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Very general multilinear models, called CANDELINC, and a practical least-squares fitting 
procedure, also called CANDELINC, are described for data consisting of  a many-way array. The 
models incorporate the possibility of  general linear constraints, which turn out to have substantial 
practical value in some applications, by permitting better prediction and understanding. Descrip- 
tion of  the model, and proof of  a theorem which greatly simplifies the least-squares fitting process, 
is given first for the case involving two-way data and a bilinear model. Model and proof are then 
extended to the case of  N-way data and an N-linear model for general N. The case N = 3 covers 
many significant applications. Two applications are described: one of  two-way CANDELINC, 
and the other of  CANDELINC used as a constrained version of  INDSCAL. Possible additional 
applications are discussed. 

Key words: constrained least-squares, multilinear models, bilinear models, INDSCAL, multi- 
dimensional scaling, 3-mode factor analysis, CANDECOMP,  LINCINDS, multivariate analysis. 

A number of methods for multidimensional data analysis are special cases of a gen- 
eral procedure described by Carroll and Chang [1970] and now called CANDECOMP 
(for CANonical DECOMPosition of N-way tables). Included are the approach to factor 
analysis often called "Eckart-Young decomposition" [Eckart & Young, 1936], the classi- 
cal (two-way) metric version of multidimensional scaling [Torgerson, 1958] and the IN- 
DSCAL method of three-way, or individual differences, multidimensional scaling [Carroll 
& Chang, 1970] and the closely related procedure called PARAFAC proposed by Harsh- 
man [Note 6]. In fact, CANDECOMP was originally developed to implement a metric 
analysis in terms of the INDSCAL model. 

In all of the methods named above, as well as in many other procedures for multi- 
dimensional analysis of behavioral science data, the problem of interpretation of dimen- 
sions or factors is of paramount importance. Even more important, in many practical ap- 
plications, is the problem of predicting locations of new stimuli or other entities in the 
multidimensional space, and with the aid of these locations further predicting the relative 
preferability, judged similarities, or other judgmental attributes of the stimuli (or other 
entities). 

In many cases, additional information about the stimuli (or other entities) may be 
available. For example, variables other than those used in forming the multidimensional 
space may have been measured. Such information can often be used to provide inter- 
pretations of the stimuli, and also to predict the locations of other stimuli in the multi- 
dimensional space (from their values on the other variables). In many cases, however, the 
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variability that c a n  be explained by these outside variables may be obscured by a consid- 
erable amount of variability that c a n n o t  be so explained. In such instances it may be de- 
sirable to constrain the dimensions of the multidimensional representation obtained to be 
completely explained by these outside variables. This may, and often will, cut down con- 
siderably on the variance accounted for in the original data. This increase in residual er- 
ror should be well paid for by the much crisper meaning of dimensions which are ob- 
tained and by the ease of predicting the locations of new objects in the space from 
knowledge of their values on the outside variables. 

Sometimes the "other variables" are not measured in the usual sense, but grow out of 
a factorial design underlying the stimuli or other entities. Specifically, if the stimuli form a 
factorial design, then the artificial (or dummy) variables which are conventionally used to 
code that design may be used as the outside variables. Since the two examples in this pa- 
per follow this approach, we shall explain it in detail later. 

This paper has several purposes: 
(i) We describe a general approach called CANDELINC for finding CANDECOMP and 
INDSCAL solutions which satisfy the constraints that various parameters are linearly re- 
lated to prespecified variables. 
(ii) We describe a practical method of least-squares fitting for the CANDELINC model 
by reducing this problem to fitting a much smaller CANDECOMP model. (Of course, 
least-squares fitting is already practical and in frequent use for CANDECOMP. In the 
two-way case, such fitting can be accomplished by the highly developed numerical meth- 
ods for singular value decomposition or eigenvector extraction. For the three-way and 
many-way case, alternating least-squares methods have proved themselves practical, 
though no doubt subject to considerable improvement.) 
(iii) We prove theorems, of some interest in themselves, which justify the reduction just 
described. 
(iv) We illustrate the CANDELINC approach with two examples using real data, in 
which the constrained results are compared with the corresponding unconstrained results. 
One example is based on two-way CANDECOMP, the other on INDSCAL. 

The CANDELINC approach was first described for the two-way case, and a corre- 
sponding theorem proved, by Carroll in Carroll, Green and Carmone [Note 1] and Green, 
Carroll, and Carmone [1976]. The many-way case of CANDELINC was first proposed by 
Carroll and Pruzansky [Note 2] (under the name MULTILINC, which has now been 
dropped). A theorem for the many-way case was conjectured by Carroll, Green, and Car- 
mone [Note 1], but was not proved until a later time, by Carroll and Pruzansky [Note 2]. 
A more general theorem based on a more elegant proof for the many-way case has since 
been developed by Kruskal, and is included in the present paper. The theorem by Krus- 
kal extends to a more general class of models, including Tucker's [1964, 1972] three-mode 
and multimode factor analysis and certain special cases. It thereby verifies an additional 
conjecture set forth by Carroll in Carroll, Green, and Carmone [Note 1] and Carroll and 
Pruzansky [Note 2]. 

The CANDECOMP model in its general form can be stated as 

R 

(1) Y',~2-"N ~- ~ a~" a !2) t~J lit 12 r  . . .  o,N r , 
- -  r ~ l  

where Y,,,2...,N is the general entry in an N-way data table Y. The symbol "~"  is used in this 
paper to indicate two things. First, it indicates that the data on the left are equal to the 
expression on the right except for an additive error term. Second, it indicates that least- 
squares estimates will be sought for the parameters on the right. While the distribution of 
the error term will not be specified in detail, the use of least-squares estimates does carry 
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the implicit assumption that the standard deviation of the error term does not vary from 
one data value to another, i.e., the standard deviation is constant as a function of  the sub- 
scripts. (It also carries the implicit assumption that the expected value of  the error term is 
zero.) In practice, of  course, the least squares fitting procedure will often be applied to sit- 
uations in which these implicit assumptions are not likely to be met. The robustness of  
(ordinary) least-squares procedures makes this reasonable, so long as these implicit as- 
sumptions are not grossly violated. 

Throughout this paper we deal only with ordinary least-squares fitting. In practice, 
due to the implicit assumptions this carries, it is often important to rescale the original 
variables in such a way that fitting errors of equal size in different variables have roughly 
equal "importance". The problem here of choosing the rescaling multipliers closely re- 
sembles the corresponding problem in principal components analysis. 

Carroll and Chang [1970] describe a NILES procedure [Wold, 1966] or what has 
more recently come to be called an Alternating Least Squares (ALS) procedure, for least 
squares estimation of  the parameters (the a's) of  the general CANDECOMP model. In 
CANDELINC we seek to fit the CANDECOMP model, but with linear constraints on the 
a's. These constraints may require a particular set of  a's to be an exact linear function of  
specified external variables, to be additively decomposable relative to a given factorial de- 
sign, or may be defined in other ways described at a later point. 

