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In a recent paper in this journal McDonald, Torii, and Nishisato show that generalized 
eigenvalue problems in which both matrices are singular can sometimes be solved by reducing them 
to similar problems of smaller order. In this paper a more extensive analysis of such problems is 
used to sharpen and clarify the results of McDonald, Torii, and Nishisato. Possible extensions are 
also indicated. The relevant mathematical literature is reviewed briefly. 
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Introduction, Motivation 

Many of the problems of multivariate analysis and scaling can be reduced to finding 
the maximum, minimum, or other critical values of a ratio of quadratic forms. Principal 
component  analysis, classical multidimensional scaling, correspondence analysis, multiple 
group discriminant analysis, canonical analysis, multivariate analysis of variance, and 
"dual" or "optimal" scaling of categorical variables are all of this type. It  is usually assumed 
in the literature that at least one of the matrices of the quadratic forms is positive definite, 
which makes it possible to transform the problem to an ordinary eigenvalue-eigenvector 
problem. 

In this paper we want to study what happens if both matrices are singular, although we 
continue to assume that they are positive semi-definite. We have been inspired by a recent 
paper  of McDonald,  Torii, and Nishisato [1979], who study a more general problem. Their 
basic Theorem 1 can be sharpened if we assume positive semi-definiteness of both matrices. 

Notation, Definitions, Problems 

Suppose A and B are real symmetric matrices of order n. For  all x e ~" we set 

~(x) ~= x'Ax, 

fl(x) ~= x'nx, 

where the symbol -~ is used for definitions. We also define 

s~-~ {x 

s ~ -  ~ { ~  

The basic assumption, used throughout this 

(la) 

(lb) 

R" l fl(x) = 0}, (2a) 

N"l fl(x) > 0}, (2b) 

~" I fl(x) = 1}. (2c) 

paper, except in the section on generalizations, 
is that both ~(x) > 0 and fl(x) > 0 for all x ~ R". In words: both A and B are positive 
semi-definite, often-abbreviated to psd. As indicated in the definitions of ~(x) and fl(x) all 
vectors are column vectors. Row vectors are indicated by transposition, transposition of 
vectors and matrices is indicated by using a prime. 
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We now describe the problems we want to solve in this paper. 

Problem 1 : Find the maximum, minimum, critical values, maximizer, minimizer, critical points 
of 2(x) ~ ~(x)/fl(x) on S~ if they exist. 

Problem I1 : The same for ct(x) onS~. 

Problem 111: Find all pairs (2, x), with 2 a real nonnegative number and with x e R", such 
that (A - 2B)x = 0. The same with x E S~ and with x e S~. 

Problem I V: Find all real nonnegative numbers 2 such that det(A - 2B) = 0, where det( • ) 
is the determinant of a matrix. 

Problem V: Find all square nonsingular W such that W ' A W  and W ' B W  are both diaoonal 
matrices. 

Our procedure in this paper is that we first solve problem V, and use the solution to that 
problem to find the solutions to the four other problems. 

Solution of Problem V 

The fact that problem V is solvable, i.e., that there exists a square nonsingular W that 
diagonalizes both A and B, is often attributed to Newcomb 11961]. The proof given by 
Newcomb is constructive; it shows how to construct a solution W. Our formulation of 
problem V, however, calls for the construction of all possible W that diagonalize A and B. 
Because of this we need a proof which is more explicit than Newcomb's. Our procedure is to 
construct all possible W that diagonalize both A and B, and that satisfy some additional 
identification conditions. The answer to problem V can then boeasily found from this by 
dropping these identification conditions. 

In order to make a more precise formulation of the identified diagonalization problem 
possible we partition W as W = (U [ V). We then write down the equations 

U'BU = I, (3a) 

v ' n v  = o, (3b)  

u ' a u  = ,e ,  (3c) 

U'AV = O, (3d) 

V'A V = ~, (3e) 

with 

and 

U an n × r matrix of rank r, (3f) 

V an n x (n - r) matrix of rank n - r, (3g) 

a diagonal matrix with elements nonincreasing along the diagonal, (3h) 

a diagonal matrix with elements nonincreasing along the diagonal, (3i) 

v ' v  = I. (~ )  

