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As an extension of Lastovicka's four-mode components analysis an n-mode components 
analysis is developed. Using a convenient notation, both a canonical and a least squares solution 
are derived. The relation between both solutions and their computational aspects are discussed. 
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Introduction 

In a recent article, Lastovicka (1981) extends Tucker's three-mode factor analysis 
model to four modes and presents a "canonical" solution. In this paper we extend his 
research in three respects: 

(i) We extend his results to an arbitrary number of modes; 
(ii) We introduce some new notation, fit for handling multidimensional matrices, 

and show how the calculus involved works; 
(iii) We derive a least squares (LS) solution and compare it to Lastovicka's solution. 

The problem and the notation are introduced first. We then present the LS solution and 
compare it with Lastovicka's solution, which we will denote by the term "canonical." An 
iteration method to compute LS is given next. We compare the canonical and the LS 
solution by means of an empirical example. 

Apart from Lastovicka's work cited above, various other related references can be 
mentioned. Carroll and Chang (1970) present methods for analyzing multidimensional 
matrices. This work is restrictive in the sense that the component dimensionality of each 
mode is taken equal. Carroll, Pruzansky and Kruskal (1980) extend these results to in- 
clude linear constraints on the parameters. The present paper can be considered to be an 
n-mode extension of the work of Kroonenberg and de Leeuw (1980) on three-mode data, 
which itself is a further development of Tucker's (1966) work on three-mode principal 
components. They also give an algorithm (TUCKALS3) based on what they call alter- 
nating least squares. Hence, Kroonenberg (1983), in his comprehensive monograph on 
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three-mode data, describes our model as a "Tuckern model", and our iteration method as 
a "TUCKALSn algorithm." 

We agree with the observation by Kroonenberg (1983): "In principle, the extension 
to n-mode data is straightforward, but it becomes increasingly complex to keep track of 
the summations over the proper indices. Moreover, the description of such an n-mode 
procedure becomes exceedingly cumbersome without new notation" (p. 73). These are 
precisely the points where the present paper might offer a useful contribution. 

The Problem and Some Notat ion 

Let A i be an unknown :i x mi matrix, : i  > m i ,  satisfying A~ A i = Iml, i = 1 . . . . .  n, and 
define 

A = A I ®--" ®A.. (i) 

The symbol " ® "  refers to the (right) Kronecker product, with, for example, C ® D = 
[cij D]. We do not introduce special notation for the multiple Kronecker product like the 
one appearing in (1). Let 

n 

t = 1-It, (2) 

n 

m =- ] - Imi  . (3) 
i = 1  

So, t _> m and A is of order t × m. Let y be a (known) t-vector, whose elements are 
identified by n indices, with the i-th index (i = 1 . . . . .  n) assuming values from 1 to t~. The 
elements are arranged in such a way that the first index runs slowly and the last index 
runs fast. Analogously, let b be an (unknown) m-vector, also with elements identified by n 
indices, with the i-th index running from 1 to m~ (i = 1 . . . . .  n). The elements are arranged 
in the same way as the elements of y. (The vectors y and b can be considered as "stacked" 
versions of n-dimensional matrices.) It is our aim to choose At, i = 1, . . . ,  n and b in such 
a way that Ab represents y "as well as possible." 

Let Ci be the t × t commutation matrix that changes the running order of the indi- 
ces in such a way that when applied to y the i-th index runs fastest and the running order 
of the other indices remains unaffected. Let further D~ be the m × m commutat ion matrix 
that reshuffles the elements of b in the same way as does Ci with the elements of y. The 
sizes of Cj and D~ differ. As C~ and D~ are commutation matrices they have the property 

C~ C~ = C~ C, = Ie, (4) 

Di D~ = D ~ D  i = Ira. (5) 

The C:s and D[s are generalizations of the well-known commutation matrix for n = 2, 
which has been extensively studied by, among many others, Balestra (1976), Magnus and 
Neudecker (1979), and Henderson and Searle (1981). 