CANDELINC: The Two- Way Case 

Let us first describe CANDELINC (CANonical DEcomposition with LINear Con- 
straints) for the case where N = 2. This means that the data form a two-way array or ma- 
trix Y, and that the model (as given below) is bdinear. Assume that Y is J x K. The values 
in Y might entail preference judgements by J subjects or judges on K stimuli (or other ob- 
jects). The bilinear CANDECOMP model (on which two-way CANDELINC rests) is 
given by 

(2) V - A,A;, 
m 

where A, and A2 contain the parameters which are to be estimated. (Of course, this is also 
the Eckart-Young model.) Am is J x R, and each row will provide a description of  one sub- 
ject; A2 is K x R, and each row will provide a description of  one stimulus. The parameter 
R is the number of  "dimensions" or "factors" which are assumed to explain the data. In 
some cases R may be determined on theoretical grounds, in others the data analyst must 
choose R, usually after trying several values, on the basis of  some combination of  statisti- 
cal and "interpretability" criteria. 

In order to constrain AI and A2, we require them to have the form 

(3) 

where 

A, =X~TI and A2 =X2T2 

X,, J × S, ~ are fixed known "design matrices" 
X2, K × $2 J (assumed to have full column-rank), 

T,, S, × R ] are unknown parameter matrices 
T2, $2 × R J which must be estimated, 

with Sm -< J and $2 --< K. The requirement that X, have full column-rank is no real restric- 
tion, since if X~ does not satisfy the requirement we can replace it by some generating set 
of  its columns, and exactly the same matrices A will satisfy the constraints. See Appendix 
A for an illustration of  some design matrices. 
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Note that in our applications interest focuses on the A.(n = 1, 2), not on the ultimate 
fitted parameters T. nor on the ultimate data values AIA;. It is the A. we examine in order 
to obtain information about the structure of the data. The constraints would perhaps have 
a clearer meaning (but would not be as easy to work with algebraically and computation- 
ally) if they were expressed in a different and more familiar dual form. In order to obtain 
the dual form, consider the space of  all left null vectors z of  the matrix X. (i.e., the set of  
all row vectors z such that zX. = 0). Select a generating set of  such row vectors, and form 
a matrix Z. with these as rows. Then A. = X.T. for some T. if and only if Z.A. --- 0. From 
this it is clear that the parameters I". are merely a mathematical device (though inter- 
pretation of them is possible, as mentioned later). 

For  reasons to be discussed later, we may want to apply the constraints only to the 
stimuli. To accommodate this special case within the general framework, we can let X, be 
the identity matrix, so A~ = T, is unconstrained. This will be referred to as "not using any 
design matrix for the subjects." 

The matrix X. might consist of S. quantitative variables measured on the subjects or 
stimuli. Each column would contain the values of  one variable. We are frequently inter- 
ested, however, in the case where the columns of  X. contain a coding of  categorical vari- 
ables corresponding to treatments in an analysis of  variance design. In this case, each col- 
umn of  X. is an artificial (or what is often called a "dummy")  variable. For example, the 
encoding might include "dummy"  variables for main effects only, in which case the 
coordinates of  A. would be constrained to fit an additive model. On the other hand, some 
interaction terms could be included, or only certain one-degree-of-freedom contrasts (par- 
titioning main effects, interactions, or both) could be included, if desired. An illustration 
of  the construction of  design matrices for both an additive model and a model incorporat- 
ing a linear × linear interaction is given in Appendix A. 

Without real loss of generality, it is possible to assume that X 'X.= Ix. (for n = 1, 2), 
that is, we assume that the X. are all suborthogonal (sometimes called "orthogonal sec- 
tions" or "column orthonormal" matrices). The fact that there is no loss of generality fol- 
lows from two things: the fact that X. has full column-rank, and the fact that our interest 
focuses on the A. rather than the T.. To see this, consider the constraint that A. = X.T. for 
some T.. All this means is that the columns of  A. belong to the column space of  X.. Any 
other matrix X* with the same column space yields the same set of  constrained matrices 
A.. If  we choose any orthonormal set of  vectors which generates the column space of  X., 
and use these vectors as the columns of  X.* then X* is suborthogonal and yields the same 
set of  constrained matrices A.. For theoretical purposes, this justifies the assumption that 
the X. are suborthogonal, 

For practical purposes, it is necessary to start with X. and form X.* For this purpose, 
a procedure such as the Gram-Schmidt orthogonalization procedure could be used. We 
have used the following procedure [Johnson, 1966] which finds X* which is not only sub- 
orthogonal but which provides the least-squares suborthogonal fit to X.. Decompose X. 
into its singular value decomposition, 

(4) X. = Uo/~.V'. 

(U. and V° are suborthogonal,/~, is diagonal). Then X* = U.V.' is suborthogonal and has 
the same column space as X., and among all such matrices it is the least-squares fit to X.. 

In applications other than the particular ones we discuss, there might be some inter- 
est in the parameters T. themselves. For example, by looking at a given column of  T~ and 
examining which elements have large magnitude, we can interpret the meaning of  the cor- 
responding dimension of the solution. Similarly, though perhaps less useful, the rows of  
T2 can be thought of  as describing hypothetical idealized stimuli, o f  which the actual stim- 
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uli are linear combinations. In applications where we are interested in the values of  T,  
and not only in the values of  An, the argument above for assuming X,, suborthogonal is 
not valid. Nevertheless, the calculations for this case follow almost the same procedure 
described in this paper. The only differences are these. While forming the suborthogonal 
matrix X* from X~ as described above, a matrix S~ should also be formed such that X* = 
XnS.. (S, can be obtained as an easy byproduct while forming X*.) Following the proce- 
dures described in this paper then leads to T* (not T.), but it is easy to show that T~ = 
S~T*, so T, is easily recovered. Note that in our notation henceforth we shall assume X* 
has been substituted for X~. Thus, X, itself is assumed to be suborthogonal, without the 
need to write the asterisk. 

In the two-way case, then, we want to find transformation matrices, T, and T2 such 
that "¢ = A~Az provides a best least squares approximation to Y, with the constraint that 
A~ = X,T, and As = X:T2. We introduce the squared norm function, indicated by N, 
which means the sum of  squares of  the elements (for any vector, matrix, array, or func- 
tion). Then we want to find T~ and T2 which minimize 

N ( Y -  Y ) -  2 ~ (Y,j-)9,j) 2 
( 5 )  ' 

= N(Y - A~A'2 ) = N(Y - X,T,T;X~ ) .  

Roughly speaking, the following theorem states that it is legitimate to multiply by X', on 
the left and X2 on the right, inside N. 

