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FROM THE M A T R I X  OF PARTIAL CORRELATIONS 
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A common problem for both principal component analysis and image 
component analysis is determining how many components to retain. A num- 
ber of solutions have been proposed, none of which is totally satisfactory. 
An alternative solution which employs a matrix of partial correlations is 
considered. No components are extracted after the average squared partial 
correlation reaches a minimum. This approach gives an exact stopping point, 
has a direct operational interpretation, and can be applied to any type of 
component analysis. The method is most appropriate when component 
analysis is employed as an alternative to, or a first-stage solution for, factor 
analysis. 
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This paper is concerned with the class of methods that  involve an eigen 
decomposition of a covariance matrix. Collectively, these methods are called 
component analysis in this paper. The nature of the covariance matrix 
determines the specific type of component analysis. The component analysis 
of a correlation matrix is called principal component analysis here. We shall 
also be interested in image component analysis, the component analysis of 
image covariances. Component analysis has a variety of purposes. I t  can 
be used to find a parsimonious description of the total variance of the var- 
iables involved; in this case, the procedure proposed in this paper is not 
applicable. Principal component analysis is frequently used to express the 
variance shared among variables in a set; that  is, it is used as kind of a factor 
analysis. Horst [1965] and Van de Geer [1971], among others, discuss principal 
component analysis employed in this manner. 

When component analysis is used to describe the common variance, as 
a kind of factor analysis, the usual problem of determining how many com- 
ponents to retain arises. Various solutions have been proposed, none of which 
are totally satisfactory. Bartlett  [1950, 1951] has proposed a statistical test 
of significance that  could be applied to either principal component analysis 
or image component analysis. This approach generally results in the retention 
of an "excessive" number of components, i.e., components that  are statis- 
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tically significant but of no practical importance [Gorsuch, 1973]. This problem 
is particularly acute if the sample size is large. 

Numerous methods have been proposed to determine the number of 
non-trivial components as opposed to significant but trivial components. 
Probably the most widely employed rule for principal component analysis 
is to retain only factors corresponding to eigenvalues greater than unity. 
Kaiser [1960] has rationalized this rule in a number of ways. Gorsuch [1974] 
reviews some of the criticisms of this approach. Alternative methods include 
using the scree test [Cattell, 1966], computing the percentage of variance 
extracted, or assessing the patterns produced by varying the number of 
factors extracted. All of these methods have been criticized for being either 
too subjective or too arbitrary. 

This paper will consider an alternative method based on the matrix of 
partial correlations. The method gives an exact stopping point and has a 
direct rationale with respect to a traditional criterion for factor analysis. 
The method applies to any type of component analysis, including both prin- 
cipal component analysis and image component analysis. 

Method  

For a set of p -{- m variables, the covariance matrix can be represented as 

re,,, c, 7 
O) c = Lc,~ c ~ J '  

where the submatrices Cll,  C12, and C~= have dimensions p >< p, p >< m, and 
m >< m. If the m variables of the second set are partialed out from the p 
variables of the first set, the matrix of partial variances and covariances 
can be represented as 

(2) C i , *  = C , i  - C I ~ C ~ - ' C ~ ' ,  

and the matrix of partial correlations is 

(3) R,~* = D - ' / 2 ( C , ,  --  C, ,C2. . - IC,2 ' )D - ' / ' ,  

where 

(4) D = Diag (CI~ - C,2C22- 'C, , ' )  = Diag C,~*. 

For component analysis, let the first set of p variables represent the 
observed variables and the second set of m variables represent the com- 
ponents. Then, if A is the p X m pattern matrix resulting from component 
analysis, the partial covariance matrix can be represented as 

(5) C1,* = CH - -  A A ' .  

The nature of C,, would depend on the type of component analysis employed. 
For principal component analysis, 
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(6) Cll = R,  

where R is the p X p correlation matrix; for the image component analysis, 

C~ = S - ~ R S  -I,  (7) 

where 

(8) S 2 = Diag -t  (R-I). 

In order to determine the number of components to extract, the following 
summary statistic is proposed: 

(9) l~ = ~ ~ (r,*)~/(P(P - 1)), 

where r~i* is the element in row i and column j of the matrix RH* in (3). 
The value of ]~ is the average of the squared partial correlations after the 
first m components are partialed out. The proposed stopping point is the 
value of m for which 1. is at  a minimum. The value ],. would be calculated 
for m = 1 to p -- 1; the value of f., for m = p is indeterminate since the 
diagonal of C~* consists of zeros. The values of ]~ will range between 0 and 1. 
A second summary statistic, useful for comparative purposes, is 

