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This paper discusses the general problem of measuring the association
between an independent nominal-scaled variable X and a dependent variable
Y whose scale of measurement may be interval, ordinal or nominal. The
theoretical foundations of a wide range of asymmetric association measures
are discussed. Some new measures are also suggested. Fifteen of these as-
sociation measures, some previously suggested, some new, are singled out for a
computer-assisted numerical study in which we compute the value actually
taken by each measure under a wide variety of conditions. This comparative
study provides important insights into the behavior of the measures,

1. Introduction

We shall study conceptual foundations and properties of a number of
association measures. Some of these measures have been previously suggested
and are in frequent use, others are new suggestions or modifications of existing
ones. By means of a simulation approach, the behavior of the association
measures is studied in a variety of situations as the association (as measured
by one of them) moves from “independence” to ‘perfect association’.

The delimitations of this paper are: We consider alternative measures
of the association between the “independent” or “explanatory’” variable X
and the ‘‘dependent” or ‘“‘response” variable Y. X precedes Y causally,
temporally or otherwise. Hence, we are only concerned with association in
the asymmetric sense. The scale of measurement of X is nominal; there are
I > 2 levels or categories representing the X-dimension. A fixed-size sample
of values of Y is available at each level of X. Three cases are distinguished
according to the scale of measurement of Y: Interval (or possibly ratio),
ordinal and nominal.

Discussion of the conceptual bases and the behavior of association
measures forms the main body of the paper. There is little of sampling theory,
and no tests of zero association are proposed.

Important sources of information in the area of association are the
text by Hays [1963], especially for analysis of variance oriented measure-
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ment of “strength of relationship”, the review papers by Goodman and
Kruskal [1954, 1959], especially for association between categorical variables,
and the text by Freeman [1965] as a practical source book on association.
Upon consulting these references, it is evident that the present paper deals
only with a small number of all association measures available in the litera-
ture. Excepting our new suggestions, we can possibly elaim that the measures
considered below either are in common use or have merited some attention
in recent literature.

Association measures typically take values between zero and one in-
clusive, where zero usually indicates “independence” and unity, if ever
attained, means “perfect association” between X and Y. In a given situation
there is often a multitude of alternative association measures of this kind to
choose from. It is sometimes difficult to maintain that use of one measure
is more justified from a conceptual or operational point of view than another.
Little is known about the behavior of the various association measures in the
interior of the [0, 1] interval: The association as measured by one measure
may take a drastically different value from that produced by another measure
for the same set of data. The simulation study in this paper throws some light
on such differences among association measures, as well as on the effect of
changes in the definition of the response categories. We also discuss a general
approach to the problem of correcting for the inflated values often produced
by association measures under conditions close to independence.

Section 2 introduces the notation to be used. In Section 3 we discuss the
meanings to be given to “independence” and ‘“perfect association” for dif-
ferent types of scale of measurement of Y, as well as the objectives of “cor-
‘rection”’ of an association measure. In Sections 4, 5 and 6 we review certain
traditional association measures, discuss theoretically their properties, and
suggest a few new association measures. Finally, in Section 7 we report the
results of the computer simulation study of the performance of 15 association
measures.

2. Presentation of Models to be Considered

We introduce the notation and the statistical models to be used in the
three cases: Y interval-, ordinal-, or nominal-scaled.

First, if Y is interval-scaled, we shall consider the customary random
effects ANOVA model

(21) Yik=ﬂ+xi+etk(7:=1;"')1;]6::1;"':71/1‘.)’

where the n.. are fixed, positive integers, where x; has mean 0, variance o,”
and e, has mean 0, variance ¢°, and the z; and ¢, are mutually independent.
(Since the distribution theory plays a subordinated role in the paper, we do
not generally need to make the usual normality assumption.) Let
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where D; and D, denote summations from 1 to I and from 1 to n,. , re-
spectively. Under the random effects model (2.1) withn, =m & =1, --- I},
we have [see, for example, Scheffé, 1959] E(M Sy) = ¢ + mo.”, E(MSy) = o°.

Alternatively, we shall sometimes treat (2.1) as a model with fixed
effects z; obeying the constraint 3, n; #; = 0. In that case the e, are as-
sumed to have mean 0, variance o°. (Normality is generally not assumed.)
We have E(MSy) = o + (I — 1) Y n.. x*, E(MSw) = o".

Secondly, if ¥ is measured on a nominal scale, we assume that there
exist two polytomies with I categories of the X-dimension (forming the I
rows of a contingency table) and J response categories of the Y-dimension
(forming the J columns of the contingency table). The observed frequency

in cell ¢, 7 of the contingency table is denoted by n,; ¢ =1, .- , I;j =
L, -+ ,J),and n; = Ziniiyn.i = Zinu;?@ = Zini. = Z;’n,i s Pi. =
n /M, P o= n/0, Pui = N/, P = Ny;/n. We assume that the n; are
fixed, non-random positive integers, and that (possibly after pooling of
categories) n.; > 0 (j = 1, --- , J). We assume, for a given X-category, <,
the model:

(2.3) Epy) =mi=7,;+8; @=1,---,J)

with Zi b =0@G=1,---,1I), wherex; = E(p.;) = E(Z; Pai Pi) 18
an unknown marginal probability. It follows that we also have the con-
straints D, p,. 8, =0(G =1, ---,J).

