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Estimates of the mean and standard deviation of the tetrachoric correlation are 
compared with their expected values in several 2 X 2 tables. Significant bias in the 
mean is found when the minimum cell frequency is less than 5. Three formulas for 
the standard deviation are compared and guidelines given for their use. 
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Introduction 

Data  from a bivariate normal  dis t r ibut ion are often displayed in a four- 
f o ld t ab l e  where each variable is recorded as a dichotomy.  Based upon  the cell 
frequencies of the 2 × 2 table, Pearson [1901] proposed the tetrachoric correla- 
t ion coefficient as an est imate of the correlat ion of the under lying bivariate 
no rma l  distr ibution.  The cell probabil i t ies  correspond to the probabil i t ies  of 
the four quadran t s  of the bivariate  normal  having the same marginals.  For  
example,  let the observed frequency table be 

a b I a + b  

c d ] c + d  

a + c  b + d  N = a + b + c + d  

where N is the total  frequency. Let zl and  z2 be s tandard  normal  deviates 
cor responding  to the margina l  probabi l i t ies  (a + c)/N and  (a + b)/N; i.e., 

(a + c) 
~(z l )  = N 

(a + b) 
• (z2) = N 
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where ~(z) is the cdf of the standard normal. Then the tetrachoric correlation r 
is obtained by solving 

(1) f ~ f z l  , ( x .  x~, r)dx~ dx~ = --Na 
- - c o  - - c o  

for r where 4~(x~, x2, r) is the bivariate normal density with means zero, 
variances one and correlation r. The probabilities of the four quadrants formed 
by dichotomizing the variables by the lines xa = z~ and x2 = z 2  are equal to 
a/N, b/N, c/N and d/N. 

When the marginal probabilities are equal (i.e., zt = z2 = 0), the tetra- 
choric correlation r is obtained by 

(2) r = - - c o s  --~--]. 

Otherwise the integral in (1) is replaced by the infinite tetrachoric series 
expansion in powers of r and a root of (1) must be found numerically. 
Manually this is a major undertaking and tables were prepared to ease some of 
the calculations [Everitt, 1910; Pearson, 1931]. Chesire et al [1933] prepared 
computing diagrams to aid in finding r. Recently computer programs have 
been written to solve the computational problem [e.g., see Froemel, 1971]. 
However, many programs err by truncating the infinite series too quickly. 

Hamdan [1970] showed that the tetrachoric correlation is the maximum 
likelihood estimate of correlation in the 2 × 2 table. Pearson [190t] also 
developed a formula for the standard error of the tetrachoric correlation which 
is tabulated by Hayes [1943] for several values of the correlation. Due to its 
computational complexity, Pearson [1913] proposed an approximation that 
could be tabulated in parts. Hamdan [1970] gives an alternate formula based 
on his maximum likelihood approach. 

It is well-known that the product-moment correlation is a biased estimate 
of the underlying correlation. Similarly, we show numerically that the tetra- 
choric correlation is also biased, and indicate when bias is severe. 

We also compute the population standard deviation and compare it with 
the formulas of Pearson and Hamdan. We then suggest guidelines for when 
these formulas can be used. 

The Mean and Variance of the Tetrachoric Correlation 

Let the underlying probabilities of the cells in a 2 × 2 contingency table be 
(.pit, p12, P21, p22). 

pll plz Pl+ 

p~l p22 P2+ 

P+I P+2 1 

As with Fisher's exact test the marginal frequencies pl+, P2+, P+I and p+~ are 
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regarded as fixed a priori. The probability of  observing the fourfold table (a, b, 
c, d) is 

f(a, b, c, d) = k -1 Pl~aP~2bP~cP22a 
t~T Ili ,.,! A!  

(3) 

where 

pllap12Op2(p22 a 
k =  ~ a! b! c! d! 

subject to the constraints a + b = Np~+ and a + c = Np+I. Under the 
hypothesis that 0 = 0, (3) reduces to the hypergeometric density used in 
Fisher's exact test. 

Let o be the tetrachoric correlation of the fourfold table (Np~,  Np12, Np2~, 
Np22). Then the expected value of  r is 

(4) E(r) = 2rf(a,  b, c, d) 

and the expected mean square of  r is 

(5) cr2(r) = ~(r  - p)2f(a, b, c, d) 

where the summations are subject to the constraints of  (3). Note  that cr2(r) is 
computed about p and not about  E(r). 

Approximat ions  o f  the Tetrachoric Correlation 
and Its Standard Error 

The tetrachoric correlation is difficult to compute unless the marginal 
frequencies are equal (when the cosine function (2) can be used). Therefore 
many statistics have been proposed to approximate r [see Castellan, 1966]. A 
common approximation that uses the cosine function [Guilford, 1965] is 

(6) rcos.p~ = co'. ( a d )  ,/2 
1 + 

which is exact when r = 0 or the marginal frequencies are equal (when it 
simplifies to (2)). We include it in our study to reemphasize the error which can 
occur when an approximation is used. 

