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This paper discusses the general problem of measuring the association 
between an independent nominal-scaled variable X and a dependent variable 
Y whose scale of measurement may be interval, ordinal or nominal. The 
theoretical foundations of a wide range of asymmetric association measures 
are discussed. Some new measures are also suggested. Fifteen of these as- 
sociation measures, some previously suggested, some new, are singled out for a 
computer-assisted numerical study in which we compute the value actually 
taken by each measure under a wide variety of conditions. This comparative 
study provides important insights into the behavior of the measures. 

1. Introduction 

W e  shall  s t u d y  concep tua l  founda t ions  and  p roper t i e s  of a n u m b e r  of 
assoc ia t ion  measures .  Some of these  measures  have  been p rev ious ly  sugges ted  
and  are  in f requent  use, o the r s  are  new sugges t ions  or  modif ica t ions  of exis t ing 
ones. B y  means  of a s imu la t ion  approach ,  t he  behav io r  of the  assoc ia t ion  
measures  is s tud ied  in a v a r i e t y  of s i tua t ions  as the  assoc ia t ion  (as measu red  
b y  one of them)  moves  f rom " i n d e p e n d e n c e "  to  "pe r fec t  assoc ia t ion" .  

T h e  de l imi t a t i ons  of th is  p a p e r  are:  W e  consider  a l t e r n a t i v e  measures  
of t he  assoc ia t ion  be tween  the  " i n d e p e n d e n t "  or  " e x p l a n a t o r y "  va r i ab le  X 
and  the  " d e p e n d e n t "  or  " r e sponse"  va r i ab le  Y. X precedes  Y causal ly ,  
t e m p o r a l l y  or otherwise.  Hence,  we are  only  concerned wi th  associa t ion  in  
t he  a s y m m e t r i c  sense. T h e  scale of m e a s u r e m e n t  of X is nomina l ;  the re  are  
I _> 2 levels  or ca tegor ies  r epresen t ing  the  X-d imens ion .  A fixed-size sample  
of va lues  of Y is ava i l ab le  s t  each level  of X.  T h r e e  cases a re  d i s t ingu ished  
accord ing  to  t he  scale of m e a s u r e m e n t  of Y: I n t e r v a l  (or poss ib ly  ra t io ) ,  
o rd ina l  a n d  nominal .  

Discuss ion of t he  concep tua l  bases  and  the  behav io r  of assoc ia t ion  
measures  forms the  m a i n  b o d y  of t he  paper .  The re  is l i t t le  of sampl ing  theory ,  
and  no tes t s  of zero assoc ia t ion  are  proposed.  

I m p o r t a n t  sources of i n fo rma t ion  in t he  a rea  of associa t ion  are  t he  
t ex t  b y  H a y s  [1963], especia l ly  for ana lys i s  of va r i ance  or ien ted  measure -  
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ment of "strength of relationship", the review papers by  Goodman and 
Kruskal [1954, 1959], especially for association between categorical variables, 
and the text by Freeman [1965] as a practical source book on association. 
Upon consulting these references, it is evident tha t  the present paper deals 
only with a small number  of all association measures available in the litera- 
ture. Excepting our new suggestions, we can possibly claim that  the measures 
considered below either are in common use or have merited some at tent ion 
in recent literature. 

Association measures typically take values between zero and one in- 
clusive, where zero usually indicates "independence" and unity, if ever 
attained, means "perfect  association" between X and Y. In a given situation 
there is often a mult i tude of alternative association measures of this kind to 
choose from. I t  is sometimes difficult to maintain tha t  use of one measure 
is more justified from a conceptual or operational point of view than another. 
Little is known about  the behavior of the various association measures in the 
interior of the [0, 1] interval: The association as measured by one measure 
may take a drastically different value from tha t  produced by another measure 
for the same set of data. The simulation study in this paper throws some light 
on such differences among association measures, as well as on the effect of 
changes in the definition of the response categories. We also discuss a general 
approach to the problem of correcting for the inflated values often produced 
by association measures under conditions close to independence. 

Section 2 introduces the notation to be used. In  Section 3 we discuss the 
meanings to be given to "independence" and "perfect association" for dif- 
ferent types of scale of measurement of Y, as well as the objectives of "cor- 
rec t ion"  of an association measure. In  Sections 4, 5 and 6 we review certain 
traditional association measures, discuss theoretically their  properties, and 
suggest a few new association measures. Finally, in Section 7 we report  the 
results of the computer  simulation s tudy of the performance of 15 association 
measures. 

2. Presentation o] Models to be Considered 

We introduce the notation and the statistical models to be used in the 
three cases: Y interval-, ordinal-, or nominal-scaled. 

First, if Y is interval-scaled, we shall consider the customary random 
effects ANOVA model 

(2.1) Y,k = ~ ~- x~ -~ e~ (i = 1, . . .  , I;  k = 1, . . .  , n , ) ,  
2 

where the n~. are fixed, positive integers, where x~ has mean 0, variance a~ 
and e;~ has mean 0, variance 2 ,  and the x~ and e~k are mutual ly independent. 
(Since the distribution theory plays a subordinated role in the paper, we do 
not generally need to make the usual normali ty assumption.) Let  
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n =  E n , ,  Y = n - 1  E E Y , k ,  I?, = n<-* E Y , k ,  
i i k k 

 ss,, = Z Z ( Y , k -  = ]g  ? Y  
(2.2) ' ~ ~ '° 

S S , ,  = Y]. n , .  ( f ' ,  - Y)=, 
i 

M S , ,  = ( I  - -  1)--ISSH , J]/[,S|V = (n --  I ) - ' S S w  

where ~ and ~ k  denote  s u m m a t i o n s  f rom 1 to I and  f rom 1 to n~. , re- 
spect ively.  Under  the  r a n d o m  effects model  (2.1) wi th  n< = m (i = 1, . . .  , I ) ,  
we h a v e  [see, for example,  Seheff~, 1959] E ( M S u )  = o = + m.a. 2, E ( M  S w )  = a 2. 

Alterna t ive ly ,  we shall somet imes  t r ea t  (2.1) as a model  wi th  fixed 
effects x~ obeying the  cons t ra in t  ~ n,.  x~ = 0. I n  t h a t  case the  ~k are  as- 
sumed  to have  mean  0, var iance  2 .  (Norma l i t y  is general ly  not  assumed.)  
We  have  E ( M S , , )  = a a + ( I  - 1) -1 ~ n ,  x~ 2, E ( a S w )  = z =. 