It will be convenient to introduce the matrix A i - A 1 ® - - -  ®A i _  1 ®Ai+ 1 ® --. 
® A,. The following definitional relationship then emerges: 

A i® A i = C~(A t ® ' "  ® A,)D[ = Ci AD'i. (6) 

For  reasons to become clear later on we define the matrices Yi and Bi by 

vec Y'i = C~ y and vec B'~ = D~ b, (7) 

where Yi is of order ( :  i × :i) and Bi is of order (m i x m3, with : ~ =- : / : i  and m ~ =- m / m i .  
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It will be clear that in spite of the normalization A~ A~ = Ira,, the representation (A 1 
® - - -  ® A~)b is not unique, because if T~, i = 1 . . . . .  n, are orthogonal m~, rn~ matrices 
there holds 

(ArT x ® . . .  ® AnT,,)(T 1, ® . . .  ® T',,)b = (A t ® . . .  ® A,,)b. (8) 

This indeterminacy will be used to pick a convenient solution when discussing the repre- 
sentation problem. 

The Least Squares Solution 

The LS solution amounts to finding At . . . . .  An and b such that 

Q - (y - Ab)'(y - Ab) (9) 

is minimal, subject to A'~ A~ -- Imt and (1). The solution to this problem is readily obtained. 
First, it follows from standard LS theory that for any choice of At . . . . .  A~, the solution 
for b is 

Notice that 

1~ = A'y = (A~ ® - - -  ® A,,)'y. (lO) 

y'(At ® .. ® A,,)I~ = y'(AxA' 1 ® . . .  ® A,, A',,)y 

= y'C~ C~(A tA'~ ® . .  "An A'n)C~ C~ y 

= (vec Y'i) ' (AiA i' ~ A i A~)vec Y~ 

t i i, = tr AiYiAA Y~AI, (11) 

for any one index i. It is convenient to define 

1 i if Si - Yi A A Yi- (12) 

Then 

Q = y'y - tr A~S~A~. (13) 

Minimization of Q subject to A~ Ai = I,,~, i = 1 . . . . .  n, can be done by differentiating the 
Lagrangean function: 

n 

L = y'y - tr A'ISiAi + tr ~ Fi (A~Ai-  Ira,), (14) 
i = 1  

with F~ a symmetric ms x m~ matrix of Lagrange multipliers, with respect to A~ and setting 
the result equal to zero. This yields: 

S i A i -  AiFi = 0. (15) 

So a solution is to choose for F i the diagonal matrix Fi containing the m~ largest eigen- 
values of Si, and for A~ the corresponding orthonormal eigcnvectors. 

S i n c e S i ( -  ' ~ ~' Y~ A A Y~) depends on the unknown parameters in A ~ the solution to the 
minimization problem has to be obtained iterativcly. An iteration process and its conver- 
gence properties are discussed below. 

The fit of the LS solution is assessed as follows. (Carets indicate LS solutions.) Define 
the f-vector of residuals: 

~.._~ y - ./~fi, (16) 

then, analogous to (13) we have: 
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d 'd  = y ' y  - ~ '~ = y ' y  - tr A'~S,.~, = y ' y  - tr F,, (17) 

for any one i. So the sum of the m~ largest eigenvalues in the LS solution is the same for 
all i. It is obvious to define 

R 2 = fi'----~- tr ~ (18) 
- -  y ' y  - y , y  

as the coefficient of determination. 

