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A simple method of monotone regression is described based on the 
principle of minimizing pairwise departures from monotonicity. 

Background 

In recent years the practical usefulness of conjoint measurement tech- 
niques has been firmly established, particularly in the field of consumer 
research [Davidson, 1973; Fiedler, 1972; Green and Rao, 1971; Johnson, 
1974]. A model of preference formation in common use is the simple additive 
one in which each possible level of an attribute is considered to have a "part 
value" to an individual, and where the "total value" to him of an object 
is the sum of the part values of its attributes. Most frequently the input 
data for analysis consist of rank orders of preference among objects which 
"differ in known ways on several attributes. 

A group of somewhat different models are concerned with relations 
between an individual's preferences for objects and their locations in a 
space. These models focus either on the object locations themselves, or on 
discrepancies between objects' positions and an ideal level for each dimen- 
sion. Models of this type are discussed by Carroll [1972], Srinivasan and 
Shocker [1973], and Peckel-man and Sen [1974]. In these models the input 
consists of individuals' rank orders of preference among objects, together 
with spatial coordinates of the objects. 

For models of either type some regression-like procedure is required 
to estimate either part values, dimensional weights, or ideal point locations. 
Since the input data are scaled only at the rank order level, standard regres- 
sion techniques are of.ten inadequate. However, "noumetric" or "monotone" 
regression can be used. (The terminology "isotonic regression" is preferred 
by Barlow, e~ al. [1972]). 

In the conjoint measurement case a coefficient matrix of dummy vari- 
ables, consisting of zeroes and ones, can be used to indicate presence or 
absence in an object of each level of each attribute. This matrix might 
have a row for each object and a column for each attribute level. A unit 
element in the i, jth position would indicate that object i had the jth attri- 
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bute level. For spatial models the coefficient matrix might contain object 
scores for each dimension, or squared distances between object positions 
and known ideal point locations for each dimension. In either case, a set 
of weights would be sought, one for each column, so that  the weighted row 
sums of the coefficient matrix would be monotonic with the individual's 
rank order of preference among the objects described by that matrix. The 
weights might then be interpreted as the part value to that individual of 
each attribute level in the conjoint measurement case, o r  the importance 
of each dimension or attribute in the case of the spatial models. 

One computational algorithm for this purpose is Kruskal's MONANOVA 
[1965]. Although actually a noumetric analog of analysis of variance, that  
procedure may be regarded more generally as a special case of monotone 
regression. MONANOVA attempts to minimize the same badness of fit 
measure, "stress", employed in Kruskal's well-known nonmetric multi- 
dimensional scaling procedure MDSCAL [1964]. 

Johnson [1973] has described a nonmetric scaling method which, although 
appearing to produce results substantially similar to Kruskal's, attempts 
to minimize a badness of fit measure simpler in concept than stress. Just 
as the stress measure forms a natural foundation for additional nonmetric 
procedures such as MONANOVA, so the badness of fit measure described 
by Johnson can be extended easily to form the basis for the nonmetric 
monotone regression procedure described here. 

Quanti]ying Lack o] Fit 

Consider the matrix X of order n X p containing values for n objects 
on p independent or perhaps dummy variables. Let the vector y of length 
n contain an individual's preference ratings or rankings for the same n 
objects. Consider an unknown vector b, of length p containing "weights." 
Let Xb = j~. Then the monotone regression problem may be described as 
that of finding a vector b so that the elements of the fitted vector ~ are 
as nearly monotonic with corresponding elements of the given vector y 
as possible. 

As a measure of the monotonicity of elements of ~ with those of y, we 
may use the measure 0, the square of which is defined by Johnson [1973]: 

- 

(1) 02= ";  

i , i  

where 

(2) ~. = ~1 if sign (?)~--?~i) # sign (w -- Yi) 

Lo otherwise. 
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The numerator of 02 is the sum of squared differences between all pairs 
of "predicted" values which are "in the wrong order." The denominator 
of 02, the sum of all squared differences, is a normalizing constant which 
confines 02 to the unit interval. I t  can 'be shown tha t  02 has a natural inter- 
pretation as the proportion of the variation among the ~'s which is "in- 
consistent" with the y's. The statistic 02 will be zero with a perfect fit (in 
the rank order sense) and would have value of 1.0 if the rank order of the 
"predictions" were exactly the opposite of the rank order of the input data. 

If  input values are tied it is possible either to allow corresponding 
fitted values to differ, or to a t tempt  to force ties among them. This is ac- 
complished by redefining ~;  as follows: 

~i  = 1 if y~ = yt and ties are to be "forced." 
(3) 

6~i = 0 if y~ = yt and ties are not to be forced. 