Two well-known statistics (see, for example, Goodman [1971}) for the
contingency table are

24 Sy = 2n Zpi. me log (pi1:/p.4),
(2.5 Sy = n{Zpi, meg/p.i - 1};

they approximate each other and each has an approximate x° distribution
with (I — 1)(J/ — 1) degrees of freedom when the two polytomies are inde-
pendent. We ecan partition S, as Sy = Sg — Sy, where

Sy = 2n ZP{. Zpili log (p;1:/7.),

Sk 2n Z p.ilog (/7).
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These terms can be approximated, respectively, by
Sm = nf Zpi. mez/ﬂ'.f = 1},
Syo~ = 'n{ Z p.fz/ﬂ'.i - 1} .

The difference Sy, — Sy will, h(lwever, only approximate Sy . Under the
model (2.3), we have E(Sy) ~E(Sy) = I(J — 1) + R; E(Syo) =~ E(8i0) =
J — 1, and

(2.6) E(Sw) ~E8y) ~ (I - 1)(J — 1) +R,
where

R =220/ + X: 2 (ne. — 1) 8:%/7 ;.
When n is large, R can be approximated as
(2.7) Re~m 3 3 pe 8:i°/m s,

the other terms being small by comparison. Formulas (2.6) and (2.7) will
be subject to further analysis below, since they provide the rationale for
a new association measure to be suggested in Section 5.

Thirdly, consider the case where the .J categories of Y are ordinally
arranged, wearing labels such as “low”’, “medium”, “high”, etc. Two subcases
will be distinguished according as there exists a relevant continuum under-
lying Y or not. In either case we shall use the same notation as when Y is
nominal, z.e. n,; denotes the observed frequency in the nominal X-category ¢
and the ordinal Y-category j, ete.

If there does exist a relevant continuum underlying the Y-dimension,
the two models (2.1) and (2.3) can be related in a formal way. Assume that
the ordinal classification of the Y-dimension has been achieved by grouping
together the ¥, — values falling into one and the same of a set of J mutually
exclusive and exhaustive intervals formed by the points y; j = 0, 1, --- , J)
such that —» =y, < ¥, < -++ < ¥,1 < ¥, = . The observed number
of Y, in the interval (y;-: , ¥;) equals n,; .

Let F(z) denote the cumulative distribution function of Z = (¥ — pyix)/¢
with density function f(z) = dF(z)/dz tending to zero as z — . Con-
ditional upon X = z; , the probability of an observation falling in cell 7,

jean,for¢ =1, --- ,I;j =1, ---,J, be written in two ways which relate
the parameters of models (2.1) and (2.3):
(2'8) w;+ 8y = F(Z,- - ﬂ) - F(z,-_, — Z;“">
[ [
where z; = (y: - u)/afOI‘j =1, o — 1)and20 = o, 2y = w. The

marginal probability of the j:th Y-category is, forj =1, ---, J,
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o En o) -]

We expand F(z; — z.;/0) in a Taylor series around z; , thereby obtaining
as a first approximation = ; >~ F(z;) — F(z;-.). (Terms of order =,/ cancel,
terms of order (z,/0)” and higher are dropped.) This approximation can be
expected to be close only when the relative effects /o are small, which is
likely to occur if ¢,/0 is small, 7.e., when the association is weak. Inserting
the approximation into (2.8), another expansion yields 6,; ~ —z.f(z;) —
f(z;-1))/o, where f(2) = dF(z)/dz. Inserting the two approximations into R
given by (2.7), we obtain

(2.9) R~nK; 3. P?‘xiz/az;
where
J 2
— (f: - f:‘—l)
(2.10) K, = )_“1 —

with f; = f(2;), Fi = F(e)) G =1, ---, J — 1), F(z) = {(z0) = [(z,) = 0,
F(z;) = 1. The end result (2.9) will be used in Section 5. The quantity K,
is well-known in statistical inference; it approaches, as J — o« and the
interval-widths approach zero, the amount of Fisher-information,

o]

8. Independence and Perfect Assoctation

All association measures considered below are constructed with the
idea in mind that an association of zero means that X and Y are “inde-
pendent”. At the other extreme, the majority of the assoeciation measures
to be considered are normed to take the value unity when X and Y are
“perfectly associated” in the sense that knowledge of X will remove all
uncertainty as to what value Y will take.

First, it will be necessary to state the exact meanings to be given in this
paper to the terms “independence” and ‘“‘perfect association”. Each of the
two terms may be employed either in a theoretical (or model, or population)
context or in a sample context. Each of the eight entries of the following
table denotes in a compact form (for convenient future reference) a condition
defined in full detail below the table. For example, when the condition denoted
by Ind (¢), is satisfied, we shall say that X and Y are theoretically inde-
pendent, provided Y is being measured on an interval scale. Conditions
referring to the theoretical context are expressed in terms of unknown
population parameters, and conditions referring to the sample context are
expressed in terms of statistics computed from the sample. The eight con-
ditions are defined as follows in terms of notation introduced in Section 2.
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Scale of measurement of ¥
Intervai Ordinal
(or ratio) Or Nominal
Theoretical independence Ind (o) Ind (=)
Sample independence Ind (s) Ind (p)
Theoretical perfect association Pas (o) Pas ()
Sample perfect association Pas (s) Pas (p)

Ind (¢) & 0,” = 0 (or, in the fixed effects model:
Ty =0)1/ = 17 91)

Pas (¢) @ ¢ =0 '
Ind@G) eV, =Y@G=1,---,0
Pas(s) @ Yu=Y. (k=1,---,n;, ;i=1---,1
Ind(p) @pyi=2,G=1 -, J;e=1,--,1)
Pas (p) « Foreach? (f = 1, ---, I), there exists a

j = jo(i)z say, such that Pis = 1 for

§ = 4o(1) and zero otherwise.

