind, however, that 
this would be a small sample test and the tabled chi square criterion should probably be 
increased somewhat. 

6. An Example: The Perceptions o f  Newsprint Photographs 

In this example, 14 subjects who were technicians in newsprint manufacturing rated 
all possible pairs of a single photograph reproduced on eight newsprint samples. Each 
pair was rated both in terms of the degree of perceived dissimilarity (on a 25 category rat- 
ing scale) and in terms of degree of preference from the point of view of general accepta- 
bility. In addition, measurements of the amount of mottle, show-through, and contrast 
were taken on each sample by photometric techniques. 

Various log likelihoods for these data are displayed in Table 1, along with estimates 
of the standard errors for dissimilarity and preferences. A comparison of the results for 
the analysis of the dissimilarities along in two and three dimensions produces a chi square 
of 2.4 with 5 degrees of freedom, and this indicates that two dimensions are sufficient to 
account for the dissimilarity data. However, in comparing the two- and three-dimensional 
solutions for the joint analysis of preference and dissimilarity data using the scalar prod- 
uct model, the chi square statistic is 47.8 with 19 degrees of freedom, which is significant 
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TABLE 1 

Some Statistics for the Print Quality Data 

Std. Error Std. Error Log 
Type of Analysis Dimensions for Diss. for Pref. Likelihood 

2 566* - 48.4 
Multidimensional 
Scaling (M2) 

Multidimensional 
3 

Scaling (M2) 

Joint Analysis 2 
(Unfolding) 

Joint Analysis 3 
(Unfolding) 

Joint Analysis 2 
(Scalar Product) 

Joint Analysis 3 
(Scalar Product) 

568* - 49.6 

544 3.22  -611.8 

543 3.01 -585.4 

543 3.34 -625.5 

539 3.17 -601.6 

Preference 
- - 3.50* -567.2 

Analysis 

*These standard error estimates are unbiased. 

at the .01 level and indicates the need for a three- or higher dimensional solution. Results 
for the unfolding model analysis are very similar. This could indicate that an additional 
property determined the preference data over and above those which were the basis for 
the dissimilarity judgments. 

A comparison of the unfolding model log likelihood with the scalar product model 
log likelihood in three dimensions produces a chi square of 32.4 with 14 degrees of  free- 
dom, and this is significant at the .01 level. This provides some evidence that the unfold- 
tug model is more appropriate for these data. An additional question is whether or not the 
separate analyses of the two sets of data produces a superior fit to that produced by the 
joint analysis. Using the unfolding joint analysis in three dimensions and the M2 analysis 
in two dimensions, the resulting chi square has a value 2[585.4 - (-567.2 + 48.4)] = 133.2 
with 37 degrees of freedom. This is very significant, and indicates that there is variability 
in the preference data not accommodated by the joint unfolding model. Nevertheless, an 
examination of the standard error estimates for the preference judgments which are dis- 
played in Table 1 indicates that in practical terms the degree of fit of  the unfolding model 
is quite comparable to that obtained by a separate analysis of  the preference data. 

As a final note on these data, it is interesting to observe that when the preferences 
were fit by the model 

sgn~,:.)lp,J.I ~ p , j .  - u , .  U:r, (40) q-~ * -  * -  * 

where the exponent q, for the preferences was estimated by maximum likelihood along 
with the scale values uo, the average exponent was 1.38 with a standard deviation of  0.26. 
This indicates a deficiency in model (26) which fails to allow for a nonlinear relation be- 
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tween data and model. It also seems probable that the models for direct ratings should 
also be extended in this way. 

The dissimilarity ratings were also related to the measurements of mottle, show- 
through, and contrast through model (36). The results are shown in Table 2. Here it can 
be seen from the eigenvalues of Wthat all subjects employed only two dimensions. How- 
ever, the amount of weight attached to the physical measurements varied greatly from 
subject to subject. For example, Table 3 displays the metrics W for Subjects 2 and 3, and 
it can be seen that show-through is de-emphasized by the former while contrast is ignored 

TABLE 2 

Results for Fitting Dissimilarity Data with 

Physical coordinates and Individualized Metrics 

Eigenvalues of W Std. Error 
Subject Error d I d 2 d 3 M2(3) 

i .28 5.0~ 1.94 .00 .26 

2 .32 5.65 2.09 .00 .45 

3 .33 5.98 .84 .13 .46 

4 .44 4.56 1.33 .00 .58 

5 .44 9.00 1.18 .02 .53 

6. .46 3.86 3.63 .00 .59 

7 .46 3.38 1.53 .03 .45 

8. .46 7.36 .@0 .00 .66 

9 .47 2.88 1.83 .00 .63 

I0 .48 4.14 1.24 .14 .55 

ii .48 3.00 1.18 .00 .60 

12 .52 2.72 1.33 .00 .67 

13 .55 5.48 .76 .00 .69 

14 .60 3.75 1.48 .00 .66 

Means .45 4.70 1.50 .02 .56 
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Table 3 

Metric Matrix W for Two Subjects Using Physical Coordinates 

Subject Measurement Metric Matrix Correlation Matrix 

2 Mottle 4.2 .8 -1.6 1.00 .41 -.48 
Show-through .8 .9 -1.5 .41 1.00 -.98 
Contrast -1.6 -1.5 2.6 -.48 -.98 1.00 

3 Mottle 5.3 -1.7 .2 1.00 -.67 .14 
Show-through -1.7 1.2 -.4 -.67 1.00 -.58 
Contrast .2 -.4 .4 .14 -.58 1.00 

by the latter. Moreover, when these metrics are expressed as correlations by dividing off- 
diagonal entries by the product of square roots of corresponding diagonal entries, it can 
be seen that both subjects see the physical dimensions as being nonorthogonal, with the 
perceived relationship between show-through and contrast being especially strong for 
Subject 2. A comparison in Table 2 of the unbiased standard error estimates with those 
obtained from the M2 analysis in three dimensions shows that using the physical mea- 
surements along with individualized metric results in a substantially better fit to the dis- 
similarity data for most subjects. 