Secondly,  if Y is measured  on a nomina l  scale, we assume t h a t  there  
exist two poly tomies  wi th  I categories of the  X-d imens ion  (forming the  I 
rows of a cont ingency table)  and J response categories of the  Y-dimension 
( forming the  J columns of the  cont ingency table) .  T h e  observed f requency  
in celt i ,  j of the  cont ingency table  is deno ted  b y  n~; (i = 1, . . .  , I ;  j = 
1 , - - - ,  J ) ,  a n d n ; .  = ~ _ , i n ~ i , n . i  = E~n.,n = E , n , .  = E i n . J ,  p , .  = 
n , . / n ,  p . i  = n . i / n ,  pil~ = n , i / n , .  , p , i  = n , i / n .  We assume t h a t  t h e n <  are  
fixed, non- random posi t ive integers,  and  t h a t  (possibly af ter  pooling of 
categories)  n. i  > 0 (j = 1, . - .  , J ) .  We  assume,  for a given X-ca tegory ,  i, 
the  model:  

(2.3) E(p~ , , )  = ~r~, = ~r.~ + ~ ,  (i = 1, . . .  , J ) ,  

with  Y'~i &i = 0 (i = 1, - - .  , I ) ,  where  ~r.i = E ( p . i )  = E ( ~ . , ,  Pi l ,  P , . )  is 
an  u n k n o w n  marg ina l  probabi l i ty .  I t  follows t h a t  we also have  the  con- 
s t ra in ts  ~--~, p c  6 ,  = 0 (j = 1, - - -  , J ) .  

T w o  well-known sta t is t ics  (see, for example ,  G o o d m a n  [1971]) for the  
cont ingency table  are 

(2.4) S u  = 2n ~_, p, .  ~"~ Pi l ,  log (Pi , , /P.~) ,  
i i 

(2.5) S ,  = n { ~ , p , .  ~_ ,p~ ,2 /p .~  _ 1}; 
i i 

t hey  a p p r o x i m a t e  each o the r  and  each has  an  a p p r o x i m a t e  x ~" d is t r ibut ion  
wi th  ( I  --  1 ) ( J  --  1) degrees of f reedom when  the  two po ly tomies  are  inde- 
pendent .  W e  can par t i t ion  S u  as S ,  = S m  - SHo , where 

S . ,  = 2n E P,.  E Pi t ,  log (Pi , , /rr . i ) ,  
i i 

S,o  = 2n Y~ p.~ log ( p . J l r . , ) .  
i 



168 PSYCHOMETRIKA 

These terms can be approximated,  respectively, by  

i i 

Z . o  = - 1 } .  
i 

The difference S ~  - ~,o will, however, only approximate  ~ ,  . Under  the 
model (2.3), we have E ( S ~ )  "~ E ( S , ~ )  = I ( J  --  1) q- R; E ( S ~ o )  ~ E ( S m , )  = 

J - 1, and 

E ( S , , )  ~ E(S~, )  "~ ( I  - 1)(J  - 1) + R, (2.6) 

where 

When n is large, R can be approximated as 

(2.7) R "~ n ~ i  ~ p , .  ~ 2/~..~ , 

the other terms being small by  comparison. Formulas  (2.6) and (2.7) will 
be subject to fur ther  analysis below, since they  provide the rationale for 
a new association measure to be suggested in Section 5. 

Thirdly,  consider the case where the J categories of Y are ordinally 
arranged, wearing labels such as "low", "medium",  "high",  etc. Two subcases 
will be distinguished according as there exists a relevant  cont inuum under- 
lying Y or not. In  either case we shall use the same notat ion as when Y is 
nominal, i.e. n ,  denotes the observed frequency in the nominal X-category  i 
and the ordinal Y-category j, etc. 

I f  there does exist a relevant continuum underlying the Y-dimension, 
the two models (2.1) and (2.3) can be related in a formal way. Assume tha t  
the ordinal classification of the Y-dimension has been achieved by  grouping 
together the Y~k - values falling into one and the same of a set of J mutual ly  
exclusive and exhaustive intervals formed by the points y; (j = 0, 1, • • • , J )  
such t h a t - - ~  = Yo < Yl < " ' "  < Y  J-1 < Y J  = ~ .  The  observed number  
of Y~k in the interval  (Yi - i  , Yi) equals n~i • 

Let  F(z) deno te the  cumulat ive distribution function of Z = ( Y  - ~ r t x ) / a  

with density function "](z) = d F ( z ) / d z  tending to zero as z -~ ± ~ .  Con- 
ditional upon X = x~ , the probabil i ty of an observation falling in celt i, 
j can, for i -- 1, . . .  , I ;  j = 1, • .- , J ,  be written in two ways which relate 
the parameters  of models (2.1) and (2.3): 

+ 

wherez i  = (Yi -- ~ ) / a f o r j  = 1, . - .  , J - -  1, andzo = - - ¢ o , z j  = co. The  
marginal probabil i ty of the j: th Y-category is, for j = 1, • • • , J ,  
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We expand F ( z i  - -  x J z )  in a Taylor  series around zi , thereby obtaining 
as a first approximation ~r. i ~ F ( z i )  - F ( z i -1 ) .  (Terms of order x~/~  cancel, 
terms of order (x~ / z )  ~ and higher are dropped.) This approximation can be 
expected to be close only when the relative e f fec t s  x ~ / z  are small, which is 
likely to occur if ~ / z  is small, i .e.,  when the association is weak. Inserting 
the approximation into (2.8), another expansion yields ~ ,  -~ - x ~ [ I ( z i )  - 
](zi-1)]/z, where ](z) = d F ( z ) / d z .  Inserting the two approximations into R 
given by (2.7), we obtain 

x 2 t  2 (2.9) R ~ n K s  ~_.,, p, .  , / ~ ,  

where 

(2.10) K s  = 
; ° 1  - , T g - ; - - - ~  

with i~ = l(z~), F~ = F ( z i )  ( j  = 1, . . .  , J - -  1), F(zo) = ](Zo) = i ( z j )  = O, 
F ( z j )  = 1. The end result (2.9) will be used in Section 5. The quanti ty K j  
is well-known in statistical inference; it approaches, as J --~ co and the 
interval-widths approach zero, the amount  of Fisher-information, 

1 
3. Independence  and  Per]ect  Assoc ia t ion  

All association measures considered below are constructed with the 
idea in mind tha t  an association of zero means that  X and Y are "inde- 
pendent".  At the other extreme, the majori ty of the association measures 
to be considered are normed to take the value unity when X and Y are 
"perfectly associated" in the sense tha t  knowledge of X will remove all 
uncertainty as to what  value Y will take. 

