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BAYES MODAL ESTIMATION IN ITEM RESPONSE MODELS 

ROBERT J. MISLEVY 

EDUCATIONAL TESTING SERVICE 

This article describes a Bayesian framework for estimation in item response models, with 
two-stage prior distributions on both item and examinee populations. Strategies for point and 
interval estimation are discussed, and a general procedure based on the EM algorithm is present- 
ed. Details are given for implementation under one-, two-, and three-parameter binary logistic 
IRT models. Novel features include minimally restrictive assumptions about examinee distri- 
butions and the exploitation of dependence among item parameters in a population of interest. 
Improved estimation in a moderately small sample is demonstrated with simulated data. 
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Introduction 

Simultaneous estimation of many parameters can often be improved, sometimes dra- 
matically so, if it is reasonable to consider one or more subsets of parameters as ex- 
changeable members of corresponding populations (Efron & Morris, 1975; James & 
Stein, 1961; Kelley, 1927; Lindley & Smith, 1972). The idea is that while each observation 
may provide limited information about the parameters it is modeled directly in terms of, 
it also contributes information about the populations to which they belong. Knowledge 
about the populations, generally superior to knowledge about individual parameters, can 
in turn be brought to bear in the estimation of any individual parameter. Novick, Jack- 
son, Thayer, and Cole (1972) and Rubin (1980), for example, provide Bayes and empirical 
Bayes solutions respectively to the problem of predicting student performance in a given 
law school when data are available from several law schools. Both studies obtained more 
stable estimates in small schools and improved cross-validation results when compared to 
independent estimation within schools. 

This approach holds promise for parameter estimation in item response theory (IRT) 
models for mental tests--a thorny problem even in large samples, since additional param- 
eters are introduced with each new item and each new examinee in the sample. Many 
individual parameters can be poorly determined despite an apparently large data base. 
Wainer and Thissen (1982), for example, show that several thousand responses are some- 
times needed to obtain stable maximum likelihood estimates of an item's parameters 
under the three-parameter logistic model. 

Such procedures have recently begun to appear in the psychometric literature. Bock 
and Aitkin (1981), Rigdon and Tsutakawa (1983), and Thissen (1982) address the problem 
of incidental examinee parameters by integrating over a population density to produce 
marginal likelihood functions for item parameters. Reiser (1981) and Mislevy and Bock 
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(1985) extended this model by positing prior distributions for item parameters. Swamina- 
than and Gifford (1981, 1982, 1985) employ two-stage priors for examinee parameters and 
selected item parameters, then obtain the joint posterior mode for all individual parame- 
ters. Andersen and Madsen (1977), Mislevy (1984), and Sanathanan and Blumenthal 
(t978) provide maximum likelihood solutions for the parameters of examinee population 
distributions, conditional on item parameters. Finally, Bock and Aitkin (1981) and Bock 
and Mislevy (1982) derive posterior means and standard deviations of the parameters of 
individual examinees, conditional on item and examinee population parameters. 

The aforementioned procedures can all be expressed as special cases of a more compre- 
hensive Bayesian framework for estimation in item response models. Working along lines 
first suggested by Lindley and Smith (1972), we begin by introducing a model for item 
responses that employs two levels of prior distributions on both item and examinee pa- 
rameters. Attention is restricted to those cases in which it is reasonable to assume ex- 
changeability over all items and over all examinees; that is, no information other than 
item responses is available to lead us to different expectations about  particular items or 
examinees. A general discussion of theoretical and practical considerations in estimating 
the parameters of such a model, including an EM computing algorithm (Dempster, Laird, 
& Rubin, 1977), follows. Procedures specific to some binary logistic item response models 
(Birnbaum, 1968; Lord, 1980; Rasch, 1960) are then detailed. We illustrate the techniques 
with simulated data and conclude by discussing possible extensions of the procedures to 
take into account auxiliary information about items or examinees. 

The General Form of the Model 

Let 0 denote examinee ability and p(0lx) its density, conditional on examinee popu- 
lation parameters x. If 0 follows a normal distribution, for example, x = (/~0, ~2), the mean 
and variance, x is assumed in turn to follow a density p(x). In the same manner, let 
denote the parameter(s) of a test item and p(~ 111) denote its density, conditional on item 
population parameters B; 11 in turn follows density P(B). Independence over examinees and 
items is assumed, given x and B. The joint prior for all unknowns is thus given by 

p(0, ~, x, B) = lq p(0, Ix) I ]  (~jln)p(x)p(l l) .  
i j 

Let dij take the value 1 if examinee i is administered item j and 0 if not. For n items 
of interest, let d, = (dil . . . . .  d,n)', and for N examinees, let D = (dl . . . . .  tiN)'. Let u o denote 
the response of examinee i to item j, taking the value 1 if the item was adminstered and 
answered correctly, and 0 otherwise; define u~ and U in analogy to fit and D. We shall 
assume that the mechanism by which items are administered is ignorable with respect to 
likelihood inference (Rubin, 1976); that is, p(U, DI0,  ~, ~, 11)= Kp(U[D,  O, ~, ~, B). 
Random item administration, targeted testing, and adaptive testing are examples of ignor- 
able item administration mechanisms (Mislevy, in preparation). Denote by L(UID,  0, ~) 
the likelihood of the possibly incomplete matrix of responses of subjects with abilities 
0 = (01 . . . . .  ON) to items with parameters ~ = (~1, . . . ,  ~n)" By Bayes theorem, the posterior 
density of 0, ~, ~, and I 1, given realized observations U is given by 

p(0, ~, 1:, rllD, U)oc L(U I D, 0, ~)./9(01 x). p(*). p(~lrl)- p(11). (1) 

After the forms of the likelihood function L and the prior densities p(01 ~) and P(~I q) 
have been chosen, the highest level prior densities p(x) and p(q) have been specified, and 
the data U have been observed, (1) contains all information available about  the parame- 
ters in the model. The intractability and the sheer incomprehensibility of a joint distri- 
bution of possibly thousands of variables, however, demand summarization in terms of 
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salient attributes, to be used in constructing point and interval estimates or for subse- 
quent calculations. 