The conditions Ind (7) and Pas (v) are defined in the same way as
Ind (p) and Pas (p), respectively, except that =;. is substituted for p;.
and = ; for p ;.

One of the conditions may imply one or several of the other conditions.
For example, perfect association in the theoretical sense implies perfect
assoeiation in the sample sense, 7.e. Pas (o) = Pas (s) and Pas (x) = Pas (p).
Conversely, Pas (s) = Pas (¢} with probability one, and Pas (p) = Pas («)
with probability tending to one when n becomes large.

Turning to the case of independence, we see that Ind (s¢) does not imply,
nor is it implied by, Ind (s). The same conclusion holds for the pair Ind ()
and Ind (p). Theoretical independence does, however, have some important
implications for the expected values of certain statistics. When Y is interval-
scaled, Ind (¢) implies that SSy and SS, have central x’-distributions (if
the normality assumption is added) and that

When Y is ordinal or nominal, Ind (x) implies that Sy and S, have approxi-

mate x’-distributions with f = (I — 1)(J — 1) degrees of freedom each,
hence

(3.2) E(Su — fu) =~ E(S, — -~ fu) >~ 0.

The behavior of association measures at the lower end of the range
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(under conditions of independence or near independence) suggests that one
should dichotomise association measures into wuncorrecled measures and
corrected measures. In this paper, the first kind is defined as follows:

Uncorrected association measure: an association measure that takes
the value zero under conditions of sample independence, Ind (s) or Ind (p).

The term corrected measure will be defined below following a discussion
of the objectives of “correction”.

An often used method of constructing a normed uncorrected association
measure consists in forming the ratio

uy)— Uy | X)
U(Y)

where the uncertainties in Y with and without knowledge of X, U(Y | X)
and U(Y), respectively, are such that U(Y) = U(Y | X) under Ind (s) or
Ind (p), and U(Y | X) = 0 under Pas (s) or Pas (p). (We are using the term
“uncertainty’’ in a general sense, e.g., more general than in the context of
uncertainty analysis, Garner and MecGill {1956].) The interpretation of any
association measure of this type is that of “relative reduction in uncertainty
about Y from getting to know X, The value taken by (3.3) is zero under
Ind (s) or Ind (p) and unity under Pas (s) or Pas (p). The difficulty is that
there are infinitely many association measures of the type (3.3) corresponding
to the infinite variety of definitions of the concept “uncertainty’”. Or, in
more concrete terms, how should one interpret a computed association of
0.60 in a certain situation, is it “strong”’, “weak’’, etc.? The answer depends
a great deal on the definition of uncertainty used in defining the association
measure that gave the 0.60 value.

Frequently, formula (3.3) gives an inflated value of the degree of as-
sociation under conditions approaching independence. Denote by E the
expected value of U(Y) — U(Y | X) under Ind (¢) or Ind (r). Let £ be an
unbiased estimate of E. Consider the association measure

uy)— £ —UY | X)
UYYy=E

Its numerator has the expected value zero under theoretical independence,
and it preserves the property of attaining the value unity under Pas (s) or
Pas (p).

One may wish to further adjust the denominator of (3.4). For example,
the measure (3.4) still attains the value unity under Pas {s) and Pas (p) if
any multiple of U(Y | X)) were to be added to the denominator. Or, one may
wish to make the further correction of (3.4) in such a way that the denomina-
tor has a specified expected value,

As an example consider the association measure (4.3) below, a variation
of Hays’ (1963) w°, which is constructed to give a ratio of expected values

3.3

3.4
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equal to the intraclass correlation o,°/(¢.” + ¢°). The true objective is, of
course, to construct an unbiased estimate of ¢,°/(s.” + ¢°). However, since
the expected value of the ratio is difficult to handle, one chooses to correct
in such a way that the ratio of expected values equals the desired parametrie
function. The bias is likely to be small for most practical purposes.

We shall use the term “corrected association measure’” in a fairly wide
sense in this paper, a sense which implies that the main purpose of eorrection
is to prevent obtaining an inflated value of the association under conditions
of independence or near-independence:

Corrected association measure: an uncorrected association measure
adjusted in such a way that the expected value of its numerator is zero under
conditions of theoretical independence, Ind (s) or Ind (r).

In the case where Y is an interval-scaled variable, one can find several
examples in the literature of corrected association measures, notably the
several “w’-like” measures discussed in Section 4; all of these achieve cor-
rection of the correlation ratio (4.1) by utilizing (3.1). The praectice of “cor-
recting”’ seems, however, to be virtually non-existent when Y is ordinal or
nominal, even though in these cases the methodological reasons for correction
seem as well-founded as in the case where Y is interval-scaled. When the
approximate x’-variables S, and Sy are involved, correction can be achieved
by utilizing (3.2); see several suggestions in this direction in Sections 5 and 6.

Consider now the behavior of association measures at the upper end of
their respective ranges (i.e., under conditions of perfect association or near-
perfect association). All association measures considered in this paper take
values in the interval [0, 1]. Most of those measures attain their maximum
value of unity (under Pas (s) or Pas (p)), but there are a few that do not.
It is difficult to find in the literature any extensive discussion of the pros
and cons of having an association measure actually attain the upper limit
of unity. Cohen [1965, p. 105] implies that it is a deficiency of a measure if
it fails to do so, which is the case, for example, with the Pearson mean square
contingency coefficient S,/(Sg + n).