Theorem: M i n i m i z i n g  (5) o v e r  T, and  T~ is e q u i v a l e n t  to m i n i m i z i n g  
N(X~YX2 - T~T; ) over T, and T2. Thus if we define Y* = X~YX2, the minimization prob- 
lem reduces to minimizing N(Y* - T~T; ) over T~ and T2, which can be done in the two- 
way case by classical methods such as use of  an Eckart-Young analysis. 

Even though we prove a substantially more general theorem later by more elegant 
methods, it seems worthwhile to give a direct demonstration of  this result. 

Proof For any matrix Z, N(Z) = tr ZZ'. We want to minimize 

(6) N(Y - A,A'~ ) = tr[(Y - X,T,T'~X'~ ) (Y' - X2T2T~X,' )1 

= tr[(YY'-YX2T~T~X',-X,T,T~X;Y'+X,T~T~X;X2T2T~X~ ) .  

By well-known results concerning traces of  square matrices, this can be written as: 

(7) N(Y-A,A~) = tr(YY') - 2tr (X~YX2T2T~) + tr(X~X,T,T~X~X2T:T~). 

Since X',X, = Is, and X~X: = Is2 those expressions both drop out of the last term, leaving 

(8) N(Y - A,A~ ) = tr(YY' ) - 2tr(Y*T2T~ ) + tr(T,T;T2T'~ ) .  

Now we expand out another expression and notice how similar it is to (8): 

(9) N(Y* - T,T~ ) = tr(Y*Y*' ) - 2tr(Y*T2T~ ) + tr(T,T~T2T', ) 

= N ( Y  - A r A b )  - C 

where 

(10) C = tr(YY' ) - tr(Y*Y*' ) .  

Since C is a constant that does not depend on T~ or T2, finding the matrices T, and T2 that 
minimize N ( Y * - T , T ~  ) will also solve the problem of minimizing N ( Y -  ArAb). This 
ends the proof. 
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To summarize, we may find the optimal T~ and T2 for our original problem (the two- 
way case of  CANDELINC) by defining 

Y* --- X~YX2, 

finding T, and T~ such that ~'* = T,T; provides a least squares fit to Y* in the required 
dimensionality (this may be done in the two-way case by use of the Eckart-Young decom- 
position), and finally forming [in accordance with (3)] 

A, = X,Tl 

and A~ = X2T~. 

Note that in general this two-way CANDELINC analysis requires finding the Eck- 
art-Young decomposition of a much smaller matrix than would be necessary in the un- 
restricted analysis (S~ × $2 rather than J x K, where usually S~ << J and/or  S~ << K). 

Ex tens ion  to the Mul t i -  W a y  Case  

To reiterate, we seek to fit the model 

R 

(1') y,,,~ ,~ = Y~ a ~  a~ 2~ ."  a~ ~ 
. . . .  t 2 r  t N r  

r ~  1 

(where "~-" implies a best least squares fit). In the multiway case we want to fit this gen- 
eral CANDECOMP model with linear constraints on the a.~"~'s which can be expressed in 
the equation 

(3') A,, - I1,  'n'll = XnTn, --tnr 

where the Xn's are the design matrices for each way, and the T~'s are to be solved for. 
In (1') and (3') the subscript i. ranges from 1 to I~. X, is In × S. (for some S.) and T. is 

S. x R, where R is the "dimensionality" of the decomposition (r = 1, . .-, R). Stimulus 
dimensions, factors, subject weights, or whatever the n'* way of  the design corresponds to, 
must be linear functions of  some set of  a pr ior i  independent variables described by the de- 
sign matrices. 

We now state the result that generalizes the two-way CANDELINC solution to the 
multiway case. Given an N-way array Y whose general entry is y,,,2...,N(in --  1, 2, . . . ,  In), we 
wish to decompose it into a sum of products of the form given in (1'), with constraints on 
the A.'s as defined in (Y). We are given the additional technical condition on the Xn's that 

(4') X'.X. = Is. 

(a condition that can always be satisfied, as we have seen, by appropriate definition of  the 
X's). The solution is obtained by defining a new array Y* with entries 

_ X ( t )  X (2) . . .  X ~,'w) (11) E Z --- E ,,,, 
i I /2 i N  

(where r~ n~ is the general entry of  X.), and then finding the least squares solution to the - -  ins  a 

problem 
R 

(12) * ~o Y,,.~'".N -~ Y~ ¢')t(2) 
~ s j r ~ s 2  r * * "  tsN r • 

r ~  I 

The matrices T~ = c°~ 11t~o, II then provide the desired solution. The matrices A~ satisfying 
the desired linear constraints can then be constructed via (3'). This result was first proved 
by Carroll in an unpubfished paper by Carroll and Pruzansky [Note 2], but we present 
here only the more general result and more elegant proof due to Kruskal. 
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In this section we change notational conventions somewhat from those used earlier. 
Capital letters stand for N-way arrays and small Roman  letters stand for matrices. We use 
square brackets to indicate elements: an element of  a is a[j, t], and an element of  Z is 
Z[il, . . . ,  iN]. We generalize the product of  two matrices in a simple way by defining the 
product in position n of  a matrix a and an array Z. Informally, consider the array Z as 
made up of a large number  of  vectors or "columns" in the n 'h direction, where each vector 
has the form 

(Z[i~, ..., 1, . . - ,  i N ] , " ' ,  Z[ia, . . . ,  1., . . . ,  iND. 

Then the product in position n is formed by multiplying each of  these vectors by the ma-  
trix a. More formally, aq).Z is the array such that 

I n 

. . . , ° .  • . . .  " (13) (aQ.Z)[i,,...d...,iN] = a[j,t,]Z[z~, ,l,, ,l,,]. 

Note that products for different n commute.  This is analogous to associativity of  matrix 
multiplication. 

Theorem: Suppose Y and D are given arrays, and x,  are given matrices such that x~x, 
= identity matrix. Suppose we wish to minimize the following expression over the matri- 
ces t,: 

(14) N [ Y -  (xItO®,'"(XNtN)®~D ]. 

This can be accomplished by finding the t. which minimize the following expression, since 
the two expressions differ by a constant: 

(15) N[x~®~...x'~)NY- t~®~'"tuQND]. 

This theorem reduces to Carroll 's earlier theorem when D is the R × R × ... × R 
"identity" array, i.e., the array such that 

1 if r, = r 2 . . . . .  rN, (16) D[rl,",,rN] 
I 

[ 0 otherwise. 

Proof'. From the condition on x.  we know that it consists o f  a set o f  orthonormal col- 
umns. Let 2, consist of  a complementary set of  or thonormal  columns, so the partitioned 
matrix (x,, 2,) is orthogonal. Then if ~" is a column vector, we have 

N[~] = Nlx;~ + N[2'.~], 
(17) 2"x. = 0. 

I f  we consider any array Z as made up of  many  columns in the n 'h direction, then 

(18) N[Z] = ZN[column]. 

