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A TEST OF T H E  HYPOTHESIS T H A T  CRONBACH'S  ALPHA 
RELIABILITY COEFFICIENT IS TH E SAME FOR TWO TESTS 

ADMINISTERED TO T H E  SAME SAMPLE 
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In measurement studies the researcher may wish to test the hypothesis that Cronbach's alpha 
reliability coefficient is the same for two measurement procedures. A statistical test exists for inde- 
pendent samples of subjects. In this paper three procedures are developed for the situation in 
which the coefficients are determined from the same sample, All three procedures are computa- 
tionally simple and give tight control of Type I error when the sample size is 50 or greater. 
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Measurement studies in education and psychology occasionally call for a test of  the 
hypothesis that Cronbach's coefficient alpha is the same for two tests or measurement pro- 
cedures. For  example, a researcher might wish to determine if the reliability of  one ap- 
proach to the assessment of  a particular trait differs from that of  an alternative approach. 
An investigator might want to evaluate the effect on reliability of  a training program for 
evaluators or study the reliability implications of  variations in test directions. Such situa- 
tions demand a statistical test of  the hypothesis that the population values of  the reliabil- 
ity coefficients are equal. 

If  the values of coefficient alpha are obtained from independent random samples, the 
technique proposed by Feldt [1969], and the extention to the k-sample situation by Hak- 
stian and Whalen [1976], may be used. This approach has been found to control Type I 
error quite precisely even in the limiting case of  dichotomously scored items, in which co- 
efficient alpha reduces to Kuder-Richardson Formula 20. However, when the coefficients 
are determined from the same sample of  examinees, the Feldt statistical test cannot be 
validly employed. If  applied to coefficients obtained from the same sample, the test would 
be unduly conservative. The purpose of  this paper is to derive several approximate tests 
that may be used in this situation and to report the results of  sampling studies which bear 
on the Type I error control of  these tests. 

The sampling theory for independent groups draws on the analysis of  variance ap- 
proach to computation of  coefficient alpha. Regardless of the length of  the score scale for 
each test part or item, r~ may be computed as 1 - (mses/mss), where mSps is the mean 
square for the parts (items) by subjects interaction and mSs is the mean square for sub- 
jects. Kristof [1963] and Feldt [1965] demonstrated that if the scores on k parallel parts of  
a test conform to the assumptions of  the two-factor random model, (1 - p,)mss/mses is 
distributed as a central F with N - 1 and (N - l)(k - 1) degrees of  freedom. In this ex- 
pression N is the number of  examinees and p, is the population value of the coefficient 
alpha. Since mss/mSps equals 1/(1 - ro), it follows that (1 - p~)/(1 - r~) is distributed as 
Fu-~,(k-,)(~_,) and (1 - r~)/(1 - p~) is distributed as F(k-~N-,>,u-,. 

Building on this theory, Feldt [1969] noted that 
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(1) 1 - P, 1 - r2 - [FN,_,.<~,_,>,N,_,>IIFck2_,>,~.2_,~.._, ] 
1 - -  r l  1 - -  Pz 

where r, and r2 are coefficients based on independent samples. He further showed that i f  
(k, - 1)(N, - 1) and (k2 - 1)(N2 - t) are fairly large, as they would be with at least 21 
items and 51 subjects, the distribution of  the product o f  the two independent F variables is 
practically identical to that of  FN,-,.N2-,. This makes possible a relatively simple test of  
Ho: Pl = t92, since 

(2) W = I - r 2 1  - r, [~  ~ p 2  ] FN'-' '~v2-1"-p,l 

I f  0, = P2, W is distributed as a central F with N, - 1 and N2 -- 1 degrees of  freedom. I f  
the population coefficients are not equal, W is distributed as a constant greater than or 
less than 1.0 times a central F. I f  W is too large or too small to be accepted as a randomly 
drawn central F, the implication is that the constant (1 - p2)/(1 - p,) does not equal 1.0 
and hence the hypothesis is false. 

With repeated use of  the same sample for both instruments, the foregoing theory 
breaks down. Crucial to its derivation is the stipulation that mss/mS~s for the first in- 
strument be independent of  ms~s/mSs for the second. This condition cannot be met if  the 
scores on the two instruments under study are correlated. Statistical tests for which such 
dependence is assumed are developed in the following section. 

