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Multitrait-Multimethod (MTMM) matrices are often analyzed by means of confirmatory fac- 
tor analysis (CFA). However, fitting MTMM models often leads to improper solutions, or non- 
convergence. In an attempt to overcome these problems, various alternative CFA models have 
been proposed, but with none of these the problem of finding improper solutions was solved 
completely. In the present paper, an approach is proposed where improper solutions are ruled out 
altogether and convergence is guaranteed. The approach is based on constrained variants of 
components analysis (CA). Besides the fact that these methods do not give improper solutions, they 
have the advantage that they provide component scores which can later on be used to relate the 
components to external variables. The new methods are illustrated by means of simulated data, as 
well as empirical data sets. 
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I n t roduc t ion  

Since Campbe l l  and  F i ske ' s  (1959) p roposa l  for  assessing convergent  and d i sc r iminant  
val idi ty  by s tudying mu l t i t r a i t -mu l t ime thod  ( M T M M )  cor re la t ion  matr ices ,  many  p ropos -  
als have b e e n  m a d e  to improve  the i r  p rocedure .  As  an a l te rna t ive  to Campbe l l  and  F i ske ' s  
qual i ta t ive  study of  the  M T M M  matr ices ,  it was sugges ted  to give a quant i ta t ive  descr ip-  
t ion o f  the  M T M M  matr ix  by using a conf i rmatory  fac tor  analyt ic  ( C F A )  m o d e l  tha t  
d is t inguishes  t ra i t  and  m e t h o d  factors  (e.g., Browne,  1984; Schmit t  & Stults, 1986; W e r t s  
& Linn,  1970; W i d a m a n ,  1985). The  idea  is that ,  if such a m o d e l  fits, we can assess the  
con t r ibu t ions  of the  s epa ra t e  t ra i t  and  m e t h o d  factors  and  thei r  in te rcor re la t ions .  By 
compar ing  the  fit o f  different  models ,  one  can assess the  degree  of  convergent  and  dis- 
c r iminan t  val idi ty and the a m o u n t  of  m e t h o d  var iance  (Widaman ,  1985). 

F i t t ing  C F A  mode l s  is of ten  p rob lemat ic .  O n  the  one  hand,  the  C F A  a lgor i thm 
some t imes  does  not  converge,  or  converges  too  slowly. A par t i cu la r  cause for  such com- 
pu ta t iona l  p rob lems  is under iden t i f i ca t ion  of  a model .  O n  the o the r  hand,  the  solut ion is 
o f ten  " i m p r o p e r "  in the  sense that  the  p a r a m e t e r  es t imates  are  incompat ib le  with the  C F A  
model .  F o r  instance,  es t imates  for  un ique  var iances  may  be  negat ive  (such cases a re  ca l led  
" H e y w o o d  cases") ,  or  es t imates  of  fac tor  cor re la t ion  mat r ices  a re  indefinite.  In  such cases 
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the estimates cannot describe (or even approximate) true variances of unique factors, or 
correlations between common factors, respectively. 

When CFA is used to fit MTMM models, the above two types of problems seem to be 
very common. Specifically, among the MTMM models, a considerable number of models 
seems to be unidentified. For instance, it is well-known that the unconstrained MTMM 
models (specifying one trait and one method loading for each variable, and a diagonal 
matrix of unique variances) are not identified when there are less than three traits or 
methods. When there are three or more trait and method factors, or when certain corre- 
lations between trait and/or method factors are constrained to be zero, it is more compli- 
cated to describe which models are identified and which are not. Constraining more 
correlations to be zero tends to help identifying models, but even constraining all corre- 
lations to be zero does not safeguard against problems of nonconvergence and improper 
solutions (e.g., Marsh, 1989, p. 344). In fact, certain classes of models have been proven to 
be unidentified (e.g., see Grayson & Marsh, 1994; Millsap, 1992) due to particular patterns 
of values for the loadings. Other classes of these models are merely conjectured to be 
unidentified, as implied by Widaman's (1985, p. 7) remark that models allowing for non- 
zero correlations between trait and method factors "are very likely not identified" (see also 
a discussion by Marsh, 1989, p. 339). For models where method factors are constrained to 
be uncorrelated with trait factors, neither proofs nor systematic empirical results on iden- 
tification seem available. For instance, when Wothke (1987) tried to fit such models to 23 
empirical data sets, in 11 cases the models were proven to be unidentified, and in seven of 
the remaining cases the algorithm failed to converge (which indicates that the model is also 
unidentified in these cases). Moreover, in the other five, the solution was improper (i.e., 
Heywood case, and/or an indefinite matrix of estimates of factor correlations). Hence, for 
none of the 23 empirical data sets a usable solution was obtained. Similarly poor results 
were obtained in the analysis of 18 empirical data sets by Brannick and Spector (1990). It 
can be concluded that the most important problems of CFA methods, underidentification 
and the risk of finding improper solutions, are frequently encountered when fitting 
MTMM models. 

The poor results of CFA to fit the most common MTMM models have led to the 
proposal to fit alternative CFA types of models to MTMM data. For instance, Kenny 
(1979; see also Marsh, 1989) proposed to adjust the CFA model by dropping the method 
factors and allowing for correlations between unique factors (referred to as the correlated 
uniqueness model) to capture correlations between traits within methods. Alternatively, 
Browne (1984) proposed a direct product model (DPM) which describes the correlations 
in the MTMM matrix as products of correlations between traits and correlations between 
methods, after adjustment for differential scalings and unique variances. As shown by 
Wothke and Browne (1990) this model can be seen as a CFA model as well. However, 
these alternatives are not satisfactory in all respects: the former alternative (using corre- 
lated uniqueness) considerably complicates the interpretation of the models, and the latter 
(DPM) tends to fit the data relatively poorly in practice (e.g., see Bagozzi & Yi, 1990, 
Browne 1993), which may to a large extent be caused by its use of relatively few param- 
eters. Also, it lacks the matrix of trait loadings, which is an important tool for a detailed 
interpretation of the solution. Recently, Dudgeon (1994) proposed some models that share 
features of the original CFA approaches and the DPM approaches. However, the model 
depends on choosing a number of identification constraints, which requires substantive 
information, and hence cannot be used in a fully exploratory sense. 

In the present paper, it is proposed to avoid the problems with CFA methods in an 
entirely different way. Rather than searching for alternative CFA models, it is proposed to 
use models outside the realm of confirmatory factor analysis. Specifically, it is proposed to 
use constrained component analysis models (see Takane, Kiers & de Leeuw, 1995), where 
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the constraints on the loading matrix are chosen in the same way as in the CFA models for 
MTMM data. By considering component analysis (CA) models, we avoid most of the 
problems of factor analytic techniques. For instance, using CA models, improper solutions 
can never occur. This is essentially because CA models are based on models for the full 
data matrix rather than for the correlation matrix. Another advantage of CA models is that 
identification of the model is not essential for (least squares) fitting of the model. Of 
course, it may not be very useful to interpret estimates for unidentified MTMM models, 
but the fact that we can assess the degree of fit of such models is useful in the comparison 
of a series of increasingly complex models. 

The advantages of CA models are essentially obtained by modelling and fitting the 
data matrix rather than the correlation matrix. This seems to have an important drawback 
in that such methods would be limited to situations where the full data matrix is known. 
However, even though CA methods fit the full data matrix to a model, it suffices for most 
purposes to have the correlation matrix as input, as will be seen below. In fact, only in case 
component scores are specifically desired, it is necessary to give the full data matrix, but 
that would be the case for CFA approaches as well. In fact, here we touch on yet another 
advantage of CA approaches over CFA. In CA methods the component scores are related 
intrinsically to the model and the estimates correspond to the estimated loadings and 
component correlations. These component scores can, for instance, be used to assess 
validity of components by correlating them with external variables. In CFA, factor scores 
are indeterminate, and the usual factor score 'estimates' do not correspond exactly to the 
loadings and factor correlations. For instance, when we would compute correlations be- 
tween the scores for the different factors, we would not obtain the factor correlations 
exactly. 

Above, we have described a number of theoretical advantages of CA techniques over 
CFA techniques. However, these do not imply that CA techniques are generally preferable 
over CFA techniques. In particular, nothing has been said about the quality of parameter 
estimates from CA techniques compared to those from CFA techniques. To start with the 
latter, the CFA model is based on the assumption that each observation consists of a 
structural part and an error part (e.g., measurement error). The structural part of a score 
is based on an individual's scores on a set of latent factors, the error part is usually assumed 
to be a random measurement error. The CFA model fits the observed correlation or 
covariance matrix to the one specified by the model. If measurement error is indeed 
random, and the structural part of the model is as specified, the model fit will be almost 
perfect for a very large sample. Hence, when the assumptions are met, the model can be 
expected to fit well. Problems arise, however, when the error is not random, when the 
sample is too small, or when the model does not hold perfectly. 

The CA model, on the other hand, is not based on assumptions pertaining to latent 
underlying factors. CA aims at giving a good description of a data set and uses a particular 
model (the MTMM model in the present case) for that purpose. As such, the method 
cannot be compared to CFA. CFA aims at recovering an underlying structure, whereas in 
CA no allusions to such a structure are made. In practice, however, especially in the 
present context of studying MTMM matrices, results often are interpreted with reference 
to underlying processes. Therefore, it seems sensible to study the performance of CA with 
respect to recovering underlying structures as well, and hence, interpret CA as a kind of 
CFA method. 