First, i t  will be necessary to state the exact meanings to be given in this 
paper to the terms "independence" and "perfect  association". Each of the 
two terms may be employed either in a theoretical (or model, or population) 
context or in a sample context. Each of the eight entries of the following 
table denotes in a compact form (for convenient future reference) a condition 
defined in full detail below the table. For  example, when the condition denoted 
by Ind (~), is satisfied, we shall say that  X and Y are theoretically inde- 
pendent, provided Y is being measured on an interval scale. Conditions 
referring to the theoret ical  context are expressed in terms of unknown 
population parameters, and conditions referring to the sample context are 
expressed in terms of statistics computed from the sample. The eight con- 
ditions are defined as follows in terms of notation introduced in Section 2. 
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Scale of measurement of Y 

Intervat Ordinal 
(or ratio) Or Nominal 

Theoretical independence Ind (a) Ind (~r) 
Sample independence Ind (s) Ind (p) 

Theoretical perfect association Pas (a) Pas (Tr) 
Sample perfect association Pas (s) Pas (p) 

I n d  (a) ¢=~ a~ 2 = 0 (or, in the  fixed effects m o d e l :  
x~ = 0 ,  i = 1,  . . .  , I )  

if2 ~--- O 

17~ = 1~ ( i  = 1,  . . .  , I )  

Y~k = lT , (k  = 1, . . .  , n ,  ; i  = 1, . . .  , I )  
P~l~ = P .~(J  = 1, . - .  , J ; i  = 1, . . .  , I )  
Fo r  each i (i = 1, . . .  , I ) ,  the re  exists a 
j = jo(i),  say,  such t h a t  Pil~ = 1 for  
j = jo(i) and  zero otherwise.  

Pas (~) ¢ -  
I n d  (s) ¢:* 
Pas  (s) ¢:~ 
I n d  (p) ¢=~ 
P a s  (p) 

T h e  condit ions I n d  Or) and  Pas  (Tr) are defined in the  same way  as 
I n d  (p) and  Pas  (p) ,  respect ively ,  except  t h a t  ~ is subs t i tu t ed  for  Pir~ 
and  7r. ~ for p. i • 

One of the  condit ions m a y  imply  one or several  of the  o ther  conditions.  
For  example,  perfec t  associat ion in the  theore t ica l  sense implies perfec t  
associat ion in the  sample  sense, i.e. Pas  (a) ~ Pas  (s) and  P a s  (v) ~ Pas  (p).  
Converse ly ,  Pas  (s) ~ P a s  (~) wi th  p robab i l i ty  one, and  ])as (p) ~ P a s  (~r) 
wi th  p robabi l i ty  t end ing  to  one when n becomes  large. 

T u r n i n g  to the  case of independence,  we see t h a t  I n d  (a) does not  imply ,  
nor  is i t  impl ied by,  I n d  (s). T h e  same conclusion holds for the  pair  I n d  (It) 
and  I n d  (p). Theore t ica l  independence  does, however ,  have  some i m p o r t a n t  
impl ica t ions  for the  expected  values  of cer ta in  stat ist ics.  W h e n  Y is in te rva l -  
scaled, I n d  ( ~ ) i m p l i e s  t h a t  S S ,  and  S S w  have  cent ra l  x~-distr ibutions (if 
the  no rma l i t y  a s sumpt ion  is added)  and  t h a t  

(3.1) E ( M S n  --  M S w )  = O. 

W h e n  Y is ordinal  or  nominal ,  I n d  (lr) implies t h a t  S ,  and  S .  have  approxi -  
m a t e  x2-distr ibutions wi th  1- = ( I  - 1 ) ( J  - 1) degrees of f reedom each, 
hence 

(3.2) E ( S ,  - ] , )  "~ E ( ~  -- ] , )  ~ -  O. 

T h e  behav io r  of associat ion measures  a t  the  lower end of the  range  
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(under conditions of independence or near independence) suggests tha t  one 
should dichotomise association measures into uncorrected measures and 
corrected measures. In this paper, the first kind is defined as follows: 

Uncorrected association measure: an association measure tha t  takes 
the value zero under conditions of sample independence, Ind (s) or Ind (p). 

The term corrected measure will be defined below following a discussion 
of the objectives of "correction". 

An often used method of constructing a normed uncorrected association 
measure consists in forming the ratio 

U ( Y ) -  U ( Y I X )  
(3.3) U(Y) 

where the uncertainties in Y with and without knowledge of X, U ( Y  ! X)  
and U(Y),  respectively, are such tha t  U(Y) = U(Y  I X)  under Ind (s) or 
Ind (p), and U(Y  1 X) = 0 under Pas (s) or Pas (p). (We are using the term 
"uncertainty" in a general sense, e.g., more general than in the context of 
uncertainty analysis, Garner and McGill [1956].) The interpretation of any 
association measure of this type is tha t  of "relative reduction in uncertainty 
about Y from getting to know X".  The value taken by (3.3) is zero under 
Ind (s) or Ind (p) and unity under Pas (s) or Pas (p). The difficulty is that  
there are infinitely many association measures of the type (3.3) corresponding 
to the infinite variety of definitions of the concept "uncertainty".  Or, in 
more concrete terms, how should one interpret a computed association of 
0.60 in a certain situation, is it "strong", "weak", etc.? The answer depends 
a great deal on the definition of uncertainty used in defining the association 
measure that  gave the 0.60 value. 

Frequently, formula (3.3) gives an inflated value of the degree of as- 
sociation under conditions approaching independence. Denote by E the 
expected value of U(Y) - U(Y  [ X) under Ind (~) or Ind (4). Let R be an 
unbiased estimate of E. Consider the association measure 

(3.4)  U ( Y )  - -  /~ - -  U ( Y  I X )  
u ( 

I ts  numerator has the expected value zero under theoretical independence, 
and it preserves the property of attaining the value unity under Pas (s) or 
Pas (p). 

One may wish to further adjust the denominator of (3.4). For example, 
the measure (3.4) still attains the value unity under Pas (s) and Pas (p) if 
any multiple of U(Y  t X)  were to be added to the denominator. Or, one may 
wish to make the further correction of (3.4) in such a way tha t  the denomina- 
tor has a specified expected value. 

As an example consider the association measure (4.3) below, a variation 
of Hays '  (1963) ¢o 2, which is constructed to give a ratio of expected values 
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equal to the intraclass correlation a~:/(ax 2 H- as). The  true objective is, of 
course, to construct an unbiased estimate of a~2/(a~ 2 -t- 2 ) .  However, since 
the expected value of the ratio is difficult to handle, one chooses to correct 
in such a way tha t  the ratio of expected values equals the desired parametric 
function. The bias is likely to be small for most practical purposes. 

We shall use the term "corrected association measure" in a fairly wide 
sense in this paper, a sense which implies tha t  the main purpose of correction 
is to prevent obtaining an inflated value of the association under conditions 
of independence or near-independence: 

Corrected association measure: an uncorrected association measure 
adjusted in such a way tha t  the expected value of its numerator  is zero under 
conditions of theoretical independence, Ind (~) or Ind 0r). 