An Approximate Test o f  the Hypothesis p, = P2 with Related Samples 

Assume that Tests 1 and 2, whose reliabilities are to be compared,  have been taken 
by the same sample of  N examinees. Test 1 is composed of  k, scoreable units and Test 2 of  
k2 scoreable units. The scores and score distributions for the two tests may not be directly 
comparable,  since the instruments may be of  different lengths and may contain different 
kinds of  exercises. 

For  each test the following assumptions are made: 
(i) The examinees are a random sample from the population of  interest. 

(ii) The kl and k2 units are random samples from the populations of  units included in the 
domains covered by the tests. 

(iii) In the entire population of  examinees, true scores are normally distributed on the 
two tests. For Tests 1 and 2 the correlation between true scores is greater than or 
equal to zero. 

(iv) Throughout  the entire examinees-by-units matrix for Test j (j = 1,2), the errors of  
measurement  associated with the part-test scores are homogeneous in variance and 
normally distributed. However, the variance of  these errors is not necessarily the 
same for Tests 1 and 2. 

(v) Errors of  measurement  on the parts of  the tests are independent of  each other and of  
the true scores, both within and across tests. 

These are the usual assumptions associated with the two-factor, random model of  analysis 
o f  variance. Independence of  errors of  measurement,  within and across tests, is generally 
assumed within classical test theory. 

We first note that the following expected values hold for the various mean squares: 

- [k , ]  k, 

E[mss2] = d l-_ 
-L ~ ] k~ 
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E[mses,]  = ~ ,  

E [ m s e J  = ~2" 

In the expressions for the expected values of mss,  and mss+, ~x, and ~x+ are the unbiased 
estimates of the variances of  observed total scores. The error variances ~,  and ~+ pertain 
to measurement errors on the individual parts of  Tests 1 and 2. Because the tests include 
k, and k2 parts, respectively, and because the errors are independent, the total error vari- 
ances for the two tests are kt~, and k2~+ 

We now consider the test statistic employed by Feldt [ 1969] for independent groups: 

1 - r2  _ roses 2 . mSS~ ' = mSes z . m s s  t . 
(3) W = - -  = 

1 - r~ mss~ mses ,  mSpsj ross2 

Substituting (6Zx/ks) for mSsj, dividing the several mean squares by their expected val- 
ues and multiplying by these same expected values to preserve the equality, we obtain 

W= l - r +  = ~, ~o'~x,/k,]~+ 1 k , )  
l - r ,  m+ s, 

We use the fact that k ~ j  equals the total error variance for Test j and that p~ = 
1 - ( k j~ ) /oZx;  This leads to 

l - r 2  _[ms~s/~][~][1-o2]. 
(4) W = 1 - r, t m s e s , / ~ ,  J [ OZxJoZx~ ] [ 1 - p, J 

The first factor on the right may be recognized as the ratio of  two chi-square variables di- 
vided by their degrees of  freedom. By the assumed independence of  errors, this ratio is 
distributed as a central F with degrees of  freedom (k2 - 1) (N - 1) and (k, - 1) (N - 1). 
With even moderate numbers of  parts and a reasonably large sample size, these degrees of  
freedom will be quite large, 1000 or larger. For all practical purposes, such an F distribu- 
tion may be considered to be almost totally concentrated at the point F = 1.0 [Hogg & 
Craig, 1970, 187-188], and hence this factor has negligible influence on the distribution of  
W. 

Thus, we have 

( 5 )  w = 1 - r2 _ .  l - 0 ~  F*~_,  , ~ _ ,  

1 - -  rj  I - -  , o t  ' 

where F* is the ratio of  re la ted  variance estimates, each with an expected value of  1.0. In 
essence, we have arrived at the same point reached by Feldt [1969], except that the statis- 
tic W is now seen to involve the ratio of  related sample variances. If  an observed W is too 
large or too small to be accepted as a value drawn at random from F~_~.~_~, one must con- 
clude at the designated significance level that 0~ # p2. 

At least two solutions to the problem of  evaluating probabilities associated with F* 
can be found in the statistical literature. To these we shall add a third. The first solution 
was published by Bose [1935], and the derivation was later simplified by Finney [1938]. 
They demonstrated that the probability of F* exceeding a specific numerical value, F~o, 
may be determined by first transforming F~o as follows: 

(6) Fro* = ([F~o + 1] 2 - 4p2FS) ',2 + (F~o- 1). 
([F~o + 1] 2 - 4 p 2 F ~  '/2 - (F*oo- 1) 
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In this expression p represents the correlation between the total scores on Tests 1 and 2. 
Then 

(7) P[F*~_LN_, > F~o] = P[F~+_,.+,_, > F~o*], 

where FN-,.N-, is the central F with N - 1 and N - 1 degrees of  freedom. In the present 
context, F~o equals W = (l - r~)/(1 - r,), not the ratio of  the variances of  the tests under 
study. The transformation is applied to (1 - r2)/(l - r,). 