Therefore 

(19) N[Z] = NIx'.®.Z] + N[2'.®.Z]. 

Now we apply this, for n = 1, to the first expression in the theorem [see (14)], and make 
use of  the fact that x',x, = identity matrix and x~2, = 0 to obtain 

NI Y - (x,t,)®,"'(Xutu)(~ND] 

(20) = N[X~®~ Y -  t~®~(xzt2)®2"''(XutN)®ND] + N[2'~®~ Y]. 

We apply the decomposition for n = 2 to the first term on the right, and then repeat in a 
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similar manner  for all n, ultimately obtaining this equation: 

N[ Y - (x~t~)®I'"(xNt~)®ND] 

(21) =N[x',®i ""X'N®N Y -- t~®~ ""tN®~D] + ~ N[X~®,X'2®2""~',®,Y]. 

Note that only a single tilde occurs in each summand of  the latter term. The latter term is 
constant, i.e., does not depend on the t,, and so the proof  is complete. 

Extension of the Multiway CANDELINC Result to Tucker's Three-Mode Factor Analysis 
and Scaling Models. 

Since the above proof  did not rely in any way on the D array being fixed, it follows 
that the theorem holds for D variable as well, that is, for the case in which the t, and the D 
array are to be solved for so as to minimize the expression in (14). The model implied in 
this case (in particular if the ti's are allowed to have arbitrary, and possibly different, col- 
umn orders) is equivalent to Tucker's [1964] three-mode or multimode factor analysis 
model (with D being the "core matrix," or 'core box" as it is sometimes called). Therefore, 
the result of  this theorem extends to those models. It also extends, by implication, to the 
special case of three-mode factor analysis applied to three-way arrays symmetric in two 
subscripts which is often called "three-mode scaling" [Tucker, 1972]. 

It is important to state precisely what this result says about the constrained version of  
three or multimode factor analysis or scaling (henceforth to be referred to generally as 
multimode f.a.). First of  all, the result relates to least squares fitting of  the appropriate 
model. It says that a least squares solution for the linearly constrained model can be 
found by finding a least squares solution for the reduced model. Since the standard solu- 
tion for multimode f.a. is not, strictly speaking, a least squares solution (although it tends 
to provide a very good approximation to it) the result does not strictly apply to that stan- 
dard solution. However, this does suggest that, if an approximate least squares solution, 
such as the standard solution for the three-mode factor analysis model, is applied to the 
reduced matrix, the result should produce an approximate solution for the linearly con- 
strained model. Incidentally, Tucker and MacCallum [Note 11] have produced an itera- 
five algorithm leading to an exact least squares solution (barring local minimum prob- 
lems) for the three-mode f.a. case. The result should apply strictly to the solution 
produced by this algorithm. 

Linear Constraints: Their Geometrical Meaning 

To illustrate the geometrical meaning of  linear constraints, we happen to use an ap- 
plication of  CANDELINC to INDSCAL. We use a tiny data set consisting of  9 x 9 ma- 
trices of  dissimilarities provided by three subjects. The numbering of  the nine stimuli 
from a 3 x 3 factorial design is shown in Appendix A along with some constraint matri- 
ces. Figure 1A shows the stimulus configuration from an unconstrained two-dimensional 
solution. Figure 1B shows the solution which is constrained to satisfy the additive model. 
Geometrically, this constraint is equivalent to requiring that the three sets 1-2-3, 4-5-6, 
and 7-8-9, must be the same except for translation. More graphically though less pre- 
cisely, the three solid "curves" must be "parallel" to one another. Alternatively, the con- 
straint is also equivalent to requiring that the three dashed curves are parallel to one an- 
other. 

Figure IC shows the solution which is constrained to satisfy the model which has an 
additive part plus a linear x linear interaction term. Figure 1D shows the same solution 
decomposed into these parts. The interaction term only contributes to the positions of  the 
four corner points. It is important to note one way in which this situation differs from the 
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co r r e spond ing  s i tua t ion  in  o r d i n a r y  A N O V A .  Even  t h o u g h  the l inea r  x l inear  t e rm is or-  
thogona l  to the add i t ive  terms,  the  leas t -squares  fi t ted va lues  for  the  add i t ive  te rms  
change  s l ight ly  when  the in te rac t ion  te rm is incorpora ted ,  as can  be  seen b y  a careful  
compar i son  o f  F igures  1B and  ID.  This  is because  the  subject  weights,  wh ich  have  no  
pa ra l l e l  in the o rd ina ry  A N O V A  si tuat ion,  are  affected when  the in te rac t ion  t e rm is incor-  
pora ted ,  and  they in tu rn  affect the addi t ive  terms.  

Application of CANDELINC to Two- Way Data 

W e  shall  discuss one app l i ca t ion  o f  two-way  C A N D E L I N C  to da t a  f rom W i s h  [1975] 
concern ing  ways that  peop le  in var ious  role re la t ions  c o m m u n i c a t e  wi th  each  o ther  in dif-  
ferent  si tuations.  The  s t imuli  were cons t ruc ted  accord ing  to an  8 x 8 fac tor ia l  design.  

Subjec ts  in the s tudy  were asked  to rate,  on  severa l  different  b ipo l a r  adject ive  scales, 
the i r  own c o m m u n i c a t i o n  with  people  in eight  different  role  re la t ions  in eight  different  sit-  
ua t i ona l  contexts.  The  fol lowing s ta tement  is an  e xa mple  o f  an  i t em to be rated.  

On a 9 point scale ranging from very hostile (1) to very friendly (9) rate how friendly you think 
the interaction is between you and a co-worker when having a brief exchange about a minor de- 
tail. 

The  e ight  s i tuat ions and  e ight  re la t ionships  used  in the  s tudy are  l is ted in T a b l e  1. Each  
s i tua t ion  was pa i r ed  with  each re la t ionship  for  a to ta l  o f  64 st imuli .  F o r  the analyses  that  
wil l  be descr ibed  we selected a subset  o f  24 subjects  m a k i n g  j u d g e m e n t s  on  three  scales 
re la ted  to cooperat iveness ,  for a to ta l  o f  72 judge - sca le  combina t ions .  The  scales were: 

coopera t ive-compet i t ive ,  
no conf l ic t -constant  conflict,  
f r iendly-host i le .  