To state our main theorem we need some extra notation. Suppose B = FF' is any fixed 
full-rank decomposition of B, thus F is n x p and of rank p, where p A__ rank (B). Define F +, 
the Moore-Penrose inverse of F, by F + ~ (F 'F)-  IF'. The notation F -  is used for any 
g-inverse of F, because F has full column rank, g-inverse are also left inverses, and satisfy 
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F - F  = I. We use K for some fixed orthonormal basis for the null-space of B. Thus K is 
n × (n - p), K 'K = 1, and BK = 0. We also define 

Al l  & F+A(F+) ', (4a) 

A2z ~ K'AK,  (4b) 

Z~l 2 zk ~ .~ = A21 - F+AK. (4c) 

Using this notation we can now state our main theorem. 

Theorem 1. 1" Existence : System (3a)-(3j) is solvable if and only if r = p. 

2: Solutions: a: V = KM,  with M a complete set of eigenvectors corresponding with or- 
dered eigenvalues of/~22. 

b: U = (F+)'L - KAy2 ,~21 L + K(I --/~2-2 A22) S, with S of order (n - r) x r but otherwise 
arbitrary, with ,422 any # -  inverse of A22, and with L a complete set of eigenvectors 
corresponding with ordered eigenvalues of At 1 - A 12 A 2-2 A 21. 

c: W are the ordered eigenvalues of A1 x - A 12 Az2 A21. 

d: aa are the ordered eigenvalues of A22. 

3: Uniqueness: The solution to (3a)-(3j) with r = p is unique if and only if the following 
three conditions are all satisfied. 

a: The eigenvalues of/i~l - Alz A~-2 A21 are different. 

b: The eigenvalues of/122 are different. 

c: K(I - -  A22  A22 ) = O. 

Proof From (3a) and (3f) solvability implies r <__ p. From (3b) and (3g) it implies r > p. 
Thus r = p is necessary for solvability. We prove su--fficiency, and at the same time pa r t~  of 
Theorem 1, by constructing the general solution, assuming that r = p. 

From (3b) it follows that V = KN, (3g) implies that N must be square and nonsingular, 
(3j) even implies that N must be orthonormal. Now (3e) gives N',422 N = ¢, which together 
with (3i) shows that parts 2:a and 2:d of Theorem 1 are true. 

From (3a) we have U'FF'U = I, or F'U = L, with L square orthonormat. The general 
solution of F'U = L for U, given L, is U = (F+)'L + KT ,  with T arbitrary of order 
(n - r) x r. Thus U = (F+)'L + K T  gives the general solution to (3a) if we let L vary over 
the square orthonormal and T over the arbitrary (n - r) x r matrices. Another way to write 
U is U = (F-)'L, with F -  varying over the left inverses of F and L over the square 
orthonormals. From (3d) and our previous results L'A12 M + T',422 M = 0, which is 
equivalent to L'A12 + T'A22 = 0. This is a consistent system of linear equations in T for 
given L, whose general solution is T = --.~22 A21 L + (I -- -~22 Az2)S, with S an arbitrary 
(n - r) x r matrix. We now substitute the expression for T in the remaining equation (3c). 
This gives L'(.41 ~ - A~2 A~2A2~)L = W, which together with identification condition (3h) 
shows that part 2 :c is true and that L is as stated in part 2 :b of theorem 1. If we combine the 
general solutions for U and T and L we obtain the rest of part 2:b. 

Part 3 of Theorem 1 follows directly from the expressions in part 2. This ends the proof 
of Theorem 1. 

Observe that the solutions do not change if we start out with another full-rank 
decomposition of B and/or with another orthonormal basis for the null-space of B. 
The ensuing rotations of F and K are compensated for by the eigenvectors of 
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A 1  x - A ~ z A22 A21 and A22, which are counter-rotated in such a way that the solution sets 
for U and V remain the same. Of course the eigenvalues do not change at all. 

