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The objective of this paper is to introduce and motivate additional properties and interpret- 
ations for the redundancy variables. It is shown that these variables can be derived by application of 
certain invariance arguments and without reference to the index of redundancy. In addition, an 
optimality property for the variables is presented which is important whenever one restricts atten- 
tion in a study to a subset of the redundancy variables. This optimality property pertains to the 
subset rather than to the individual variables. 
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1. Introduction and Summary 

Stewart and Love [1968] proposed an index to measure the degree to which one set of 
variables can predict another set of variables, or equivalently, how redundant one set is 
relative to another. Their index is commonly referred to as the "index of redundancy" and 
was orginially defined by the summation 

R 2 ( Y  - x )  = 
P~ ~(v: b~oY) 

,:1 tr(Rrr-Y- ' (1) 

where X and Y are q-dimensional and p-dimensional multivariate responses respectively, p~ 
is the ith largest canonical correlation between X and Y, b'~0Y is the canonical variable for 
the Y set associated with p~, and V~(b'Y) is the amount  of total variance of Y explained by 
the component  b'Y. The joint variance-covariance matrix of X and Y is 

(Rrr Rrx~ 
R = \Rxr Rxx]" (2) 

Unless otherwise stated, R is assumed to be nonsingular. If the variables are standardized, 
then R represents the correlation matrix. 

The redundancy index is asymmetric. That  is, R2(y: X) ~ R2(X: Y) except for very 
special cases. It distinguishes between the dependent variables (Y) and the independent 
variables (X). An important  interpretation for the index of redundancy which was alluded 
to by Stewart and Love and formally proven by Gleason [1976] is that the index represents 
the proport ion of the total variance in the Y set which is accounted for by the linear 
prediction of Y by X. More specifically, 

tr(Rrx R~x 1 Rxr) 
R2(y: X) = tr(P, rr) (3) 

From this representation for the index of redundancy, it easily follows that the index is 
invariant under orthogonal transformations of the dependent variables and under non- 
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singular transformations of the independent variables. That is, if P is a (p x p) orthogonal 
matrix and A is a (q x q) nonsingular matrix, then 

R2(y: X) = RZ(P'Y: A'X). (4) 

The index of redundancy, however, is not invariant under arbitrary nonsingular trans- 
formations of the dependent variables. 

In practice, the index of redundancy is usually used as a summary index in conjunction 
with canonical correlation and variable analysis. It is argued, though, by Nicewander and 
Wood [1974, 1975] and by Cramer and Nicewander [1979] that the association of the 
index of redundancy with canonical correlation and variable analysis is somewhat artificial. 
Canonical correlation and variable analysis does not distinguish between dependent and 
independent variables whereas the index of redundancy does. In addition, the index of 
redundancy is only invariant under orthogonal transformations of the dependent variables, 
whereas the canonical correlations and variables are invariant under all nonsingular trans- 
formations of the dependent set of variables. 

An alternative to canonical analysis was suggested by van den Wallenberg [1977], 
which he refers to as redundancy analysis. In redundancy analysis one successively 
extracts uncorrelated linear combinations of the independent variables which maximizes 
R2(X: w'X). This leads to the linear combinations w'~X, w~ X, . . . .  w' r X which correspond to 
the eigenvectors 

Rx} Rxr Rrx wi = 2iw~, (5) 

where 2~ > 2z > "'" > 2r > 0 are the nonzero eigenvalues ofRx~ RxrRrx ,  and 

r = rank(Rxx 1 Rxr Rrx) = rank(Rx__..r) < min(p, q). (6) 

By normalizing w~ such that w~ Rxx w~ = i, we then have R2(Y: w~ X) = 2i. 
In van den WaUenberg's paper, it is suggested that Y be transformed in a manner 

similar to X, that is, that the eigenvectors of Rr~ Rrx Rxr be used. A disadvantage to this 
approach is that the transformation for Y is not related to the transformation for X, 
whereas in canonical analysis the transformations for the two sets of variables are naturally 
related. 

In view of this argument, Johansson [1981] suggested alternative transformations for 
the Y set which are naturally associated with the transformation for the X set. One of these 
approaches successively extracts linear combinations of the dependent variables v'~Y, 
v~Y, ..., v'rY such that the absolute value ofv'i Rrxwi is maximized subject to the constraints 
vl vi = 1 and v~ vj = 0 for i # j .  The vector w~ is defined in (5). The resulting solution is 

v~ = rlf- l R rx Wi (7) 

where ~/~ = (w~RxrRrxw~) II2, see Johansson [198t], section 4. Although not stated by 
Johansson, it easily follows that r/~ = 2~ where ),~, is defined as in (5). 