We offer one argument in justification of using an association measure
that falls short of the value unity under Pas (p): The condition Pas (s) implies
Pas (p), but the reverse is not true. Information is lost when measurement is
in terms of the weaker scale. Assume that nominal or ordinal data on Y
have been gathered by counting frequencies in non-overlapping intervals
of an underlying interval-scaled variable, and assume that the data, in the
form of a contingency table, reveal that Pas (p) holds. Had we also been
able to go back and observe the underlying interval-scaled Y-data, chances
are we would have found that Pas (s) does not hold; let us assume that this
is the case. Hence, even though Pas (p) holds, the association would be less
than unity as measured by any association measure requiring interval-scaled
Y and such that its upper limit of unity is attained only if Pas (s) holds.
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Thus if we appeal to a desire for comparability of association measures
across different scales and allow for the possibility of loss of information due
to the weaker scale, then in the case where Y is ordinal or nominal, we should
measure association by a measure that attains an upper limit of less than
unity under Pas (p). Two such measures are suggested in Section 5, formulas
(5.5) and (5.6); Freeman’s [1965] 9 is also of this kind, formula (5.1), as well
as the contingency coefficients C,° and C,°, (6.1) and (6.2).

It is a weakness of this argument that it is impossible to know to what
extent one should allow for loss of information. It is also difficult to give
wholehearted support to the idea that association measures ought to have
comparability across types of scale; most of the time the nature of the data
precludes any kind of comparability. Nevertheless, some commonly used
association measures do fail to attain the value unity.

4. Association Measures when Y 1s Interval-scaled

In this and the following two sections we discuss the foundations of
the association measures to be studied numerically in Section 7 by simulation
techniques. Several new measures are introduced in Sections 5 and 6.

The well-known correlation ratio, %°, is an uncorrected association
measure of the form (3.83) with the uncertainties U(Y) = 88, , U(Y | X) =
88, as defined by (2.2). Hence, letting F = MS,;/MS8y ,

2 S8y F(I - 1)
SR P =R, " FI—-DFn=1
It takes the value zero under Ind (s) and attains the value unity under
Pas (s). There is, of course, a multitude of other measures with the same
properties.

Instead of the sums, SS; and SSy , of squared deviations around ¥
and Y., one could define the uncertainties U(Y) and U(Y | X) in (3.3) as
the corresponding sums of some other form of non-negative deviations
around Y and ¥, : The absolute deviations is but one example. The rather
lively debate around assoeciation measures in recent applied psychology
literature (see references at the end of this section) has never questioned the
legitimacy of using squared deviations in defining uncertainty, but has
centered around the question of finding the most suitable correction. Hence,
#° and its corrected versions to be discussed below are the only measures
in common use when Y is interval-scaled. This may be due to the strong
position of traditional normal-theory based analysis of variance as a technique
of statistical inference in this situation. On the other hand, when Y is nominal
(Section 6), there is much less agreement on the preferred quantification
of uncertainty.

Various corrected versions of the correlation ratio have been suggested,
e.qg.,
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S8y — (I — HMSy (F-nd -1

“.2) O ST RS tMS, ——E—DUI -1 +n
see Hays [1963], Vaughan and Corballis [1968], and
&= 88y — (I — DMSy (F— (I —1
— — 8§ — T FVI-14+n-1

suggested by Kelly [1935], and discussed by Cohen [1965]. Both »® and ¢
accomplish a correction suitable under the fixed effects model: In the case
of &, the ratio of expected values of numerator and denominator (when
expressed in terms of SS’s and MS’s) is D p.. a.°/Q: pi. & + o°). A
slightly different expected denominator obtains for €.

The corrected measure

. I(MSp— M8y (F— I
(4.3) @ = TS, TMS, —(F-Dltn

discussed by, for example, Hays [1963, p. 423], Vaughan and Corballis [1969]
is suited for the random effects model; it produces a ratio of expected values
equal to o,”/(c.” + o°).

Hence, o°, ¢ and w,°, which satisfy o° < ¢ < w,°, capitalize on the
same correction idea: In each case, the expected value of the numerator is
zero under Ind (¢) due to (3.1). Each attains the value unity under Pas (s).

One should have equal group frequencies n,, (¢ = 1, --- , I) in order
to be able to meaningfully apply any of the measures «’, ¢ and w.”, see,
for example, Vaughan and Corballis [196¢]. Further recent discussions of
these “w’-like”” measures are found in Fleiss [1969], Friedman [1968], Halder-
son and Glasnapp [1972], Kennedy [1970]. Finally, Glass and Hakstian
[1969] discuss problems with the interpretation of “w’-like” measures: When
the levels of X are not randomly representative of the X-dimension, as could
be the case in the fixed-effect ANOVA design, it may not make sense at all
to try to attach a coefficient of association as a measure of the strength of
relationship between X and Y. The measures 4°, «” and «,” will be studied
numerically in Section 7.

5. Association Measures When Y s Ordinal

The case of X nominal, ¥ ordinal contains two subcases depending on
whether a relevant continuum underlies the Y-dimension or not. We start
with the latter case. All association measures considered in this section are
left unchanged if the rows of the contingency table are permuted (because X
is nominal}.

One possibility (not to be considered in this paper) is to assign a set
of scores, e.q., 1, 2, -++ , to the rank ordered Y-categories, and construet
association measures that can be computed from the scores. A difficulty with
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this approach is that the choice of scores would have to be arbitrary in most
situations.