The Canonical Solution 

Lastovicka (1981) proposes a canonical solution Z,~, i = 1 . . . . .  n, where the columns 
of J~ are the rn~ orthonormal eigenvectors corresponding to the m~ largest eigenvalues of 
Y~ Y~. The solution for b is ~ = (.~ ® . . '  ® ~'n)y. The LS and the canonical solutions 
differ only with respect to the A~. Given A~, b is the same in both cases. With LS, we have 

vec B', = D,~ = Di( ,~ ® ' "  ® A'n)y = Di(.~.~ ® " "  ® An)CiC, y 

= ( A i ' ®  .~'~)Ciy = ( , ~ l , ®  .~'~)vec Y'i = vec A~ V~,'. (19) 

So 

i~i = ~i'Yi -~i. (20) 

By the same procedure the canonical solution is 

~i  = ~i'Yi~ki. (21) 

As Y'~ ~,~.~'Y~ .~ = ~i.~ ~ (cf. (15)), ~ = $~'Y~ i.~ contains the first m~ principal components 
of .i,~'Y~, provided that mi < - m  i. This (necessary) condition follows from the fact that 
• ~'Y~ A,i is an m ~ x m~ matrix. (It is clear that this condition cannot be satisfied when 
n = 2, unless ml = m 2  .) 

Let us write the canonical equations as: 

Y~ Y~'~i = ~ ~i, where -~'i ~i = Ira," (22) 

Now, Ai does not contain the eigenvectors of Y~.~.~'¥i, but of Y~ Y~. Hence if for all i 
except one A~ = le~, the two solutions coincide, as A ~ = Ie~ in that case. Thus, when con- 
sidering index i, the canonical solution does not involve the data reduction with respect to 
any other index. 

Still another interpretation of the LS solution is obtained by observing that A~A ~' is 
idempotent and hence a projection matrix. It projects onto the space spanned by A ~. So 
the LS solution amounts to a search for principal components, not of Y~ itself, but of its 
projection onto the space spanned by A ~. 

An Iteration Method 

An obvious iterative procedure to obtain the LS solution is as follows. Take ~2 . . . . .  
.Z,, as starting values for A2 . . . . .  A,.  Use these values to form a first estimate of A ~, . ~  
say. Compute the first estimate of A1, say -~1tl), as the m~ eigenvectors of Y ~ , ~ ) . ~  Y1 
corresponding to the ml largest eigenvalues. Using -~10) and ~a . . . . .  .Z. n, we can form ~-~1) 
and estimate -~2t1~ in a similar manner. Having computed A1~11 through ~,~), we start 
with A1 again and form estimates ~-~t2j . . . . .  Ant2). The process is continued until conver- 
gence. 

Convergence of the iterations follows from the following considerations. Q defined in 
(9) is quadratic and consequently nonnegative. For each i, the solution for A~ correspond- 
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ing to (15) minimizes Q, for any value of A ~. So, in the above iterative process, each newly 
computed Ai lowers the values of Q or leaves it unaffected. Thus, we obtain a nonincreas- 
ing sequence of values of Q which is bounded from below by zero. As a result, the se- 
quence converges. 

Some Empirical Results 

In order to get some practical experience with the LS approach we applied it to the 
same data set as was used by Lastovicka (1981). This data set consists of a four- 
dimensional matrix of order 27 x 6 x 5 x 16, containing the scores (ranging from 1: 
"strongly disagree" to 6: "strongly agree") given by f l  = 27 individuals to each of ~z = 6 
TV commercials after each of ~a = 5 exposures for each item from a list of E4 = 16. This 
data set was standardized such that the 16 x 16 matrix Y~, Y4 is a correlation matrix; see 
Lastovicka (1981) for details. (The factor 1/(27) t/2 mentioned there on page 51 should read 
1/(810)1/2.) 

We first recomputed Lastovicka's results, which are based on m x = 4, m 2 = 2, m 3 = 3 
and m4 = 3. In general, we were able to reproduce his results, with one notable exception 
(as was brought to our attention by Jaap Verhees, see also Verhees, 1985, the columns 
headed "Ip." and "IIp." in his Table 3, containing the varimax rotated eigenvectors of 
Y3 Y3 corresponding to the largest and second largest eigenvalues, respectively, should be 
interchanged). As a result, most of the entries in his Table 5, which gives the "core" 
matrix, a two-dimensional display of b, are incorrect. (But we were also unable to repro- 
duce the entries that are unaffected by the error, i.e., those in the two columns headed 
"Emotive Response" in his Table 5. The overall magnitudes of the entries in this table are 
too low to be correct. A rough check is provided by computing the sum of squares of the 
entries, i.e., b'b in our notation. This yields .069 or, cf. (18), R 2 = .004, an improbably low 
value. In fact, ~'~ = 4.634 according to our computations.) 