The objective of this paper is to present a unified treatment of redundancy analysis and 
to introduce and motivate additional properties and interpretations for the eigenvectors 
{w~, v~} and eigenvalues {2~}, which are hereafter referred to as the simultaneous re- 
dundancy transformations, and the redundancy roots respectively. In section 2, it is shown 
that the redundancy transformations can be derived by application of certain invariance 
arguments and without reference to the index of redundancy. This approach emphasizes 
their use in general for studies where a distinction is made between the dependent and 
independent variables and where only invariance under orthogonal transformations of the 
dependent variables is desirable, rather than simply for studies where the index of re- 
dundancy is used as a summary index. In section 3, additional optimality properties are 
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given for the simultaneous redundancy transformations with respect to the index of re- 
dundancy. These optimality properties are important whenever one restricts attention in a 
study to a reduced set of redundancy variables. The relationships between the properties 
given in section 2 and 3 with the properties given by van den Wollenberg and Johansson 
are discussed in section 4. An example illustrating the use of the simultaneous redundancy 
transformations is given in section 5. 

2. The Redundancy Transformations 

Many scalar-valued indices which are strictly functions of the canonical correlations 
have been proposed to measure the relationship between two multivariate responses. These 
indices have the property that they are invariant under any nonsingular transformation of 
either set of responses. This property is not always a desirable property. For example, the 
concept of total variance of a set of variables is not invariant under all nonsingular trans- 
formations of the variables, only under orthogonal transformations. The ability of X to 
predict a linear combination of ¥ which accounts for a large proportion of the total 
variance of Y may be of more interest than the ability of X to predict a linear combination 
of Y which accounts for a small proportion of the total variance of Y. This distinction 
cannot be considered in an index which is strictly a function of the canonical correlations. 
This argument is similar to the argument given by Stewart and Love in motivating the 
definition of the index of redundancy. 

Rather than simply considering a summary index, it is natural to address the following 
more general problem. In studies where there is a distinction between dependent and 
independent variables, how can one parsimoniously represent the interrelationship between 
the two sets of variables if only orthogonal transformations of the dependent variables are 
to be tolerated? For such studies, a canonical analysis would not be appropriate. In 
Theorem 1 of this section, it is shown that it is possible for R to be transformed into a 
relatively simple form by applying an orthogonal transformation to the dependent vari- 
ables and a nonsingular transformation to the independent variables. It is also shown that 
the simultaneous redundancy transformations are the only transformations which can 
transform R into this simpler form. For  brevity, the Kronecker delta, 6 u, is used in the 
proof of the theorem. It is defined by 6ij = 1 if i = j, and 6 0 = 0 i f / ~  j. 

Theorem 1. There exists an orthogonal matrix V and a nonsingular matrix W such 
that 

where for p > q, D = [A: 0], and for p > q, D' = [A: 0], and where A is a diagonal matrix 
1 ~I/2 

of order rain(p, q) with diagonal entries 2~/2 >_ 2~/2 >_ ... >_ ,,mi,tp. ~} >- 0. Furthermore, any 
such matrices V and W must satisfy the relationships 

Rrx Rx~Rxr  vi = 21 vi, 

and 

where vi and wi 
2z>_ . . . > 2 , > 0  
2m~t., q]-- O. 

Rx~ Rxr Rrx wi = Ai Wi, 

(9) 
(10) 

.t~/2wl = Rx:~ Rxr vi (11) 

are the ith columns of V and W respectively, and with ;q _> 
being the nonzero roots of - I  . . . .  = R r x R x x R x r  and 2r+ 1 = 2 , + z -  
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Proof. Since Rrx Rx}Rxr  is symmetric and positive semidefinite its eigenvalues are 
nonnegative. Also, if {v~} is defined by (9), then they can be chosen such thatv~ v~ = 6~. By 
construction, V is an orthogonal matrix. If w~ is defined by (11) for i = 1, 2 . . . . .  r then it 
follows that w'~ Rxx w i = 6o for i, j = 1, 2 . . . . .  r. It should be noted that multiplying both 
sides o f ( l l )  by Rx~r RxrRrx  gives (10) for i = 1, 2 . . . . .  r. For i = r + 1, r + 2 . . . . .  q, letwi 
be chosen so that (10) also holds, that isRxx ~ RxrRrxwi  = 0, and so thatw'~Rxx wj = 6i~ for 
i , j = r  + 1, r+2 ,  . . . ,  q. Hence, by construction W'Rxx W---I. Finally, for i<r, v)Rrxwi= 
2i- ~12 v) Rrx Rx~ Rxr v~ = 2~/2 6ij, and for i > r, v) Rrx w~ = 0, and so V'Rrx W = D. Thus, it 
has been shown that there exists an orthogonal matrix V and a nonsingular matrix W, 
namely those whose columns satisfy (9), (10) and (11), such that statement (8) holds. 