Viewing CA as a kind of CFA method, we find that the CA model does not specify 
measurement error, and hence will only give perfect fit if indeed there is no measurement 
error. In cases with measurement error, one might hope that CA still finds good solutions, 
by relegating the measurement error to the unfitted part. Unfortunately, in practice, CA 
methods usually subsume some of the measurement error under the structural part, and 
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hence its loadings tend to be biased upward (see Widaman, 1990). Nevertheless, in many 
cases, component loadings are still useful and convey essentially the same information as 
do factor toadings. To see to what extent this holds true for the present application of CA 
methods, we conducted a simulation study focussing on the recovery of contrived under- 
lying structures by the presently proposed CA methods. 

Below, we will first explain a. series of CA models for MTMM data. Then, we will 
describe algorithms for fitting these models. Next, we will give some uniqueness results for 
these models. It will be seen that the uniqueness results are much more powerful than in 
the CFA case. Then, it is described how the fit of most models can be partitioned over 
different components and variables. Next, we will describe a simulation study where the 
performance of the CA methods (in terms of computational efficiency and local optima) 
is studied and the quality of the estimates is compared to that of CFA models. Finally, we 
will present some examples demonstrating how CA methods can be used for obtaining 
evidence of convergent and discriminant validity from MTMM data. 

Component  Analysis Models for MTMM Data 

A component analysis (CA) model for MTMM data can be defined as follows. Let Z 
denote an n x mt  data matrix with unit standardized (i.e., with zero means and sums of 
squares equal to i rather than n) scores of n subjects on mt  variables measuring t different 
traits by m different methods. The variables are assumed to be ordered as z11, z21 . . . . .  zta, 
Z 1 2  , Z 2 2  . . . . .  Z t 2  , . . .  , Z l m  , . . .  , Ztm , where zij denotes the variable measuring trait i by 
method j. In CA models such data are described by 

Z = UV' + E, (1) 

where U denotes an n × r matrix with r unit standardized component  scores, V denotes an 
m t  x r matrix of component  loadings, and E denotes an n × m t  matrix of residuals. In the 
CA models for MTMM data proposed here, each component  is restricted to refer to either 
one particular method or one particular trait, hence in the most complete model r = m + 
t, and V is structured such that it has only two nonzero elements per row, corresponding 
to the positions of the trait and method component of the corresponding variable. Thus, 
the matrix V is structured in the same way as the loading matrix in the most common CFA 
models for MTMM matrices (e.g., see Widaman, 1985). For instance, in case m = 3 and 
t = 3, we have 

/)11 
0 
0 

/)41 

V ~--- 0 /)52 
0 0 

7371 0 

0 v82 
0 0 

A general description of V is given by 

m 

0 0 v14 0 0 
/)22 0 /)24 0 0 
0 u33 u34 0 0 
0 0 0 /)45 0 

0 0 vss 0 

/)63 0 /)65 0 
0 0 0 v76 
0 0 0 v86 

v93 0 0 v96~ 

vl00 . . . . .  

0 . . . . .  0 v ~ /  

(2) 

(3) 
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where D 1 . . . . .  D m denote m diagonal t x t matrices with trait loadings, and v 1 . . . .  , v m 
denote m t-vectors with method loadings. Several variants of the model can be obtained by 
dropping subsets of components (compare Widaman, 1985). For instance, models can be 
used that incorporate only the t trait components, or that incorporate only the m method 
components. 

In ordinary CA, the component matrix U is often constrained to be orthogonal, as can 
be done without affecting the fit of the model. This is because U can always be transformed 
into an orthogonal matrix [J by applying a nonsingular transformation (N say). If the 
associated V' is premultiplied by the inverse of this transformation we get a f / =  V(N') -1 
such that f_JV' = UNN-1V ' = UV'. This shows that the model is not affected by such 
nonsingular transformations of U and V. However, in models where V is required to have 
zeros at specified positions, such transformations usually cannot be applied without af- 
fecting the fit. Therefore,  constraining U to be orthogonal would usually affect the fit of the 
model. Nevertheless, there may be theoretical reasons to constrain U to be orthogonal, or 
partially orthogonal. For instance, in certain situations it is attractive to assume that 
correlations between method and trait components are zero. Alternatively, it may be 
attractive to assume that correlations between trait components are zero and/or correla- 
tions between method components are zero. All these assumptions can be used as con- 
straints on the model parameters. 

To sum up, we can describe the class of models under study as the models described 
by (1) with V as in (3), in which there are t trait components and/or m method components 
(giving three different types of models). The different models can further be constrained 
by requiring that the trait or method components have mutual correlations of zero, and/or 
by requiring that the correlations between trait and method components are zero. In the 
next section, it will be described how these models can be fitted to the data (in the least 
squares sense) subject to any of these constraints. In a subsequent section, it will be 
demonstrated that the parameter estimates are unique under certain mild conditions. 

Algorithms for Fitting Component Analysis Models to MTMM Data 

In the present section, a class of algorithms will be described for fitting the above 
described models to a data set in the least squares sense. For each model a different 
algorithm is needed, but each algorithm has the same basic set up. Specifically, we propose 
to use alternating least squares algorithms in which the matrices U and V are updated 
alternately, until convergence of the loss function value. The updates are chosen such that 
they minimize the loss function over the parameter set at hand, considering the other 
parameters fixed. The differences of the algorithms come about by differences in the sets 
of components that are taken (only trait components, only method components, or both) 
and by differences in the constraints imposed on the correlations between the components. 
Below, we will first discuss how V can be updated in the different situations, and next how 
U can be updated, subject to the different constraints. 

The procedures for updating V, considering U fixed, are straightforward. Denote  the 
j- th column of Z by zj and the j- th row of V by vj. For each situation, the problem of 
updating V comes down to minimizing 

m t  

= I Iz  - uv'H 2 :  E [Izy - Uvj l l  2, 
j=l 

(4) 

subject to the constraint that certain elements of V are zero. Minimizing ~r over V comes 
down to m t  independent minimizations of the functions 



• 606 PSYCHOMETRIKA 

 j(vj) = lizj - U v j L  ( 5 )  

j = 1 , . . . ,  mt. In these problems, some of the elements of vj are constrained to be zero 
(as specified in (3)). If we collect the unconstrained elements of vj in ~j and the associated 
columns of U in U(j), we end up with the linear regression problem of minimizing 

= IIz  - u<j) jll 2, (6) 

t - - 1  t over ~ej for which the solution is given by ~j = ( U ( j ) U ( j ) )  U(j)zj. Here  (and elsewhere) the 
inverse is replaced by the Moore-Penrose inverse if the inverse does not exist. The solution 
for vj can now be derived directly from ~j. 

For updating U we cannot give one general procedure. We consider five different 
cases in detail. These cases partly correspond to those mentioned in Widaman's (1985, p. 
6) taxonomy of MTMM models. Here  it is assumed that both types of components (traits 
and methods) are present. For convenience we write U = (U/ i Urn) to distinguish the 
components associated with the traits and those with the methods. The cases where only 
one set of components is present follow directly as special cases. In all cases we impose the 
inactive identification constraint that U has unit column sums of squares. This constraint 
is inactive because a scaling of the columns of U can always be compensated by a scaling 
of the associated columns of V. The five cases to be considered in detail are: 

Case 1. No active constraints on U (with Diag(U'U) = I for identification). 
Case 2. U~Um = 0 (with Diag(U'U) = I for identification). 
Case 3. U~U m = 0 and UmU m = I (with Diag(U~Ut) = I for identification). 
Case 4. U~Um = 0 and U~U t = I (with Diag(U~Um) = I for identification). 
Case 5. U~U m = 0, U~U t = I a n d U m U m  = I ( h e n c e U ' U  = I). 

Case 1. No constraints on U. 
In this case, the function cr (the symbol o- is not only used to refer to a function of V, 

as in (4), but also to a function of U) is minimized over U for given V by U = ZV(V'V) -1 
since this is a multiple regression problem. The inactive constraint Diag(U'U) = I can be 
effected by normalizing the optimal U columnwise. Although this changes the optimal U by 
a rescaling, it does not affect the optimality of the UV' after updating V, because the update 
for V compensates for the rescaling of U. 

Case 2. U~U m = 0. 
Every U for which U~Um = 0 can be written as U = XB, where X is a columnwise 0) 

orthonormal matrix and B = B,~ for arbitrary matrices B t and B m. This is because 

we can always write Ut = XtB¢ for a columnwise orthonormal Xt and Um = XmBm for a 
columnwise orthonormal Xm, where X t is a basis for Vt and X m is a basis for Urn; that X t 
can be taken orthogonal to Xm (and hence X is fully columnwise orthonormal) follows 
from U~Um = 0. Rather  than minimizing ~ over U, we will alternately minimize it over the 
constituents of U, that is, over X, B 1 and B 2, as follows. 

