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This paper demonstrates the feasibility of using a Newton—-Raphson
algorithm to solve the likelihood equations which arise in maxtmum likelihood
factor analysis. The algorithm leads to clean easily identifiable convergence
and provides a means of verifying that the solution obtained is at least a local
maximum of the likelihood function. It is shown that a popular iteration al-
gorithm is numerically unstable under conditions which are encountered in
practice and that, as a result, inaccurate solutions have been presented in
the literature. The key result is a computationally feasible formula for the
second differential of a partially maximized form of the likelihood function. In
addition to implementing the Newton-Raphson algorithm, this formula pro-
vides a means for estimating the asymptotic variances and covariances of the
maximum likelihood estimators.

1. Introduction

The maximum likelihood method of estimating factor loadings has a
number of desirable statistical properties which include asymptotic efficiency,
invariance under change of scale, and the existence of a x*-test for additional
factors. The method has been extensively discussed by Lawley [1940], Rao
[1955], and Anderson and Rubin [1956]. These authors suggest simple iteration
algorithms for estimation which, with minor variations, consist in finding
factor loadings A which maximize the likelihood function for a specified set
A? of unique variances. The unique variances are then modified so that the
sum of each communality and the corresponding unique variance is equal to
the corresponding sample variance. This process, which is summarized in (9)
below, is repeated until A” and A converge. While it can be shown that the
maximum likelihood estimates of A” and A constitute a stationary point of
this process, a number of difficulties arises. The convergence of the algorithm
is at best linear. This means that from a computational point of view it may
be, and in fact frequently is, difficult to recognize when convergence has
occurred. A still greater difficulty is that in some cases the algorithm will not
converge at all. In addition to showing why this can happen, it will be shown
that real data analyzed by Rao [1955] and Harman [1960] are of this un-
favorable type and that apparently as a consequence these authors were led
to erroneous solutions. To eliminate these difficulties the authors propose
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solving the appropriate likelihood equations by a method based on the
Newton—-Raphson algorithm [Henrici, 1964, p. 105). With sufficiently good
starting values the Newton—Raphson algorithm converges and the con-
vergence is quadratic. That sufficiently good starting values can be found is
illustrated by the examples in Section 5. The value of quadratic convergence
is indicated by the clean, easily identifiable convergence they display.

2. Discussion of the Problem

The factor analysis model as given by Anderson and Rubin [1956)] states
that a vector z of n scores has a normal distribution with mean vector
and covariance matrix = = AA’ 4 A’ The matrix A is n by m with m < n
and the mafrix A is diagonal. Our problem is to find maximum likelihood esti-
mates of u, A, and A based on a random sample z, , - -+ , zy of score vectors.
The likelihood of p, A, and A corresponding to the sample is

O L= e | L S e - e - |

i=1

Letting

4= }N: (@ — D — 9,
equation (1) can be put in the form
2) log (L) = —%Nllog (27) + log 2| + tr (4Z7Y)
+ @& — w)'Z7NE — )

The maximum likelihood estimate of p is given by &. Setting u = Z, (2)
becomes

3 ¢ = —3i{log (2x) + log |Z| + tr (AZ7Y)]

when ¢ = log (L)/N. Viewing ¢ and = as functions of A and A, let dZ and d¢
denote the differential elements corresponding to dA and dA. Then

dp = 3tr[27Y(4 — )27 d3]
dZ = dA N + AdA + 2AdA.
The element d¢ equals 0 for all dA and dA if and only if
) 24— 2274 =0

diag [Z7'(4 — 2)27'A] = 0.