To complete the proof, it must be shown that the only choices for the orthogonal and 
nonsingular matrices V and W for which (8) holds are those satisfying (9), (10), and (11). 
Note that V'Rrx W = D and W'Rxx W = I implies 

Rrx = VDW -1 and Rxx 1 = WW'.  (12) 

Thus, RrxRx~ Rxr = V D W - I W W ' ( W ' ) - x D V ' =  VDD'V'= VAIV',  where Ax = 
diagonal(21, 22 . . . . .  2p). This implies that vi and 2~, i = 1, 2 . . . . .  p satisfy Rrx Rxx 1 Rxr v~ = 
2~v~. Likewise, RxxlRxrRrx  = W W ' ( W ' ) - I D ' V ' V D W  -1 = WA2 W -1, where A2 = 
diagonal(21, 22 . . . . .  2q), implies that w~ and 2i, i =  1, 2 . . . . .  p satisfy Rxx ~ RxrRrxwi  = 
2i w~. Finally, Rxx ~ Rxr vi = WW'(W' ) -  XD'vi = 2~/2wi. This completes the proof. [] 

The transformations V' and W' when simultaneously applied to Y and X respectively, 
are the simultaneous redundancy transformations. Note that multiplying both sides of (7) 
by R r x R x  1Rxr  gives (9). This shows that the definition of vi given in Theorem 1 is 
consistent with Johansson's definition and that t/2 = 2~. Equations (9) and (11) are easier to 
use for calculations than (5) and (7) since they involve the eigenvalues and eigenvectors of a 
symmetric matrix rather than a nonsymmetric matrix. 

By examining (9), it is interesting to note that the vectors vl, v2 . . . . .  v, correspond to 
the principal component vectors for ¢~, where ¢£ is the linear regression of Y on X. That is, 

= Pr + R rx Rx l(X - Px), (13) 

where Or and Px are the expected values of Y and X respectively, which without loss of 
generality are hereafter taken to be zero. The variance-covariance matrix for ~ is R~, = 

- 1  R r x R x x R x r .  By examining (11), note that the variable 2~/2w',x is simply the linear re- 
gression of v~Y on X. Thus, (9) and (11) provide easily understood interpretations for the 
redundancy variables. 

Equation (8) gives the resulting joint variance-covariance matrix when the simul- 
taneous redundancy transformations are applied to the variables Y and X. As an explora- 
tory technique, the redundancy transformations do not simplify the joint variance- 
covariance matrix to the extent that the canonical transformations do. This is to be ex- 
pected since less information on the joint variance-covariance matrix is lost when only 
considering orthogonal transformations of Y. In particular, the index of redundancy is 
preserved. That is, by applying statement (4) with P = V and A = W, we obtain 

r 

Y~ 2, 
R2(Y: X) = R2(V'Y: W'X) - i=I 

tr(Rrr)" 
(14) 
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3. The Optimality of the Redundancy Transformations 

When the index of redundancy is used in conjunction with canonical correlation and 
variable analysis, the quantity 

, p~ V~(Y: b~,~ Y) 
R2(y: a{oX ) = . . . . .  (15) 

t~UIxyr ! 

where a~i) X is the canonical variable for the X set associated with pl, is usually used as an 
aid in determining which canonical variables deserve interpretation and further attention 
rather than simply using the canonical correlations themselves. As noted by van den 
Wollenberg, the practice of using the value of (15) for each of the canonical variables to 
reduce, in essence, the dimensionality of the two sets of multivariate responses is not an 
optimal procedure. The canonical variables are extracted because they best explain the 
intercorrelations between the sets of responses. They are not necessarily the best linear 
combinations to consider when attempting to account for the overall size of the index of 
redundancy. It is shown in this section that the redundancy variables are best suited for this 
purpose. Before doing so, it is first necessary to extend the concept of the contribution made 
by a canonical variable to the overall size of the index of redundancy, given by (15), to the 
contribution made by any set of linear combinations of the dependent or of the independent 
variables to the overall size of the index. 