(10) /o = E E r .2 / (P(P -- 1)). 
i # i  

If 1~ > 1o, then no components would be extracted. 
In order to bet ter  understand why the value of ]~ first decreases and then 

increases, consider the general form of a partial correlation equation 

r i i  - -  r l v r i u  
(11) r , .~  = ((1 -- r~2)(1 -- r~,2)) 1/2 ' 

where i, ] represent any two of the p observed variables and y represents a 
component. With no loss of generality, we assume r , ,  r ip,  and ri ,  to be posi- 
tive. The value of the partial correlation will decrease as long as the numerator 
decreases faster than the denominator. The value of the partial correlation 
will increase whenever the reverse is true; for example, when r~, is large and 
ri~ is small. Such a situation would occur if a component has a high correlation 
with only one variable and near zero correlations with the others (commonly 
referred to as a "specific"). This explanation can be extended inductively 
to the case where more than one component has been extracted by using 
k-th order partials calculated from (k -- 1)th order partials. Using this 
stopping rule, the first m components could be referred to as "common 
components". We would expect tha t  two or more variables would have "high" 
loadings on these components. The remaining m -{- 1 to p components may  
include some that  have adequate reliability. However, these will be "unique" 
components (i.e., having "high" loadings on only one of the original vari- 
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ables). The value m*, the number of components with eigenvalues greater 
than unity, can be interpreted as the lower limit of m (m < m*). 

A p plication 

The proposed stopping rule was applied to six studies [Emmett, 1949; 
Maxwell, 1961; Bechtoldt, 1961; Harman, 1960; Thurstone, 1951; and Lord, 
1956] previously reanalyzed by J6reskog [1967], and Sch6nemann and Wang 
[1972]. The value of m as determined from the partial correlation matrix and 
value of m determined by previous studies are compared in Table 1. The 
values of ]~ are presented for both principal component analysis and image 
component analysis. In general, the proposed stopping rule would suggest 
extracting fewer factors than previous analyses have done. In addition to the 
data presented here, the author has applied this stopping rule to over fifty 
other studies. The Thurstone [1951] data is of particular interest since it 
represents the rare case where the stopping rule suggests retaining different 
numbers of components for principal component analysis and image compo- 
nent analysis. 

Discussion 

The proposed stopping rule has been developed within the context of 
component analysis. Some of the concepts used implicitly in the development 
and rationale of this method were borrowed from factor analysis, a method 
which has a similar purpose and typically produces results which are empiri- 
cally very similar [Velicer, 1974, 1976, in press]. The factor analytic model 
specifies that a p X p correlation (or covariance) matrix can be accounted for 
by m common factors and p unique factors. This can be represented as 

(12) R = AA'  + U z, 

where A is a p X m matrix of weights for the common factors ("common 
factor pattern") and U is the p × p diagonal matrix of weights for the unique 
factors ("unique factor pattern"). For a given value of m, both A and U 2 
must be estimated under some criterion of best fit that is typically statistical 
rather than exact. A number of alternative criterion have been developed 
for defining what is the best fit. Two of these employ a concept similar to the 
criterion suggested here as a stopping rule. 

One of the traditional rationales for factor analysis is that by extracting 
factors the correlation between the observed variables should be reduced. 
Howe [Note 1] presented a more general derivation of Lawley's maximum 
likelihood factor analysis employing the criterion that the determinent of 
the matrix of partial correlations should be maximized. The maximum is 
achieved when all the partial correlations equal zero. For maximum likelihood, 
Jm would be a nonincreasing function. Under the "identifiability constraint" 
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tha t  

(13) A ' U - 2 A  = D 2 = diagonal, 

the solution can be expressed as an eigen decomposition of the (unknown) 
covariance matrix 

(14) U ' R U - ' .  

The function ]~ is nonincreasing because the covariance matrix described 
in (14) changes as a function of the number of factors extracted. Thus, if 
the stopping rule were applied to maximum likelihood factor analysis, a 
total  p -- 1 factors would be extracted, since the estimated U 2 will always 
serve to further decrease ]~ compared to ],o-I • 

A related approach, again assuming the factor analytic model, is Minres 
[Harman & Jones, 1966]. This approach seeks to minimize a function of the 
off diagonal residual covariation, and takes the form 

(15) tr(CH* -- D)'(CI~* -- D), 

where C~* and D are defined by (2) and (4). This is a nonincreasing function 
for both factor analysis and component analysis. 

The  stopping rule employs the factor analytic concept of "common"  
factors to define how many components to extract. The  particular method 
used to determine which components are common has also been employed 
with the factor analytic model, but  as a means of defining the best solution 
rather than as a stopping rule. In addition to a clearly defined rationale, the 
stopping point is exact and can be applied with equal success to any covariance 
matrix. Component analysis may be employed for many different purposes. 
I t  is not  suggested tha t  the stopping rule discussed here is appropriate for 
all of them. However, if component analysis is employed as an alternative 
to factor anMysis or as a first-stage solution for factor analysis, the stopping 
rule proposed here would seem the most appropriate. 
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