The mean of the posterior has the desirable property that its value for any subset of 
parameters is invariant with respect to marginalization of (1) over any subset of remaining 
variables. In complex problems like the one at hand, however, where closed form solu- 
tions are not readily forthcoming, posterior modes are more frequently seen. They are not 
invariant with respect to marginalization, but they are often easier to approximate nu- 
merically. 

Generally speaking, the posterior mean of a subset of parameters in multiparameter 
problems is better approximated by the mode after marginalization over one or more 
other parameters (O'Hagan, 1976). Improvements can be striking when marginalization is 
over large numbers of poorly determined "nuisance" parameters that appear in the joint 
posterior along with parameters of interest. Examinee parameters 0 follow this description 
in the present context, and we integrate over their distribution to obtain 

p(~, *, n tD, U) = f p(0, ~, ~, ;liD, U) dO 

oc L(U I D, ~, x)p(x)p(~l;l)p(;l). (2) 

Modal estimates from (2), as opposed to those from (1), are also preferable on the grounds 
of asymptotic behavior. Bayes modal estimates tend to normality under regularity con- 
ditions similar to those required for asymptotic normality of the maximum likelihood 
estimate, with the additional requirement of a continuous and positive prior distribution 
in the neighborhood of the modal value (Hartigan, 1983); in the limit, the modal value is 
equal to the mean, which is equal in turn to the maximum likelihood estimate. The preci- 
sion matrix, or the inverse of the posterior covariance matrix, is given by the negative 
matrix of second derivatives of the log posterior evaluated at that point. 

The regularity conditions are not satisfied, however, in the case of infinitely many 
nuisance parameters (Neyman & Scott, 1948)---a situation obtained when the number of 
items is held constant and the number of examinees increases without limit (Andersen, 
1973). Asymptotic normality of the modal estimator under (1), then, need not follow. It 
will follow for modal estimators of ~, x, and q under (2) with the well-behaved item 
response functions and prior distributions in current use, because the number of parame- 
ters remains constant with increases in the number of examinees. 

Even when the 0 parameters of individual examinees are of interest, as they often are 
in practice, the reasoning above implies that their modal values in (1) may not be a good 
way to estimate them. Bock and Aitkin (1981) suggest approximating the relevant margin- 
al posterior p(0/IU, D) by p(0~lul, ill, ~, ~, ~), a distribution conditional on modal esti- 
mates of item and population parameters; Bock and Mislevy (1982) offer a tractable nu- 
merical approximation of this distribution, from which posterior means and standard 
deviations are readily calculated. The effects of ignoring uncertainty about item and 
population parameters prove negligible for more than, say, 10 appropriate items, but 
Dunmore's (1976) adjustment using the posterior precision matrix can be applied if de- 
sired. The exact form of p(Oil U, D) in the special case of the case of the two-parameter 
normal ogive IRT model has been given by Lewis (1985). 

It would seem appealing at first blush to apply the same techniques to the estimation 
of item parameters as well, first marginalizing over 0 and ~ to obtain 

q ] D, U) oz f j"  p(0, ~, x, ;l I D, U) dO a~, (3) p(x, 

obtaining modal estimates of x and 11, then calculating P(~jl U~, D j,  ~, ~1), where Uj and Dj 
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represent data for item j only. This approach will not be pursued in the current presenta- 
tion. A first reason stems from the fact that in applied work, the number of examinees is 
typically much larger than the number of items. This means the posteriors of items pa- 
rameters are usually much better determined and more nearly symmetric, so that modal 
values of ~ in P(~] U, D, ~, fl) differ little from those in (2). A second reason pertains to 
IRT models with more parameters per item than response categories. As the number of 
examinees increases without limit, the likelihood L(UjIDj, ~j) is maximized by all values 
of ~ that trace a response curve though the observed proportion correct. For binary IRT 
models with one parameter per item, for example, there is just one such value of ~; but for 
models with more than one parameter per item, there are infinitely many. In this latter 
case, the density P(¢~I Us, D j, 9, fl) does not lead to unique item parameter estimates as 
the number of examinees increases; a density that retains joint response frequencies across 
items, namely p(~IU, D, 9, fl), must instead be addressed and the attraction of one-item- 
at-a-time solutions is lost. 

If item population parameters are not of interest, they can be integrated out to yield 

V(~lD, U)oC~foP(O,~,x, nlD, U)dOd n. (4) 

The remaining item parameters and examinee population parameters are typically of pri- 
mary interest in the educational setting, although for many examinees and all but very 
short tests, their marginal modes under (2) and (4) will differ little. 

An EM Algorithm for Parameter Estimation 

This section provides a framework for parameter estimation in the general model 
outlined above, based on the variation of Dempster, Laird, and Rubin's EM algorithm 
introduced by Bock and Aitkin (1981) in the context of marginal maximum likelihood 
(MML) estimation of item parameters. The posterior density function in our model, mar- 
ginalized with respect to 0, can be written as 

The first bracketed factor on the right is the marginal probability of observed responses 
from a random sample of examinees from a population with density p(01x), while the 
second can be thought of as the prior distribution for ~ and x. We now focus our atten- 
tion on the first factor. 