The function o- can be written as 

o-(X,  Bt ,  Bin) : IIz - X B V ' l [  2 

= II Z - (XtBt i XmBm) V" 112' 

= II Z - XtB,V; - XmBmV'll 2, (7) 
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where  Yt and Ym contain the first t and the last m columns of  V, respectively. We  first 
consider  the minimization o f  ~r over X, subject to X ' X  = I, considering B and V fixed. This 
problem reduces to maximizing 

f (X)  = tr Z ' X B V '  = tr Z V B ' X '  (8) 

subject to X ' X  = I. The maximum of  (8) is given by X = P Q ' ,  where  P and Q are obta ined 
f rom the singular value decomposi t ion  (SVD) of  ZVB'  given as ZVB'  = P D Q ' .  Next, the 
problem of  minimizing o- over B t and Bm given X and V is to be considered.  For  this 
purpose,  we elaborate (7) as 

~r(Bt, Bm) = IIz - x, Btv; - XmBmV~n[I 2, (9) 

The  function tr is minimized over B t by 

B t = X ; Z V t ( V ; V t )  -1, ( 1 0 )  

as follows f rom Penrose (1956) and the fact that  X;Xm = 0. Similarly, tr is minimized over 

B m by 

Bm = XmZVm(VmVm)' , -1. (11)  

The  resulting matrix U can now be computed  as U = (XtBt i XmBm), and if desired, 
normalized to unit length columnwise. 

Case3 .  ' = 0 a n d  ' = I. UtUm UmUm 
In this case, we can use the same procedure  as in Case 2 to effectuate the constraint  

U;U m = 0. That  is, we write U = XB and update  X and B t and B m alternately. For  updat ing 
B t we can still use (11), and if desired, normalize XB t to unit  length columnwise. For  
updat ing Bm, we should now take the constraint  UmUm = I into account.  This constraint  
amounts  to BmXmXmB m = B[nB m = I. Hence,  for updat ing Bin, we have to minimize []Z - 
XmBmVm][ 2 over B m subject to BmB m = I. This is equivalent to maximizing 

= X m Z V m B  m g(Bm) . . . .  = tr_Z X,~BmVm tr (12)  

over Bin, subject to BmB m = I. This maximum is found for  B m = PmQm with Pm and Qm 
from the SVD XmZVm = PmDmQm, see Cliff (1966). Again,  U is found as U = 

(XtBt i XmBm).  

Case 4. U;Um = 0 and U;Ut = I. 
This case is analogous to Case 3, with the roles o f  traits and methods  reversed. The 

updates  for  X and B m are found as in Case 2, the update  for  B t is given by PtQ; with Pt and 
Qt f rom the SVD X;ZV  t = PtDtQ;, see Cliff (1966). Again,  U is found  as U = 

(xtBt ! XmBm). 

Case 5. U;U m = 0, U;Ut = I and U ~ n U  m = I (hence U ' U  = I). 
In this case U = X (because B = I), hence the update  for U can be found as the update  

for X in Case 2, with B = I. 

Obviously, o ther  combinations,  like U;Ut = I and U;Um flee are conceivable alter- 
natives. Such cases can be handled in a slightly different way. For  this purpose  we write the 
funct ion cr as 

o'(U, V) = IIZ - UtV; - U,,,V'[I 2 (13)  
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and we update Ut (based on Cliff, 1966) and Um (using multiple regression) alternately, 
considering the other parameters fixed. 

This completes the description of the most pertinent situations for updating U. With 
all the above ingredients we can easily construct alternating least squares algorithms to fit 
the most relevant models to a data matrix Z. The algorithms should be initialized by 
matrices U and V that can either be chosen randomly (but satisfying the constraints), or in 
a very simple, but probably more rational way, as follows: Compute the principal compo- 
nent analysis solution of the data matrix; rotate the loading matrix orthogonally towards 
the indicator matrix that specifies to which component a variable belongs according to the 
MTMM model; rotate the component  scores matrix by the same rotation; use the resulting 
component  matrix and the resulting loading matrix (after setting to zero all loadings that 
are to be constrained to zero) as the "rational" start for the algorithm. A PCMATLAB 
program that performs all these analyses is available from the first author upon request. 

The above described algorithm takes the full data matrix as a starting point. However, 
in practice we often only have the correlation matrix. In the next section, it will be shown 
that the above procedures can also be used when only the correlation matrix is given. 

Sufficiency of the Correlation Matrix 

In the previous section, we have described algorithms for updating U and V. In all 
cases, it turns out that U contains linear combinations of the columns of Z. This can be 
seen as follows. In Case 1 it is obvious from the updating formula. In Cases 2 through 5, 
U contains linear combinations of the columns of X. The update for X, in turn, is obtained 
as PQ' ,  where P and Q are taken from the SVD ZVB' = PDQ'. From the SVD it follows 
that P is in the column space of Z, hence so is X = PQ',  from which it follows at once that 
U contains linear combinations of the columns of Z. This result implies that the optimal U 
is in the column space of Z. 

The fact that the optimal U is in the column space of Z can be exploited as follows. 
Rather than minimizing ~r over arbitrary U, we can just as well minimize cr over matrices 
U that are in the column space of Z. Let Z = Q z R z  denote the QR-decomposition of Z. 
Then Qz gives an orthonormal basis for the column space of Z, and we can rewrite U as 
U = Qz W. Then the problem of minimizing c~ over U in the column space of Z reduces to 
minimizing 

~-(W, V) = l l Q z R z  - QzWV'll 2 

= [IQz(Rz - W V ' ) y  

= IIRz - WV' l l  2. ( 1 4 )  

This function is to be minimized over W and V subject to the constraints on V and the 
constraints that W'W = W'Q~:QzW = U'U = ~ ,  where • is constrained to have a unit 
diagonal and possibly zeros in certain blocks, as implied by the constraints on U. The 
matrix Rz in (14) can be obtained from the Cholesky decomposition of Z'Z. 

From the above reasoning it follows that minimizing (14) over W and V gives the same 
minimal loss function value as for o-, and is attained for the same solution for V as would 
be obtained by minimizing or. The solution for W corresponds to that of U by U = QzW. 
In case we are only interested in the correlations between the factors, it suffices to compute 

= W'W. It follows that all iterative computations can be based on the correlation matrix 
Z'Z. In fact, the algorithm can be applied to the matrix Rz instead of Z, and, if desired, the 
rational start can be computed by analogously replacing Z by Rz. 
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Rotational Uniqueness 

Above, we have described algorithms for the CA methods for fitting the MTMM 
models. These algorithms do not depend on identification of the models. Nevertheless, 
from a substantive point of view it is interesting to know whether or not a model is 
identified, and hence has unique estimates. In the present section, it will first be shown that 
sufficient conditions for "rotational" (non)uniqueness of CFA models are also sufficient for 
(non)uniqueness of corresponding CA models. Hence, all results that are available on 
rotational nonuniqueness of CFA models are directly relevant to the (non)uniqueness 
issue of CA models. We will discuss some of these results in the second part of this section. 

Identification of CFA models is a very complicated issue, especially because of the 
presence of the unique variance parameters in ~ ,  in the CFA model: X = Aq~A' + ~ ,  
where X denotes the population covariance matrix, and A and • denote the loading and 
factor correlation matrices, respectively. In fact, we need conditions for identification of 
the unique variances, as well as for A and ~ .  A sufficient condition for identification of the 
unique variances has been described by Anderson and Rubin (1956), but since it requires 
mt > 2(m + t) it is often impractical with MTMM data (where e.g., m -< 2, t ~ 2, m = 
t = 3 and m = t = 4 are common cases). Most results on uniqueness of CFA models 
pertain to necessary conditions for uniqueness. In particular, most results pertain to the 
uniqueness of the A ~ A '  part of the model. 

The A ~ A '  part of the model is unique when no alternative matrices A_ and • exist 
that satisfy the same constraints as A and ~ ,  and for which A ~ A '  = A ~ A ' .  If A and 
are unconstrained, any nonsingular T could be used to produce A = AT and • = 
T - I ~ ( T ' )  -1 such that A ~ A '  = A ~ A ' .  Hence, in the absence of constraints on A and q~, 
(oblique) rotations exist that transform one solution into an equivalent one, and therefore 
such models are called "rotationally nonunique". Algina (1980) has given necessary and 
sufficient conditions for rotational uniqueness in CFA. Millsap (1992) reformulated Algi- 
na's uniqueness conditions for the MTMM model in which • is unconstrained. Grayson & 
Marsh (1994) gave a more general treatment of (non)uniqueness of the A ~ A '  part, by 
considering certain MTMM models in which certain elements of q~ are constrained to zero 
(as in Cases 2 through 5). 

As announced in the introduction of this section, the above mentioned results can be 
used for assessing uniqueness of the CA model as well. In CA models, the data are 
described as Z = UV' + E, where UV' forms the interesting part of the model. The model 
is nonunique if there is a set of alternative matrices fJ and V (differing from U and V by 
more than a trivial reflection) that satisfy the same constraints as imposed on U and V, and 
that yield the same loss function value; the model is unique if such alternative ~J and ~r 
cannot be found. It will now be shown that conditions which entail rotational (non)unique- 
ness in CFA, entail (non)uniqueness in CA. 