@

These are the likelihood equations for A and A corresponding to the sample
Zi, -+, xx . The first likelihood equation can be put into the equivalent form

(6) (A — AHAT'A = ANATA
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Let ¥, , -+, vm denote the m largest eigenvalues of (4 — A®)A™ and
let £, , --- , £, denote the corresponding eigenvectors normalized so
that /A7, = v, . Let

(7) A=({17"':£m)'

Then A satisfies (6), and the chain of implications
(A — AHAT'A = ANATA= (A — A% — AM)AT'A =0
=(4 —DATA=0=2A=ZA7 A= AZ'A = A
=S (A—-2TA=0=3A4-227A=0

shows that A satisfies the first likelihood equation in (5). Using the first,
the second likelihood equation can be put in the form

8) diag (4 — Z) = 0.

View A as a function of A given by (7). A root A of (8) together with the
corresponding A gives a solution to the likelihood equations (5). Equation (8)
may be put in the form

9) A? = diag (4 — AA)

which suggests a simple iteration algorithm for obtaining roots of (8). This
algorithm with or without minor variations has been proposed by Lawley
[1940], Rao [1955], and others and has become the standard algorithm for
maximum likelihood estimation. T'wo problems arise. First, it will be shown
that when A is singular the differential of the transformation which takes A®
into diag (A — AA’) has an eigenvalue of 1. This means that the iteration
suggested by (9) is numerically unstable at a singular A and that it will con-
verge slowly, at best, to a nearly singular A. The examples of Section 5 will
show that solutions involving singular A’s can and do arise in practice.
Second, even when the simple iteration does converge to a solution it does
so at best linearly. As pointed out earlier this makes it difficult, in practice,
to identify convergence.

Rather than using simple iteration the authors propose solving the second
likelihood equation by means of the Newton—-Raphson algorithm. The basic
problem is to find a practical formula for the differential of the transformation
which takes A into diag [Z7'(4 — Z)=7'Al

8. Newton—Raphson Solution

As in the previous section, assume that A is a function of A given by (7).
Let ¢’ denote the differential of the transformation which takes A into ¢ and
let ¢” denote the second differential of this transformation. The Newton—
Raphson algorithm for finding a solution to the equation ¢’ = 0 is given by
the repeated replacement of A by
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(10) A=A~ (@

The algorithm is not applied to the entire set of (m 4 1)n parameters in A
and A but only to the n parameters in A. In effect the Newton-Raphson
algorithm is being used to solve the second likelihood equation in (5) under
the assumption that the first is satisfied.

In order to find a formula for ¢’ it is convenient to let A = A™V%A, ¢, =
A% R = ATVPAPATY? and £ = A7V2ZA7V2 Let f denote the function
which takes A into ¢. It follows from equations (4) and (5) that the differential
of this function is given by

(11) df = 2 tr [E7'T — 2)E7'4AL

It follows from (6) that the m largest eigenvaluesof I — Aarevy,, -+, Ym.
Letwy,, -+ ,v. denote all the eigenvalues of I — A and letw, , -- - , v, denote
the corresponding eigenvectors normalized so that vjv; = 1. Then

(12) (I — A)v; = ')’4?); 5 W:?); = 1.

It follows that ¥, = v}"%, for 7 < m and hence

(13) AR = v, , i < m.

Thus by (12) and (13), £ has the spectral representation

(14) 5= vl + 2 A — vt
i=1 Tl
and hence,
(15) SNI — DET = Y vl — ) vk

f=mtd

Finally from (11),

=1 > urdin

2iam+1

(16) df

where a; = v;(1 — ¥,) . Let ddf denote the second differential element of the
function f corresponding to the differential elements dA, and d4, . Then

an ddf =% 3 (@l dy: vl d&, v; + 20 dB, dv)

i=m+1

where o = da,;/dy; and dy; and dv; are the differential values of v; and »;
corresponding to dA, . From (12),

18) ~dAw; + (I — A) dv; = dyw; + v.: dv;
and v dv; = 0. Multiplying both members of (18) by v} gives
{19) dy: = —v; ddw,
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and multiplying both members of (18) by v/ , where j 5 4, gives

vidy, = —(y: — v;)7 '} dBw; .
Multiplying both sides of this equation by v; and summing over all j # ¢ gives
(20) v, = — 2 (vi — ;) ) dByv; .

i#i

Using (19) and (20), (17) becomes

1) ddf = — E E Bt d51 v} dA, v;
tmm+1l j=1
where
©@) B, = {%—a: =31+ 70 — 77, i=j
oy — 'Yi)-l = v;{(1 ~ ‘Y.')_z('Y.' - ’Y,-)-l, 1 # 7.