The basic idea of Freeman’s [1965, pp. 108-199] 8 relates to guessing
the ordinal number of ¥ (with no underlying continuum), given knowledge
of the nominal X category. Kendall’s tau and Goodman-Kruskal’s v are
based on a similar idea but require that both X and Y be ordinal and hence
do not qualify under the auspices of this study. Freeman’s 8 can be written as

Z ;pi.pw. |1—Bn" - 2Dn"i
5.1 f = it
61 2 2 pabe,

17>

where
(5.2) By = Z:’ Pi: Pae 3 Dy = Zs‘ Zi'>£ Pits Pirysr

Under Ind (p), Bis + 2D, = 1, hence 8 takes the value zero. However,
Pas (p) will not make 6 equal to unity (the extent to which ¢ can fall short
of unity is indicated by the numerical illustrations in Section 7.) We suggest
therefore a modified version of Freeman’s 8 that does attain the value unity
under Pas (p).

As a starting point, consider Goodman and Kruskal’s {1954, p. 749] v,
a symmetrical association measure for two ordinal polytomies X and Y with
no relevant underlying continua; it takes values between —1 and 1 inclusive.
For I = 2 categories of the X-dimension it can be written asy = — (1 — By, —
2D,,)/(1 — Bis), where By, and Dy, are given by (5.2) with ¢ = 1,4 = 2,

We construct an association measure for an arbitrary number, I, of
nominal X-categories as follows: Denote by g, the absclute value of the
Goodman-Kruskal vy for the pair, 4,4/ (z £ ¢ = 1, --- , I) of X-categories;
hence g,;» = |1 — B,;» — 2 D,;/|/(1 — B;;-). Take a weighted average, called
x, of the g, with the weights w.,, = p.. p;y (1 — B;:). The resulting as-
sociation measure is

Z Z DiPiv. Il — B — 2D,
(5.3) P

Z Z p:pi (1 ~ By)

i >4

The measure « has the following properties:
(1) for I = 2, « equals the absolute value of Goodman-Kruskal’s v,
(2) « differs from Freeman’s 8, (5.1), in that the denominators are some-
what different.
(3) « is zero under Ind (p) and unity under Pas (p),
(4) « is undefined (of the form 0/0) if Pas (p) holds with jo(?) = 7,
G=1,---,1).
Pas (p) is a sufficient but not necessary condition to render « the value
unity. Consider, for example, the following table of relative sample fre-
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quencies p,; with I = 3 X-categories and J = 5 Y-categories:

I—ap. ap. 0 0 0
(5.4) 0 0 0 (- bp. bp..

where 0 < a < 1,0 < b < 1. Pas (p) is clearly not satisfied, yet « takes the
value unity. This drawback can be overcome if we use instead, say, « =
(L — 1)/(J — 1) where L = min (I, J).

Freeman’s 8 and the new suggestion « will be included in the numerical
study of association measures in Section 7.

Consider next the case where a Y is ordinal with a continuum (an interval
or ratio scale) underlying the Y-dimension with a distribution function of ¥
represented by F[(y — uyix)/o]. According to (2.6) and (2. 9),

E(Sy) — fH—E(SH) ~ fu ~nK; {Z P /0;

where fg = (I — 1)(J — 1). This suggests two measures of association which
can be expected to produce values very close to Hays’ [1963] »” for small
values of «’, namely,

SII _ fll

(5‘5) G Sll - fn_‘;‘ K/'ﬂ

and the closely related measure

S~ In
r S £ . S—
(0‘6) 2= Sn - fn + K;n’

where fy = (I — 1)(J — 1}, and Sy, Sz and K are given by (2.5), (2.4)
and (2.10), respectively. By imposing an assumed continuous, zero mean,
unit variance shape on the marginal Y-distribution, K, can be computed
from the observed marginal relative frequencies p ; as follows: In formula
(210),let F; = > .. p, (G =1, -+, J), Fy = 0, and let {; be the ordinate
of the probability density function of F at a point z; point such that the
area under the curve from —® toz;is F, ,and f, = f, = 0. If the assumed
shape is a N (0, 1) curve, as in the numerical studies of (; and G in Section 7,
even a fairly small J will usually give a K, above 0.8. Unity is the upper
limit of K, for the normal distribution.

G, and G, , which are studied numerically in Section 7, have the following
properties:

(1) both are corrected measures: the expected value of the numerator is
(approximately) zero under Ind (r),

(2) both measures are bounded from above by (L — 1)/(L — 1 + K,),
where L = min (I, J). This value is attained (approximately) by ¢, and G,
if Pas (p) holds.
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(3) The ratio of expected values of the numerator and of the denominator
of both G, and G, can be approximated as 3., p.. =/ pixs + o)
when E,- p..x: is small in relation to o°. The measure can therefore be
expected to behave like Hays’ «” when the association is weak and the distri-
bution of the continuum assumed to underlie ¥ agrees reasonably well with
the true one,

6. Association Measures when Y 1s Nominal

With both X and Y nominal, each association measure considered in
this section will be left unchanged by any permutation of rows or columns
in the contingency table. It is important to realize that the values produced
by any association measure must in this case be interpreted in relation to the
particular definition of X- and Y-categories used, see Section 7. Many as-
sociation measures are geared particularly towards the 2 X 2 table. These
special cases are not considered here.