Let A and • (assumed to be positive definite) be matrices that satisfy certain model 
constraints, and suppose matrices A_ and • exist that satisfy the same constraints as A and 
• , respectively, and for which A ~ A '  = A~A ' .  Hence, for this A and ~ the CFA model 
at hand is rotationally nonunique. Then for V = A and any U chosen such that U'U = 
(as can be done, e.g., by using the Cholesky decomposition of ~) ,  the corresponding CA 
model is also nonunique, as will now be proven. Let a (truncated) eigendecomposition of 

- N -  2 ' D~ is the diagonal matrix with nonzero A ~ A '  = A ~ A '  be given as KrDrKr, where 
eigenvalues, and K r is the columnwise orthonormal matrix with corresponding eigenvec- 
tors of A ~ A ' .  Furthermore,  let the Cholesky decomposition of • be given by • = C'C, 
and let N t ------ UA'KrDr  1 and N 2 =- Czk'KrD71. From NIN t = D~-tKrAU'UA'KrDr t = 
D r 1KrKrD2rKrKrDrt = I, it follows that the r x r matrix N 1 is orthonormal, and similarly, 
from N~N 2 = I, it follows that N 2 is orthonormal. Hence, if we take ~1 = N1N~ C and f¢ = 
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A, we have (I ' l l  = C'C = tb, and I_N' = NIN~CA' = UA'KrDr2KrA.C'CA ' = 
U A , K r D r 2 K , ~ _ ~ ,  , -2 , 2 , = UA KrDr KrDrKr = UA'KrKr = UA' = UV', where it is used that 
KrKr A = A, because Kr spans the column space of A ~ A ' ,  and • is positive definite. Thus 
it has been proven that in conditions where the CFA model is rotationally nonunique, the 
corresponding CA model is nonunique as well. 

Conversely, suppose the CA model is nonunique, that is, suppose that, for given 
matrices U and V that satisfy certain constraints, there exist nontrivially different matrices 

and f¢, that satisfy the same constraints, and for which fSV' = UV'. Then the corre- 
sponding CFA model is nonunique as well, as can be proven as follows. Let ~ = U'U and 
A = V, then • = 0 ' f J  and ~, = V, • and _~ satisfy the same constraints as • and A, and 
~ .~A'  = fCl3'f_YV' = VU'UV' = A ~ A ' .  Thus it follows from nonuniqueness of a CA model 
that the corresponding CFA model is rotationally nonunique. By implication, we have that, 
if a CFA model is unique, the corresponding CA model must be unique as well. 

As mentioned above, sufficient conditions for uniqueness have already been given by 
Algina, and one of these was reformulated for the MTMM case by Millsap (1992, p. 128). 
This condition consists of two parts that both should hold. The first condition, the "nullity 
condition" (stating that at least m + t - 1 elements of each column of the loading matrix 
should be constrained to 0) is satisfied if and only if t > 2 and m > 2. The second condition 
is a special case of the uniqueness conditions provided by Kiers and Takane (1993). 
Because they prove that this condition is not only sufficient but also necessary, their result 
is somewhat stronger than Millsap's. Applied to the MTMM models, this result can be 
formulated as Theorem 1 below. 

T h e o r e m  1. Let V; be defined as the submatrix of V obtained by deleting the l-th 
column of V and the (t or m) rows of  V corresponding to the unconstrained elements of 
the l-th column of V, l = 1 . . . . .  r. Let U and V have full column rank. If U is constrained 
such that Diag(U'U) = I and V is constrained as in (3), then UV' = (YV' implies C = U~" 
and V = V~" (where ~" is a sign matrix) if and only if a l l  matrices V/(l = 1 . . . . .  r) have full 
column rank. 

The uniqueness conditions in Theorem 1 can only be verified after having obtained a 
solution for V, because it depends on the values in V. Kiers and Takane (1993) also offered 
a sufficient condition that can be evaluated in advance (depending only on the type of 
constraints, not on the specific values in V), but this condition is n e v e r  satisfied in the 
MTMM models under study here. Millsap (1992) gave a number of corollaries to Theorem 
1, that may be used to facilitate assessment of the uniqueness conditions. He also described 
a number of cases in which the MTMM models are rotationaUy nonunique, and hence in 
which the corresponding CA models are nonunique as well. 

As is readily verified, the condition in Theorem 1 has a simple implication: If m < 3 
or t < 3 the rank condition can never be satisfied. This can be seen as follows. The matrices 
V 1 . . . . .  V t are of order ( m t  - m )  × ( m  + t - 1) and the matrices Vt+ 1, . . . ,  V t +  m are 
of order ( m t  - t )  × ( m  + t - 1). When t < 3, the former matrices have more columns 
than rows, and when m < 3, the latter have more columns than rows. In both cases certain 
matrices cannot have full column rank, and hence the rank condition is not satisfied. 
Therefore,  models where U is unconstrained and m < 3 or t < 3 are always underiden- 
tiffed, which implies that for unconstrained U, the "nullity condition" is also necessary for 
uniqueness. 

Grayson and Marsh (1994) also described conditions for rotational nonuniqueness, 
which are particularly interesting for constrained MTMM models (among which Cases 2 
through 5). For instance, they have shown that the Case 2 model is rotationally nonunique 
when the nonzero elements of A can be written a s  )~ij = °tif3j, i = 1 . . . . .  m t  andj  = 1 . . . . .  
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m + t. In fact, they have shown that this condition is equivalent to having all unconstrained 
elements of A nonzero and A being rank deficient. 

For the models where U is constrained as in Cases 2 through 5, the condition in 
Theorem 1 is still sufficient for uniqueness, but no longer necessary. In fact, it has been 
found (to be reported elsewhere) that Case 2 models with t = 3 and m = 2 are usually 
unique, hence the condition in terms of ranks of Vl matrices of Theorem 1 (which is 
violated here) is clearly not necessary. Unfortunately, necessary" and sufficient conditions 
for identification in these cases do not seem to be available. For Case 5, we can formulate 
a sufficient condition that is weaker than the one from Theorem 1. This condition is based 
on Algina's (1980) Theorem 3. As shown by Bekker (1986, p. 610), however, this condition 
is, despite Algina's claim, not necessary for rotational uniqueness. An alternative sufficient 
condition for uniqueness in Cases 3, 4 and 5 is given by Grayson and Marsh (1994, 
Theorem 5). 

Although the present section does not offer general results on identification of CA 
methods for MTMM data, some conclusions can be made now: It has been seen that CA 
models are more often identified than CFA models, simply because they do not depend on 
identification of unique variances. In addition, identification of CA models is established 
easier than that of CFA models (due to the availability of simple sufficient conditions). 

A final remark on the above uniqueness results for CA models is in order. The results 
all imply uniqueness of U and V, given that the error terms in Z = UV' + E are fixed. 
However, it is conceivable that different solutions for E = Z - UV' produce the same loss 
function value. In fact, the above uniqueness theorem only shows that the model UV' is 
identified, given a set of error terms. This is similar to identification results in factor 
analysis, where even for identified models, it is conceivable that different parameter esti- 
mates yield the same (maximum) likelihood function value. 

Partitioning of Fit 

For cases where a solution is unique, it is of interest to see how much the different 
parts of the model contribute to the total fit of the data. In particular, it is interesting to 
distinguish contributions from the trait and the method components. Such a partitioning 
can readily be made for the Cases 2 through 5, as follows. 

In (13), the loss function has been written as ~r(U, V) = I]Z - UtV; - -  UmVm[[ 2. We 
define the "fit", or equivalently, the "explained variance" of the model, as the sum of the 
variances of the variables minus the unexplained variance. Hence the fit is 

f(U, V) = ItZli 2 - l l Z  - U,V; - UmV'tl 2. (15) 

For Cases 2 through 5, this function can be simplified, by using U;Um = 0 as 

flU, V) = - 2 tr Z'U,V; - 2 tr ZtUmV~n ÷ IIu,v;ll z + I Iumv ' l l  z 

= IlZll 2 - IIZ - U,V;II = + IlZll 2 - I l Z  - U,,V'I[ 2, (16) 

which is a sum of the variance explained by the trait components and that explained by the 
method components. A further simplification can be found by noticing that the optimal V t 
and the optimal Vm can be obtained independently. Specifically, given Ut, the matrix Vt 
minimizes tlZ - UtVtl] 2 subject to the constraint that each row of Vt has at most one 
nonzero element (at a prespecified position), and similarly, given Urn, the matrix V,n 
minimizes tlZ - UmVmll 2 subject to the constraint that each row of V m has at most one 
nonzero element (at a prespecified position). The optimal Yt, given U t, in fact solves a 
series of separate univariate regression problems: The unconstrained element in the j-th 
row of V t (say the It-th, hence the element ~/,) is found by regressing the j-th column 
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of Z on (only) the It-th column of U t, hence dr, = u~zj. It follows that Ilzj - Ut~'112 = 
llz i - utJjzj[ 2 -- zjzj - (z)uz) 2, and, analogously, ~zj UmCj"'][ 2 = z]zj - (zjul~) 2. Hence we 
can partition the fit of a single variable as 

fj = 2z]zj - ltzj - Utv'~'tl 2 + Ilz, - Umv~'l} 2 

r 2 t 2 : (z~.u~,) + (zju~m).  (17) 

The fit partitioning in (17), which holds for all models in which trait and method compo- 
nents are constrained to be mutually uncorrelated, implies that for each variable the 
contribution of the associated trait component and of the associated method component 
can be added to find the total contribution to the fit of this variable. From (17) we find that 
the total fit of all variables can be partitioned as 

f ( u ,  v )  = l iz l l  2 - I I z - u , v ; l [  2 + Ilzll  2 - I Iz  - UmV~nll 2 

t m 

jl~\ j t t l J  "~ E m t 2 wi.~m(ziu~, ~) , ( 1 8 )  
j=l j=l 

where W = (W t i Wm) is an indicator matrix with zeros indicating the constrained ele- 
ments of V, and unit elements the unconstrained elements; clearly, W has two unit ele- 
ments per row, one in Wt, indicating the trait factor to which a variable belongs, and one 
in Win, indicating the associated method factor. It can be concluded that, for all models 
belonging to Cases 2 through 5, the squared component  loading gives the contribution of 
the particular component to the fit. 