7. Extensions o f  the Ideal  Point Model  

The ideal point model permits the fitting of two classes of points: those whose loca- 
tions are the same for all subjects, and those whose locations are estimated separately for 
each subject. Thus, it can be viewed as a particular application of a multi-dimensional 
scaling problem in which the domain of estimation is not the same for each point. One 
might wish to estimate some points uniquely for each subject and others uniquely for each 
of a number of subgroups of subjects, while the locations of some points are common to 
all subjects. Moreover, the use of direct ratings or preferences to fix ideal points is only 
one way in which idiosyncratic points can be determined. For example, Taylor, Bassili 
and Aboud [1973] employed "myself" as a stimulus in a study of ethnic group per- 
ceptions. Although this point was given a common location, this study invites individ- 
ualized locations for "myself". It is to be hoped that future software developments will 
permit more flexibility in choosing the domain of estimation for points. 

The use of ideal points can also expand the range of interesting individual differences 
models for dissimilarity. For example, it is reasonable to suppose that dissimilarities 
among stimuli "close" to a particular subject's ideal point are perceived differently from 
those perceptually far removed [Bookstein, Note 3]. For example, one might argue that 
dissimilarities among fields of science similar to one's own are magnified, whereas those 
among fields remote from one's interest are diminished. To capture this idea algebraically 
in two dimensions, let the coordinates for point i and subject r be (z~,, z,~) and the corre- 
sponding coordinates for the common space be (x,t, xa). Thi: two sets of coordinates are 
related as follows: 

girt ~ la  COS 0it, 
and 

zi.~ = ti. sin 0,. 
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where 

0;, = t a n  - t  x , 2  - Y r 2  
X i l  - -  Y r l  ' X i l  - -  Y,t > O, 

and 

(41) 

= 180o + tan_ ~ x,~ - Yr2 
Xil - -  Y~t 

:lw, 
t i ' = h "  h , ]  ' 

- -  , x/i - y,i < 0, 

where d* is the distance from point i to subject r's ideal point in terms o f  the group coordi- 
nates. Figure 1 shows the geometrical interpretation o f  such a model.  In the case that the 
exponent w, is less than one, the idiosyncratic location o f  a point for any subject is moved 
toward the ideal point if  it is more than h, units away and moved away from the ideal 
point if it is closer than h,  units. The size of  the movement  is determined by the exponent 
w,; from the figure it can be seen that the distance between Points 1 and 2 is larger for this 
particular subject than what it is in the c o m m o n  space, while the distance between Points 
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FIGURE 1 
The relations between common and idiosyncratic point locations for a particular subject (w, -- 0.5). 
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3 and 4 is relatively smaller. The model can, of course, be generalized to employ other 
functions besides power transformations. The main advantage of expressing the transfor- 
mation in polar coordinate form is that this preserves the rotational invariance of the orig- 
inal model and thus makes them comparable. 

By involving the ideal point in the model for dissimilarities as well as for direct rat- 
ings or preferences, joint analysis of the various types of data is rendered necessary as well 
as desirable. It may be that in the future multidimensional sealing studies will routinely 
involve the collection of preferences or direct ratings in addition to dissimilarities in order 
to locate ideal points as well as a common configuration. 

Appendix 

An algorithm for computing the Moore-Penrose inverse should be fast, numerically 
stable, and require as little core as possible. Not all of these objectives can be achieved to 
optimal degree by any one algorithm, of course, but none of them can be ignored. The 
application described in this paper can involve some rather large matrices, so that, for ex- 
ample, the well-known procedure of performing an eigenanalysis, inverting positive ei- 
genvalues, and reconstituting the matrix may not be sufficiently fast and may require too 
much memory. 

Let symmetric positive semidefinite matrix P be of order N and rank K. The value of 
K may be known (as in this application) or computed. The algorithm proceeds by first de- 
composing P into the product LL', where L is in lower trapezoidal form. That is, L has the 
structure 

T 0 
L =  

V 0 

where T is lower triangular of dimension K and V is N - K by K. This decomposition is 
performed by Choleski decomposition with pivoting. The rank K can be computed by 
testing the relative magnitude of the pivotal element. 

It can be shown that P+ = L(UL)-~(L'L)-tE. This product is expensive to compute in 
this form, however, and it is more efficient to proceed via the following matrix computa- 
tions. 

(i) 
(ii) 

(iii) 
(iv) 
(v) 

(vi) 
(vii) 

(viii) 

The Moore-Penrose inverse is then given by: 

Y 
p+= 

UY 

replace T by T -~ 
replace V by U = VT -t 
perform the triangular decomposition XX'  = 1 + UU' 
replace X by X -~ 
compute W = X -1U 
compute R = T - i ( 1 -  W'W) 
compute Y-- RR' 
compute U Y  and UYU'. 

YU' 

UYU' 

As described above the algorithm requires N 2 + K(K - 1)/2 words of storage. This can be 
reduced to N ~ words by computing the elements of 14" as needed in (vi) which permits the 
product (vii) to be computed in situ. However, if there is much difference between N and 
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K the additional computation required can be prohibitive. For very large matrices aux- 
iliary storage can be used in step (vi) which will also make 2W words suffice. 

A listing and documentation of a FORTRAN program to compute P* is available on 
request from the author. If it is only desired to compute the solution P*B to the linear 
equation P X  = B, considerable savings in computer time and memory can be achieved by 
using the IBM Scientific Subroutine Package subroutines MFSS and MLSS [Note 1]. 
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