Strictly speaking, this approach demands knowledge of  p, a value which is almost al- 
ways unknown. Substitution of  the sample correlation is an obvious possibility, though 
Finney suggested a more laborious alternative procedure. Empirical  simulation data bear- 
ing on the use of  r in (6) are presented in the next section. 

The second solution was derived by Pitman [1939]. It may  he shown that the prod- 
uct -moment  correlation between X, - X2 and X, + X2 equals 

~ , - ~  o~,~ - 1 

(8) ([ozx, + o2x,]z 4o~x,x)W2 [[ o~zx ]2 o2 /,/~" 
~[ O~x2 + 1 ] - 402 Y-~o~, ! 

Clearly, this correlation will equal zero if and only if the variances are equal. Thus, Pit- 
man proposed that the sample correlation between X, - )(2 and X, + )(2, either computed 
directly from the sums and differences or identically determined by 

(9) 

1 ~ -  + 1 - 4 ~ , x ~  

could be tested for significance via the usual t-test. As in the previous test, the ratio of  var- 
iances symbolized in (9) is represented in the present context by W = (1 - r2)/(1 - r0. 
Substitution of the previous expression for the correlation between sums and differences 
into the formula for testing the significance of  a correlation simplifies to 

_ ( W -  l ) ( N - 2 )  ./2 
(I0) t:,._z -- ~ .  

The final derivation of  the distribution of  F* draws on the Bose demonstrat ion that 
the general form of  the distribution is that of  a central F. Through the use of  the A method 
described by Kendall  and Stuart [1969, pp. 231-2], the sampling variance of  F*, to order 
N - t ,  is found to equal 4(1 - p~, , :2) / (N - 1). The fact that this result is correct only to order 
N- '  implies that a more precise expression is of  the form 4(1 - 2 N - Px, x ) / (  c), where c 
may be taken as a numerical constant. When Px,x~ = 0, F* is distributed as FN-,.N-,. A 
central F with df~ = dr2 has a variance almost exactly equal to 4~(dr  - 7), or 4 / ( N  - 8) 
in this case. This suggests that a more precise expression for the variance of  F* is 
4 ( 1 -  z N -  px, x2)/( 8). 

All central F distributions with large values for the second degrees of  freedom have 
means about  equal to 1.0. Therefore, the central F..~ which has approximately the same 
mean and variance as F* can be determined by solving the following equation for v: 

4 4(1 - p2x,x) 
v - 7  N - 8  

7 2 N -  8 N -  1 - _ P x ,  x~ 
(11) v - -  + 7 -= 1 2 2 -- Px,x~ 1 -- Px,x~ 
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Using rx,x2 to estimate p,<,x: we may  estimate P[F* > IV] by 

N - 1 - 7r2x, x~ 
(12) P[F.,. > W], t, = I - 6,x~ 

with v rounded  down to a whole number .  
To  illustrate the three procedures for testing Ho:p, = P2, we take r, = .80, r2 = .72, 

N = 100, and rx,x2 = .50. For  these data  W =  (1 - .72)/(1 - .80) = 1.4. Under  the Bose /  
F inney procedure,  

Fgo* = [(1.4 + 1) 2 - 4(.25) (1.4)] ~ + (1.4 - 1) = 1.4739 
[(1 4 + i v  - 4 ( ~ )  (1 4 ) p  - ~l 4 - t . )_ 

P[F~.~9 > 1.4] = P[F99,99 > 1.4739] = .0275. 

I f  the alternatives to the null hypothesis  are p, # p2, one would reject H0 at the 5% level if 
P _< .025 or P >_..975. I f  one decides in advance to place the larger o f  (1 - r,) and (1 - r2) 
in the numera tor  o f  W, one would reject if P < .05. Presuming the foregoing test was 
made  under  this procedure,  the experimenter  could reject Ho at the 5% level. 

Under  the Pi tman procedure,  the test statistic, in terms of  W and rx,x2, equals 

t =  ( 1 . 4 -  1)(98) '/2 = 1.9322 
{a 0 a )  (~ - 75)1 , ,  ~ 

P[tg~ > 1.9322] = .0281. 

I f  the alternatives are t0, # 02, P --< .025 or P >_ .975 leads to rejection. I f  W is defined so 
that W > 1.0, the probabil i ty must  be less than .05 for rejection to occur. 