Performance 

Above, several theoretical advantages of the CA methods for MTMM matrices have 
been discussed. For instance, CA methods have no problems of finding improper solutions 
of any kind, they have a straightforward way of obtaining component scores, and the fitted 
models are more often identified than CFA models. In the present section, it is studied 
whether or not the CA methods perform well in practice. We focus on two aspects. First, 
the performance of the algorithms is discussed. Second, it is studied to what extent the CA 
method is able to recover a known underlying structure, and this ability will be compared 
to that of the correspondingCFA methods. 

Data Construction 

The above issues are studied by applying the methods to 90 constructed data sets. 
Each data set was constructed as a sample from a population where the CFA version of the 
MTMM model holds, and for which the parameters of the CFA model are known. We 
considered cases with three trait and three method factors only. Each data set consists of 
n realisations of the (nine-dimensional) random variable 

y = A u  + e ,  

where u is a six-dimensional random variable with a multivariate normal distribution N(0, 
• ), e is a nine-dimensional random (noise) variable with a multivariate normal distribution 
N(0, D2), A and • are a prespecified loading and factor correlation matrix, respectively, 
and D 2 -= Diag(l - A ~ A ' ) ,  thus arranging that the population covariance matrix has unit 
diagonal elements, and can be considered a correlation matrix. To construct the 90 data 
sets, two different sample sizes (n = 100 and n = 300), three different loading matrices 
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and three different factor correlation matrices were used. The three different loading 
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These loading matrices were selected to cover one well-behaved model (based on A2) and 
two potentially problematic models with relatively high amounts of noise (A1) and under- 
identification (A3). Note that A 3 has deficient rank, and therefore would, in an error free 
population, lead to nonuniqueness for both the Case 1 and the Case 2 model (see Grayson 
& Marsh's, 1994, Theorem 4), but to uniqueness in the Case 5 model (see Grayson & 
Marsh's, 1994, Theorem 5). 

The three different factor correlation matrices were 

lID 1 = 

1441515 15i) (;404400 ;) 4 1 4 1 5  15 1 5  4 1 4 0 0 0  
.4 .4 1 .15 .15 .15 .4 1 0 0 

.15 .15 .15 1 .4 ; ~ 2  = 0 0 1 .4 .4 ;~s = I .  

.15 .15 .15 .4 1 0 0 .4 1 . 

.15 .15 .15 .4 .4 0 0 .4 .4 

As the subscripts indicate, these covered Cases 1, 2 and 5, respectively. In ~1 the corre- 
lations between method and trait factors were taken considerably smaller than those 
among trait or among method factors. This seems reasonable from a substantive point of 
view, and was needed to ensure that the matrix De 2 had positive values for all choices of A. 

For  each cell of the above described 3 × 3 x 2 design, 5 data sets were generated as 
follows. Given a specified matrix ~ ,  we calculated ~1/2 and drew n random samples (xi, i = 
1 . . . .  , n, collected in the rows of X) from the multivariate normal distribution N(0, I), and 
n random samples (% i = 1 . . . . .  n, collected in E) from the multivariate normal distri- 
bution N(0, De). With the n x (m + t) matrix X we computed 

Y = X~1/2A' + E, 

which represents the raw sample. Since MTMM methods are usually applied to correlation 
matrices, we standardized Y columnwise, to obtain Z, and computed the corresponding 
correlation matrix R. To all 90 data sets, we applied the CA methods for Case 1, Case 2 
and Case 5 (denoted as Methods 1, 2 and 5, respectively). 



614 PSYCHOMETRIKA 

Local Optima 

The first purpose of the present simulation study is to study the sensitivity of our 
algorithms to local optima. Therefore, for each analysis we used the rational start de- 
scribed in the algorithm section and five random starts. We considered the algorithm 
converged as soon as the loss function value decreased by less than .0001%. To optimize 
the chance of finding the global minimum in this simulation study, we added a start based 
on the 'true values' contained in the matrices A and • that were used in the construction 
of the data. A solution was considered locally optimal if the function value differed more 
than .01 from the best function value (allegedly the global minimum) in the seven runs of 
an analysis. 

It was found that the rational start landed in a local optimum 17 times (out of 90) for 
Method 1, 25 times for Method 2, and 16 times for Method 5 (without systematic differ- 
ences between construction conditions). Hence the rational start seems to work fairly well. 
Not surprisingly, the start based on true values worked considerably better (frequencies of 
hitting local optima were 1, 12 and 7, respectively). The random starts, on the other hand, 
ted to 34 local minima (averaged over 5 random starts) for Method 1, 25.8 for Method 2 
and 13.8 for Method 5. Using random starts, the chance of hitting local optima seems to 
decrease as the number of model constraints (orthogonality constraints) is increased. 
Furthermore, it can be observed that, for Method 1, the rational start performs better than 
the random starts, for Method 2 it performs about as well as the random starts, and for 
Method 5 the rational start is worse than the random starts. It can be concluded that the 
algorithms are not very sensitive to hitting local optima, but relying on the rational start 
alone is not warranted. Using a number of random starts will diminish the chance of 
missing the global minimum. Besides, efforts to develop a better rational start could be 
undertaken, especially towards improving the rational start for Methods 2 and 5, since, for 
these Methods, the algorithm is less sensitive to local optima when started randomly. 

Model Choice 

To study whether or not comparison of the model fit can be used to find the correct 
model for a particular data set, we compared the differences in fit values (explained 
variances) for the three different methods. Because the Methods 1, 2 and 5 fit increasingly 
more restricted models, the explained variances for Method 1 will be highest and those for 
Method 5 lowest. However, fit differences can be expected to be large or small depending 
on the model underlying the data. When the data are based on ~1, the underlying model 
is of the form in Case 1, and the data are denoted as "Model 1 data". For Model 1 data, 
we expect that the variance explained by Method 1 is considerably higher than that ex- 
plained by Method 2 and Method 5, because the latter try to fit models that are too 
restrictive for the data at hand. In fact, in these analyses, compared to Method 1, Method 
2 imposes 9 additional constraints, and Method 5 imposes 15 additional constraints. When 
the data are based o n  I:I~ 2 ("Model 2 data"), the variance explained by Method 1 should no 
longer be much larger than that explained by Method 2, because the model fitted by 
Method 2 is just as suitable to find the underlying structure as the model fitted by Method 
1. We do expect, however, that the variance explained by Method 2 is considerably higher 
than that explained by the too restrictive Method 5. Finally, for Model 5 data (based on 
~5) we expect that Methods 1 and 2 account for only slightly more variance than Method 
5 does, because all models can account for the structure underlying Model 5 data. 

In Table 1 average fit values (in percentages of the total variance, which is 9 through- 
out) are reported for Methods 5, 2 and 1, respectively. In addition, differences between 
explained variances of Methods 1 and 2, and of Methods 2 and 5 are reported. From Table 
1, it is clear that Model 1 data can be fitted rather well by Method 5, but considerably 
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TABLE 1 

Average Percen tages  of  Explained Variance for  Models 1, 2 and 5 

615 

Model 1 Data (@1) 

Explained Variance (in %) 

Method 5 Method 2 Method 1 M2 - M5 M1 - M2 

n A 

100 A 1 84.4 90.4 91.0 6.0 0.6 

100 A 2 89.5 99.2 99.4 9.7 0.2 

100 A a 86.7 94.5 94.9 7.8 0.4 

300 A 1 84.9 89.8 90.1 4.8 0.3 

300 h 2 90.8 99.3 99.3 8.5 0.1 

300 A 3 87.5 94.1 94.5 6.6 0.4 

Model 2 Data (~2) 

Explained Variance (in %) 

Method 5 Method 2 Method 1 M2 - M5 M1 - M2 

n A 

100 A 1 83.7 87.4 88.3 3.7 0.9 

100 A2 89.3 95.1 95.5 5.8 0.4 

100 A 3 86.4 91.1 91.8 4.7 0.7 

300 A 1 84.0 86.6 87.2 2.7 0.5 

300 A 2 90.2 94.9 95.0 4.6 0.2 

300 Aa 86.7 90.4 91.1 3.7 0.7 

Model 5 Data (@5) 

Explained Variance (in %) 

Method 5 Method 2 Method 1 M2 - M5 M1 - M2 

n h 

100 AI 86.3 86.9 88.4 0.5 1.6 

100 h 2 94.3 94.9 95.6 0.6 0.7 

100 ha 89.7 90.3 91.8 0.6 1.5 

300 A 1 86.2 86.3 87.5 0.1 1.2 

300 A 2 94.7 94.8 95.2 0.1 0.4 

300 A~ 89.6 89.8 91.2 0.1 1.5 



616 PSYCHOMETR1KA 

better by Method 2. The increase in fit when using Method I is only modest. Hence, on the 
basis of explained variances alone, it seems hard to distinguish these Model 1 data from 
Model 2 data. Because Model 2 is a more parsimonious model than Model 1, one would 
tend to model these data by Model 2. It does seem clear for these data that Model 5 is 
incorrect, since Methods 1 and 2 lead to substantially higher fit values. 