Karl Pearson’s coefficient of contingency is a ‘“traditional”’ measure.
We consider its square,

S
6.1 C 2 = = L
©.1) T St
where Sy is the x” statistic (2.5). A minor variation on this idea is
2 _ Sy
(6.2) ¢y = S, + 7’

with Sy given by (2.4); very similar values will be produced by C,* and C,*
in a given situation, see Section 7. C,° and C,* become zero under Ind (p)
but take a value of less than unity under Pas (p). Correction of C,” and C,’
is desirable, since highly inflated values are obtained under conditions at
or near Ind (=), see Section 7. Letting fy = (I — 1){(J — 1), a corrected
version of C,* is

SH - fH .
SH - fH +n
Goodman and Kruskal [1954, p. 740], who complained about the “non-
interpretability”’ of traditional measures like C,°, favor measures that can
be given an “operational definition’ (like A and r below). We shall discuss
two families of association measures each of which has, if not an operational
basis at least a “conceptual definition””. The two concepts used are “in-
formation” and “discrimination information”; both taken in a generalized
sense as developed in Sirndal [1970].
The information-based measures can be explained within the framework
of a multinominal experiment, [Sdmdal, 1970], where the possible cutcomes
in each trial of the experiment are ¥, , - - - , E; with probabilities =, , - - - , 7,

2
Clc =
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respectively. Let ¢(x) > 0 be a non-increasing funetion of 7 in the interval
0 < 7 < 1 such that ¢(1) = 0, where ¥(n) denotes the information in the
experiment if the realized outcome of the experiment has probability = of
occurring. The expected information in one trial of this experiment is

(6.3) 20w,

which is zero if one of the outcomes is realized with certainty. The unknown
theoretical probabilities w; will be replaced by their unbiased sample estimates
for purposes of computing (6.3) from a given sample.

The construction of an association measure by means of the general
formula (3.3) requires a speecification of U(Y), U(Y | X). Using (6.3), we
define them as, respectively, the expected marginal information and the
weighted expected conditional (with the p, as weights) information, i.e.,

(6.9 UY) =2ip); UXY[X) =200 22 pud(pins).

Inserting these expressions into (3.3) we obtain an association measure
belonging to a family of such with infinitely many members corresponding
to the infinitely many possible choices of the function y. Cases (1)-(3) below
are commonly used association measures belonging to this family.

(1) Let ¢(r) = 1 — x in (6.4). The association measure (3.3) takes the
form

Zpe. Z?iu'? - E?’.:‘2
- 1— 2 pi
§

Goodman and Kruskal [1954], who attribute this measure to a suggestion
by W. Allen Wallis, justify the measure in terms of a strategy for “proportional
prediction” of the Y-category (see below). Light and Margolin {1971}, who
derive (6.6) as an expression of the “proportion of variation explained” by
use of a variation measure for categorical data due to Gini, show that
(n — 1)(J — 1)r has an approximate x’-distribution with (I — 1)(J — 1)
degrees of freedom under Ind (7).

(2) In (64),let ¥i(n) = 1HO < v < mpand ¥(n) = O0if mp < v < 1,

where 7, = max; m; . Formula (3.3) gives the association measure

(6.6) T

ZZ’{. max p;;; — Maxp ;
[ i i

(6.7) A = p——

This is Guttman’s [1941] measure of predictive association. The asymptotic
distribution theory of A and r is discussed by Goodman and Kruskal {1963,
1972).

(3) Let finally ¢(x) = — log = in (6.4). The information measurc (3.3)
becomes '
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I(Y) — I(Y | X)
—L(Y) ’

where I(Y) = — Zi pilogp;; I(Y | X) = — Zi D Z:’ Pi: log pji.
are information statistics of the Shannon—Weaver type. Alternatively, (6.8)
can be expressed in terms of the approximate x’-statistic (2.4) as H =
Su/[Sk + 2nI(Y | X)].

The operational (= prediction strategical) framework favored by
Goodman and Kruskal {1954, 1959, 1963, 1972] and discussed by Greeno
{1973] can also be used to define and interpret a family of association measures
to which « and r (but not H) belong. Let the strategy consist in predicting
that an observation belongs in the jith Y-category in a proportion of cases
equal to p;1:°/2,; pi:° (when the X-category is known) and p_;%/2.; p.;°
(when knowledge of X is lacking), where ¢ > 0 is an arbitrary eonstant. The
expected proportion of incorrect guesses is 1 — }:i P30 pas when
X is known, and 1 — Zi p /Zi p.;¢ without knowledge of X. Expressing
the difference between the latter and the weighted average of the former
as a fraction of the latter, we obtain an association measure of the type
(3.3) of which (6.6) and (6.7) are the special cases corresponding to ¢ = 1
and ¢ = «, respectively. In the case of ¢ = =, the strategy predicts with
probability one that an observation belongs in the Y-category with the
highest probability; this strategy minimizes the number of incorrect decisions
in the long run.

The idea of basing an association measure on Shannon-Weaver in-
formation (and, presumably, other types of information measures) does not
appeal to Goodman and Kruskal [1959, p. 147]; they conclude *. . . we were
unable to satisfy ourselves that such measures would have reasonable inter-
pretations for many contexts in which cross classifications appear.” Never-
theless, the measure (6.8), sometimes called the asymmetric uncertainty
coefficient, seems to be frequently used and was recommended by Hays
{1963, p. 612], on the basis of the exploration of information-theoretical ideas
in psychology presented in texts by Attneave [1959] and Garner [1962].
Barlier, Linfoot [1957] discussed a “logarithmic index of correlation’”, 7,
(the term derives from a Spanish publication by Castafs, [1955]), which
after simplification can be written as ro = I(Y) — (Y | X). Thus 7, = 0
under Ind (p), and r, differs from (6.8) only in that 7, has not been normed
to take the value unity under Pas (p). In the area “uncertainty analysis”,
see McGill [1954], Garner and McGill [1956], Attneave [1959], Garner [1962],
the quantities I(Y), I(Y | X) and I(Y)} — I(Y | X) are called total uncertainty,
conditional uncertainty and contingent uncertainty, respectively.