In the case where Y is an interval-scaled variable, one can find several 
examples in the literature of corrected association measures, notably the 
several "w~-like '' measures discussed in Section 4; all of these achieve cor- 
rection of the correlation ratio (4.1) by  utilizing (3.1). The practice of "cor- 
recting" seems, however, to be virtually non-existent when Y is ordinal or 
nominal, even though in these cases the methodological reasons for correction 
seem as well-founded as in the case where Y is interval-scaled. When the 
approximate x2-variables S~ and S~ are involved, correction can be achieved 
by utilizing (3.2); see several suggestions in this direction in Sections 5 and 6. 

Consider now the behavior of association measures at  the upper end of 
their respective ranges (i.e., under conditions of perfect association or near- 
perfect association). All association measures considered in this paper take 
values in the interval [0, 1]. Most of those measures at tain their maximum 
value of unity (under Pas (s) or Pas (p)), but  there are a few tha t  do not. 
I t  is difficult to find in the literature any extensive discussion of the pros 
and cons of having an association measure actually at tain the upper limit 
of unity. Cohen [1965, p. 105] implies tha t  it is a deficiency of a measure if 
it  fails to do so, which is the case, for example, with the Pearson mean square 
contingency coefficient ~n/(S~ + n). 

We offer one argument in justification of using an association measure 
tha t  falls short of the value unity under Pas (p): The condition Pas (s) implies 
Pas (p), but  the reverse is not  true. Information is lost when measurement is 
in terms of the weaker scale. Assume tha t  nominal or ordinal data  on Y 
have been gathered by counting frequencies in non-overlapping intervals 
of an underlying interval-scaled variable, and assume tha t  the data, in the 
form of a contingency table, reveal tha t  Pas (p) holds. Had we also been 
able to go back and observe the underlying interval-scaled Y-data, chances 
are we would have found tha t  Pas (s) does not hold; let us assume that  this 
is the case. Hence, even though Pas (p) holds, the association would be less 
than unity as measured by any association measure requiring interval-scaled 
Y and such that  its upper limit of unity is attained only if Pas (s) holds. 
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Thus if we appeal to a desire for comparability of association measures 
across different scales and allow for the possibility of loss of information due 
to the weaker scale, then in the case where Y is ordinal or nominal, we should 
measure association by a measure tha t  attains an upper limit of less than 
unity under Pas (p). Two such measures are suggested in Section 5, formulas 
(5.5) and (5.6); Freeman's [1965] 0 is also of this kind, formula (5.1), as well 
as the contingency coefficients C1 ~ and C22, (6.1) and (6.2). 

I t  is a weakness of this argument tha t  it is impossible to know to what 
extent one should allow for loss of information. I t  is also difficult to give 
wholehearted support to the idea that  association measures ought to have 
comparability across types of scale; most of the time the nature of the data 
precludes any kind of comparability. Nevertheless, some commonly used 
association measures do fail to attain the value unity. 

~. Association Measures when Y is Interval-scaled 

In this and the following two sections we discuss the foundations of 
the association measures to be studied numerically in Section 7 by simulation 
techniques. Several new measures are introduced in Sections 5 and 6. 

The well-known correlation ratio, ~2, is an uncorrected association 
measure of the form (3.3) with the uncertainties U(Y) = SSr  , U(Y I X)  = 
SSw as defined by (2.2). Hence, letting F = M S , / M S w  , 

SSH F(I - 1) 
(4.1) ~2 _ ~ -  F ( I - -  1 ) - l - n -  I 

I t  takes the value zero under Ind (s) and attains the value unity under 
Pas (s). There is, of course, a multitude of other measures with the same 
properties. 

Instead of the sums, S S r  and SSw , of squared deviations around 1~ 
and 1~ , one could define the uncertainties U(Y) and U(Y I X)  in (3.3) as 
the corresponding sums of some other form of non-negative deviations 
around ]? and ]~ : The absolute deviations is but  one example. The rather 
lively debate around association measures in recent applied psychology 
literature (see references at  the end of this section) has never questioned the 
legitimacy of using squared deviations in defining uncertainty, but  has 
centered around the question of finding the most suitable correction. Hence, 
~2 and its corrected versions to be discussed below are the only measures 
in common use when Y is interval-scaled. This may be due to the strong 
position of traditional normal-theory based analysis of variance as a technique 
of statistical inference in this situation. On the other hand, when Y is nominal 
(Section 6), there is much less agreement on the preferred quantification 
of uncertainty. 

Various corrected versions of the correlation ratio have been suggested, 
e.g., 
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S S , -  ( I  - 1 ) M S w  ( F -  1 ) ( I -  1) (4 2) 2 
S , ~  + MS::. (F -- 1)(I -- 1) + n 

see Hays  [1963], Vaughan and Corballis [1969], and 

2 S S ,  - ( I  - 1 ) M S w  (F - -  1)(I -- I) 
S S r  - -  ( F - - - - 1 ) ( I  - -  1) + n -- 1 

suggested by Kelly [1935], and discussed by Cohen [1965]. Both ¢02 and 2 
accomplish a correction suitable under the fixed effects model: In the case 
of ¢o 2, the ratio of expected .values of numerator  and denominator (when 
expressed in terms of S S ' s  and M S ' s )  is ~ pi .  x~2/(~_,~ pi .  x~ 2 + 2). A 

2 slightly different expected denominator obtains for e .  
The corrected measure 

(4.3) o~ls I ( M S ,  - M S w )  (F  - -  1)1 
= S S r T - - M S n  = ( F - -  1 ) I + n  

discussed by, for example, Hays  [1963, p. 423], Vaughan and Corbaltis [1969] 
is suited for the random effects model; it  produces a ratio of expected values 
equal to ,Txs/(a. s + (Ts). 

2 2 Hence, w, e and w~ 2, which satisfy w s < s < w~, capitalize on the 
same correction idea: In each case, the expected value of the numerator  is 
zero under Ind (a) due to (3.1). Each attains the value unity under Pas (s). 

One should have equal group frequencies n ,  (i = 1, . . .  , I)  in order 
2 2 to be able to meaningfully apply any of the measures ¢0 s, and w~ , see, 

for example, Vaughan and Corballis [1969]. Fur ther  recent discussions of 
these "w2-like" measures are found in Fleiss [1969], Fr iedman [1968], Halder- 
son and Glasnapp [1972], Kennedy [1970]. Finally, Glass and Hakst ian 
[1969] discuss problems with the interpretation of "coS-like '' measures: When 
the levels of X are not  randomly representative of the X-dimension, as could 
be the case in the fixed-effect ANOVA design, it  may not make sense at  all 
to t ry  to at tach a coefficient of association as a measure of the strength of 
relationship between X and Y. The measures ~2, 2 and w s will be studied 
numerically in Section 7. 