The results for Model 2 data are rather similar to those for Model 1 data. The main 
difference is that the fit percentages for the Model 2 data are smaller than for the Model 
1 data. The increase in fit by choosing Method 1 instead of Method 2 is again small (as it 
now should be indeed, because Model 2 is the correct model), and the increase in fit by 
choosing Method 2 rather than Method 5 is relatively large. Hence, it seems that the 
trade-off between explained variance and parsimony of the model leads us to choose 
Model 2 to model these Model 2 data. 

Finally, for the Model 5 data, it can be seen that the variances explained by Methods 
1 and 2 are not much higher than those explained by Method 5, hence, on the basis of the 
trade-off between explained variance and parsimony, one would correctly choose Model 5 
to model these data. 

In conclusion, it can be said that, on the basis of comparison of explained variances 
alone, the Model 2 and Model 5 data tend to be correctly recognized as such, but that 
Model 1 data tend to be recognized as Model 2 data. It is tempting to attribute the present 
finding to the fact that the correlations between method and trait factors in the Model 1 
data were only small (.15). However, some other experimentation showed that also when 
Model 1 data were constructed on the basis of considerably larger correlations, Method 2 
performed almost as well as Method 1, and one would tend to conclude even for those data 
that Model I is the best model. Related to this is the finding that for Model 1 data the 
difference in fit between Method 1 and Method 2 was smaller than the difference in fit 
between Method 1 and Method 2 observed for the Model 2 data, whereas the reverse could 
be expected (and was indeed found for error free data, where Methods 1 and 2 both fit 
Model 2 data perfectly and hence lead to a zero fit difference). Some experimentation 
suggested that other data construction procedures tend to produce similar results, except 
when the error distributions have very small or widely different variances. Further study 
into an explanation of this peculiar phenomenon has not been undertaken because it will 
not affect the main conclusion that Method 1 and Method 2 tend to yield very similar fit 
values even for Model 1 data, and hence by the present procedure of comparing only fit 
values, it is hard to distinguish Model 1 data from Model 2 data. Inspection of the loadings 
may in such cases further help choosing the model, as will be illustrated in the first 
exemplary analysis in the next section. 

Recovery of the Underlying Structure 

To study the performance of our methods in terms of recovery of the underlying 
structure, we compared the resulting loadings and component correlations (associated 
with the highest function value, out of seven runs) to the loadings and factor correlations 
on which the data construction was based. For these comparisons we used two recovery 
measures. Let A and ~ denote the loading and factor correlation matrix, respectively, on 
which the data construction for a particular data set was based. Then, we have chosen as 
measures for recovery: 

1 9 6 
R E C A  = 18- ~" Z IXiJ - viii, 

i=l j=l 

which is the average difference between unconstrained observed and population loadings, 
and 
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1 6 6 

REC_~ = q E E [~bij - u~ujl, 
i=1 j>i 

where q denotes the number of different unconstrained elements in ~,  which is 15 for 
Method 1 and 6 for Method 2, so that REC_~ denotes the average absolute difference 
between unconstrained observed and population values of ~ ;  in Method 5 all values in 
are constrained, hence REC_~ can only be computed for Methods 1 and 2. Widaman 
(1993) demonstrated that components analysis will tend to give loadings that are biased 
upward, and intercomponent correlations that are biased downward. To see if this ten- 
dency was observed in our studies, we checked for each loading and for each component 
correlation, whether it was biased upward or downward. 

Clearly, Method i performed well only when data were constructed on the basis of A 2. 
Apparently, high error level (for data based on A1) or near nonuniqueness (data based on 
A3) may cause Method 1 to yield results that differ very much from the input A and ~ .  For 
data based on A2, Method I was able to reconstruct the original A and • reasonably well, 
as reflected in the small REC_A and REC_~ values. 

As far as the direction of the differences between obtained and 'true' loadings is 
concerned, we found the expected tendency of loadings being biased upward. Specifically, 
in the conditions based on AI and A3, on the average more than 15 of the 18 loadings were 
biased upward; in the conditions based on A 2 this average was 13.4. It should be noted that 
in these conditions, at most 15 loadings were biased upward, and in one case only 11 
upward biases were found, and hence 7 downward biases. This corroborates the results 
that, in the conditions based on  A2, Method 1 performs quite reasonably. 

As far as biases in component correlations are concerned, except in one of the 
conditions with A2, at least nine of the fifteen correlations were biased downward, which 
sustains Widaman's findings. Upon closer inspection of the Method t solutions, it could be 
seen that in many of the poorly recovered A 1 and A3 cases, the solution was of a degen- 
erate nature. That is, the correlations between components tended to values near I (among 
traits or among methods) or near - 1 (between traits and methods). Such phenomena were 
observed in many instances, except when data were based on A 2. Such solutions, of course, 
are irrelevant from a data analytical point of view and can be discarded as degenerate. In 
fact, the phenomenon is similar to the degenerate factors phenomenon encountered with 
PARAFAC (see Kruskal, Harshman & Lundy, 1989). 

Like Method 1, Methods 2 and 3 performed best in the conditions based on A 2. In the 
other conditions, they performed considerably better than Method 1, with average abso- 
lute differences in the interval [.10, .20]. These deviations from the true values may to some 
extent distort the interpretations of the solutions, but are acceptable. This result is rather 
surprising, especially for Method 2: For the conditions based on A1, it implies that even 
with relatively large error terms, the present component models can recover the original 
structure fairly well; for the conditions based on A3, it implies that even when the model 
is underidentified in the population (as is the case for the Model 2 data, based on A 3, see 
Theorem 4 by Grayson & Marsh, 1994), component analytic results for a sample are not 
meaningless, and to some extent approximate the true (population) values. Moreover, 
when analyzing the population correlation matrix, CA did find a unique solution, which 
indeed approximated the population loadings and correlations to some extent. 

As far as biases are concerned with Methods 2 and 3, it was found that on the average 
between 10 and 12 loadings were biased upward, and, of the six intercomponent correla- 
tions in Method 2, on the average between 4 and 6 were biased downward. Hence, these 
results sustain Widaman's (1993) results on bias of loadings and component intercorrela- 
tions. On the other hand, it should be noted that the number of upward biases of the 
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TABLE 2 

Recovery of  the Original Loadings and Component Correlations 

by the CA Methods 

Average Results for Model 1 Data, Based on Application of Method 1 

REC-A REC-,I~ 

n=100 n=300 n=100 n=300 

A 1 0.48 0.54 .37 .56 

A 2 0.05 0.03 .10 .06 

A 3 1.84 2.42 .69 .84 

Average Results for Model 2 Data, Based on Application of Method 2 

REC-A REC-~ 

n=100 n=300 n=100 n=300 

A 1 0.16 0.14 .13 .14 

A 2 0.08 0.06 .08 .08 

A 3 0.17 0.15 .11 .10 

Average  Results for  Model 5 Data, Based on Application of Method 5 

REC-A 

n=100 n=300 

A 1 0.15 0.14 

A 2 0.08 0.06 

A 3 0.15 0.14 

loadings was on the average lower than for Method 1, which is in line with the better 
performance of Methods 2 and 3. 

Table 1 also gives information on the effect of difference in sample size. Whereas for 
common factor analysis, sample size is usually an important determinant of the perfor- 
mance, it can be seen that sample size hardly affected the reproductive capacity of the CA 
methods. 

For comparative purposes, we also fitted the three CFA versions of the MTMM 
models to the data (using LISREL7; J6reskog & S6rbom, 1989). The default LISREL start 
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was used at first. It turned out that, in many cases, the program gave an improper solution, 
or did not converge. In cases where the problems were severe, the program failed to write 
the solution to the requested file. To give the method a better chance of finding a proper 
solution, we reran all analyses using the 'true' structure as start. Almost the same number 
of improper solutions was encountered. Specifically, fitting Model 1 led to improper so- 
lutions in 57 (out of 90) times and nonconvergence occurred in three cases. Only 45 
solutions were denoted as "admissible" (and were consequently written to file). Fitting 
Model 2 yielded 47 improper solutions, but they converged throughout, and 63 solutions 
were deemed admissible. Model 5 was far less problematic, leading to only 16 improper 
solutions (all Heywood cases), and all 90 solutions were considered admissible by LISREL. 

The abundance of inadmissible solutions makes comparison with the CA methods 
hard. Therefore, we compared REC values only for data sets where LISREL solutions 
were admissible. A stronger selection where all improper solutions were discarded was not 
deemed necessary; on the other hand, taking into account nonadmissible solutions was 
deemed inappropriate because LISREL's warnings clearly suggest that these solutions 
should not be used in practice. For the cases where LISREL gave an admissible solution, 
we simply checked whether CA or CFA led to the best recovery value at hand. These 
counts are reported in Table 3. 