To solve problem V in complete generality we must drop identification condition (3j), 
relax (3a) to U'BU = f~, with f~ diagonal and nonsingular, and eliminate the ordering of the 
elements from (3h) and (3i). Eliminating the order constraints has a trivial and predictable 
effect, the solutions are determined only up to a permutation of dimensions. Relaxing (3a) 
gives the same general solution for U, but postmultiplied by an arbitrary diagonal matrix 
f~1/2, the eigenvalues of A~I -Ax2A'22A21 are then q ' fU  ~. Dropping (3j) is somewhat 
more interesting, also from a computational point of view. V and • are now solutions of the 
equations V = K N  and N',422 N = ~, these equations are easily solved by using any full- 
rank decomposition of,422, not necessarily an orthogonal one. In most practical problems, 
however, we are not particulary interested in V and ~. And, indeed, ~ is very arbitrary if we 
do not impose (3j). It can be any diagonal matrix of the same rank as -422, suitably ordered 
if we impose (3i). In the remaining sections of the paper we shall see that in most practical 
problems we are only interested in U and W. 

This last remark suggests that we take another look at the formula U = (F - ) 'L ,  with 
F -  varying over the left inverses of F and with L varying over the square orthonormals. 
Above, we used (3d) to determine which F -  we wanted, and then (3c) to determine L and W. 
We now take a different route. Suppose we start with a fixed F - ,  compute A 1 ~ = F - A ( F - ) '  
instead of ,4~ - A12 A22 A2~, and determine L and ~¢ as eigenvectors and eigenvalues of 
Axe. It is clear that this procedure produces a solution to system (3a)-(3j) if and only if 
F - A K  = 0. The procedure thus works for the Moore-Penrose inverse F + if and only if 
• 4~2 = 0. The procedure works for all choices o f F -  if and only if,422 = 0, which implies of 
course that A12 = 0. The condition ,422 = 0 can also be written as x ' A x  = 0 for allx e ~" 
such that x ' B x  = 0, or in the notation of formula (2a) as S ° is a subspace orS ° . A simple 
sufficient condition for ,422 = 0 is that A < B, by which we mean that B - A is psd. It is 
sometimes convenient to know that t h e  condition A~z = 0 is equivalent to F ' A K  = O, 
which is equivalent to BA(I  -- B + B) = O. 

Solution o f  the First Four Problems 

We start out with problem IV. From the results of the previous section we have that 
det(A - 2B) = 0 if and only if 

( ~ 1  - , ~ ) ( ~  - 4 ) . . .  (~0r - ~)~1 ~ . . .  4 , , - ,  = 0 .  (5 )  

If A22 is nonsingular, i.e., if the intersection of the null-spaces of A and B is the zero vector, 
then this polynomial equation of degree r with roots ~01, ~02, . . . ,  qJ,. IRA22 is singular, then 
det(A - 2B) is identically equal to zero. 

For  problem III we define y by y --& W -  ~x, where W has its first r columns equal to U 
and its last n -  r columns equal to V. Thus ( A -  2B)x = 0 becomes ( A -  2 B ) W y  = O. 
Premultiplying by W' gives (qJ - 2l)yl = 0 and ~Y2 = 0, where y~ consists of the first r 
elements of y and Y2 consists of the n - r last elements of y. We can now give the solution 
for the elements of y as a function of 2, using qt S and q~s for the diagonal elements of • and 
again. 

If ~b~ = 0 then Yr+s is arbitrary. 

If q5 s > 0 then y, +5 = 0. 

If qJs ~ 2 then y~ = 0. 

If ~ = 2 then y~ is arbitrary. 

(6a) 

(6b) 

(6c) 

(6d) 
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Thus if2 v~ ~ for all s = 1 . . . . .  r then the dimensionality of the solution space for y is equal 
to the nullity of ~-22. If ). = ~b, for some s, then this dimensionality is equal to the multi- 
plicity of ~b~ plus the nullity of A:2 • If we translate these results back from y to x we find the 
following theorem, in which Vo are the last (n - r) - rank(A22) columns of V, and U~ are 
those columns of U for which U'AU = ~b~I. 

Theorem 2. a: If). :~ ~ for all s, then (A - ).B)x = 0 if and only ifx = Vo z for some z. 

b: If). = ~b~ for some s, then (A - ).B)x = 0 if and only ifx = U~ t + Vo z for some z and t. 