5. Assoc ia t ion  M e a s u r e s  W h e n  Y i s  Ordinal  

The case of X nominal, Y ordinal contains two subcases depending on 
whether a relevant continuum underlies the Y-dimension or not. We start  
with the latter case. All association measures considered in this section are 
left unchanged if the rows of the contingency table are permuted (because X 
is nominal). 

One possibility (not to be considered in this paper) is to assign a set 
of scores, e.g., 1, 2, . . .  , to the rank ordered Y-categories, and construct 
association measures tha t  can be computed from the scores. A difficulty with 
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this approach is tha t  the choice of scores would have  to be arbi t rary  in most  
situations. 

The  basic idea of Freeman 's  [1965, pp. 108-199] 0 relates to guessing 
the ordinal number  of Y (with no underlying continuum), given knowledge 
of the nominal X category. Kendall 's  tau  and Goodman-Kruska l ' s  ~, are 
based on a similar idea but  require t ha t  both  X and Y be ordinal and hence 
do not  qualify under the auspices of this study. Freeman 's  0 can be writ ten as 

~ p,.p, , .  [ 1 - B , ,  - 2 D , ,  1 
(5.1) 0 = ' "> '  

Z Z p ,  p,,. 
i i ' ) i  

where 

(5.2) B . ,  = Z ,  P,,~ P,,," ; n . .  = Z ,  Z i ' > ,  P,,, P~',~'. 

Under Ind  (p), B . ,  + 2 D . ,  = 1, hence 0 takes the value zero. However,  
Pas (p) will not make O equal to unity (the extent to which 0 can fall short 
of uni ty is indicated by  the numerical illustrations in Section 7.) We suggest 
therefore a modified version of Freeman 's  0 tha t  does a t ta in  the value unity 
under Pas  (p). 

As a start ing point, consider Goodman and Kruskal ' s  [1954, p. 749] % 
a symmetrical  association measure for two ordinal polytomies X and Y with 
no relevant underlying continua; it takes values between - 1 and 1 inclusive. 
For I = 2 categories of the X-dimension it can be writ ten as ~, = - (1 - B12 - 
2D12)/(1 -- B12), where B~2 and D12 are given by  (5.2) with i = 1, i '  = 2. 

We construct an association measure for an arbi t rary  number,  I ,  of 
nominal  X-categories as follows: Denote by  g . ,  the absolute value of the 
Goodman-Kruska l  ~, for the pair, i, i '  (i ~ i '  = 1, • • • , I )  of X-categories; 
hence g . ,  = tl -- B . .  -- 2 D . , t / ( 1  - B . , ) .  Take  a weighted average, called 
K, of the g . ,  with the weights w . ,  = p .  P~t (1 -- B . , ) .  The resulting as- 
sociation measure is 

E X p , p .  I1 - B . ,  - 2D,,,I 
(5 .3 )  K =  ' " > '  

E E p~.p , , (1  -- B . , )  
i i r > i  

The measure K has the following properties: 
(1) for I = 2, K equals the absolute value of Goodman-Kruska l ' s  ~, 
(2) K differs from Freeman 's  0, (5.1), in tha t  the denominators are some- 

what  different. 
(3) ~ is zero under Ind  (p) and uni ty under Pas (p), 
(4) K is undefined (of the form 0/0) if Pas (p) holds with jo(i) = jo 

( i =  1, . . .  , I ) .  

Pas (p) is a sufficient but  not  necessary condition to render K the value 
unity. Consider, for example, the following table of relative sample fre- 
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quencies P~i with I = 3 X-categories and J = 5 Y-categories: 

( 1  - -  a)pl.  apl .  0 0 0 

(5.4) o o o ( l  - b)p,~ bp2. 

0 0 p~. 0 0 

where 0 < a ~ 1, 0 ( b ~ 1. Pas  (p) is clearly not satisfied, yet ,( takes the 
value unity. This drawback can be overcome if we use instead, say, K' = 
K(L -- 1 ) / ( J  -- 1) where L = rain (I,  J ) .  

Freeman 's  0 and the new suggestion ~ will be included in the numerical 
s tudy of association measures in Section 7. 

Consider next the case where a Y is ordinal with a continuum (all interval  
or ratio scale) underlying the Y-dimension with a distribution function of Y 
represented by  F[(y  - t~rlx)/z]. According to (2.6) and (2.9), 

E ( S . )  - ]H "~ E ( S H )  - ] .  ~ -  n K j  {~_.~ p .  x~} / ,T  ~, 

where/H = (I  - 1) (J  - 1). This suggests two measures of association which 
can be expected to produce values very close to Hays '  [1963] w~ for small 
values of w 2, namely, 

SH --  /H 
( 5 . 5 )  ( :  = 

and the closely related measure 

S .  - I .  
(5.6) (;2 = SH -- f,r + K j n '  

where ] ,  = (I  -- 1)(J  - 1), and S ,  , S ,  and K j  are given by (2.5), (2.4) 
and (2.10), respectively. By imposing an assumed continuous, zero mean, 
unit  variance shape on the marginal Y-distribution, K j  can be computed 
from the observed marginal  relative frequencies p. ~ as follows: In  formula 
(2.10), let Fi = Y'~,~; p.o (j = 1, • ..  , J ) ,  Fo = 0, and let ]; be the ordinate 
of the probabil i ty density function of F a t  a point z~ point such tha t  the 
area under the curve f r o m -  co to zj is F j  , and ]o = )¢¢ = 0. I f  the assumed 
shape is a N(0 ,  1) curve, as in the numerical studies of G~ and G2 in Section 7, 
even a fairly small J will usually give a K j  above 0.8. Uni ty  is the upper  
limit of K j  for the normal distribution. 

G~ and G2, which are studied numerically in Section 7, have the following 
properties: 

(1) both are corrected measures: the expected value of the numera tor  is 
(approximately) zero under Ind  (r),  

(2) both measures are bounded from above by  (L -- 1) / (L -- 1 q- K j) ,  
where L = rain (I,  J ) .  This value is a t ta ined (approximately) by  G, and G~ 
if Pas  (p) holds. 
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(3) The  ratio of expected values of the numerator  and of the denominator 
of both G1 and G2 can be approximated as ~ p,. x ~ 2 / ( ~  p~.x~ 2 + 2 )  
when ~ p~.x~ 2 is small in relation to z 2. The  measure can therefore be 
expected to behave like Hays '  ~02 when the association is weak and the distri- 
bution of the continuum assumed to underlie Y agrees reasonably well with 
the true one. 