By maximizing the first factor of (5) with respect to parameters of interest, Bock and 
Aitkin (1981) obtain MML estimates of ~ given p(0] x) and Mislevy (1984) obtains MML 
estimates of x given L(UID, 0, ~). Both presentations employed the expedient of approxi- 
mating integration over 0 by summation over a finite grid of points Xq, q = 1 . . . . .  Q, with 
associated weights A(X,~ t 1:) as follows: 

log L(UID, ~, *) ~ ~ log ~ L(u, I d,, X~, ~)A(Xq Ix). (6) 
i - -  c/ 

Three methods were suggested for specifying points and weights. First, when p(0l*) takes 
the form of a normal density or a mixture of normal densities, optimal points and weights 
for a given Q may be found in Stroud and Sechrest (1966). Second, a Monte Carlo ap- 
proach generates a random sample of equally weighted points from p(01t). Third, a grid 
of Q equally-spaced points can be specified a priori and assigned weights proportional to 
p(Xql*). 
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Bock and Aitkin (1981) show that with the discrete approximation of the likelihood 
function, partial derivatives of the marginal likelihood, in which O's are not observed but 
must be inferred from item responses, can be written in forms quite similar to their 
counterparts in a related "complete data" problem in which individual O's are known. 
Under the assumption of iid O's, we may write the partial derivative of the complete data 
log likelihood, or 

log L(UID, 0, ~, z) = log L(UID, O, ~) + log p(01 x), (7) 

with respect to a typical parameter v from ~ or • in the form 

t9 log L(UID, 0, ~, ~) 
dv = ~ fv(u,, d,, 0,, ~, 't), (8) 

i 

for an appropriately defined gradient function f~. It can be shown (e.g., Bock & Aitkin, 
1981) that the corresponding derivative of the marginal log likelihood (6) can then be 
approximated as 

a log L(UID, ~, "0 
,.~ ~. f,,(~q, Iqq, X¢, ~, "r), (9) 

dv q 

where 

and 

with 

Nqj = ~, dijP(X q l Ui, di, ~, I;), (10) 
i 

r~j = E dlJtliJP(Xq l ui , d i ,  ~, z) (11) 
i 

L(u,I di, X2, ~)A(X¢I~r) (12) 
P(X¢ l u,, d,, ~,, z) = ~ L(u, I dl, X,, ~)A(X, l z)" 

s 

An application of Bayes theorem will be recognized in (12), yielding a value approxi- 
mately proportional to the posterior density of 0 at the value Xq given ui, di, ~, and z. The 
upshot is that the first derivatives (9) of the marginal likelihood are identical in form to 
the first derivatives (8) of the complete data likelihood, with expressions for subjects 
evaluated at 0~ with observed data uii and dis replaced by similar expressions evaluated at 
quadrature points Xq with pseudo-data ~qj and ]qqj. Likelihood equations are obtained by 
setting the partial derivatives (9) to zero. 

It will be noted that ~q and Iqq depend on ~ and z. Solution must proceed iteratively 
taking the form described by Dempster et al. (1977, sec. 4.tA) for EM cycles with missing 
values under multinomial sampling. In the E-step, (10) and (11) are evaluated with pro- 
visional estimates ~t and V. This gives the expectations of ~q and lqq conditional on the 
data and the provisional parameter estimates. In the M-step, ~t+l and V +1 are obtained 
by solving (9) (equated to zero) with ~q and lqq treated as known. Cycles continue in this 
manner until changes become negligible. An indication of the precision of estimation is 
given by the following approximation of the Fisher information matrix: 

A = ~ (c~ l°g L(u~] d" ~' z))(  c~ l°g L(u' . d ' '  ~' z ) ) .  ~(~, "c) ~(~, "0' , (13) 

evaluated at (~, ~). 
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The EM algorithm is readily extended to Bayes modal estimation (Dempster et al., 
1977, p. 6). All of the foregoing procedures are applied as before, except that the marginal 
likelihood equations are replaced by modal estimation equations of similar form; for a 
typical element v of ~ or x, 

t~ log p(~, ~ ]D, U) 
0 =  

dv 

t3 log p(UID, ~, x) O log P(~tn) c3 log(u) 
= + .a_ ( 1 4 )  

t~v ~v ~v 

The treatment of item population parameters q, which do not appear in (9), depends on 
whether they are to be integrated out or jointly estimated. Integrating them out modifies 
the form of the prior for ~ from P(~I q) to S P(~lq)P01) dq. Estimating them requires the 
solution of additional equations 

d log p(~ 111)P01) 
0 =  

Oil 

When 11 has been integrated out in the problem at hand, the posterior precision 
matrix for ~ and ~ takes the form 

d2 log L(UID, ~, x) d2 log p(~)p(~) 
B = - ~ (~ ,  ~)t~(~, ~)' t3(~, ~ )0(~ ,  ~)' ' ( 1 5 )  

where 

P(~) = J p(~ l n)p(n) drl. 