Of course, the prevalence of improper CFA solutions by itself illustrates an important 
advantage of CA versus CFA, since CA never leads to improper solutions. From Table 3, 
it can be seen that, even in cases where CFA does give a proper (or at least "admissible") 
solution, it is fairly often outperformed by the CA solution. This occurred especially for 
Models 1 and 2, with n = 100, but also occasionally in other cases. Hence, the expected 
larger bias in CA loadings was not consistently found. Apparently, in cases where CA gives 
considerable biases, the CFA loadings are not recovered very well either. On the other 
hand, in cases where CFA does perform well, notably those where Model 5 is fitted, but 
also in instances of fitting Models 1 and 2, with n = 300, CA tended to lag behind. 

The present simulation study reveals several things. First of all, it can be concluded 
that fitting Model 1, which is well known to be problematic for CFA, is often problematic 
for CA methods too. The problems carry over in situations where the population loadings 
are poorly identified, or where the error terms are large. However, fitting data based on 
fairly well identified population loadings, and on relatively small error terms did not cause 
the CA method to run into major problems, and hardly ever did for the CFA method. In 
these cases, however, the CA method almost always outperformed CFA in terms of re- 
covering the underlying structure, even though this underlying structure conforms exactly to 
the CFA model. 

As far as fitting Model 2 is concerned, it turned out that CA and CFA both performed 
fairly well as far as models based on well-identified population loadings and small errors 
are concerned. Especially in cases with large error, but also in cases with unidentified 
population toadings, CFA failed fairly often, whereas CA tended to perform acceptably in 
most of these cases as well. Where CFA did not fail, it usually performed worse than CA 
in the small sample cases, and better in the larger sample cases. Finally, in the case of 
fitting Model 5, CA always performed reasonably well, but was typically outperformed by 
CFA. 

These results together suggest that CA can be used as a reasonable alternative to CFA 
for recovering an underlying structure, which will be somewhat less adequate than CFA in 
well identified situations, but will be particularly useful in relatively poorly identified 
situations. 
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TABLE 3 

Comparison of CA and CFA in Terms of Frequencies of Finding the Best Recovery 

Model 1 Data Fitted to Model 1 

REC-A REC-@ 

CA/CFA* n=100 n=300 n=100 n=300 

A 1 2/0 0/2 2/0 0/2 

A 2 4/0 1/4 2/2 1/4 

A a I/0 0/2 1/0 0/2 

Model 2 Data Fitted to Model 2 

REC-A REC-q* 

CA/CFA n=100 n=300 n=100 n=300 

A 1 1/0 0/2 1/0 0/2 

Az 4/0 1/4 4/0 2/3 

A 3 3/0 0/5 3/0 4/1 

Model 5 Data Fitted to Model 5 

REC-A 

CA/CFA n=100 n=300 

A 1 0/5 0/5 

A 2 1/4 0/5 

A3 0/5 0/5 

) The entries in this table should be read as follows: a/b 
indicates that in a+b cases LISREL found an admissible 
solution; in a of these cases CA performed best, in the 
other b cases CFA performed best. 

Empirical Examples 

In the present section, two empirical data sets are analyzed by the CA procedures for 
fitting MTMM models. The first data set is Lawler's (1967) MTMM matrix on managerial 
job performance. The data pertain to three Traits (Quality of job performance, Ability to 
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TABLE 4 

621 

Percentages of Explained Variance and Numbers of Local Optima 

for the Lawler Data 

Model Constraints Percentage of Number of Local 

Explained Variance Optima 

Traits Only zero correlations 50.1% 0 

unconstrained 55.3 % 0 

Methods Only zero correlations 57.8 % 0 

unconstrained 63.3 % 0 

Traits and 

Methods Model 5 83.9 % 3 

Model 4 87.6 % 2 

Model 3 85.1% 2 

Model 2 88.0 % 3 

Model 1 88.9 % 2 

perform the job, and Effort put forth on the job) measured by three Methods (Superior 
ratings, Peer ratings, and Self ratings). This MTMM matrix has been used in many exem- 
plary analyses. Problems of nonconvergence and improper solutions were encountered in 
fitting this matrix by CFA models (e.g., see Brannick & Spector, 1990; Browne, 1993; 
Wothke, 1987). In the present section, we report the application of all discussed CA 
variants for fitting this MTMM matrix. These variants include fitting models for Trait 
Factors Only (with or without zero correlations constraints), Method Factors Only (with or 
without zero correlations constraints), and the five aforementioned models for Trait and 
Method Factors, with different sets of constraints. All analyses were based on a rational 
start and five random restarts. Table 4 reports the percentages of explained variance, and 
the numbers of local optima encountered. 

As is clear from Table 4, the algorithm did not find many local optima for the simplest 
models, and even for the most complex ones, the number of local optima was acceptable, 
and gives confidence that the global optimum has indeed been found. Inspecting the 
percentages of explained variance, it is clear that the "Traits Only" and "Methods Only" 
models do not fit the data very well. The data seem to be based on substantial trait and 
method components. Of the models employing both trait and method components, the 
unconstrained model (Model 1) trivially fits best, but the Models 2 and 4 fit almost as well. 
Among these, Model 4 (using orthogonal trait components, and correlated method com- 
ponents, while method and trait components are mutually orthogonal) is the most parsi- 
monious, and, moreover, seems to make intuitive sense: It is, in fact, desirable that Su- 
perior, Peer and Self ratings are positively correlated; at the same time, it is conceivable 
that quality, ability and effort are uncorrelated aspects of job performance. Thus, by 
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comparison of model fits, we have come to a sensible model, which, moreover, explains 
almost 90% of the variance. Note that we could make this fit comparison only because we 
could compute solutions for all models, in contrast to what is the case in CFA applied to 
these data (where nonconvergence or improper solutions preclude comparison of fit 
values). 

Besides fit comparison, we can use substantive interpretation to choose between 
models. For this purpose, loadings and component correlations for Models 1 and 4 are 
reported in Table 5. We also inspected the Model 2 solution, but observed that it was quite 
similar to the Model 4 solution, with nonzero but small correlations between the trait 
components. We prefer to report Model 4, which admittedly exaggerates one of the main 
observations for these data, namely that correlations between trait components are small. 
Clearly, the Model 4 solution gives more reasonable loadings than the Model 1 solution. 
Especially the -.87 loading of v8 on "Ability" is anomalous, and is an extra indication for 
choosing Model 4 rather than the slightly better fitting Model 1. Moreover, the Model 1 
solution has a rather irregular, and therefore hard to interpret, pattern with fairly large 
positive and negative correlations between method and trait components. This is reminis- 
cent of the improperness of the solution found when fitting this model by CFA. 

The original purpose of analyzing MTMM matrices was to study convergent and 
discriminant validity of a number of measures, and to assess the effects of Method vari- 
ance. The fact that the "Methods Only" model does not account for a large amount of the 
variance indicates at least some degree of convergent validity. As described by Widaman 
(1985, p. 9), convergent validity is indicated more precisely by the size of the loadings on 
the trait components. These are fairly high for Quality and Effort (related to two and three 
variables, respectively), but not for Ability (which is related to only one variable). Hence 
Quality and Effort seem to have reasonable convergent validity, but Ability does not. Low 
correlations between trait components can be seen as indicative of discriminant validity. 
Since in the present model, these correlations are zero, the traits clearly have discriminant 
validity. As far as the method effects are concerned, it can be concluded that method 
effects are rather strong. This follows from the fact that the "Traits Only" models fit very 
poorly and that the loadings on Method components are often higher than on trait com- 
ponents. Furthermore, two of the method effects are related: Superior and Peer judgments 
are correlated rather strongly (.61). 

The second data set is the second MTMM matrix reported by Marsh, Byrne and 
Craven (1992, p. 507), henceforth called the MBC data. The matrix pertains to four traits 
and three methods. In addition, the correlations of all variables with three external vari- 
ables, GPA (grade point average), English achievement and Mathematics achievement, 
are available. The reported 15 x 15 correlation matrix was not positive definite (possibly 
because it was based on pairwise deletion). Therefore, before the analyses, we used a 
positive definite approximation to this matrix, which approximated this matrix very well. 
We applied the Cholesly decomposition to the full 15 x 15 matrix, to obtain a 15 x 15 
pseudo data matrix Rz for all variables. The actual, unknown, scores on the 15 variables 
can be expressed as Z = QzRz, where Qz is an unknown columnwise orthonormal matrix. 
It follows that Z02 ), the matrix with the scores on the first twelve variables (the actual 
MTMM variables), can be written as Z(12) = QzRz(12), where RZ(12 ) is the matrix with the 
first twelve columns of R z. The matrix Rz(12 ) was used as input in the MTMM analyses. 
The last three columns of Z and hence of R z were used for an external validation of the 
components. As has been explained in the introduction, an important advantage of CA 
over CFA is the possibility of computing correlations of components scores with external 
variables. This advantage was put to use in the present example. 