6. Association Measures when Y is Nominal 

With both X and Y nominal, each association measure considered in 
this section will be left unchanged by any permutat ion of rows or columns 
in the contingency table. I t  is important  to realize tha t  the values produced 
by  any association measure must in this case be interpreted in relation to the 
particular definition of X- and Y-categories used, see Section 7. Many  as- 
sociation measures are geared particularly towards the 2 X 2 table. These 
special cases are not considered here. 

Karl  Pearson's coefficient of contingency is a " tradi t ional"  measure. 
We consider its square, 

(6.1) C, 2 S"  
S , + n  

where S ,  is the x 2 statistic (2.5). A minor variation on this idea is 

(6.2) C ~ S ,  
- S . + n '  

with S ,  given by  (2.4); very similar values will be produced by  C~ ~ and C22 
in a given situation, see Section 7. C~ 2 and C22 become zero under Ind  (p) 
but  take a value of less than unity under Pas (p). Correction of C, 2 and C2 ~ 
is desirable, since highly inflated values are obtained under conditions at  
or near Ind (v), see Section 7. Letting J .  = ([ -- 1)(J  - 1), a corrected 
version of C~ 2 is 

S .  - I.  + n 

Goodman and Kruskal [1954, p. 740], who complained about  the "non- 
interpretabil i ty" of traditional measures like C~ ~, favor measures tha t  can 
be given an "operational definition" (like X and r below). We shall discuss 
two families of association measures each of which has, if not an operational 
basis at  least a "conceptual definition". The two concepts used are "in- 
formation" and "discrimination information", both taken in a generalized 
sense as developed in Si~rndal [1970]. 

The information-based measures can be explained within the framework 
of a multinominal experiment [Si~rndal, 1970], where the possible outcomes 
in each trial of the experiment are E~, • • • , E j  with probabilities ~r,, • • • , ~ j ,  
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respectively. Let  ¢~(~) > 0 be a non-increasing function of ~r in the interval 
0 _< ~ _< 1 such tha t  ¢(1) = 0, where ~b(~) denotes the information in the 
experiment if the realized outcome of the experiment has probability ~ of 
occurring. The expected information in one trial of this experiment is 

(6.3) ~ ~rN~(v~), 

which is zero if one of the outcomes is realized with certainty. The unknown 
theoretical probabilities r~ will be replaced by their unbiased sample estimates 
for purposes of computing (6.3) from a given sample. 

The construction of an association measure by  means of the general 
formula (3.3) requires a specification of U(Y), U(Y I X). Using (6.3), we 
define them as, respectively, the expected marginal information and the 
weighted expected conditional (with the pi. as weights) information, i.e., 

(6.4) U(Y) = )-'~ p.i~b(p.~); g ( Y  l Z) = ~__,~ p,. ~ , i  P~l~(PJ,,). 

Inserting these expressions into (3.3) we obtain an association measure 
belonging to a family of such with infinitely many members corresponding 
to the infinitely many possible choices of the function ~b. Cases (1)-(3) below 
are commonly used association measures belonging to this family. 

(1) Let  ¢~(~) = 1 - v in (6.4). The association measure (3.3) takes the 
form 

Ep,  Ep;,  E p ?  
i i i 

( 6 . 6 )  ~ = 
- -  1 -  E P . ~  

i 

Goodman and Kruskal [1954], who at t r ibute this measure to a suggestion 
by  W. Allen Wallis, justify the measure in terms of a strategy for "proportional 
prediction" of the Y-category (see below). Light and Margolin [1971], who 
derive (6.6) as an expression of the "proport ion of variation explained" by 
use of a variation measure for categorical data  due to Gini, show tha t  
(n - 1)(J  - 1)r has an approximate x2-distribution with (I - 1)(J  - 1) 
degrees of freedom under Ind (Tr). 

(2) In (6.4), let ~b(~) = 1 if 0 _ ~ < ~o and ~h(~) = 0 if ~o _~ ~r < 1, 
where ~o = maxi ~ri . Formula (3.3) gives the association measure 

p~. max p~, ~ - max p.i 
(6.7) ~ = i ; i 

1 -- maxp.~ 

This is Gut tman 's  [1941] measure of predictive association. The asymptotic  
distribution theory of h and r is discussed by Goodman and Kruskal [1963, 
1972]. 

(3) Let  finally ~b(~r) = - log 7r in (6.4). The information measure (3.3) 
becomes 
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(6.8) H = I ( Y )  -- I ( Y  I X )  
l(Y) ' 

where l (Y)  = -- ~.,i p. i  log p. ,  ; I ( Y  [ X )  = -- ]~_,, p,. ~-~i P/t, log Pi,, 
are information statistics of the Shannon-Weaver type. Alternatively, (6.8) 
can be expressed in terms of the approximate xLstatistie (2.4) as H = 
S,, /[St,  -Jr- 2 n I ( Y  I X)]. 

The operational (=  prediction strategical) framework favored by 
Goodman and Kruskal [1954, 1959, 1963, 1972] and discussed by Greeno 
[1973] can also be used to define and interpret a family of association measures 
to which K and r (but not H) belong. Let the strategy consist in predicting 
tha t  an observation belongs in the j:th Y-category in a proportion of cases 
equal to pili~/~.,~ pili ~ (when the X-category is known) and p.i~/~__,i p.~° 
(when knowledge of X is lacking), where q > 0 is an arbitrary constant. The 
expected proportion of incorrect guesses is 1 -- ~ ;  p i i J ÷ l / ~ , i  pil~ ~ when 
X is known, and 1 - ~ . i  P. i~+1/~; P. i ~ without knowledge of X. Expressing 
the difference between the latter and the weighted average of the former 
as a fraction of the latter, we obtain an association measure of the type 
(3.3) of which (6.6) and (6.7) are the special cases corresponding to q = 1 
and q = co, respectively. In the ease of q = co, the strategy predicts with 
probability one tha t  an observation belongs in the Y-category with the 
highest probability; this strategy minimizes the number of incorrect decisions 
in the long run. 

The idea of basing an association measure on Shannon-Weaver in- 
formation (and, presumably, other types of information measures) does not 
appeal to Goodman and Kruskal [1959, p. 147]; they conclude " . . .  we were 
unable to satisfy ourselves tha t  such measures would have reasonable inter- 
pretations for many contexts in which cross classifications appear." Never- 
theless, the measure (6.8), sometimes called the asymmetric uncertainty 
coefficient, seems to be frequently used and was recommended by Hays 
[1963, p. 612], on the basis of the exploration of information-theoretical ideas 
in psychology presented in texts by Attneave [1959] and Garner [1962]. 
Earlier, Linfoot [1957] discussed a "logarithmic index of correlation", ro 
(the term derives from a Spanish publication by Castafis, [1955]), which 
after simplification can be written as ro = I ( Y )  - I ( Y  [ X) .  Thus ro = 0 
under Ind (p), and ro differs from (6.8) only in tha t  ro has not been normed 
to take the value unity under Pas (p). In the area "uncertainty analysis", 
see McGill [1954], Garner and McGill [1956], Attneave [1959], Garner [1962], 
the quantities I ( Y ) ,  I ( Y  1 X )  and I ( Y )  -- I ( Y  I X )  are called total  uncertainty, 
conditional uncertainty and contingent uncertainty, respectively. 