Employing the well-known result on Fisher's information matrix and substituting ob- 
served values for expectations, we avoid calculating second derivatives of the log likeli- 
hood via the approximation 

c~ 2 log p(~)p(x) 
B ,-~ A - -  ( 1 6 )  

a(~, ~)~(~, 1:)' ' 

where A is given in (13). When 11 is estimated jointly with ~ and ~, the precision matrix is 
similarly approximated as 

c:tA- c32 log P(x)P(~I II) 
~(~,x)~(~, x)' (symmetric) 

c92 log P(x)P(~I q)P01) c~ 2 log p(z)p(~l tl)p(tl) 
~(~, ~)~ '  ~ ~9~1' 

(17) 

It should be pointed out that solutions of the estimation equations are local extrema 
or saddle points of the posterior. Whether they are local maxima can be determined by 
examining the shape of the posterior in the neighborhoods of solutions, either empirically 
or through the matrix of second derivatives, which will be negative definite at local 
maxima. Whether a local maximum is a global maximum follows in certain cases from the 
form of the posterior (e.g., a member of the exponential family), but must be determined 
empirically in most cases by starting the iterative solution from a number of different 
initial values. 



ROBERT J. MISLEVY 183 

Procedures for Some Logistic Models 

The balance of the article implements the procedures in the context of some logistic 
item response models, with special focus on Birnbaum's three-parameter model. The fol- 
lowing sections provide details on functional forms for the likelihood and prior distri- 
butions, and on the corresponding forms of the fitting equations. For the first stage of 
priors, a multivariate normal density will be posited for item thresholds, log slopes, and 
logit asymptotes; both a mixture of normal components and a nonparametric approxi- 
mation in the form of a histogram will be provided for examinee abilities. For the second 
stage, both diffuse and natural conjugate priors will be provided in all cases. 

The Likelihood Function 

The three-parameter logistic model for dichotomous items (Birnbaum, t968) gives the 
probability of a correct response to i temj  from examinee i as 

Pj(0,) = P(u,. i = 110, ,  a~, b j ,  c j) 

= c / +  (1 - cj)W[Daj(Oi - bi)], (18) 

where W(x) is the logistic function 1/(1 + exp(-x)). D is a scaling constant, taken as 1 by 
some writers for convenience and as 1.7 by others (e.g., Birnbaum, 1968) so that the units 
of the model will approximate those of normal ogive IRT models (Lord, 1952). One may 
obtain the two-parameter logistic model from (18) by fixing cj = 0, and the one-parameter 
model (Rasch, 1960) by additionally fixing aj = 1. 

Indeterminacies of scale and origin are apparent in (18). If for any scalars m and x we 
define 0* = mO + x,  b* = mb + x,  and a* = a/m, then P(u = 110", a*, b*, c) = P(u = 1 I0, 
a, b, c). In this article we will specify higher-level prior distributions that resolve these 
indeterminacies. 

Rather than obtaining a posterior for a, b, and e directly, we work with the trans- 
formed item parameters 

~ = tog a i,  

f l~= b~, 

and 

It is readily inferred that aj = exp aj and cj = ~t'(?)j). While this formulation does not 
permit the boundary values of 0 and 1 for c j,  it serves our purposes adequately by allow- 
ing c's arbitrarily close to these values. If prior beliefs suggest positive probabilities for 
zero c values, neither this transformation nor the multivariate normal prior on item pa- 
rameters will be appropriate; the beta prior on untransformed c's suggested by Swamina- 
than and Gifford (1981) may be preferable. Nonpositive a's are also disallowed; careful 
examination of fitted and empirical response curves will obviously be required in appli- 
cations where faulty items and incorrect keys can occur. 

Reparameterization achieves two ends. The first is a more rapid attainment of large- 
sample results. The impediment against normality represented by the finite range of c, for 
example, is removed by reexpression in terms of y. The second is convenience in specifying 
higher level prior densities. With unrestricted ranges for all parameters, the imposition of 
multivariate normal priors on parameters within items but independent across items is 
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not unreasonable. This may be the simplest way to allow for the possibility of dependence 
among parameters a, b, and c in a population of items. 

Letting ~ represent (al, fl~, ?~ . . . .  , a. ,  ft,, ~,), the estimation equations for item pa- 
rameters take the form 

O log L(~, x) O log P(~I~I) 
0 = I (19) 

Formulas for the second term appear in the following section. Those for the first term are 
approximated as 

O log L 
0~- -  ,,. D (exp ~j)(1 - c j) E eqJWqz<Xk - -  b j), (20) 

q 

0 log L 
Ofl---~. ~ -D(1  - c j) Z eqjW~s~j, (21) 

q 

0 log L cj ~ eqj 
~ (22) 

Oy j P qj " 

where eqj = rqj - hT~iPqj with hTqj and f~j given in (10) and ( 1 1 )  and 

Pqj = c i + (1 - cj)U/[Daj(Xk - bj)], 

with 

Wqs = Fcj(1--Cs) 1-1  I_ eqj + (1 -- c j) z 

Given /V~j and Pq~, the estimation equations, (19), corresponding to parameters of 
item j do not involve item parameters or pseudo-data from any other item. This means 
that the M-step task of finding zeros of (19), along with additional estimation equations 
for examinee- and possibly item-population parameters, need not address all 3n equations 
for item parameters simultaneously. Zeros for the parameters of a given item within an 
M-step may be obtained rapidly by methods such as Newton-Raphson iterations, which 
require second derivatives of the log posterior, or Davidon-Fletcher-PoweU iterations, 
which do not. 

Prior Structures on Item Parameters 

Let the prior distribution on the parameters for item j be given by ~j = (~j, flj, 
Vj) ~ MVN (lie, ~e), where !1¢ = (~,, pa, ]~r). Hence (lie, ~e) plays the role of the item 
population parameter I I in the more general notation of the preceding section. Assuming 
independence over items, the joint prior log density of item parameters is then given by 

n 1 
log p(~[ lie, l~e) oc - ~ log [zce[ - ~ y ,  (~s - it¢)'r~- l(~s _ lae). (23) 

J 

The partial derivatives of (23) with respect to the parameters for item j are obtained as 

0 log p(~llt¢, 2;~) 
~ J  = _~:~- l(~j _ ~t~). (24) 
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These terms are added to the partial derivatives of the log likelihood of (20) to (22), and 
the results set to zero to give the estimation equations for the parameters of itemj. 