Pearson's [1901, 1913] formula for the standard deviation based on 
asymptotic theory is 

1 { (a + d)(b + c) 
(7) se = N3/24~(zl, z2, r) _ 4 

+ (a + c)(b + d),~2 2 + (a + b)(c + d)e;~ 

+ 2(ad - bc)¢~¢2 - (ab - cd)¢~ - (ac - bd )¢~  
1/'2 

) 
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where 

and 

~ , = ~ (  z l -  r~, ~ 
(i z-~-3~,J - 0.5 

( z~_-_ rz, 
~ 2 = ~  ( 1 - r 2 ) l / V  - 0 " 5  

1 { (zi2-2rz~z2+z22)} 
4~(zl, z,, r) - 2rr(1 - r2) 1/2 exp - 2(1 - r 2) " 

(Note  that  Pearson defines probable  error, which is 0.67449Sp.) Due  to the 
complex hand calculations for this formula  he gives an approximat ion  to it 
[Pearson, 1913]: 

(8 )  sA = 
N5 ( 1 - r  2) 1 -  r / 2  ] 

4~(zl, z~, O) 

[see also Gui l ford and Lyons,  1942]. 
Based upon max imum likelihood, H a m d a n  [1970] derives an asymptot ic  

s tandard  error as 

(9)  

N o t e  that when r = 0, s;, s A and SH all reduce to 

1 (1 + 1 1 d ) - 1 / 2 _  
sn = Nob(z, ~ z2, r) a -b + -c + 

(a + b)(a + c)(b + d)(c + d)\ 1/2 
N 5 J 

(10) so = 
~(z,, z~, 0) 

which is appropr ia te  to test the null hypothesis  that  the correlat ion is zero. 

Results 

The parameters  p, E(r) and a(r) and the statistics rcos.p~, Sp, sn, sa, so are 
computed  for various tables (Npn, Nplz, Np21, Np22). The evaluation o f  r for 
each "obse rved"  table (a, b, c, d) in (4) and (5) is by a subroutine that  uses a 
varying number  o f  terms in the tetrachoric  series such that  the bivariate normal  
probabi l i ty  of a quadran t  is evaluated with an error  less than 2 × 10 -e. 

When p = 0, the results are given in Table 1 and when p = /0  they are in 
Table  2. 

Bias o f  the Tetrachoric Correlation 

When  p = 0 and pl+ a n d / o r  p+l is equal to ½, E(r) = 0. Otherwise E(r) is a 
biased estimate o f  p. The  bias is most  severe when one o f  the cells has an 
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expected frequency near zero. When no frequency is less than 5, the bias is 
negligible. 

This is easily understood by considering the change in r as any observed 
cell frequency appraoches zero. For example, the table (1, 9, 9, 81) yields r = 0, 
whereas for (0, 10, 10, 80), r = -1 .0 .  When the theoretical probabilities are 
(0.01, 0.09, 0.09, 0.81) and N = 100, the probability that a = 0 (and r = 1.0) is 
large. Hence the expected value is strongly influenced by a zero cell. When N = 
400 in the above, the probability that a = 0 is greatly reduced, as is the bias. 

Therefore caution is necessary in interpreting r especially when any ob- 
served frequency is less than 5. 

When One Cell is Zero 

When one and only one cell is zero, it is obvious that r = i l.0 for that 
table. However, the computat ion of r is based upon the premise that the 
observed frequencies represent the underlying frequencies exactly. It is clear 
that the observed frequencies are integer quantities and therefore cannot be 
more accurate than ½ unit. Hence the cell probability can be no more accurate 
than 1/(2N). 

We therefore replaced the zero observed frequency by ½ and modified the 
other cells to maintain the same marginal totals. When the expected value E(r) 
was recomputed using this modification, the bias was greatly reduced. For  
example when N = 100, the table with probabilities (0.01, 0.09, 0.09, 0.81 ) had 
a modified expected value 0.0187 instead of -0.2481. Similar large reductions 
were obtained whenever there was an expected frequency of 1 in the table. 

The tetrachoric correlation obtained by modifying the zero cell to t is the 
minimum r which is consistent with the rounding errors inherent in using the 
observed frequencies. Therefore we recommend this adjustment (similar to 
Yates correction) whenever a single cell is zero. 

When two cells are zero (either diagonal or off-diagonal), one of the two 
variables is redundant and we would assign a correlation of + 1.0. 

The Error in rcos.pt 

When ad = bc both r and rcos.m are zero. When all the marginals are equal, 
r (which is obtained by (2)) is equivalent to rco,.p, Otherwise rcos:p~ may greatly 
overestimate the correlation. This can be seen in Table 2 by comparing p with 
its estimate r~o~.o~. Therefore, we recommend that rco~.p~ not be used. 

The Behavior o f  the Standard Errors 

From Table 1 we see that so rapidly converges to a(r) when r = 0. When 
the minimum cell frequency is at least 5, the convergence is adequate. Note  
that So = sp = s~ = s a w h e n r  = 0. 

When r ¢: 0 (Table 2), the standard errors sp and sn converge slowly to 
or(r). Pearson's approximate  formula sa, whose development was based on 
computational ease, is the most biased. Since Hamdan ' s  standard error sH is 
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similar to sp and easiest to calculate of the three formulas, we recommend its 
use. The convergence ofsp and sH to or(r) when p ¢ 0 is slower than when p = 0. 
Therefore we recommend their use when the minimum cell frequency is at least 
10, unless the marginal totals are equal when the minimum cell frequency need 
only be 5. 

The Computation of  the Tetrachoric Correlation 

Froemel [1971] provides a fine comparison of  three routines that are 
available to compute the tetrachoric coefficient. Others are continually being 
written. Most routines are based upon fitting a tetrachoric series expansion in r 
and then finding a root of the expansion. For  example, the routine in the IBM 
Scientific Subroutine Package [1970] uses the first six terms. Martinson and 
Hamdan [1975] use the first bight terms in finding the polychoric estimate of  
correlation which is the tetrachoric correlation when the table is 2 X 2. 

Using a criterion that the tetrachoric series has converged when two 
successive terms are less than 10 -~, we found the following approximate 
relationship between the number of terms and r. 

I rl 0.25 0.5 0.75 0.8 0.85 0.9 0.95 
approximate number of  terms 10 18 36 48 60 86 150 

Even if the criterion is less rigid, the number of  terms must increase with I rl. 
Therefore any routine using a short fixed length series will not be accurate 
when Irl is large. 
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