Computation 
A simple iterative procedure for the minimization of 0 consists of starting 

with an arbitrary b and modifying this vector successively in the directions 
indicated by corresponding gradient vectors. 

The gradient vector g corresponding to b for any iteration is easy to 
compute. I t  may be derived by differentiating 02 partially with respect to b'. 

Following Johnson [1973], if we let 

(4) 02 = u_ 
Y 

then 

002 1[  Ou O_ff~l 
(5) 0b '  - v 2 v ~ - ~  - u • 

Using standard calculus it  can be shown tha t  

OU 
(6) ~ = 2 ~ ~ , i ( x ,  - x , ) (~ ,  - ~,) 

and 

ov _ 2 ~] (x, - x,)(~, - ~) (7) Ob' ,, 

where x~ and xi are the i th  and j th  rows of X, and ~, and ~i are scalars. 
Substituting from (6) and (7) into (5) and simplifying, we get 

002 2 ~ (~t.  - -  02)(x~ - -  xi)(.~, - -  ~ i ) -  
(8) g = Ob' - v ~,i 

I t  is useful to normalize both b and g to have unit sums of squares 
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at each stage and to use the current value of O as a "step size" with the 
recursive relation 

(9) bm+l = bm - 0~gm 

where m indicates iteration number. The process can be terminated when 
0 stabilizes or after a limiting number of iterations. This simple procedure 
has appeared to be adequate in those cases examined by the author, although 
a more sophisticated determination of step size would doubtless provide 
more rapid convergence. 

A n  E x a m p l e  

The pairwise approach was compared with MONANOVA using a small 
synthetic example. A 5 × 5 matrix C was first constructed with c,i = 0.11 i 
+ 0.10 j + 0.10. Using a two-way ANOVA model these data can be accounted 
for perfectly by row and column main effects. Next a second matrix, D, 
was constructed by applying the exponential transformation, d ,  = e °' t. 

Since the elements of D are monotonic with those of C, both MONA- 
NOVA and the pairwise method should produce a perfect fit in a rank order 
sense, using a row and column main effects model. Such was indeed the case. 
The coefficient matrix X consisted of a 25 by 10 table of zeroes and ones, 
with rows corresponding to elements of D and columns corresponding to 
main effects to be estimated. Each row of X was zero except for two unit 
elements in the columns corresponding to the main effects affecting that 
element of D. 

Next, the elements of D were perturbed by adding random numbers 
rectangularly distributed on the unit interval. The amount of error thus 
introduced was sizeable, the median perturbation being about 25%. Elements 
of the resulting matrix were finally rank ordered and submitted to both 
computing procedures. 

The input rank orders are given in Table 1. MONANOVA was able 
to achieve a final stress of 39.1 percent, and the pairwise method yielded 
a 0 value of .202. The row and column effects estimated by each technique 
are presented in Table 2, after linear transformations which scaled them 
so as to most closely approximate the "true" main effects in a least squares 
sense. 

The two methods produced solutions which, though not identical, 
were approximately equally good in estimating the "true" main effects. 
Root mean square error values are shown for each solution, and these are 
approximately equal. 

A brief FORTRAN IV program, consisting of fewer than 200 state- 
ments, is available from the author. Computing times tend to be approxi- 
mately linear in p and quadratic in n. For n = 36 and p = 10 the computing 
time is approximately 10 iterations per second on a Univac 1108. 
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T a b l e  1 

Input Matrix of Ranks 

3 1 6 13 10 

~. 15 9 7 23 

16 4 lZ  Z0 19 

5 18 17 11 Z4 

8 21 14 ZZ 25 

T a b l e  2 

E s t i m a t e d  M a i n  Effects 

ROW 

1 

Z 

3 

4 

5 

C o l u m n  

1 

2 

3 

4 

5 

T r u e  M O N A N  O V A  P a [ r w [ s e  

- . 2 Z  - .  188 - .  191 

- .  I i  - , 0 Z 9  - . 0 1 4  

• 00 . 0 2 5  - .  014  

• 11 . 0 0 2  . 0 8 0  

.ZZ .190 .138 

- . Z 0  - . 1 8 8  - . 2 3 5  

- . 1 0  - . 0 8 1  - . 0 5 8  

• 00 - .  066 - .  06Z 

• 10  . 0 7 7  . 1 2 0  

. 2 0  . 2 5 8  . 2 3 6  

r m s  e r r o r  . 0 5 4  . 0 5  1 
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