In IRT models with independent unimodal prior distributions on item parameters, 
the contribution of prior information in the estimation equation for a given parameter 
depends upon its distance from the center of the distribution of parameters of its same 
type. That is, parameters of a given type "shrink" toward a single point, namely the mean 
of parameters of that type, by amounts inversely proportional to the information avail- 
able for each individually. It will be seen in (24) that under the structure proposed here, 
the contribution of the prior also depends on the distance of the item's parameters of 
other types from the centers of their respective populations. Parameters of a given type 
now shrink toward a plane, namely their conditional expectations given the values of the 
items' parameters of other types. 

Let us suppose further that (la¢, ~:¢) follows the natural conjugate prior distribution 
for the multivariate normal, namely multivariate normal for Ire given £~ and inverted 
Wishart for Z¢ (Ando & Kaufman, 1965); that is, 

log p(la¢, £¢) oc - log [ Eel - ~ (it e - y~)E~- ~(la~ - ye)b - ~ tr E~ IH. (25) 

Here b and m are scalars (m > 2p for a proper distribution under the p-parameter IRT 
model), y¢ is a vector, and H is a 3-by-3 positive symmetric matrix--all to be specified in 
such a way that H corresponds to the covariance of m - p values of g and y¢ corresponds 
to the average of the b values of g. A practical example of how these parameters can be 
specified appears in the analysis of simulated data in a subsequent section. 

The indeterminacies of scale and origin in the two- and three-parameter models can 
be conveniently resolved at this point by specifying their locations; for example, p(It¢, 22~) 
is null everywhere except where ~t~ = 0 and/~a = 0. Only the latter constraint would enter 
into the one-parameter model. 

If la¢ and £~ are to be estimated jointly with g and ~, partial derivatives must first be 
obtained for all terms in the log posterior in which they appear, namely log p(gllt¢, £¢), 
(23), and log p(tt¢, £¢), (25). Differentiating, equating to zero, and simplifying yields the 
following estimating equations: 

n~ + by e (26) 
I r e -  n + b ' 

and 

where 

and 

!2¢ = (n + m + 1)- ' (S + n(~ - la¢)(~ - Ire)' + b(lt¢ - ye)(It¢ - yff  + H}, 

L = n - '  E ,J, 
J 

s = E - - 
J 

A familiar theme in Bayesian estimation appears in (26), where a mean is estimated as a 
weighted average of a sample mean and a prior mean. It should be pointed out that ~ will 
generally not be equal to the simple mean of the item parameter estimates that would 
have been obtained under straight marginal maximum likelihood (MML) estimation. This 
is because the item parameters ~j are being estimated at the same time, and each is 
shrinking back from its MML value in inverse proportion to the amount of information 
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about it; items therefore contribute toward the estimation of the item population mean in 
direct proportion to the amount of information about them. 

To achieve maximum likelihood estimation of 11¢ and ~¢, again jointly with ~ and x, 
one may specify that H = 0 and m = 2, and omit the quadratic term involving ye in and 
after (25). This gives an improper diffuse prior, justifiable along the lines of invariance 
with respect to reparameterization (Jeffreys, 1961). The estimation equations simplify in 
obvious ways. 

If modal values of ~ and ~ marginalized with respect to lt~ and ~¢ are desired, these 
latter parameters may be integrated out and then estimation equations for item parame- 
ters can be modified in the following manner. Focusing on the relevant terms of the 
posterior, we can write 

p(~ 1 ~t e, ~ce)-p(tt¢, ~:¢) oc I~¢1 -~'+m+'/2 

x exp { -  ½ tr ~ -  1[S + H + n(~ -- lx~X~ - lie)' + b(la~ - yeXlt~ - y¢)']}. 

Integration over z¢ yields a multivariate-t distribution for lt~ (Ando & Kaufman, 1965), 
and subsequent integration over lie yields the marginal distribution of ~: 

p(~) oclCI x/z, 

where 

S + H  nb 
C - - - + - -  ( r e -~) (Y~-~) ' -  n + 1 (n + b) 2 

The terms to be added to the partial derivative of the log marginal likelihood to obtain an 
estimation equation for ~j, now marginalized with respect to lie and I;e, become 

log c [ 
a~j - n + ~ _ ~ J - ~ + n + l J  

This result is similar in form to (24), the contribution when lie and ~¢ are estimated jointly 
with ~. 

Prior Structures on Examinee Parameters 

This section presents details for two types of prior distributions on examinee parame- 
ters x, namely a nonparametric prior in the form of a histogram and a mixture of homo- 
scedastic normal distributions in unknown proportions. The latter choice includes the 
familiar standard normal prior as a special case (in which case no scale-setting restrictions 
would be imposed on the item parameter distributions). 

Recalling the form of the posterior distribution for ~, 11, and x, or 

we note that (a) contributions to the estimation equations for ~ come from its prior and 
the marginal likelihood and (b) these contributions are the same regardless of whether I 1 is 
being estimated jointly or integrated out. In the interest of conserving space, only esti- 
mation equations and not partial derivatives for ~ are presented here. Detailed calcula- 
tions of the contributions from the marginal likelihood may be found in Mislevy (1984). 