This theorem gives a complete solution to problem III,  first part. The other two parts are 
now easy. (A - 2B)x = 0 has a solution in S~ if and only if2 = ~ for some s. The solution 
is of the form x = U s t + Vo z, with z arbitrary and t nonzero, but otherwise arbitrary. The 
solutions in S~ are of the same form, but now t't = 1 must be true. 

In problem II  we start by observing that x ~ S~ is a critical point of a(x) on S~ if 
Ax = ).Bx, where ). is an undetermined multiplier. Finding all critical points is consequently 
the same thing as solving problem III  with x ~ S~. The critical values are the corresponding 
values of 2. The global maximizer of a(x) on S~ is any vector of the form x = U~t + Vo z, 
with t't = 1, the maximum is ~1- In the same way the global minimizer isx = U,t  + Voz 
with t't = 1, and the minimum is ~k,. 

Problem I is very similar to problem II, but slightly more complicated. The vector x is 
a critical point of 2(x) on ~" if [A - ).(x)B]x = 0 and fi(x) > 0. Thus all critical points can 
be found by solving problem III  on S$ ,  which we have already done. To find the maximum 
and minimum we make the transformation y = W - ~ x  again, which transforms 2(x) to 
(Y'~WY~ + Y'2 *Y2)/Y'~Y~. If • is nonzero, i.e., if A22 is nonzero, then we can make this 
function arbitrarily large by choosing Y2 in such a way that Y'2 *Yz > 0 and by making y~ 
very small. Thus the maximum does not always exist, which makes problem I different from 
problem II. The basic difference is, of course, that S~ is compact,  while Sg is unbounded and 
open. It is interesting that the minimum is always attained at x = U, t + Vo z with t # 0. It  
is equal to ~, .  For ease of reference we summarize the result which is most interesting in 
problem I in a theorem. 

Theorem 3. The maximum of ).(x) on S~ is attained if and only ifAz2 = 0. In this case 
the maximizer is equal to x = Ult + Vo z with t ¢: 0, and the maximum is $~. 

We have now solved all five problems. The interesting ones are I, III,  and of course V. 
Problem IV usually merely provides the information that det(A - ),B) = 0 for all ).. Prob-  
lem II  is essentially identical with problem III,  but something new is added in problem I. 
Theorem 3 can be interpreted as saying that we can solve the simultaneous diagonilization 
problem by diagonalizing F-A(F- ) '  for arbitrary F -  if and only if 2(x) is bounded on S~.  

A Theorem by McDonald, Torii, and Nishisato 

In our analysis of problem V we have seen that in some cases we can find the orthonor- 
real matrix L in the expression for U (Theorem 1, part 2:b) by diagonalizing 
A l l =  F-A(F-) ' ,  where F -  is some left inverse of F. In McDonald,  Torii, and Nishisato 
[1979] three sufficient conditions are given which guarantee that we can find L by 
diagonalizing A1 x = F+A(F+) '. Observe that these authors assume merely that B is psd, 
their A can be indefinite. The three conditions are, in our notation, 

( I  - BB+)A = O, (7a) 
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there exists Q such that A = BQ, 

there exist G, H such that GHH'G' = A and GG' = B. 

(7b) 

(7c) 

Theorem 4. The three conditions (7a), (7b), (7c) are all equivalent to ,42z = 0. 

Proof McDonald, Torii, and Nishisato prove that (70 implies (7a) and that (7b) 
implies (7a). We first prove that (7a) implies A22 = 0. In our notation (7a) is K K ' A  = O, 
which implies K'A = 0, which implies K ' A K  = 0 or -422 = 0. We now prove that A2~ = 0 
implies (713) and (7c). Now A = BQ is solvable if and only ifQ = B+A is a solution, which is 
true if and only if A = BB+A. -422 = 0 implies that K K ' A  = 0, which is A = BB+A, and 
thus (7b). To prove finally that ,422 = 0 implies (7c) we observe that FF+A(FF+) '= 
( 1  - KK')A(I  - KK'). Thus if A22 = 0 then FAl l  F' = A. This implies (7c) with G = F and 
H any Gram-factor of,4i i .  This ends the proof  of Theorem 4. 