As with the Lawler data, we fitted nine models to the present data set. Table 6 reports 
the percentages of explained variance, and the numbers of local optima encountered. The 
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TABLE 5 

Loadings and Component Correlations for  Models 4 and 1 

Fitted to the Lawler Data 

623 

Loadings 

Model 4 Model 1 

Traits Methods Traits  Methods 

Qual. Abil. Eff. Sup. Peer Self Qual. Abil. Eff. Sup. Peer Self 

vl  .65 0 0 .70 0 0 .75 0 0 .88 0 0 

v2 0 .16 0 .91 0 0 0 .46 0 1.01 0 0 

v3 0 0 .57 .68 0 0 0 0 .75 .82 0 0 

v4 .64 0 0 0 .71 0 .64 0 0 0 .87 0 

v5 0 -.01 0 0 .92 0 0 .72 0 0 1.02 0 

v6 0 0 .61 0 .66 0 0 0 .79 0 .85 0 

v7 -.12 0 0 0 0 .97 .39 0 0 0 0 .88 

v8 0 .90 0 0 0 .42 0 -.87 0 0 0 1.13 

v9 0 0 .73 0 0 .52 0 0 .80 0 0 .39 

Component Correlations 

Model 4 Model 1 

Qual. Abil. Eff. Sup. Peer Self Qual. Abil. Eft. 

Quality 1 1 

Ability 0 1 .24 1 

Effort  0 0 1 .51 .31 

Superior 0 0 0 1 -.31 - .38 

Peer 0 0 0 .61 1 - .24 - .44  

Self 0 0 0 .06 .13 1 -.07 .53 

Sup. Peer Self 

1 

- .34 1 

-.36 .71 1 

.06 -.08 -.11 1 

number  of local opt ima encountered by the algorithm was small, except for Model 1. 
Inspection of the Model  1 results revealed that the algorithm found a degenerate solution 
here. Among the remaining models the "Method Only" models are inferior to the rest; the 
"Traits Only" models give a reasonable fit now. It can be concluded that there is relatively 
little Method variance in this data. Nevertheless, the effect of the methods does seem 
nonnegligible, as evidenced by the considerably higher fit by the Models 2 and 3 (which 
allow for Trait  and Method components).  Since Model 3 (with correlated Trait  compo-  
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TABLE 6 

Percentages of Explained Variance and Numbers of Local Optima for  the MBC Data 

Model Constraints Percentage of Number of  Local 

Explained Variance Optima 

Traits Only zero correlations 70.8 % 0 

unconstrained 80.0 % 0 

Methods Only zero correlations 38.1% 3 

unconstrained 48.9 % 0 

Traits and 

Methods Model 5 84.1% 0 

Model 4 88.7 % 0 

Model 3 91.4 % 0 

Model 2 91.5 % 2 

Model 1 92.6 % 5 

nents, but uncorrelated Method components, and Trait and Method components mutually 
uncorrelated) is the most parsimonious and fits hardly worse than Model 2, we choose it 
as the most useful one to describe the data. 

Having chosen the model to represent the MBC data, we can study the loadings and 
the component correlations, and, in addition, we can compute the correlations of the 
components with the external variables. It may seem that the latter is not straightforward, 
since we cannot compute component scores, because we do not have the original scores on 
the variables. However, we can derive these correlations from the correlations of the 
external scores with the variables. This can be done as follows. The MTMM algorithm is 
applied to Rz02). As has been explained in a previous section, the resulting component  
scores matrix W is related to U by U = QzW. It follows that the correlations between all 
variables and the components are given by Z'U = R~Q~QzW = R~W. Computing the 
latter matrix is straightforward, and the resulting correlations of all variables with the 
components are given in Table 7, along with the loadings for this model. 

The convergent validity is evidenced by the large difference in fit between the "Meth- 
ods Only" model and the "Traits and Methods" models, as well as by the high loadings of 
all variables on the associated traits. Discriminant validity is not as clear as with the Lawler 
data. Clearly, correlations between traits are nonzero, and in particular the "School" 
component is not well discriminated from the other traits. Further evidence in this direc- 
tion is obtained from the correlations of  the components with the external variables. The 
School component correlates moderately with all three external variables as one would 
expect. For the "General"  trait, similar results (but to a lesser extent) are found. The traits 
"English" and "Math" on the other hand are well discriminated, and their interpretation 
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TABLE 7 

Results of  Model 3 Fitted to the MBC Data 

Loadings 

Trai t  Components Method Components 

General School English Math M1 M2 M3 

t t m l  0.94 0.08 

t2ml 0.93 0.07 

t3ml 0.73 0.67 

t4ml 0.96 -0.04 

t lm2 0.67 0.71 

t2m2 0.81 0.41 

t3m2 0.96 0.12 

t4m2 0.94 0.24 

t lm3 0.94 -0.07 

t2m3 0.74 0.62 

t3m3 0.82 0.50 

t4m3 0.35 0.88 

Correlations of  Components Mutually and With External Variables 

Trait  Components Method Components 

General School English Math M1 M2 M3 

General 1 

School .51 1 

English .24 .51 1 

Math .20 .53 .00 

M1 0 0 0 

M2 0 0 0 

M3 0 0 0 

1 

0 1 

0 0 1 

0 0 0 

GPA .07 .52 .13 .39 .05 -.07 .41 

Eng-ext  .03 .43 .36 .14 - .04 -.13 .35 

Math-ext  .02 .41 .00 .60 .03 .01 .32 
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is validated externally by the fact that they are correlated highest to the external variables 
to which they correspond. 

Discussion 

The above analyses of constructed and empirical data have demonstrated that the CA 
methods for fitting MTMM models are useful for decomposing a data matrix and for 
representing the information contained in a data or correlation matrix. It is not claimed 
that the CA methods are always more useful than CFA methods for fitting the MTMM 
models under study. However, the CA procedures lead to proper, well-behaved solutions 
in almost all cases. The only exception is Model 1 fitted to data that are based on large 
unique variances or nearly equal loadings, as could be expected because of the poor 
determination of solutions in these cases. CFA, on the other hand, led to unusable solu- 
tions very frequently. Surprisingly, this also happened for a relatively large sample size 
(300). Since in all our simulations the model did hold in the population, improper solutions 
cannot simply be attributed to misspecification. Hence, respecification may not help in 
such cases. Apparently, the problem is more serious. Sample sizes as large as 300 are not 
sufficiently large to guarantee that properties that hold in the population (e.g., common 
and unique factors uncorrelated) also nearly hold in the sample. In contrast, in many cases 
where CFA led to improper solutions, CA did give a well-behaved one. This happened in 
particular for fitting Models 1 and 2. It is well known that CFA performs poorly when 
fitting Model 1 (e.g., Marsh & Hocevar, 1983; Widaman, 1985). It is therefore surprising 
that CA did perform well in one condition of fitting Model 1. On the other hand, in cases 
where CFA led to proper solutions, the CA solution was neither consistently better (in 
terms of recovery of the underlying structure) nor consistently worse. Thus, the main 
advantage of the CA methods over the CFA methods is its ability to obtain reasonable 
estimates when CFA cannot. Although not tested here, this advantage may be particularly 
profitable in cases where CFA assumptions are grossly violated in the population. 

It has been argued (e.g., J6reskog & S6rbom, 1989, p. 239) that finding an improper 
solution with CFA should not just be judged as a problem of the CFA method, but could 
be considered as a meaningful diagnostic as well: Finding an improper solution indicates 
that the model is misspecified. However, the present simulation study showed that im- 
proper solutions do not only arise when models are misspecified. Even in cases where the 
correct model is specified, improper solutions may arise. For this reason, we view the fact 
that CA cannot give improper solutions as an asset of the method. 

In addition to the above main advantage of CA over CFA, an additional advantage is 
its suitability for calculating correlations with external variables. As has been illustrated in 
the second example, such correlations can help assess the external validity of the compo- 
nents. Besides this possibility of computing correlations, the component scores themselves 
can be used for any other purpose as well. 

The CFA methods provide information on the basis of which one can perform tests 
for determining whether a model fits significantly better than a different model. Such 
information is not available with the CA methods. Nevertheless, we have demonstrated 
that it is possible to choose a model, mainly (though not solely) on the basis of model fit. 
This may seem less rigorous than using significance tests, but then it should be kept in mind 
that the rigor of significance tests is based on often dubious assumptions (e.g., multinor- 
mality) and subjective choices (of significance levels). Moreover, in addition to signifi- 
cance, another important criterion for model selection is whether or not a difference in 
model fit is considered substantial in the application at hand. 

Recently, it has been claimed (e.g., Marsh & Bailey, 1991; Kenny & Kashy, 1992) that 
a viable alternative to the problematic CFA model is the "correlated uniqueness model". 
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However, this alternative model also has some disadvantages. For instance, it does not 
allow for correlations between method factors. This seems, at least in quite a few appli- 
cations, highly unrealistic. Another problem is that Method factors and Error are con- 
founded, which makes the model complex in terms of interpretation. In fact, this approach 
was motivated partly by Kenny and Kashy's somewhat disheartening remark concerning 
CFA that "it then becomes necessary to simplify the complete model" (p. 171). The 
present paper demonstrates that this is not true: Maintaining the essence of the CFA 
models is of ten possible,  provided that  a different fitting strategy is used. 
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