We next analyzed the same data by the LS method. We used the same values for the 
re{s, and followed the iteration method discussed above. The computer programming is 
straightforward, with the exception of the procedure to build up the matrices of the type 
Si. In order to avoid storage capacity and time limits, one has to break down the con- 
struction of Si into a set of nested "do loops" in a scalar fashion rather than to construct 
all intermediate matrices in full. 

As expected, convergence towards the optimum was rapid. The iteration was termi- 
nated as soon as tr F~, for some i, showed a relative difference from tr F~ in the previous 
round of less than 5 x 10 -6 .  This occurred with tr F 4 at the end of the tenth round of 
iterations. (Notice that tr Fi depends on all Ai. In general it will therefore only remain 
constant between iterations if all A~ remain constant.) 

The most interesting question is, of course, how the LS method compares to the 
canonical one with respect to the fit; see Table 1, where we show how y'y (=  16, as the 
16 x 16 matrix Y'4 Y4 is a correlation matrix, and y'y = tr Y~Y~ for all i) is split up in an 
"unexplained" part (6'~) and an "explained" part (6'~), see (17). It appears that R 2 goes up 
from .290 to .323 when replacing the canonical method by ours. The overall level of 
explanation may not seem to be very high, but one has to keep in mind that the job of 
reproducing the 27 × 6 x 5 x 16 = t2,960 elements of y has to be borne by the 
4 x 2 x 3 x 3 = 72 elements of the "core matrix" t~. 

As to the results on the varimax-rotated A~-matrices, there were some differences 
between both methods. The results on A2 (ads) and A 3 (exposures) did not differ very 
much, but those on A t (individuals) and A4 (items) did. In these two cases, there was a 
marked difference in that (a) the principal loadings per row were often in different col- 
umns (for 21 of the 27 rows of At, for 4 of the 16 rows of A4), and (b) the LS solution 
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TABLE 1. 

LS versus the canonical method: some resu l ts  

Method y ' y  e 'e b' b R 2 

LS 16.000 10.835 5.165 .323 

Canonical 16.000 11.366 4.634 .290 

shows a tendency to concentrate the principal loadings (i.e., the largest factor scores) in 
the columns corresponding with the largest eigenvalues. For  example, A1 has 11 of the 27 
row maxima (absolute values) in the first column and ~ only 7; for -&4 these figures are 9 
out of 16 and for .Z, 4 6 out of 16. 

As can be expected from these differences, there were also considerable differences 
between G and ~. 

Conclusion 

In this paper we presented a least squares approach to multidimensional component 
analysis. A possibly fruitful byproduct of the paper is the introduction of a notation, 
based on permutation matrices, that allows for easy handling of the algebra involved, 
making derivations simple and transparent. 

As we have LS as our loss function, our method scores, of course, higher on this 
criterion than the canonical one. A troublesome aspect of multidimensional component 
analysis appears to be the apparent sensitivity of at least part of the results to the cri- 
terion used. A possible way to study this phenomenon is to consider the individuals in the 
data set as a random sample from some population and to set up a statistical model to 
explain the observations. A model which would justify the LS procedure is the following 
one: 

y = A b  + u, (23) 

where u is an E-vector of i.i.d, errors with mean zero. If we assume the elements of u to be 
normally distributed, the LS procedure provides maximum likelihood estimators of A 
and b. 

Given this model, we can carry out an asymptotic F-test to see whether Lastovicka's 
results are consistent with the data (e.g., Goldfeld & Quandt, 1972). The only ingredients 
we need for this test are the R2-values for the canonical and the LS solutions. We find 
that F (145, 12743)= 4.28, which is highly significant. Thus, assuming the statistical 
model, (23), the canonical solution is rejected by the data. 
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