Each of the uncorrected measures constructed from (3.3) by means
of the uncertainties (6.4) can be transformed into a corrected measure,
e.g. by formula (3.4), following an analysis of the expected value of the

6.8 H=
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numerator under Ind (). For categorical data, corrected association measures
do not seem to be in common use, & situation that should be rectified. As
examples, corrected versions of (6.6) and (6.8) are given below.

Under the model (2.3), we find

nEll — Za:pi' Efpmz] =n—- D1 - Z”f'.iz) + Ry,
nEll — X pfl=@®— DA - 2Xr9,

where R, is a function of the §,; such that R, = 0 when all §;; = 0, as is the
case under condition Ind (). Therefore, letting ¢ = (n — I)/(n — 1), a
eorrected version of (6.6) is obtained from (3.4):

gl — Zp.,—z) -1 - sz ;sz))

(6.9 Te

g1 — Z p.i)
Use of (3.2) with fy = (I — 1)(J — 1) gives a corrected version of (6.8),
(6.10) H, = Su = Ju

Sy — fu + 20I(Y | X)

In summary, (6.9) and (6.10) have been corrected so that their numera-
tors have zero expected value under Ind (7) (in the case of (6.10) only ap-
proximately zero). Both measures attain the value unity under Pas (p).

We explore briefly another idea by which a family of association measures
can be constructed: By means of the concept of “discrimination information”
[Kullback, 1957] and generalizations thereof [Sérndal, 1970], sometimes
called “distance”, ‘“‘separation’ or “discrepancy”’.

Let 8 be a constant such that 0 < 8 < 1 and define the distance between
the conditional distribution of Y, given X = z,, and the marginal distribution
of Y as

Z (pili/p-i)apili -1 if 0<p<L1

me log (p;1:/p.) if B=0

Diﬂ =

A weighing of the distances D, , using the p, as weights, gives a measure
with the interpretation of average distance for the whole contingency table,
Dy = Zi p:. Dig , which is zero under Ind (p). In order to scale Dy to taking
values in the [0, 1] interval, we divide Ds by a suitable constant D;°, hence
obtaining the association measure

Vs = Dy/Dy’,

where 8 is any constant such that 0 < 8 < 1. The case 8 = 0 leads to the
uncertainty coefficient H, (6.8). If 0 < 8 < 1 and I = J, we may take Dj’
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to be the value of D, under Pas (p), Ds° = X p:."® — 1; hence V; becomes
zero under Ind (p) and unity under Pas (p). If I ¢ J, the choice of a suitable
D;° is not straightforward except when 8 = 1: If we take D," = L — 1,
where L = min (Z, J) we obtain Cramer’s [1946, p. 282] association measure

sz‘. Zpih‘z/p.i -1 3,
©.11) Vi = T =1 = Al -1

which is zero under Ind (p) and unity under Pas (p). A weakness of this
measure is that it takes the value unity also in some cases where Pas (p)
does not hold, such as Table (5.4). To avoid this, one might do better to
divide the numerator of V, by D, = J — 1, which measure still attains
unity under Pas (p). If 0 < 8 < 1 and I ¢ J, one may divide Ds by D;° =
J? — 1; this gives an association measure Vs whose maximum value, under
Pas (p), is less than unity unless all marginal Y-frequencies are equal.

We have shown that a conceptual definition such as “information”
or ‘“discrimination information” can be used to define broad families of
association measures. Commonly used measures such as r, \, H and V, belong
to these families, but are not necessarily “better’’ than other members of
the families. (An example of “standard usage” of association measures:
The computer package SPSS [Statistical Package for the Social Sciences;
Nie, Bent and Hull, 1970] computes A, H, C,°, V, as well as others, eq.,
Kendall’s tau and Goodman-Kruskal’s v.) Members of the same family
of association measures may, of course, still display considerable dissimilarity
in the values they take for a given contingency table. This can be seen from
the empirical study in Section 7, where 7, r, , H, H, , \, V, , C,® and C,’
are compared.

7. Empirical Study

In order to compare the various association measures, we conducted
a small-scale computer simulation study. Samples of artificial data were
generated according to the random effects ANOVA model

(7'1) YVie=X: + e

wheres =1,---  I;k=1,--- n, X, =64 \/;Zi}ﬁik = \/1__—_; Nik 5
and Z; (i = 1, --- , I) is a vector of independent N (0, 1) random numbers,
na =1, -, I;k =1, ---,n,;) are I vectors of independent N (0, 1)

random numbers, also independent of the Z; , and « is a constant such that
0<a<l

In our study, we used I = 8 X-categories with n; = 50 observations
each, for a total of n = 400 observations. The constant 6 was added merely
to ensure that all Y., be positive. Eleven data sets of 400 observations each
were created by setting « = 0 (0.1)1. The extreme cases of « = Oand « = 1
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are equivalent to, respectively, conditions Ind (¢) and Pas (¢), which in turn
ensure that Ind (7) and Pas («), respectively, hold.

For each value of «, the continuous data on ¥ were converted into a
contingency table with ordinally arranged Y-categories by counting, for
each X-category, the number of Y, in each of the intervals 6 + d(r — 0.5)
to6 + d{r + 0.5), forr = 0, £1, &2, - - - . For each value of a, we tried two
different class-widths, d = 0.5 and d = 1 in order to get some indication of
the effect that a change in definition of the response categories might produce
in the values taken by the various association measures. The number, J,
of Y-categories required will be around 13 when d = 0.5 and around 7 when
d = 1.0. The same contingency tables were then used as representing the
case of nominal Y-categories, pretending that the ordinal information had
been lost.