Let g denote the function which takes A® into ¢ and let u; = A~ V%, . It
follows from (16) and (21) that the first and second differentials ¢’ and g”
of g are given by

dg =% > awl dA® u;
(23) t=m+l
ddg = — > Z Biul dAT uul dAs u;

i=m+l j=1

The matrices (g!) and (g!) of these differentials are given by

gr = % Z a,-uff
(24) ism+1l
grs = Z Z Bty Uy U Uy

f=m+1 =1
Finally, the matrices (¢!) and (¢!’) of ¢’ and ¢’/ are given by
| A ’
(25) ¢r it 2 Ar gr
re=44, 9104, +254,9

where §,, denotes the Kronecker delta. In summary, the computational form
of the Newton—-Raphson algorithm is given by (10) where ¢’ and ¢’ are
obtained from equations (22), (24), and (25) and the solution to the eigen
problem

(26) A—Uz(A - AZ)A_IMU.' = Y, viv; = 1.

i

It is useful to have a computational formula for the likelihood L or, equiva-
lently, for ¢. Such a formula, which follows from (3) and (14), is given by
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@27 ¢ = -*% l:log 2r) + log |4 4+ m

+ ﬂz flog(1 — ) +(Q — ’Yf)-l}]'

tmm+1
This equation clears up a difficult point. In effect we have presented an.
algorithm for solving the likelihood equations under the restriction that A
is a funetion of A given by (7). It would be comforting to know that such a
pair of values can produce an absolute maximum likelihood. We may assume
without loss of generality that for an absolute maximum A’4A™*A is diagonal.
It follows from (6) that £, , -+ , £, must be eigenvectors of (4 — A)A™}
but not that they must, as we demanded, correspond to the m largest eigen-
values. Since A’A™"A is non-negative definite, the eigenvalues corresponding
to the £; must be non-negative. Since log (1 — v) + (1 — ¥)~* is & mono-
tonically increasing funetion of v for v > 0 it follows from (27) that for an
absolute maximum«, , - - - ,v., must be the largest eigenvalues of (4 — A)A™.

4. Why Simple Iteration Doesn’t Work

It was stated earlier that when A is singular the differential of the trans-
formation which takes A® into diag (4 — AA’) has an eigenvalue of 1 and
hence the simple iteration given by (9) is numerically unstable for singular
A, Tt is sufficient to prove that the differential of the transformation % which
takes A? into diag (4 — Z) is singular when A is singular. We have

(28) A~ 3 = (AN + A)ZV(A — Z)ZNAN + A%
and hence, using the first equation in (5),
(29) diag (4 — Z) = A’ diag [Z77(4 — Z)=7'A%

Viewing diag [Z7'(4 — Z)Z7'] as a function w of A% let dh and dw denote
the differential elements which correspond to dA®. Then,

dh = 2A%w dA® + A* dw.

If A is singular, then as dA® ranges over the space of n by n diagonal matrices,
dh ranges over a proper subspace of such matrices. It follows that the differ-
ential of % is singular when A is singular.