A nonparametric solution. If p(O I ~) is a smooth continuous density it may be ap- 
proximated by a discrete distribution over a finite number of points Xq, q = 1, . . . ,  Q. 
Letting pq denote the density at point Xq, we approximate the log marginal likelihood as 
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where 

N 

log L(U I D, ~, ~) ~ ~ log h(iti) 
i=1  

Q 

h(it,) = E LOt, I d,, Xq, ~)pq. 
q = l  

The continuous density p(e I ~) is thus replaced by a discrete distribution with parameters 
Pl . . . . .  pQ, with 

Q 
~.,pq= 1. 

q = l  

The natural conjugate prior for this distribution is the Dirchlet, which takes the follow- 
ing form: 

P(Pl . . . . .  PQ I M1,.. . ,  MQ) ~ 11 P~" 
k 

Prior beliefs about Pl . . . .  , pQ are thus expressed as values of the proportions (M1) / 
M +, . . . ,  (Me)/M +, where M + = ~ Mq, is interpretable as a fictitious sample size to indi- 
cate the strength of prior beliefs. The following estimation equations, based on 
a[log L(M I D, ~, p) + log p(p I M)J/c3p = 0, result: 

Nq + Mq 
Pq = N + M +' q = 1 . . . . .  Q, 

where 

Nq = ~ p(Xq I u,, d,, ~, p) 
i 

E L(u, I di, Xq, ~, p)pq 
i 

= ~ ~ L(u~ I di, X~, ~, p)p~" 
r i 

The posterior density at point Xq, therefore, is a weighted average of its prior density and 
the expectation of its density at that point conditional on the data and the densities 
themselves. 

To obtain maximum likelihood estimates, we may take a uniform diffuse prior with 
M q -  O. An alternative diffuse prior with Mq = - 1  may be preferred, however, on the 
gr~-unds of robustness with respect to the c--ffoice of quadrature points. 

It is possible to resolve the indeterminacies of the IRT model at this point, by speci- 
fying that the distribution p(p I M) can take nonzero values only when the following 
equality constraints are satisfied: 

x pq =0, 
q 

and 

E 2 Xq pq t. 
q 

Values of M specified in an informative prior should satisfy these constraints as well. 
A mixture of normal components. Suppose that the distribution is a mixture of K 

normal components, with means It = (/q . . . . .  /~r) and common variance a2. Let p = (Pt, 
. . . .  PK) be the unknown proportions of the mixture. Define the marginal probability of 
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response pattern u given ~ and ! = (It, p, 0 -2) as 

h(u) = ~ Pk fo L(u l d, O, ~, ~)fk(O) dO, 

where 

1 {-, 1 
Approximating integration by summation over a fixed grid of equally-spaced quadra- 

ture points X1 . . . . .  XQ, we obtain for the log marginal likelihood for N examinees 

log L(U I D, ~, "0 = Y. log Z Pk ~ L(u, I X,)A(X.), 
i k p 

where 

L(ui I Xq) = L(uil d~, Xq, ~, ~). 
A natural conjugate prior for ~ is Dirichlet-normal-inverse gamma: 

log p(p, It, tr 2) = ~ Mk log Pk + ~ --(#L--yk)2 + 1 log tr -- 
k k 2a2 

Here M, y, v, and s are the parameters of the prior distribution, to be supplied by the user. 
M can be thought of as the number of examinees in each of the components from a 
sample of size M ÷ = ~ Mk; y can be thought of as anticipated locations for the means of 
the components, v and s are the parameters of the inverted gamma distribution, possibly 
more easily specified after one has in mind a mean and variance of such a distribution 
that incorporates prior belief about a2: 

2 mean 2 
v - - - + 4 ,  

variance 

and 

mean. variance 
S = 

2(mean + variance'-)" 

The indeterminacies of the IRT model can also be resolved at this point, by speci- 
fying that the total mean and within-component variance take specified values, say 0 and 
1. That  is, p(z) is zero except where 

Pk ~Uk = 0, 
k 

and 

0"2 ~.-~- 1. 

When K = 1, a standard normal density is effectively specified for 0 by this procedure. 
Estimation equations are now obtained as the sums of partial derivatives of the log 

marginal likelihood and the log prior. Again writing equations in terms of K p's con- 
strained to a sum of one, we obtain 

]~kct + Mk 
pk= q M+ , k = l  . . . . .  Q, N +  
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and 

]~  k,t X q "4" Y k 

q 

~ Nkq(Xa - #k) z + ~ (#, -- yk) 2 + S 
t72_~,  k q ..... --'71" 

where 

Nkq = ~, h - l (u i )p ,  L(ui ] Xq)fk(Xq).  
i 

A diffuse prior may be obtained by omitting terms involving It and setting M k = l, 
s = 0, and v = 0. 

A Numerical Example 

Satisfactory procedures for item parameter estimation have been available for some 
time for both large and small samples under the one-parameter logistic (Rasch) IRT 
model and for large samples of both persons and items under the three-parameter logistic 
(Birnbaum) IRT models. The same cannot be said about moderate-to-small samples 
under the three-parameter model, and it is to this problem we apply the procedures of the 
preceeding sections. 

A perusal of the recent literature on Bayesian item parameter estimation suggests 
that such efforts were motivated not so much by the pursuit of minimum mean squared 
error or by a conviction that all unknowns should be expressed in probabilistic terms, but 
rather by a more practical desire to obtain "reasonable" item parameter estimates--in 
particular, finite ones. 