W e  were in teres ted in cons t ra in ing  the s t imulus  conf igura t ion  f rom an E c k a r t - Y o u n g  
decompos i t i on  so that  it can  be  comple te ly  accoun ted  for in a s imple  way  f rom the s i tua-  
t ion and  the re la t ionship .  F o r  this pu rpose  we used  the add i t ive  model ,  which  yie lds  par -  

TABLE 1 
Interpersonal Relationships and Situational Contexts that Served 

as Stimuli in Study for Two-way CANDELINC Example 

Relationships 
1. Spouse or Best Friend 
2. College Advisor 
3. Casual Acquaintance 
4. Co-worker 
5. Father 
6. Sibling 
7. Supervisor 
8. Person You Dislike Most 

Situational Contexts 
A. Talking to each other at a large social gathering. 
B. Expressing anxiety about a national crisis that is affecting both of you personally. 
C~ Having a brief exchange about a minor technical detail. 
D. Pooling knowledge and skills to solve a difficult problem. 
E. Working for a common goal with one of you directing the other. 
F. Discussing a controversial social issue on which your opinions differ. 
G. Attempting to work out a compromise when your goals are strongly opposed. 
H. Blaming one another for a serious error that was made. 
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FIGURE 1 
Unrota ted s t imulus configurations from three different two-dimensional analyses, one with no constraints and 
two with different linear constraints. The data set consisted o f  9 stimuli formed by a 3 × 3 factorial design. The  
solid lines connect the 3 levels o f  Factor One and  the dashed lines connect the 3 levels o f  Factor Two, 
A. an  unconstrained INDSCAL solution 
B. a solution constrained to fit an  additive model 
C. a solution constrained to fit a model which contains the additive terms and  a linear × linear interaction 
D. the same solution as Figure 1C showing the additive portion (connected by the solid and dashed lines) and  

the effects o f  the interaction component  (represented by arrows) 

allel curves like those in Figure 1. We wanted to compare the results from this analysis 
with an unconstrained Eckart-Young analysis to see how similar the two solutions would 
be. We used the two-way CANDELINC method, described above, to perform the con- 
strained analysis and the MDPREF procedure [Carroll, 1972] to perform the uncon- 
strained Eckart-Young analysis. 

The data matrix used as input to both procedures consists of a 72 x 64 matrix. Each 
row represents a combination of one subject (from 24) with one scale (from 3). Each col- 
umn represents a combination of one situation (from 8) with one relationship (from 8). 

In addition, a design matrix for the 64 stimuli was provided as input to CAN- 
DELINC. (No design matrix was used for the subjects.) The 64 x 14 design matrix embo- 
died the familiar additive model for the 8 × 8 design. There are 7 effects for the 8 situa- 
tions, and 7 effects for the 8 relationships. The first 7 columns of the design matrix 
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correspond to situation effects, the last 7 to relationship effects. No column is needed to 
correspond to the grand mean, since this is constrained to be 0. 

Both analyses yield a set of  stimulus coordinate values as well as a set of coordinates 
of  termini of  judge vectors. Figure 2A shows a two-dimensional CANDELINC solution 
rotated 45 degrees for interpretability. Figure 2B shows the two-dimensional MD P REF  
solution rotated to best fit the dimensions of  Figure 2A. (The rotational orientation of  
M D P R E F  solutions are arbitrary, so both rotations are legitimate.) The coding of  the 
stimuli are as in Table 1; the letters refer to the situational context and the numbers to the 
relationship. Dimension One, for both solutions, can be interpreted as friendliness, from 
spouse or best friend (1) on the right to person you dislike most (8) on the left. Dimension 
Two, for both solutions, can be labelled amount of  conflict, with situation A, talking to 
each other at a social gathering, on the top and situation H, blaming one another for a 
serious error, on the bottom. 

The two solutions are very similar, as we see from the very high correlations in Table 
2 between corresponding dimensions of the CANDELINC and the MDPREF solutions. 
The amount of  variability accounted for in the constrained solution, 0.539 is almost as 
great as for the unconstrained solution, 0.555. The degrees of  freedom for the data and 
both the unconstrained and constrained solutions are given in Appendix B. These results 
indicate that these data can be accounted for well by an additive model for stimuli. 

LINCINDS: The Application of CANDELINC to 1NDSCAL 

INDSCA L with Linear Constraints 

One principal application of  multi-way CANDELINC could be to provide a con- 
strained version of  INDSCAL [Carroll & Chang, 1970]. We call this procedure LIN- 
CINDS (for LINearly Constrained INDSCAL). The unconstrained version of  INDSCAL 
utilizes a symmetric version of  the Carroll-Chang [1970] CANDECOMP procedure for 
decomposition of N-way tables via a model of  the form given in (1) (but without con- 
straints). Symmetric CANDECOMP consists simply of  application of  (ordinary) CAN- 
DECOMP to a three-way array that is symmetric in two of  its indices, say indices 2 and 3. 
In the case of INDSCAL, the three-way array is a subjects x stimuli x stimuli array com- 
prising a matrix of  derived "scalar products" between stimuli for each subject. The 
"scalar products" are derived from similarities or dissimilarities data by the procedures 
described in Torgerson [1958] in his chapter on what is now called "classical" (two-way) 
multidimensional scaling. It can be shown that if CANDECOMP is applied to an array 
exhibiting such symmetry, the solution will also display this symmetry, up to appropriate 
equivalence relations. Specifically, suppose the array is symmetric in indices 2 and 3. 
Then matrices A2 and A3 in the solution will be related by a nonsingular diagonal trans- 
formation matrix. A final step in symmetric CANDECOMP entails normalizing A2 and 
A3 to make sure they are actually equal (i.e., that the diagonal transformation is an iden- 
tity). 

The constrained version of INDSCAL, then, entails applying three-way CAN- 
DELINC instead of  CANDECOMP to the derived scalar products array. In this case, X2 
and X3 would, of course, be the same. In addition, where CANDECOMP is applied to a 
reduced array, for the INDSCAL case symmetric CANDECOMP would be used. 

LINCINDS Example 

We illustrate the use of  LINCINDS by applying it to a study by Wish and Kaplan 
[1977] that is very similar to the one described above. In the study 72 subjects were asked 
to rate, on 14 bipolar adjective scales, the communication of  typical interpersonal relation- 
ships in different situational contexts, rather than their own relationships. Again, subjects 
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FIGURE 2 
Stimulus configurations from two different two-dimensional analyses, one with linear constraints and  one with 

no constraints. The  data set consisted o f  64 stimuli formed by an 8 × 8 factorial design. 

A. a C A N D E L I N C  solution, constrained to fit an  additive model, rotated 45 degrees for interpretability 

were presented all combinations of eight situations and eight relationships for a total of  64 
stimuli. The situations were the same as in the previous experiment (see Table 1), but the 
relationships were somewhat different. Table 3 shows the eight relationships and the 14 
bipolar scales. Thus the raw data array Z is 72 subjects (0 x 14 bipolar scales (j) x 64 
stimuli (k). 