For each of the two values of d and each of the eleven a-values, the
value taken by each of the 15 association measures 4°(4.1), v’ (4.2), w,"(4.3),
8(5.1), x(5.3), G:(5.5), G»(5.6), C,*(6.1), C;’(6.2), r(6.6), A (6.7), H(6.8),
.(6.9), H.(6.10), V,{(6.11) was computed.

These computations were then repeated five times, using each time a
new random vector Z; (i = 1, --- , 8) and eight new random vectors n.
(k = 1, ---, 50). Hereby, one can obtain at least a rudimentary notion of
the variability of each association measure. The mean of the five values
of each association measure was also computed.

The results of the study are reported in Tables 1 and 2 for d = 0.5, 1.0
and for @ = 0, 0.2, 0.5, 0.8, 1.0. We have also included the values of

«Z(Zd “‘"Z_)E Z kE(flik_ 7_75)2
Sz:\["?"—“]_—’ s = P

since the association measures are, as one would expect, sensitive to s, and to s.

Under the random effects model (7.1), ¢, = e and ¢ = 1 — a. Hence,
in the case of %, the ratio of expected values is ¢.”/(s,” + o) = a, but w,”
has a certain bias as an estimate of a. From sample to sample, the values of w,”
fluctuate on both sides of the value «, as seen in the tables, but w,” increases
from 0 to 1 with « in an almost linear fashion. Hence, w,” forms a natural
point of reference against which the behavior of the other measures can be
gauged.

Limited though it is, the study reported here provides valuable insights
into the behavior of the association measures. A significant amount of ad-
ditional information would probably require a comprehensive, hence costly
and time-consuming computer simulation study with a large number of
repetitions, a wide range of different number of groups I, sample sizes n,
interval widths d, etc. While necessary for drawing more specific conclusions,
such a study would have to be the topic of a future report.
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We proceed to making a series of comments on our data. The conclusions
are drawn only from our limited study and cannot be construed as being
of general scope unless supported by further research.

(1) The need for correction of association measures. The theoretical
independence when @ = 0 should, ideally, make each association measure
produce a value close to zero. This aim is achieved very well, on the average,
by the corrected measures, w’, w,’, Gy , Gz, 7. and H, . As a result of the
correction, negative values are, of course, produced occasionally. The re-
maining, uncorrected measures are inflated to varying extents when a = 0.
The most severe bias is found in C,* and C,°, whose average values are about
0.17 when d = 0.5. Considerable bias is also found in 6 and «, while it is less
serious for #°, r, H, A\ and V, whose values are usually less than 0.05. As a
general rule, it seems to make good sense always to use an appropriately
corrected association measure.

(2) The effect due to changing the definition of the Y-categories. The
number of response categories is reduced roughly by half as d is increased from
0.5 to 1.0. By definition, 4°, »” and w,” are left unchanged hereby. Furthermore,
@, and (, are remarkably insensitive (due to the presence of the factor K,) to
the change. Some rather small effects are observed in 6 and «. When Y is
nominal, no a priori reason exists for belicving that the measures would stay
roughly the same. In fact, several of them appear to be highly sensitive to the
change in d. A blatant example: When « = 0.8, the values of = and r, are
approximately doubled when the number of Y-categories is cut in half. Not all
measures increase by the decrease in the number of categories: For 8, C,* and
C,?, the tendency is to decrease. This emphasizes the importance for the
empirical researcher to report not only the association measure used and its
value, but also the definition of his categories; if this is not done, there is little
grounds for comparability from one research study to the next.

(8) When Y 4s interval-scaled: Comparisons. The difference between
the two corrected measures «’ and w,” is small, as expected; the always
positive difference »,° — w’ is usually less than 0.03. In line with theory,
w,° (and thus «”) take values fluctuating in close neighborhood of a.

(4) When Y 1s ordinal-scaled: Comparisons. The differences in value
between G, and G, are generally small, i.e., substituting Sy for Sy produces
no great changes for any & (this can be seen also by comparing C,* and C,°).
On theoretical grounds developed in Section 2, one can expect (; and G, to
closely approximate ® when « is small. For greater values of «, ¢, and G,
underestimate «” considerably, when a« = 0.5 and 0.8 by roughly 25%,.
On the other hand, there is no theoretical reason to expect 8 and « to be close
to @” or w,". Both 6 and « ought to have been corrected, since they show
considerably inflated values for small . One observes that « consistently
exceeds w,”, while 8 exceeds w,” only for small a.

(5) When Y s nominal-scaled: Comparisons. Again, there is no theo-
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retical basis for expecting the measures in this category to be close to
or w,”. One observes the pattern of values of r, 7. , H, H, , X and V, as a goes
from 0 to 1: All six are slow in “taking off”” towards the value of unity which
they all attain when o = 1. For example, when @ = 0.8, which means that
w,” takes values in the 0.8 area, we find when d = 0.5, the following average
values: r = 0.164, H = 0.307, » = 0.219, V, = 0.172. There is no consistency
in the order relationship among the values of 7, H, A and V, from sample to
sample. But when d = 0.5, 1 < V; < A < H holds fairly well on the average
for all values of . Finally, C',* and C,’ seem to be the least appealing measures
in this group: Severely inflated when « is small and well below unity when
the association is perfect.
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