5. Examples

In this section we shall look at the results of applying the Newton-Raphson
algorithm to two examples in the literature, both of which use real data.
The first was given by Rao [1955, p. 110] and the second by Harman [1960,
p. 376]. Both authors used simple iteration algorithms similar to (9) to
obtain the solutions they present. Table 1 shows the results of applying the
Newton-Raphson algorithm to Rao’s example using his solution for starting
values. The algorithm converged cleanly and solidly in six steps to a singular
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A. That Rao’s solution does not correspond to a maximum likelihood solu-
tion is indicated by the fact that ¢ increases from —2.8733 to —2.8573.
That the solutions differ substantially can be seen by looking at
the corresponding factor loadings presented in Table 2. The fact that
max, |¢/| = 1.3-107° indicates that the solution given in Table 2 is at least
a stationary point of the likelihood function. To show that it is a local maxi-
mum one could compute the eigenvalues of the matrix (¢//) and verify that
they are all negative. Equivalently one could verify that the tolerance of the
matrix — (¢/!) is positive [Jennrich and Sampson, 1968]. Since this tolerance
is a standard output of the matrix inversion routines used by the authors,
the latter criterion was used. The tolerance of the solution given in Table 1
is .963 and hence the solution is at least a local maximum of the likelihood
function.

TABLE 2

Rao's Loadings

Factor 1 . 845 .817  .477 .4016 .669 .891 .834 ,651 .833

Factor 2 | -.309 -.084 .012 .153 .161 .145 .081 ,122 .080

Newton-Raphson Loadings

Factor 1 1.000 .720 .410 .280 .520 .710 .680 .510 .680

Factor 2 . 000 .370  .242  .326 .444 .556 .491 .425 ., 489

The results of applying the Newton—Raphson algorithm to Harman’s
example are given in Table 3. Originally the authors used Harman’s answers
as starting values, but the likelihood function was not concave down at this
starting point and the algorithm converged to a saddle point of the likelihood
function. Investigation of the solution suggested that the starting value of
Ag was too small. After increasing this value to .700 the Newton-Raphson
iteration converged to the local maximum presented in Table 3. The value of
¢ corresponding to Harman’s solution was —1.5273. The Newton—Raphson
value of —1.4863 indicates again that Harman’s solution does not correspond
to a maximum of the likelihood function. That the solutions differ substanti-
ally can be seen by comparing the factor loadings presented in Table 4.
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It should be pointed out that Harman apparently performed his calcula-
tions by hand and carried out only five iterations. He also suggested that he
may not have achieved convergence. Rao’s calculations on the other hand
were carried out on an electronic computer presumably to a point that
appeared stationary.

While both examples produced singular A estimates, this is the exception
rather than the rule. The examples demonstrate that this exception occurs
in practice and with it the convergence problems discussed in Section 4.
The fact that the estimate of A is singular does not imply that the population
A is singular. Thus, the zero estimate for A, in the first example suggests
that the corresponding population value is small, but it need not be zero.

An interesting consequence of singular A estimates, or singular A’s in
general, can be seen from Tables 2 and 4. In each table one variable has a
loading of exactly one on one factor and exactly zero on the remaining.

TABLE 4

Harman's Loadings

Factor 1 .874 .874 . 838 . 849 . 710 . 596 .534 .612
Factor 2 |-.258 ~-.370 ~-.358 -.281 . 625 . 529 . 544,423
Factor-3 | -.102 . 081 -.013 -.093 -.141 -.021 -.028 .493

Newton-Raphson Loadings

Factor 1 .846 1,000 . 881 . 826 . 376 . 326 L2777 .415
Factor 2 . 189 . 000 . 055 . 160 . 876 . 725 .704  ,543
Factor 3 | -. 348 .000 -.164 -.368 .031 .093 .130 .204

This phenomenon occurs as follows. Any variable with a zero unique vari-
ance must lie in the common factor space. If there is only one such variable
it must be a canonical variable and, in the case of Rao’s canonical factor
analysis, colinear with a factor. The phenomenon would disappear if some
other rotation criterion, such as varimax, were used.

The investigation presented here is similar in some respects to that of
Karl Joreskog [1967]. His basic iteration uses the method of Fletcher and
Powell [1963] and resembles our Newton-Raphson iteration in a number
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of ways. His treatment of the singular A problem, however, differs sub-
stantially. No attempt will be made to compare the two algorithms syste-
matically but it is perhaps worth pointing out that, in personal correspon-
dence, Harry Harman has observed that, when applied to the second example
discussed above, both algorithms converged rapidly to identical answers.