Wish and Kaplan did an INDSCAL analysis to determine the dimensions people im- 
plicitly used in making judgements about interpersonal communication based on all 14 of 
the rating scales. (The purpose of this analysis differs from the purpose of the MDPREF 
analysis described above. The MDPREF analysis was concerned with the dimensionality 
for one particular set of  related adjectives.) The INDSCAL procedure was applied to an 
array Ykjj. which is 14 bipolar scales (k) × 64 stimuli (/) × 64 stimuli (f) as computed from 
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B. an unconstrained MDPREF solution rotated to best fit the dimensions of the rotated CANDELINC solution 

TABLE 2 
Comparison of 2-Dimensional Solutions from MDPREF and Two-way 

CANDELINC with Stimulus Design Matrix for an Additive Model 

Variance Accounted For 
MDPREF Solution .555 
CANDELINC--Additive Model .539 

Correlation Between Corresponding Dimensions 
DIM. ! DIM. 2 

Judge Vectors .977 .966 

Stimulus Coordinates .987 .978 
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TABLE 3 
Interpersonal Relationships and Bipolar Rating 
Scales Used in Study for LINCINDS Example 

Relationships 

Bipolar Rating Scales 

1. Bitter Enemies 
2. Business Partners 
3. Casual Acquaintances 
4. Husband and Wife 
5. Marine Sergeant and Private 
6. Parent and Teenager 
7. Political Rivals 
8. Supervisor and Employee 

1. Hostile vs. Friendly 
2. Cooperative vs. Competitive 
3. No Conflict vs. Constant Conflict 
4. Superficial vs. Intense 
5. Uninterested & Uninvolved vs. Completely Engrossed 
6. Unemotional vs. Emotional 
7. Impersonal vs. Personal 
8. Very different Roles vs. Very Similar Roles 
9. Treat Each Other Equally vs. One Totally Dominant 

10. Democratic vs. Autocratic 
I 1. Informal vs. Formal 
12. Reserved and Cautious vs. Frank & Open 
13. Not at All Task Oriented vs. Entirely Task Oriented 
14. Unproductive vs. Productive 

the raw data by the formula 

The array Yk~,, can be thought of  as consisting of  14 symmetric 64 × 64 matrices, whose 
entries are dissimilarities derived from the raw data. Kaplan and Wish interpreted the five 
dimensions of  their solution respectively as cooperation, intensity, dominance, formality, 
and task orientation. They also reported several small but statistically significant inter- 
actions between situations and relationships for each dimension, and provided inter- 
pretation for these interactions. 

The L I N C I N D S  analysis is based on the same 14 × 64 × 64 array used above and is 
carried out in five-dimensional space for comparability with the INDSCAL analysis. All 
interactions between situations and relationships in the stimulus configuration were con- 
strained to be 0, i.e., the stimulus configuration was constrained to be additive with re- 
spect to the 8 × 8 structure of  the stimuli. (The design matrix used for this purpose is the 
same 64 × 14 matrix used in the two-way C A N D E L I N C  analysis and described in that 
connection.) It is interesting to see what effect is achieved by eliminating the interactions 
found by Wish and Kaplan. More interesting, perhaps, would be constraints which elimi- 
nate all the interactions except those found by Wish and Kaplan. This analysis would be 
expected to yield cleaner results than the unconstrained analysis. 

INDSCAL solutions, and hence also L I N C I N D S  solutions, are not subject to free ro- 
tation, but only to permutation and reversal (reflexion) of  axes. Thus when measuring 
how similar two solutions are it is appropriate merely to correlate corresponding dimen- 
sions. Table 4 shows this comparison. As it happened correspondingly numbered dimen- 
sions of the INDSCAL and L I N C I N D S  solutions correspond to each other and no axes 



J. DOUGLAS CARROLL, SANDRA PRUZANSKY, JOSEPH B. KRUSKAL 

TABLE 4 
Comparison of 5-Dimensional Solutions from INDSCAL and 

L1NCINDS with Stimulus Design Matrix for an Additive Model 

17 

Variance Accounted For 
INDSCAL Solution .862 
LINCINDS--Additive Model ,798 

Correlation Between Corresponding Dimensions 
DIM. 1 DIM.2 DIM.3 D1M.4 DIM.5 

Rating Scale Weights .999 .999 .999 .998 .999 

Stimulus Coordinates .982 .986 .979 .970 .979 

are reversed, as we see from the high positive correlations. (This is not so surprising as it 
might at first appear, since each program numbers the dimensions according to variance 
accounted for, and since the programs use closely related numerical procedures.) 

The amount of variance accounted for in the constrained solution is 0.798, slightly 
smaller than for the unconstrained solution, which is 0.862. The degrees of freedom for 
the data and both the unconstrained and constrained solutions are given in Appendix B. 
The correlations for the rating scale weights are all 0.998 or above, quite a bit higher than 
the correlations for the stimulus coordinates. Presumably this is because the constraints 
affect the stimulus coordinates directly, and affect the rating scale weights only indirectly. 

LINCINDS as an Aid for Interpreting Dimensions 

Another application of the CANDELINC method, to be reported in detail elsewhere, 
shows how LINCINDS was used as an aid in interpreting the dimensions of an IN- 
DSCAL solution. In this example, acoustic stimuli consisting of 24 frequency modulated 
tones were constructed according to a 4x3×2 factorial design. By appropriate selection of 
design matrices we constrained the dimensions to fit several different models incorporat- 
ing several different interaction terms, and compared the solutions of the various models 
with the unconstrained INDSCAL solution. We chose the model that fit the data nearly 
as well as the INDSCAL solution and used it to explain the dimensions of the original 
scaling solution. 

Application of LINCINDS to Define a Rapid Approximate INDSCAL Solution 

It was recently realized by the first two authors that one interesting and potentially 
very useful application of LINCINDS is to provide a computationally highly efficient 
procedure for an approximate INDSCAL solution. This solution may in many cases be 
sufficiently good in itself to be used instead of a full INDSCAL analysis. Otherwise it can 
be used to define an excellent "rational" starting configuration for the full least squares 
INDSCAL solution. The details of this procedure will be published separately. 

A brief description of the procedure is given here, although a full account is being 
published separately [Carroll & Pruzansky, Note 3]. First, the Young-Householder proce- 
dure is applied to convert dissimilarity matrices for each subject into "scalar product" 
form. Then these matrices are averaged to provide one single matrix. The first several ei- 
genvectors of this matrix are calculated, and used as the columns of a matrix X2. Let ma- 
trix A2 be the INDSCAL stimulus configuration of the same dimensionality as X2. It can 
be proved, for error-free data satisfying the INDSCAL model, that the columns of X2 dif- 
fer from the columns of As only by a linear transformation; that is, A2 = X2T2 where T2 is 
a square matrix (usually, but not necessarily nonsingular). This relationship is also ob- 
served to hold approximately for real data. LINCINDS is used, with X2 serving as the 
"design matrix" for stimuli, to find T2 and A2. By this means, a good approximate solution 
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to a large INDSCAL problem can be found by solving a small INDSCAL problem. This 
procedure is exactly equivalent to the TRAIS procedure proposed by Cohen [Note 4] for 
rotating the "group stimulus space" from a three-mode scaling [Tucker, 1972] solution to 
approximate GNDSCAL structure to aid interpretability. 