In the more general case, discussed by McDonald, Torii, and Nishisato [1979] it 
remains true that (7a) and (7b) are equivalent. Moreover (7c), which is the only condition 
they actually use in their applications, implies that A is psd. If we assume directly that A is 
psd, we get a more compact and useful result. In the first place by using Theorem 4, which 
states that their sufficient conditions are all equivalent to ,422 = 0. In the second place by 
our earlier result that A22 = 0 is necessary and sufficient for the solutions of 

/2A x 1L = ~ ,  (8a) 

U = (F-) 'L  (8b) 

with EL = I and with F -  an arbitrary left inverse of F, to provide a solution to (3a)--(3j), no 
matter how we choose F- .  In the third place by our earlier result that a necessary and 
sufficient condition in Theorem 1 of McDonald, Torii, and Nishisato, which uses F + for 
F - ,  is that -412 = 0. And finally by our earlier result that a necessary and sufficient condi- 
tion for a fixed F -  to work in (8a) and (8b) is that F - A K  = O. 

In psychometric data analysis the condition A2z = 0 is very often true by construction 
of the problem, an easily verified condition is that there is a ~ > 0 such that A _ xB. This 
condition is equivalent to x 'Ax <_ xx'Bx for all x ~ R". This is equivalent to the two condi- 
tions that x 'Ax = 0 for all x ~ o  and that 2(x) is bounded on S + . But these two conditions 
are both equivalent to -42z = 0. Thus we have proved theorem 5. 

Theorem 5. A22 = 0 if and only if there is a x > 0 such that A <_ xB (i.e., such that 
xB -- A is psd). 

In a sense problems with Az2 ~ 0 are ill-defined, because the data analytic problem is often 
to maximize 2(x), and we have seen that this is unbounded if-422 ~ 0. Although the 
conditions used by MacDonald, Torii, and Nishisato are not necessary for their theorem, 
they are necessary and sufficient for the maximum to be welt defined and they are necessary 
and sufficient for using any F -  that is convenient. Thus the practical consequences of our 
improved results are possibly fairly small. If one cannot prove A12 = 0 or A22 = 0 for the 
particular problem one is considering, however, then one must stay on the safe side and use 
the constructions of our Theorem 1, which are valid for all pairs of psd matrices. 

Generalizations 

In this paper we use the assumption that both A and B are psd. If this is not the case, 
there are various other possibilities. If A and B are merely semi-definite, nothing really 



JAN DE LEEUW 93 

changes in our treatment of problem V. If  A is psd and B is negative semi-definite, for 
example, we apply our proof  to A and - B. This minor generalization was also mentioned 
by Newcomb [1961]. Another case which is easy is if either A or B is definite. I f  B is 
positive definite, for example, then W = B - I / 2 K  with K ' K  = K K ' =  I and with 
K'B-  1/2AB- 1/2K = ~ diagonalizes both A and B (B-  t/z is the inverse of the symmetric 
square root of B). If B is negative definite, we work with - B again. The case in which B is 
psd and A is unrestricted is somewhat more complicated. By checking the proof of Theorem 
I we find that a necessary and sufficient condition for simultaneous diagonability of A and 
B is solvability of the linear system E A12 + T'-422 = 0 or A22 A22 A21 = -42t. 

The next case which is interesting is the case in which we can find/~ and q such that 
/~A + r/B is positive definite. If W diagonalizes/~A + r/B as well as A, then it clearly also 
diagonalizes B. A classical theorem, whose history has recently been reviewed by Uhlig 
[1979], states that if n > 3 then a positive definite linear combination of A and B exists if 
x ' A x  = x 'Bx  = 0 implies that x = 0. This condition is sufficient for simultaneous di- 
agonability, but not necessary, Necessary and sufficient conditions have been given by 
many authors. Most of them are mentioned by Uhlig [1979, p. 230], we add to his list the 
very nice paper by Mitra and Rao [1968]. Necessary and sufficient conditions for simul- 
taneous diagonability if A and B are not necessarily symmetric have been given by Lee 
[1971-1, they are not very relevant however in the quadratic form context, 

If  the pair A and B is not simultaneously diagonable, then the situation becomes 
considerably more complicated. In this case we can use the canonical form for real sym- 
metric matrix pairs discovered by Muth [1905], and modernized recently by Ng [1976] and 
Uhlig [1976]. Again the relevance of this case for practical data  analysis is limited. 
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