The  final procedure involves ~ = (N - 1 - 7~,x2)/(1 - ~,x2) = 97.25/.75 = 129.7. 
The extreme area associated with W = 1.4 is 

e[Fi29:29 > 1.40] = .0285. 

Again,  if one defines W so that W___ 1.0, one must  obtain P _< .05 for rejection at the .05 
level. 

The  agreement  among  the probabilities calculated via the three procedures is very 
close for this example. The range equals .001, with the two procedures based on F agree- 
ing almost  exactly. 

Each  of  these procedures is approximate  for one or  another  reason. Therefore,  it 
seemed important  to compare  them with regard to control  o f  Type  I error. The  essential 
question, beyond  those issues already considered by Feldt [1969], is which procedure  pro- 
vides the most  accurate probabil i ty statements about  F*. To investigate this issue, a series 
o f  computer  simulation studies was undertaken.  These are summarized  in the next sec- 
tion. 

Computer Simulation o f  the Distribution o f F *  

The technique developed by Odell and Feiveson [1966] was used to generate sample 
ratios (IF) o f  correlated variances. The simulations included three sample sizes (N = 50, 
100, and 200) coupled with three levels o f  popula t ion correlat ion between X~ and X2 (.4, 
.6, and .8). Fifteen thousand  ratios were generated for the combina t ion  N = 50, to = .8; 
five thousand ratios were produced  for all other combinat ions  N and p. The probabil i ty 
P[F* > Wo], where 14:o is any specific ratio value, was determined and tabulated for each 
o f  the three procedures for evaluat ion o f  P. For  brevity, the results summarized in Table  1 
combine  the probabilities f rom both  tails o f  the empirical  distributions. They  represent 
empirical  estimates o f  the percent o f  Type  I errors which would  have occurred had  the 
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TABLE 1 

Empirical Estimates of Type I Error Rates (in Percent) 

Bose/Finney 

Nominal 
Alpha 
Level 

10% 

5% 

1% 

N = 50 

p=. 4 p=. 6 p=. 8 

11.34 10.04 i0.i0 

5.62 5.10 5.18 

0.94 0.98 1.15 

N = i00 

p = . 4  p = . 6  p = . 8  

N = 200 

p= . 4 p= . 6 p=.  8 

10.58 10.54 10.58 

5.36 5.26 5.08 

1.06 1.00 1.08 

9.80 9.86 10.40 

5.16 5.04 5.00 

1.28 1.06 0.90 

Pitman 

10% 

5% 

1% 

II.00 9.76 9.78 

5.38 4.90 4.95 

0.90 0.90 1.07 

10.50 10.32 10.40 

5.22 5.14 5.02 

0.98 0.96 1.02 

9.72 9.86 10.34 

5.08 5.00 4.96 

1.26 1.06 0.90 

A Method 

10% 

5% 

1% 

i0.82 9.38 8.82 

5.42 4.64 4.46 

0.92 0.90 0.95 

I0.44 i0.04 i0.04 

5.22 5.04 4.72 

1.02 0.96 0.98 

9.72 9.84 9.98 

5.10 4.96 4.82 

1.28 1.06 0.86 

10%, 5%, or 1% level been used to test the null hypothesis against a non-directional alter- 
native. It should be noted that this simulation bears on the adequacy of  probability state- 
ments about F*. Therefore, for simplicity the simulation program produced ratios o f  cor- 
related variances rather than pairs of  alpha coefficients. 

The summary data suggest that all three methods give tight control of  Type I error. 
The mean of  the differences between nominal and empirical significance levels for the 27 
values were as follows: 0.20% for the Bose/Finney method, 0.09% for the Pitman method, 
and - .06% for the A method. The mean absolute differences are 0.24% for the Bose/Fin-  
ney method, 0.19% for the Pitman method, and 0.24% for the A method. Since none of  the 
methods is computationally onerous and all may be implemented via available tables or 
calculators that compute t or F distribution probabilities, there is little basis for choice. 
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T h e  c o n t r o l  o f  T y p e  I e r r o r  m a y  b e  a s h a d e  t i g h t e r  v i a  t h e  A a n d  P i t m a n  t e c h n i q u e s .  O n  

t h e s e  g r o u n d s ,  t h e s e  p r o c e d u r e s ,  as  s u m m a ~ ' z e d  b y  ( I 0 )  a n d  (12)  a b o v e ,  a r e  r e c o m -  

m e n d e d .  
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