A further extension is possible in which an internally generated design matrix is used 
for subjects as well as for stimuli. This leads to finding an approximate INDSCAL solu- 
tion by solving an even smaller INDSCAL problem. 

Linear Constraints Are Not Desirable for Subject Vectors 

We have tried, at various times, to put constraints on subject vectors, either in the 
two-way constrained MDPREF-like metric analysis in terms of a vector model for prefer- 
ence data, or in the case of subject weight vectors in the LINCINDS approach to con- 
strained INDSCAL analysis. In both cases the results were very poor. The stimulus space 
was very severely distorted and the corresponding fit measure declined precipitously. The 
first instance in which this precipitous decline in variance accounted for was observed was 
the analysis reported by Carroll, Green and Carmone [Note 1; also see Green, Carroll & 
Carmone, 1976]. 

It has now become clear to us that this empirically observed degeneration of configu- 
ration and fit measures can be related to a theoretical argument against putting con- 
straints of this type on entities which are interpreted as vectors, rather than as points. Re- 
call that in INDSCAL the length of the subject vectors has only a secondary meaning, 
based on the degree of fit of that subject's data matrix, and is not intrinsic to the model. 
Also note that while the length of the subject vector in MDPREF is intrinsic to the model, 
it depends only on the degree of fit and the overall size of that subject's data vector. Since 
the directional information is of primary interest in the case of such vector-like entities, it 
would seem that only constraints should be considered that are invariant under changes 
in length of individual vectors. In particular, it should be clear that the linear constraints 
imposed in CANDELINC are not invariant under such length altering transformations. 
An easy way to see this is to imagine subject points arrayed in a regular square or rec- 
tangular lattice arrangement in the positive quadrant of a two-dimensional space. If we 
now change the lengths, say by normalizing all vectors to unit length, this lattice structure 
will be almost wholly destroyed. 

This theoretical objection to linear constraints on subject vectors is closely related to 
MacCallum's [1977] argument, on very similar grounds, that no procedures based on a 
general linear model should be used as aids in interpreting INDSCAL subject spaces. We 
partially agree with MacCallum, although we disagree with his fiat prohibition against use 
of such techniques. Our criticism of MacCallum's argument will be discussed elsewhere. 

Discussion 

Constrained MDS seems to be part of the "Zeitgeist". Approaches include those by 
Bentler and Weeks [1978], Bloxom [1978], Noma and Johnson [Note 10], deLeeuw and 
Heiser [Note 5], and Borg and Lingoes [1980]. 

The approach of Bentler and Weeks [1978] allows specific parameters (in a two-way 
MDS context) to be constrained either to equality or proportionality with some specified 
values. One useful special case of this approach would allow constraining a particular di- 
mension of the stimulus space in a two-way MDS analysis to be proportional to some 
specified outside variable. This is clearly a "linear constraint", but of a quite different type 
than allowed in CANDELINC. This amounts to assuming a one-one relationship be- 
tween specific outside variables and dimensions. In the language of our paper, the Bentler 
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and Weeks constraints come to requiring that the stimulus configuration A satisfy A = XT 
where X and T have the following properties: 

(i) T is diagonal; 
(ii) some columns of X are fixed (corresponding to constrained columns of  A) and some 

columns of X are free, that is, have values chosen during the optimization (corre- 
sponding to unconstrained columns of A); 

(iii) some diagonal elements of T are fixed (corresponding to equality constrained col- 
umns of A), some are free (corresponding to proportionality constrained columns of 
A), and some may be either (correspt, nding to unconstrained columns of A). 

CANDELINC entails a much more general relationship between variables and dimen- 
sions. All dimensions are assumed to be different linear combinations of the same set of  
variables. An intermediate case that might be of  interest is one in which each dimension, 
for example, is assumed to be a linear combination of a set of  variables uniquely associ- 
ated with that dimension. 

Noma and Johnson [Note 10] allow a case similar to the special case of  Bentler and 
Weeks' approach, just described, in which there is assumed to be a one-one relationship 
between variables and dimensions, but this is defined only ordinaUy. That is, the outside 
variable is assumed to be defined on a merely ordinal scale, or, equivalently, the rank or- 
der of projections on each dimension is constrained, but not the exact values (up to a con- 
stant of proportionality) as would be true in Bentler and Weeks. 

Bloxom's [1978] approach entails a more general model than the others. The model is 
the one for individual differences MDS involving generalized euclidean metrics called 
IDIOSCAL by Carroll [see Carroll & Wish, 1974] whose special cases include Tucker's 
[1972] three-mode scaling, the INDSCAL model [Horan, 1969; Carroll & Chang, 1970], 
Harshman's [Note 6] PARAFAC and PARAFAC-2 [Harshman, Note 7] as well as the 
standard two-way MDS model. The constraints that Bloxom considers, however, are lim- 
ited to strict equality constraints. That is, each parameter is constrained to be equal to 
some specified value a priori, or pairs or subsets of parameters can be constrained to be 
equal to one another. Since, however, these constraints can be placed on many different 
components of the general model, this allows, in fact, a fairly wide class of constraints to 
be imposed. Bloxom [1978] provides a good discussion of these procedures for constrained 
solutions, as well as the relationship of CANDELINC to his own approach. Bloxom also 
relates these procedures to an older procedure proposed by McGee [1968] for constraining 
the degree of  relatedness of different MDS configurations. 

DeLeeuw and Heiser [Note 5] describe a very general "algorithm model" (that is, an 
incompletely specified algorithm) for fitting MDS models with any type of constraint for 
which an associated "metric projection" problem can be solved. This metric projection 
problem is essentially that of projecting the current set of parameter estimates into the 
constraint region (the region of parameter space satisfying the constraints) in a least 
squares fashion (i.e., to find the point in the constraint region closest to the current param- 
eter point in euclidean distance.) For some types of constraints the solution to this metric 
projection problem is "nice" and "easy"; for others it is very hard indeed. DeLeeuw and 
Heiser discuss the general solution for some cases of interest, and also provide a dis- 
cussion relating their approach to some of the others mentioned here, as well as to CAN- 
DELINC. 

Finally, the approach of  Borg and Lingoes [1980] constrains certain distances in the 
obtained configuration to satisfy specified ordinal constraints. This is equivalent to pro- 
viding two proximity matrices as input, one corresponding to data, and a second speci- 
fying the ordinal constraints. This second matrix will generally have two special charac- 
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teristics; 1) it will have a large number of missing entries and 2) the order constraints 
implied by the nonmissing entries can be satisfied exactly (but, typically, in more than one 
way) in the dimensionality in which the solution is to be obtained. Borg and Lingoes use a 
penalty function approach to require the constraints defined by the "second" matrix to be 
satisfied exactly, while the "first" matrix is fit as well as possible within the constraints im- 
posed by the "second." 