Each of the uncorrected measures constructed from (3.3) by means 
of the uncertainties (6.4) can be transformed into a corrected measure, 
e.g. by formula (3.4), following an analysis of the expected value of the 
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numerator  under Ind  Or). For categorical data, corrected association measures 
do not seem to be in common use, a situation that  should be rectified. As 
examples, corrected versions of (6.6) and (6.8) are given below. 

Under the model (2.3), we find 

n e l l  -- ~ p .  ~p~-t~  2] = ( n -  I)(1 -- ~ T r . i  2) + R 1  , 
i i i 

n E [ 1  - -  ~_, p .  2] = (n  - -  1)(1 -- ~ r i 2 ) ,  
i i 

where R1 is a function of the 6,; such that  R1 = 0 when all 6 ,  = 0, as is the 
case under condition Ind Or). Therefore, letting g = (n  - -  I ) / ( n  - -  1), a 
corrected version of (6.6) is obtained from (3A): 

g(1 - ~ p .  2) _ (1 - ~ p ~ .  ~ p ; l ~ )  

(6.9) ro = i , 
g(1 -- ~ , p .  2) 

i 

Use of (3.2) with ] ,  = (I - 1)(J  - 1) gives a corrected version of (6.8), 

S .  - f .  
(6.10) S~ = 

S .  - ] .  + 2 n I ( Y  I X )  

In summary, (6.9) and (6.10) have been corrected so tha t  their numera- 
tors have zero expected value under Ind Or) (in the case of (6.10) only ap- 
proximately zero). Both measures at tain the value uni ty  under Pas (p). 

We explore briefly another  idea by  which a family of association measures 
can be constructed: By means of the concept of "discrimination information" 
[Kullback, 1957] and generalizations thereof [S~trndal, 1970], sometimes 
called "distance",  "separat ion" or "discrepancy".  

Let  fl be a constant such tha t  0 ~ t~ ~ 1 and define the distance between 
the conditior, ul distribution of Y, given X = x~, and the marginal distribution 
of Y as 

[ ~ (p,,,/p ;)%,, -1 if o < ~ <_1 
P ~  = ; 

p;,, log ( P ; t , / P . 5 )  if fl = 0 
i 

A weighing of the distances D~  , using the p~. as weights, gives a measure 
with the interpretation of average distance for the whole contingency table, 
D~ = ~"~, p~. D ~ ,  which is zero under Ind (p). In order to scale D e to taking 
values in the [0, 1] interval, we divide D~ by a suitable constant D~ °, hence 
obtaining the association measure 

V~ = D ~ / D ~  °, 

where ~ is any constant such tha t  0 g ~ g 1. The case ~ = 0 leads to the 
uncertainty coefficient H, (6.8). If 0 ~ ~ _~ 1 and I = J ,  we may take D~ ° 
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to be the value of Da under Pas  (p), D~ ° = ~-~, p i .  1 - ~  - -  1; hence V~ becomes 
zero under Ind  (p) and uni ty under Pas  (p). I f  I # J ,  the choice of a suitable 
Da ° is not straightforward except when ~ = 1: I f  we take DI ° = L -- 1, 
where L = min (I,  J )  we obtain Cramer ' s  [1946, p. 282] association measure 

Ep,. t , / p i  - 1 ~. 
(6.11) V1 = ~ ; - 

- L -  1 n ( L -  1 ) '  

which is zero under Ind  (p) and uni ty under Pas (p). A weakness of this 
measure is tha t  it takes the value uni ty also in some cases where Pas  (p) 
does not hold, such as Table (5.4). To avoid this, one might  do bet ter  to 
divide the numerator  of V~ by  D1 ° = J - 1, which measure still a t ta ins  
unity under Pas (p). I f  0 < ~ < 1 and I # J ,  one m a y  divide D~ by  D~ ° = 
J~ -- 1; this gives an association measure V~ whose maximum value, under 
Pas  (p), is less than  uni ty unless all marginal  Y-frequencies are equal. 

We have shown tha t  a conceptual definition such as " informat ion"  
or "discrimination information" can be used to define broad families of 
association measures. Commonly  used measures such as r, ~, H and V1 belong 
to these families, but  are not necessarily "be t t e r "  than other members  of 
the families. (An example of "s tandard  usage" of association measures: 
The  computer  package SPSS [Statistical Package for the Social Sciences; 
Nie, Bent  and Hull, 1970] computes ~, H,  C~ 2, V~ as well as others, e.g., 
Kendall ' s  tau and Goodman-Kruska l ' s  %) Members  of the same family 
of association measures may,  of course, still display considerable dissimilarity 
in the values they take for a given contingency table. This can be seen from 
the empirical s tudy in Section 7, where r, rc , H,  Ho , ~, VI , C12 and C22 
are compared. 

7. Empir ical  Study 

In  order to compare the various association measures, we conducted 
small-scale computer  simulation study. Samples of artificial da ta  were 

generated according to the random effects ANOVA model 

(7.1) Y~k = X~ + ~,k 

w h e r e i =  1 , . . . , I ; k  = 1, . . .  ,n , .  ;X~ = 6 +  ~ / ~ Z ,  ; ~,k = ~ / 1 - -  a ~,k ; 
and Z~ (i = 1, . . -  , I )  is a vector  of independent N(0, 1) random numbers,  
~k (i = 1, . . .  , I ; l c  = 1, . . -  ,n~.)  are l vectors of independent N(0, 1) 
random numbers, also independent of the Z~ , and a is a constant such tha t  
0 g a < l .  

In  our study, we used I = 8 X-categories with n ,  = 50 observations 
each, for a total  of n = 400 observations. The  constant  6 was added merely 
to ensure tha t  all Y~, be positive. Eleven da ta  sets of 400 observations each 
were created by setting a = 0 (0.1)1. The extreme cases of a = 0 and a = 1 
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~re equivalent  to, respectively, conditions Ind  (a) and Pas  (a), which in turn 
ensure tha t  Ind  (Tr) and Pas  0r), respectively, hold. 