A natural extension for an arbitrary set of linear combinations of the independent 
variables is the proportion of the total variance of the dependent variables which can be 
explained by its linear regression on these linear combinations only. That is, 

R2(y: A'X) = tr[Ryx A(A'Rx x A)- tA'Rxr], (16) 

where A is a (q x k) matrix, can be considered the contribution made by the set of linear 
combinations A'X to the overall size of the index RZ(Y: X). If A'RxxA is singular, say 
rank(A'Rxx A) = t < k, then the definition of the index of redundancy can be logically 
extended by defining 

R2(y: A'X) = R2(Y: CA'X), (17) 

where C is a (k x t) matrix such that C'A'Rxx AC is nonsingular. This definition does not 
depend upon the particular choice of C, and also represent the proportion of the total 
variance of Y which can be explained by the linear combinations A'X. 

Thus defined, the contributions to the index made by uncorrelated linear combinations 
of the independent variables are additive. If A = [At: A2] with A'~Rxx A2 = 0, then 

R2(y: A'X) = R2(y: A~X) + R2(y: A~ X). (18) 

In particular, if Ao is a (q x k) matrix with rank(Ao) = k and whose columns are a subset of 
the canonical vectors, say (a~o, i ~ I}, then we have the desired result 

p~ V~(Y: b~i}Y) 
R2(y: A~X) = i~I (19) 

tr(Ryr) 

In addition, it should be noted that the index of redundancy can be decomposed over any 
complete set of uncorrelated linear combinations of the independent variables. That is, ifa 1, 
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a2 . . . . .  aq is any set of nonzero vectors such that a~ Rxx  at = 0 for i #- j, then 
q 

R2(y: X) = ~ R2(Y: a~X). (20) 
i = 1  

By applying (15), one observes that (20) is a generalized version of the summation given in 
the definition of the index of redundancy. 

For an arbitrary set of linear combinations of the dependent variables, a suitable 
extension is not obvious. One extension proposed by Miller and Farr [1971] for any linear 
combination b'Y is the product R2(y: b'Y)R2(b'Y: X). This product is the proportion of the 
total variance of Y which can be explained by the linear combination b'Y times the pro- 
portion of the variance of b'Y which can be explained by X. If b'Y is taken to be the ith 
canonical variable h~i)Y, then this product is the same as (15), since R2(y: bi0Y ) = 
V~(Y: b(oY)/tr(Rrr ) '  and R2(b,)Y.' " X) = p2  Unfortunately, it has recently been shown that it 
is possible for the product R2(y: b'Y)R2(b'Y: X) to be greater than the index of redundancy 
itself, see Tyler [ 1982]. Thus an alternative generalization is needed. 

To motivate an alternative generalization, we note that 

R2(y: B~¢~ ) = ,,x (21) 
- -  tr(gyr) ' 

where B o is a (p × k) matrix with rank(Bo) = k and whose columns are the canonical vectors 
{b~i), i ~ I}. It is therefore proposed that R2(y: B'¢/) be considered as a generalization of 
(15) for the contribution made by the set of linear combinations B'Y to the overall size of 
the index of redundancy, where B is any matrix of order (p x k). This quantity represents 
the proportion of the total variance of Y which can be accounted for by the linear re- 
gression of B'Y on X. 

As defined above, the contributions to the index of redundancy made by uncorrelated 
linear combinations of the dependent variables are not necessarily additive. The contribu- 
tions made by the linear combinations of Y whose linear regression on X are uncorrelated, 
however, are additive. That is, ifB = [B1 : B2] with B'~Ryx Rx~Rxy B2 = 0, then 

i A 

R2(y: B'Y) = R2(y: B;~') + R2(y: B2Y). (22) 

In particular, if bl, ba, . . . ,  bp are any set of vectors such that b ~ R r x R x ~ R x r b j  = 0 for 
i # j, then 

P 

R2(y: X) = ~ R2(y: b'¢£). (23) 
i = 1  

Since RE(y: h{i)Y) = R2(Y: a{i)X), it can be observed by application of (15) that (23) is a 
generalization of the summation defining the index of redundancy. 