The essential difficulty with parameter estimation under the three-parameter model is 
that the parameters of a given item are often poorly determined by the data at hand; 
apparently discrepant triples (a, b, c) can trace similar response curves in the region of the 
ability scale where the sample of examinees is to be found. Such poor resolution is mani- 
fest as a likelihood surface nearly flat along one or more dimensions, yielding unstable 
maximum likelihood estimates (MLE's). A trivially higher likelihood may be produced, 
for example, by taking a particular item's values of a and c to be 200 and .6 rather than 
the more reasonable values of 2 and .25. 

Extreme and infinite parameter estimates can be avoided by using a single-stage 
Bayesian prior, but not without introducing an additional hazard. A fully-specified prior 
will indeed have the desired effect of pulling extreme but ill-determined values toward the 
center of the prior distribution. If the prior has been poorly specified, however, this center 
may be far from the actual center of the parameter values of interest; estimates of all such 
parameters will be biased in the same direction. These "ensemble biases" have serious 
implications for subsequent estimation of examinee individual or population parameters, 
for while such estimation is resistent to random errors in item parameters, it reflects in 
direct measure sys temat ic  errors in a's and b's, and, through the systematic errors in a's 
and b's they cause, systematic errors in c's as well. 
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As a means of overcoming these difficulties, second stage priors may be introduced. 
Their forms and parameters will be influenced by a number of factors, including not only 
the analyst's prior beliefs about the values of the parameters in question but consider- 
ations of convenience and expediency as well. The rationale behind the "floating priors" 
option for item parameters in the BILOG computer program (Mislevy & Bock, 1982), 
serves to illustrate the process. 

The author's experience with the full multivariate normal prior on transformed item 
parameters has indicated that even samples consisting of a few hundred examinees and 
ten items provide sufficient information to approximate the central tendencies of item 
parameters through ~t~, so that its prior may be diffuse. Much larger sample sizes (thou- 
sands of examinees, fifty or more items) are required, however, to estimate the associated 
covariance matrix ~ ;  its prior must therefore be informative. Informative, and strong. 
Anomalies such as estimated zero variances for ~ and y occur increasingly often with 
weaker priors. Fixed values of the diagonal elements of Ig~ are thus posited, at user- 
specified values or at the program defaults. Zero off-diagonals are posited for compu- 
tational convenience. The consequence is that parameter estimates tend to shrink toward 
their centers at user-controlled rates, but those centers are estimatedfrom the data. 

The program default values for Y,,,, EB¢, and Y~ are .25, 4.00, and .25 respectively. 
These values are sufficiently mild to affect most item parameters minimally when the data 
supply information about them, but keep all parameters within a "reasonable" range. If 
the geometric average of the slopes were one, for example, then Y.,, = .25 would mean we 
would expect most estimated a's to lie between 1/3 and 3 (about two standard deviations 
in the log metric). And if the logit average of lower asymptotes were .25, then Err = .25 
would mean we would expect most c's to lie between .15 and .35. Information in the data 
can produce occasional individual estimates outside these ranges, but infinite values and 
extreme values for parameters for which the data provide little information will be elimi- 
nated. The prior variance of 4.00 on fl's, which are better determined that ~'s or ~'s, 
usually has little effect but to pull in a few extreme values that would have resulted from 
unusually low a's. 

Some of the effects of these second-stage priors can be seen in two analyses of a 
simulated data set, with responses of 1000 simulated examinees, selected at random from 
a unit normal population, to 20 test items. The parameters of the items were also gener- 
ated from independent normal distributions; for the a = log a, the mean and variance 
were 0.0 and .5; for fl = b, .5 and 1.0; and for ~ = logit c, - 1.39 and .16. Item parameters 
were estimated in two ways. 

1. Marginal maximum likelihood (MML): Using the BILOG computer program, 
the following likelihood equation was maximized with respect to item parameters ~ and 
weights pq at ten equally spaced quadrature points Xq between - 4  and + 4: 

L = I-I Z p(u, P, xq)p . 
i q 

2. Bayes estimation: To obtain Bayes modal estimates of item parameters, a poste- 
rior of similar form was maximized: 

p(ot, ~1, % p, It¢ I U,  X¢) = 1-I ~., p(ui ] or, ii, v, xq )  . p ,  . p(ot, Ii, T I ire, E¢). 
i q 

BILOG's "floating priors" option (described above) was employed to set the values of ~E¢. 
The value of - 2  log L under the MML solution was found to be 22,295, while the 

value obtained by substituting the Bayes estimates into the likelihood function was 
22,300. This trivial difference implies that the Bayes estimates explain the observed data 
nearly as well as the MML estimates. Indeed, with a few exceptions (more on these 
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FIGURE 1 
Generating and M M L estimated values of c, against generating b --2/a. 

below), M M L  and Bayes estimates of at and p were quite similar, with ~'s tending to 
shrink slightly toward their estimated mean of .21. 

Estimates of asymptotes were more significantly affected, as can be seen in Figures 1 
and 2. These figures plot generating and estimated values of c, M M L  and Bayes solutions 
respectively, against generating values of the quantity b - 2 / a ,  a heuristic index based on 
the observation that less information is obtained about c as items become easier or less 
reliable (Lord, 1975). Items with high values of this index are seen to have estimated c's 
near their generating values under both estimation procedures, but certain items with low 
values are regressed strongly toward the estimated mean of about .21. To anthropomor- 
phize, we might say that the Bayes solution felt true c's for these items were probably 
more similar to the c's that it could estimate well than to the atypical and unstable MML 
values based on sparse information. 