For each value of a, the continuous data  on Y were converted into a 
contingency table with ordinally arranged Y-categories by  counting, for 
each X-category,  the number  of Y~k in each of the intervals 6 + d(r - 0.5) 
to 6 -{- d(r ~ 0.5), for r = 0, =1=1, =t=2, • • • . For  each value of a, we tried two 
different class-widths, d = 0.5 and d = 1 in order to get some indication of 
the effect tha t  a change in definition of the response categories might  produce 
in the values taken by  the various association measures. The number,  J ,  
of Y-categories required will be around 13 when d = 0.5 and around 7 when 
d = 1.0. The  same contingency tables were then used as representing the 
ca, se of nominal Y-categories, pretending tha t  the ordinal information had 
been lost. 

For each of the two values of d and each of the eleven a-values, the 
value taken by  each of the 15 association measures ~2(4.1), ~02(4.2), w12(4.3), 
0(5.1), K(5.3), G1(5.5), G2(5.6), C1~(6.1), C~2(6.2), T(6.6), ~(6.7), H(6.8), 
r~(6.9), H~(6.10), V1(6.11) was computed. 

These computat ions were then repeated five times, using each t ime a 
new random vector  Z~ (i = 1, . . .  , 8) and eight new random vectors ~ 
(k = 1, . . .  , 50). Hereby,  one can obtain a t  least a rud imentary  notion of 
the variabi l i ty of each association measure. The mean of the five values 
of each association measure was also computed. 

The  results of the s tudy are reported in Tables  1 and 2 for d = 0.5, 1.0 
and for a = 0, 0.2, 0.5, 0.8, 1.0. We have also included the values of 

s~ = I -  1 , s =  n ~ - / -  , 

since the association measures are, as one would expect, sensitive to s~ and to s. 
Under  the random effects model (7.1), a~ 2 = a and z 2 = 1 - a. Hence, 

in the case of o:, ~, the ratio of expected values is a~2/(a~ 2 -I- a ~) = a, bu t  wl 2 
has a certain bias as an est imate of a. From sample to sample, the values of 0012 
fluctuate on both sides of the value a, as seen in the tables, bu t  ~01 ~ increases 
from 0 to 1 with a in an almost  lineax fashion. Hence, co, ~ forms a natural  
point of reference against which the behavior  of the other measures can be 
gauged. 

Limited though it  is, the s tudy reported here provides valuable insights 
into the behavior  of the association measures. A significant amount  of ad- 
ditional information would probably  require a comprehensive, hence costly 
and t ime-consuming computer  simulation s tudy with a large number  of 
repetitions, a wide range of different number  of groups I ,  sample sizes n, 
interval widths d, etc. While necessary for drawing more specific conclusions, 
such a s tudy would have  to be the topic of a future report. 
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We proceed to making a series of comments on our data. The conclusions 
are drawn only from our limited study and cannot be construed as being 
of general scope unless supported by further research. 

(1) The need ]or correction o] association measures. The theoretical 
independence when a = 0 should, ideally, make each association measure 
produce a value close to zero. This aim is achieved very well, on the average, 

2 2 by  the corrected measures, 50, 501, G~ , G5 , rc and Hc . As a result of the 
correction, negative values are, of course, produced occasionally. The re- 
maining, uncorrected measures are inflated to varying extents when a = 0. 
The most severe bias is found in C15 and C52, whose average values are about  
0.17 when d = 0.5. Considerable bias is also found in 0 and ~, while it is less 

A5 serious for ~,  r, H, h and VI whose values are usually less than 0.05. As a 
general rule, it seems to make good sense always to use an appropriately 
corrected association measure. 

(2) The effect due to changing the definition o] the Y-categories. The 
number of response categories is reduced roughly by half as d is increased from 
0.5 to 1.0. By definition, ~5, 505 and 5015 are left unchanged hereby. Furthermore, 
G~ and G2 are remarkably insensitive (due to the presence of the factor K j) to 
the change. Some rather small effects are observed in 0 and K. When Y is 
nominal, no a priori reason exists for believing that  the measures would stay 
roughly the same. In fact, several of them appear to be highly sensitive to the 
change in d. A blatant  example: When a = 0.8, the values of T and To are 
approximately doubled when the number of Y-categories is cut in half. Not  all 
measures increase by the decrease in the number of categories: For 0, C15 and 
C2 :, the tendency is to decrease. This emphasizes the importance for the 
empirical researcher to report  not only the association measure used and its 
value, but  also the definition of his categories; if this is not done, there is little 
grounds for comparability from one research study to the next. 

(3) When Y is interval-scaled: Comparisons. The difference between 
the two corrected measures 50~ and 505 is small, as expected; the always 

2 505 positive difference 50~ - is usually less than 0.03. In line with theory, 
50,2 (and thus 50~) take values fluctuating in close neighborhood of a. 

(4) When Y is ordinal-scaled: Comparisons. The differences in value 
between G1 and G2 are generally small, i.e., substituting Sn for S ,  produces 
no great changes for any a (this can be seen also by comparing C15 and C25). 
On theoretical grounds developed in Section 2, one can expect G~ and G2 to 
closely approximate 502 when a is small. For greater values of a, G~ and G2 
underestimate 50: considerably, when a = 0.5 and 0.8 by roughly 25%. 
On the other hand, there is no theoretical reason to expect 0 and K to be close 
to 505 or 5015. Both 0 and K ought to have been corrected, since they show 
considerably inflated values for small a. One observes tha t  K consistently 

while 0 exceeds 505 only for small a. exceeds 501, 
(5) When Y is nominal-scaled: Comparisons. Again, there is no theo- 
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re t ica l  bas is  for expec t ing  the  measures  in th i s  ca t ego ry  to  be  close to  2 
or  ~2 .  One observes  the  p a t t e r n  of va lues  of r, r~ ,  H,  H ~ ,  h and  V~ as  a goes 
f rom 0 to  1: Al l  six are  slow in " t a k i n g  off" t o w a r d s  t he  va lue  of u n i t y  which 
t h e y  al l  a t t a i n  when  a = 1. F o r  example ,  when  a = 0.8, which  means  t h a t  
~ 2  t akes  va lues  in  t he  0.8 area ,  we find when  d = 0.5, t h e  fol lowing ave rage  
va lues :  v = 0.164, H = 0.307, k = 0.219, V~ = 0.172. T h e r e  is no cons i s tency  
in t he  o rde r  r e la t ionsh ip  a m o n g  the  va lues  of r,  H,  ~, and  V, f rom sample  to  
sample .  B u t  when  d = 0.5, r < V~ < k < H holds  fa i r ly  well  on the  ave rage  
for al l  va lues  of a. F ina l ly ,  C, 2 and  C22 seem to be t he  leas t  appea l ing  measures  
in  th is  g roup:  Severe ly  inf la ted  when a is smal l  and  well  be low u n i t y  when  

t h e  assoc ia t ion  is perfect .  
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