In view of these extensions of (15), an important optimality property of the redundancy 
transformations is given in the next theorem. This theorem states that of all sets of k pairs of 
linear combinations of X and Y, the redundancy variables associated with the k largest 
redundancy roots best account for the overall size of the index of redundancy. 

Theorem 2. Let vi and wi be defined as in Theorem 1, let Vg be a (q x k) matrix with 
columns vl, v2 . . . . .  vk, and let Wk be a (p × k) matrix with columns wl, w2 . . . . .  wk. 

(i) For any (q x k) matrix A, R2(y: A'X) _< R2(y: V;,X). 
(ii) For any (p × k) matrix B, R2(y: B'Y~')< Rz(Y: W;,Y). 
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Proof. Part (i) follows from the results of Rao [1964], section 8. In that paper, it is 
shown that the quantity t r [ R r r -  RrxA'(ARxxA')-IA'Rxr] is minimized over all A of 
order (k x q) with rank(A) = k by choosing A = Vk. For all such A, the inequality in part (i) 
holds by noting the relationship between the above form and (16). The inequality easily 
extends to any A of order (k x q) with rank(A) < k by application of(17). 

To prove part (ii), we note that for all B-of rank less than or equal to k, R2(y: B'~') is 
maximized by choosing B such that ' -1 , B RrxRxx = MVk, where M has full rank. This 
follows from part (i). For k < r, it then follows from (12) that W'~RrxR~ = 
W'kWDV -1VV '=  Dk V'~ w--ffere Dk = diagonal(2~/2, ,;~/2 . . . . .  2~/2). If k > r, part (ii) is im- 
mediate, since R2(y: W~,Y) = R2(y :X). [] 

If only the redundancy variables associated with the k largest redundancy roots are 
retained for further study, then the contribution of this reduced set of variables to the 
overall size of the index of redundancy is given by 

k 

R2(Y: W~, X) = R2(y: V~f~) - i :  1 (24) 
ti(R~r)" 

By Theorem 2, we know that this contribution cannot be improved upon for any other set 
of k linear combinations of the two sets of variables. 

After reducing a multivariate response to a smaller set of linear combinations of the 
response, it is customary in practice to consider linear transformations of the reduced set of 
linear combinations. These linear transformations are usually made to facilitate the in- 
terpretation of the reduced set. So, it is important to note that the optimality property for 
W~,X and V~, Y given in Theorem 2 still holds if either is transformed by a nonsingular 
linear transformation. However, in view of the discussion in section 2, only orthogonal 
transformations of V~, Y would be appropriate. 

4. Discussion 

As stated in the introduction, the importance of the results of section 2, is that a 
derivation is given for the redundancy transformations without reference to the index of 
redundancy. An analogy to such a derivation can be found in principal components analy- 
sis. It is well known that the principal component variables can be derived by successively 
maximizing the variances of uncorrelated linear combinations of the original set of vari- 
ables under the constraint that the linear combination has a sum of squared weights equal 
to one. Alternatively, the principal component variables can also be derived by successively 
maximizing the proportion of total variance explained by uncorrelated linear combi- 
nations. Whether variance, variance explained or some other concept is a useful criterion 
can always be debated. Thus, principal components analysis is often viewed as simply an 
orthogonal, hence "nondistorting", transformation to uncorrelated variables. In addition 
to the two optimality properties stated above, the principal components transformation can 
then be shown to have many other optimality properties, see Okamoto [1969]. 

The importance of the optimality properties given in section 3 is that they pertain to a 
set of redundancy variables. The properties for the redundancy variables given by van den 
WoUenberg and Johansson pertain to the redundancy variables when extracted suc- 
cessively. A suitably defined optimality property for a set of variables does not follow from 
the optimality of the individual variables without proof. 

It should be noted that the redundancy transformation for the dependent set, that is 
W'X, was first proposed by Rao [1964"1, section 8, as an alternative to the canonical 
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transformation. He derives the transformation in the context of optimizing "predictive 
efficiency", a concept which is equivalent to redundancy. He refers to the transformation W' 
as the principal components transformation for the instrumental variable X with respect to 
the variable Y. This transformation also arises in reduced-rank regression problems, for 
example see Izenman [ 1976]. 