The Borg and Lingoes approach is actually very similar to a possibility that has ex- 
isted for some time within the scope of the MDSCAL-5 program of Kruskal [Note 8] and 
the KYST and KYST-2 programs of Kruskal, Young and Seery [Note 9]. In these proce- 
dures it is possible to provide two or more matrices as input (each with data values per- 
mitted to be missing), with different weights associated with each matrix. The overall loss 
function is a root mean square of the weighted stress values associated with the individual 
matrices. Constraints essentially identical to those of Borg and Lingoes can be achieved in 
the earlier programs by using two matrices and associating a very large weight with the 
second matrix relative to the weight associated with the first. The Borg and Lingoes com- 
putational procedure is equivalent to allowing the second weight, asymptotically, to grow 
"infinitely large." In practice, however, their penalty function approach will simply in- 
crease the second weight in a sequence of steps until it grows "sufficiently large" to force 
exact satisfaction of the ordinal constraints. When imposing Borg-Lingoes type con- 
straints with MDSCAL or KYST, a result in principle identical to theirs can be achieved 
by using a weight which is sufficiently large. Furthermore, it might be noted that the 
MDSCAL or KYST programs permit use of more than two matrices. Thus, for example, 
several different sets of ordinal constraints could be imposed simultaneously, by allowing 
"sufficiently large" weights for each of a set of matrices defining these constraints. This 
can be done if the constraints are mutually consistent and can all be satisfied in the di- 
mensionality specified for the solution. 

Appendix A: Design Matrices 

As illustration we use a tiny data set consisting of 9 x 9 matrices of dissimilarities 
provided by three subjects. The nine stimuli form a 3 x 3 factorial design, as shown here, 

Factor 1 
Levels 

1 

1 1 2 

2 4 5 

3 7 8 

Factor 2 
Levels 

2 3 

6 
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where the cell entry indicates stimulus number, or here, 

Stimulus Number 

Factor 1 Factor 2 

1 1 1 
2 1 2 
3 1 3 

4 2 1 
5 2 2 
6 2 3 

7 3 1 
8 3 2 
9 3 3 

First consider the additive model constraint on the 9 stimulus vectors, which are the 
rows of  a 9 x 2 stimulus matrix A2. We shall write these vectors in the form at. = (a,,,a,2), 
omitting the superscript "(2)" for simplicity. (The horizontal subscript arrow is used to in- 
dicate a row vector.) Algebraically, the additive model means that the stimulus vector a~- 
for stimulus (re,n) must have the form 

at- ---- U,,r-. "4- Vn-, 

where urn- = (u.,u.,2) with m = 1,2,3 are the three "effect" vectors for the first factor, and 
vn- = (vnt, J'n2) for n = 1,2,3 are the three "effect" vectors for the second factor. There is no 
"grand mean" or "constant term" in the above expression INDSCAL along with many 
similar methods imposes the condition that the mean of  the stimulus vectors be 0. This 
condition is desirable in order to remove translational indeterminacy. To achieve this con- 
dition it is also necessary to assure that the sum of  the effects for each factor is 0, namely, 
that 

~ ,  3 

u , -  = 0 a n d  ~ vn_ = 0. 

The most obvious way to express the additive model constraint on A2 in the form 
A2 -- X2T2 is to set 

X 2 

1 1 
1 1 

1 1 I ut- 
- - U2~ 

1 1 u3- 
1 1 , T2 = 
1 1 vi- 

I 1 v2- 
1 1 v3- 
1 1 

- U l t  

U21 

/'13 t 

Vii 

l~3 t  

Ul 2 - 

U22 

u3~ 

12t2 

];22 

]/32 

where the blank entries indicate zeros. However, this approach does not constrain the sum 
of the factor one effects and the sum of the factor two effects to be 0. To do so, we elimi- 
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nate u3-. and v3- by using u3- = -ul--u2- and v~- = -vi--v2-. This leads to 

1 1 

u 2 -  
x 2 =  , T 2 ;  . 

1~ 2-  

N O W  consider the model incorporating a linear x linear interaction term. Algebrai- 
cally, for the 3 x 3 case, this means that the stimulus vector for stimulus (re,n) has the 
form 

U..- + V.- + e,~.~w~ 

where w_ is the interaction vector and 

i i f m = n = l o r 3 ,  

- if  m = 1 and n = 3 or vice versa, 

otherwise. 

This extra term is incorporated into X2 and T2 as follows: 

X 2 

1 1 1 
1 1 
1 - 1  - 1  - 1  

1 1 
1 1 
I - - 1  --1 

- 1  --1 1 - 1  
- 1  --1 1 
- 1  - 1  - 1  - 1  1 

u2 lu2, u22/ 
, T2= v,_ -- i v .  v,2/.  

w .  Lw, w~j  

Appendix B: Degrees of Freedom for Constraints 

In response to concerns expressed by one referee about whether there are adequate 
degrees of  freedom to determine how well the constraints fit, it seems worthwhile to count 
the degrees of  freedom explicitly. In the 2-way C A N D E L I N C  application, the data 
consist of  a 72 x 64 matrix, the unconstrained solution consists of  72 x 2 subject-scale pa- 
rameters plus 64 x 2 stimulus parameters,  and the constrained solution consists of  72 x 2 
subject-scale parameters  plus 14 x 2 stimulus parameters.  The data have 4536 = 72 x 
64 - 72 degrees o f  freedom, (where 72 is subtracted because each subject-scale variable is 
centered). The unconstrained solution has 266 = 72 x 2 + 64 x 2 - 6 degrees of  freedom, 
and the constrained solution has 166 = 72 x 2 + 14 x 2 - 6 degrees of  freedom (where 
the 6 which are subtracted in each case represent 2 for centering the stimuli at the origin 
and 4 for the arbitrary 2 × 2 matrix of  the fundamental  indeterminacy). 
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In  the L I N C I N D S  applicat ion,  the da ta  consist o f  a 14 × 64 x 64 symmet r ic  array, 

the uncons t ra ined  solut ion consists o f  64 × 5 s t imulus parameters  plus 14 x 5 scale weight  

parameters ,  and the const ra ined solut ion consists o f  14 X 2 s t imulus parameters  plus 14 x 

2 scale weight  parameters .  The  da ta  have  28224 = 14 × (64 × 63) /2  degrees o f  f reedom,  

the uncons t ra ined  mode l  has 385 = 64 × 5 + 14 x 5 - 5 degrees o f  f reedom, and the con- 

s t rained mode l  has 135 = 14 x 5 + 14 x 5 - 5 degrees o f  f reedom.  

F r o m  these calculations,  it would  appear  that  in these examples  at least there is no 

lack o f  degrees o f  f reedom for any re levant  purpose.  
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