6. Some Practical Considerations

The existence of solutions involving singular A suggests that if the diagonal
components of A® were permitted to be negative, then larger values of the
likelihood function might be obtained. Such solutions would suggest that the
factor analysis model may not represent the population being sampled. It
was hoped that if A® were replaced by A in the original model, thus in effect
.allowing negative unique variances, the resulting solutions would indicate
the degree, if any, to which the original model failed to represent the sampled
population. It was also hoped that such a modification would eliminate
saddle points associated with singular A’s. In some cases, including Harman’s
example, finite solutions involving negative unique variances were found,
but in others neither hope was realized. Instead, zero unique variances were
replaced by negatively infinite unique variances and singular A saddle points
by saddle points at infinity. Because of this and because negative variances
make little sense, it seems that for a general purpose algorithm it is best to
retain the A® formulation.

The major computational effort in our Newton—Raphson algorithm is
devoted to the computation of the matrix (g/;). This requires on the order
of 1(n — m)n® multiplications. It is in theory possible to reduce this to about
imn® multiplications. Since in practice m is frequently less than n/10 this
modification could result in as much as ten-fold increase in computation
speed. The modification is based on the observation (stated here without
proof) that ¢’/ can be written in the form

(30) gt = G AT = AT°A,) 68,0+ 20 20 Bite ittty Uy
i=1 fe=1

When A is nearly singular this formulation has obvious numerical problems
which may or may not be serious. It was a fear that they might be serious
that prompted the authors to use formula (24) rather than (30). Moreover,
the actual computation time required by the original formulation seems
quite modest. Using an IBM Model 75 computer, the 8 and 9 variable
problems discussed in Section 5 required about 10 seconds of computing
time each.

The algorithm presented here has been used on a total of about ten prob-
lems. While this is sufficient to prove its feasibility, it does not demonstrate
its practicality. The latter, in the opinion of the authors, requires a user-
oriented program and extensive use on a large variety of problems.
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7. Conclusion

This paper demonstrates the feasibility of using a Newton-Raphson
algorithm to solve the likelihood equations which arise in maximum likeli-
hood faetor analysis. The algorithm leads to clean and solid quadratic con-
vergence which in applied problems contrasts significantly with the slow
linear convergence of popular simple iteration algorithms. In addition, the
Newton—-Raphson algorithm provides a means of verifying that the solution
obtained is at least a local maximum of the likelihood function.

It has been shown that for a popular simple iteration algorithm, con-
vergence to a solution is impossible under conditions which are encountered
in practice. Because of this and because of the characteristically slow con-
vergence of simple iteration algorithms, false solutions have been presented
in the literature.

The maximum likelihood method of factor analysis, as compared to other
methods, is relatively unpopular. Considering the difficulties encountered in
the use of formula (9), this is perhaps a tribute to the insight of factor analysis
practitioners. However, the simple iteration algorithm given by (9) is quite
similar to the simple iteration algorithm used in least squares factor analysis
[Harman, 1960, p. 89]. The latter algorithm, which is usually referred to as
“iteration for communalities,” is a feature of most standard factor analysis.
programs and its use is quite popular. We know from experience that the
algorithm converges slowly and one wonders to what extent it is plagued
by the same difficulties that plague algorithm (9). Using the techniques of
Section 3 the authors have derived Newton-Raphson formulas for the least
squares factor analysis problem, but to date the algorithm has not been
programmed.

The key to deriving a Newton—Raphson algorithm for maximum likeli~
hood factor analysis was the development of a formula for the matrix (¢71).
This matrix is also the key to formulas for the asymptotic variances of
parameter estimates. For example, (/)™ is a consistent estimate of the
asymptotic covariance matrix of the maximum likelihood estimates of the
unique standard deviations. The authors hope to discuss related results in a
subsequent paper.
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