Before concluding the discussion, it should also be noted that Johansson also proposed 
an alternative analysis for the dependent set of variables (Y). This alternative analysis 
consists of successively extracting linear combinations of the dependent variables, u'~Y, 
u~ Y . . . . .  u', Y, such that the absolute value of u'~Rrxwi is maximized subject to the con- 
straints that u~Rrrui = 1 and u~Rrruj = 0 for i ~ j ,  see Johansson [1981], section 3. A 
disadvantage to this procedure is that the solution does not give an orthogonal trans- 
formation of the dependent variables, and thus does not preserve the index of redundancy. 
In addition, it is not obvious what optimality properties a set of such transformed variables 
possess. For these reasons, this approach was not considered in this paper. 

5. An Example 

To illustrate the use of the simultaneous redundancy transformations, the following 
example is taken from section 4.15 of Timm 1-1975]. As reported by Timm, this example is 
based on a study by Dr. William D. Rohwer of the University of California at Berkeley. 
Further background information for this study is given in sections 4.3 and 4.7 of Timm's 
book. 

In the study two sets of measurements are recorded for 37 students. One set of 
measurements consisting of basic tasks scores for "named action" (NA) and "sentence still" 
(SS) are considered to be independent variables. Another set of measurements consisting of 
scores for a standard achievement test (SAT), the Peabody Picture vocabulary test (PEA) 
and the Ravin Progression Matrices Test (RAV) are considered to be dependent variables. 
The joint sample correlation matrix for Y = (SAT PEA RAV)' and X = (NA SS)' is 

R = 

.1.0000 I ] 
.3703 1.0000 ] 
.2114 .3548 1.0000 [ 

.2617 . 6720  .3390[  1.0000 

.3341 . 5 8 7 6  .3404 i .7951 1.0000 

where the upper triangular entries are obtained by the symmetry of R. 
Timm uses this example to illustrate the use of canonical correlation analysis. How- 

ever, since there is a distinction between the dependent and independent variables, a 
redundancy analysis may be more appropriate. In addition, after extracting canonical 
variables, Timm calculates the individual redundancies for each of the canonical variates 
using (15) since "they better summarize the overlap between the two sets of variables than 
the squares of the canonical correlations". This further suggests that redundancy analysis 
should be considered in order to avoid the inconsistencies inherent in simultaneously using 
canonical variates and redundancy indices. 

In calculating the redundancy roots and variables, the symmetric matrix Rrx Rxx~Rx~ 
is first calculated and then its eigenvalues and normalized eigenvectors are computed. This 
gives 21 > 22 > 23 = 0 and the vectors vl, v2, and v3. The values of wx and w2 are then 



DAVID E. TYLER 85 

= =~-~ /20-xo  ., The computed using the relationships wl 2~l/ZRx~ c Rxrvl  and wz ,~2 , ,xx, ,xr-2.  
resultsare 21 = 0.6735,22 = 0.0261, 

--.3710 
V = --.8203 

--.4353 

and 

-.8528 .3676 ] 
.4865 .3008 

-.1900 --.8800 

[- .6503 .2982 l 
W =  2.0421--1.59911" 

The index of redundancy is R2(y: X) = tr(RrxRx~cRxr)/3 = (21 + 22)/3 = .2332, and the 
covariance matrix for the redundancy variables of the dependent set is 

[ 1.5471 ] 
V'Rr~ V = | .2657 .6957 

k .0919 -.0570 .7573 

From this analysis, one can note that the "redundancy" of the ¥ set given the X set is 
principally due to the predictive ability of the variate .65(NA) + 2.04(SS) for the variate 
.37(SAT) + .82(PEA)+ .44(RAV). For this particular example, the results of the re- 
dundancy analysis are similar to the results of the canonical variables analysis, see section 
4.15 of Timm [1975]. This is to be expected whenever the canonical variate for Y associated 
with the largest canonical correlation explains a high percentage of the total variation 
within the Y set. 

The results of a redundancy analysis would differ greatly from the results of a canoni- 
cal analysis whenever the dependent set of variables contains a highly predictable com- 
ponent which only accounts for a small percentage of the total variation of the dependent 
set. Such a component could be interpreted as a highly predictable "noise" factor, and not a 
factor for which the dependent set of variables were selected to reflect. Canonical analysis 
would place emphasis on such components, whereas redundancy analysis would not. 

In conclusion, the simultaneous redundancy transformations should prove to be a 
viable exploratory procedure. Their use is recommended in studies where the structure 
within the dependent set of variables up to an orthogonal transformation is considered 
important, and whenever one does not postulate a more refined model for the structure 
within and between the two sets of variables. 
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