It is instructive to consider the estimated a's and b's of these items, to see how item 
parameters can "trade off '  against one another. Values for the six items showing the 
largest differences between M M L  and Bayes estimated c's are shown in Table 1. 
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FIGURE 2 
Generating and Bayes estimated values of c, against generating b - 2 / a .  

Item 1 in table 1 is relatively easy, so that the increased c value obtained by the 
Bayes solution has little effect on the estimated a and b. As it turns out, the generating c 
for this item was lower and more atypical than either M M L  or Bayes obtained, but since 
most of the examinees were well above the chance level, it did not really matter. Item 4 is 
similar, in that a large degree of shrinkage of the estimated c on an easy items has little 
effect on the other parameters. This time (and, the model assumes, more often than not) 
the Bayes estimate is closer to the true value. 

Item 2 shows an extremely high c under M M L  shrunken back by Bayes procedures 
to a lower, more nearly correct, value. While the estimated a's are similar, the estimated b 
under Bayes is correspondingly reduced somewhat, again closer to its true value. The 
point here is that spuriously over-estimated c's induce spuriously over-estimated b's, a 
result guarded against in two ways when priors are enforced on both parameters. 

Items 3 and 6 show items with high M M L  a estimates being shrunken back toward 
their mean under Bayes, and extreme c's correspondingly regressed. Both items are rela- 
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TABLE 1 

Generating and Estimated Parameters of Selected Items 

193 

a b e 

Item True MML Bayes True MML Bayes True MML Bayes 

I i.I 1.2 1.3 -.4 -.4 -.3 .II .14 .17 
2 .5 .4 .4 .2 .8 .6 .19 .28 .24 
3 .9 1.5 I.I -1.3 -.6 -I.0 .26 .44 .27 
4 1.4 1.2 1.4 -I.0 -1.2 -I.0 .17 .03 .19 
5 1.5 2.2 2.4 -.3 -.2 -.2 .13 .12 .14 
6 2.5 4.5 3.4 -I.I -1.2 -I.I .18 .03 .18 

tively easy, but it is seen that pulling down a spuriously high c (item 3) affects b whereas 
increasing a spuriously low c (item 6) does not. 

Finally, Item 5 shows an atypically low c regressing toward its mean, causing a 
corresponding shift in a a w a y  from its mean. The estimated b's are similar under both 
models. 

Discussion 

Maximum likelihood (ML) estimation is justified by its asymptotic properties alone. 
Taking the data for each parameter at face value no matter how sparse, ML will often 
yield infinite or implausible parameter estimates in small samples. At least for certain 
parameters, a sample size of 10,000 examinees can be a small sample in the context of the 
three-parameter logistic IRT model (Wainer & Thissen, 1982); estimation procedures 
therefore stand to profit from the incorporation of additional information. The hierarchi- 
cal Bayesian framework given in the previous sections supplies such information in a very 
modest way. In effect, it quantifies beliefs such as the following. 

1. If the items for which we can reasonably estimate c's yield values between .1 and 
.3, then the items for which less information is available probably have c's in this range as 
well. 

2. If most of the items have a's between 1/3 and 3, then the a for this particular item 
is probably not 957. 

3. If all of the other examinees seem to have O's between - 3 and + 3, the 0 for this 
examinee is probably not + ~ ,  even though he did correctly answer both items he was 
presented. 

Such strictures are implied by the assumption that parameters belong to respective 
well-behaved populations, the higher-level parameters of which little or nothing needs to 
be assumed. The effect of this so-called assumption of exchangeability is to "shrink" esti- 
mates from where they would have been under ML toward the centers of the respective 
populations--with those centers estimated from the data. 

When it is not reasonable to assume a common population, however, exchangeability 
is violated. Graphic examples of the absurdities that can result are suggested by propon- 
ents as well as critics of "shrunken" estimators. Should one expect to obtain better esti- 
mates of the true batting averages of baseball players, for instance, by including data on 
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the price of wheat? The point is that shrinking estimates toward a common center is 
justified only when a common population best represents the extent of our prior knowl- 
edge. The imposition of exchangeability across all units, and estimation procedures that 
require it, are not strictly appropriate  when additional information differentiating the 
units is at hand. Assuming exchangeability only within distinct subpopulations of batting 
averages and wheat prices would be a more reasonable way to proceed in the example 
given above. 

It  is in fact this latter case that typically prevails in educational and psychological 
measurement. Already known, or available more economically than responses from exam- 
inees, is information from several sources: 

1. Cognitive processing requirements of items can be specified, at least to some 
degree. Mental rotation items, for example, can be characterized in terms of the number 
of degrees the target object has been rotated; differential calculus items, an example dis- 
cussed by Fischer (1973), can be characterized in terms of the derivation rules they 
demand for solution. 

2. Surface features of items can be identified which can suggest a need for dis- 
tinguishing subpopulations of items. Free-response and multiple-choice items in the same 
test may be distinguished, for example, as may be analogy items from vocabulary items in 
the SAT. 

3. I tem content can be often be identified. In a test of reading comprehension, one 
might wish to differentiate items associated with narrative passages, poetry, and docu- 
ments. 

4. Quantitative information, such as percents-correct from pretesting, may  be avail- 
able. 

5. Examinees may be differentiated with respect to qualitative features such as sex, 
educational program, or racial/ethnic background;  or with respect to quantitative vari- 
ables such as scores on previously administered tests. 

More comprehensive Bayesian procedures currently under investigations by the pres- 
ent writer and others (e.g., Leonard & Novick, 1985; Morgan,  1985), will provide for the 
utilization of such information. They will also provide for means of determining when 
such information makes material differences in item and population parameter  estimates. 
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