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This paper demonstrates the feasibility of using a Newton-Raphson 
algorithm to solve the likelihood equations which arise in maximum likelihood 
factor analysis. The algorithm leads to clean easily identifiable convergence 
and provides a means of verifying that the solution obtained is at least a local 
maximum of the likelihood function. It is shown that a popular iteration al- 
gorithm is numerically unstable under conditions which are encountered in 
practice and that, as a result, inaccurate solutions have been presented in 
the literature. The key result is a computationally feasible formula for the 
second differential of a partially maximized form of the likelihood function. In 
addition to implementing the Newton-Raphson algorithm, this formula pro- 
vides a means for estimating the asymptotic variances and covariances of the 
maximum likelihood estimators. 

1. Introduction 

The maximum likelihood method of est imating factor  loadings has a 
number  of desirable statistical properties which include asymptot ic  efficiency, 
invariance under change of scale, and the existence of a xLtes t  for additional 
factors. The  method has been extensively discussed b y  Lawley [1940], Rao 
[1955], and Anderson and Rubin [1956]. These authors suggest simple i teration 
algorithms for estimation which, with minor variations, consist in finding 
factor  loadings A which maximize the likelihood function for a specified set 
/~2 of unique variances. The  unique variances are then modified so tha t  the 
sum of each communal i ty  and the corresponding unique variance is equal to 
the corresponding sample variance. This  process, which is summarized in (9) 
below, is repeated until A 2 and A converge. While it  can be shown tha t  the 
max imum likelihood estimates of A 2 and A constitute a s tat ionary point of 
this process, a number  of difficulties arises. The convergence of the algori thm 
is at  best linear. This means tha t  from a computat ional  point of view it  m a y  
be, and in fact frequently is, difficult to recognize when convergence has 
occurred. A still greater difficulty is tha t  in some cases the algorithm will not 
converge a t  all. In  addit ion to showing why this can happen,  it will be shown 
tha t  real data  analyzed by  Rao [1955] and H a r m a n  [1960] arc of this un- 
favorable type and tha t  apparent ly  as a consequence these authors were led 
to erroneous solutions. To eliminate these difficulties the authors propose 
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solving the appropriate likelihood equations by a method based on the 
Newton-Raphson algorithm [Henrici, 1964, p. 105]. With sufficiently good 
starting values the Newton-Raphson algorithm converges and the con- 
vergence is quadratic. Tha t  sufficiently good starting values can be found is 
illustrated by the examples in Section 5. The value of quadratic convergence 
is indicated by  the clean, easily identifiable convergence they display. 

2. Discussion o] the Problem 

The factor analysis model as given by  Anderson and Rubin [1956] states 
tha t  a vector x of n scores has a normal distribution with mean vector  
and eovariance matrix 2; = AA t + A 2. The  matrix A is n by  m with m < n 
and the matrix A is diagonal. Our problem is to find maximum likelihood esti- 
mates of u, A, and A based on a random sample x~, • • • , x~ of score vectors. 
The likelihood of ~, A, and A corresponding to the sample is 

= [ _ 1  . 
(1) 

Lett ing 

1 
( x ,  - ~ ) ( x ,  - ~ ) ' ,  A = ~ , = ,  

equation (1) can be put  in the form 

(2) log (L) = --½N[log (27r) + log IZ I + t r  (A2; -1) 

+ (~ - ~ ) , 2 ; - , ( ~  _ ~)] .  

The maximum likelihood estimate of ~ is given by  ~. Setting ~ = ~, (2) 
becomes 

(3) ¢ = -½[log (27) + log Ix[ + t r  (A%-1)] 

when ~ = log (L)/N. Viewing ~b and 2; as functions of A and 5, let dZ and d¢ 
denote the differential elements corresponding to dA and dA. Then 

(4) d~ = ½ tr  [Z-~(A - 2;)Z-' dZ] 

d2; = dAA'  + A d h  t + 2 A d A .  

The element d¢ equals 0 for all dA and dA if and only if 

(5)  2 ; -1 (A - 2;)2;-1A = 0 

diag [2;-~(A -- 2;)2;-IA] = O. 

These are the likelihood equations for A and A corresponding to the sample 
x~, • • • , x•. The  first likelihood equation can be put  into the equivalent form 

(6) (A -- A~)A-'A = AA'A-'A. 
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Let ~i , " '"  , ~ ,  denote the m largest eigenvalues of (A -- A2)A -1 and 
thatlet ¢1¢~A_~, ""='v_~.  Letden°te the corresponding eigenvectors normalized so 

(7) A = (e,,  . . .  , ~ ) .  

Then h satisfies (6), and the chain of implications 

(A - A2)A-~A = AA'A-1A ~ (A -- h 2 -- AA')A-1A = 0 

(A -- ~)A-1A = 0 ~ A = E A - ~ A ~  A~g-IA = A 

(A - ~)~-~h = 0 ~ ~-~(A - ~)~-IA = 0 

shows that  h satisfies the first likelihood equation in (5). Using the first, 
the second likelihood equation can be put  in the form 

(8) diag (A - ~) = 0. 

View A as a function of h given by (7). A root A of (8) together with the 
corresponding A gives a solution to the likelihood equations (5). Equation (8) 
may be put  in the form 

(9) h 2 -- diag (A - AA') 

which suggests a simple iteration algorithm for obtaining roots of (8). This 
algorithm with or without minor variations has been proposed by Lawley 
[1940], Rao [1955], and others and has become the standard algorithm for 
maximum likelihood estimation. Two problems arise. First, it  will be shown 
tha t  when A is singular the differential of the transformation which takes h ~ 
into diag (A -- AA') has an eigenvalue of 1. This means tha t  the iteration 
suggested by (9) is numerically unstable at  a singular A and tha t  it  will con- 
verge slowly, at  best, to a nearly singular A. The examples of Section 5 will 
show that  solutions involving singular A's can and do arise in practice. 
Second, even when the simple iteration does converge to a solution it does 
so at  best linearly. As pointed out earlier this makes it difficult, in practice, 
to identify convergence. 

Rather than using simple iteration the authors propose solving the second 
likelihood equation by means of the Newton-Raphson algorithm. The basic 
problem is to find a practical formula for the differential of the transformation 
which takes A into diag [:~-X(A -- X)~-~A]. 

3. Newton-Raphson Solution 

As in the previous section, assume tha t  A is a function of A given by (7). 
Let ¢' denote the differential of the transformation which takes A into ~ and 
let ¢"  denote the second differential of this transformation. The Newton-  
Raphson algorithm for finding a solution to the equation ¢' = 0 is given by 
the repeated replacement of A by 
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(10) ~ = A -  (¢")-'~b'. 

The  algorithm is not applied to the entire set of (m + 1)n parameters in A 
and A but  only to the n parameters in A. In effect the Newton-Raphson  
algorithm is being used to solve the second likelihood equation in (5) under  
the assumption tha t  the first is sutisfied. 

In order to find a formula for ~" it is convenient to let ~, = A-'/2A, ~ = 
A-~/2 L , 7~ = A- ' /2A~A -'/2, and 2 = A-'/2y, A -'/~. Let  ] denote the function 
which takes ~ into ~. I t  follows from equations (4) and (5) tha t  the differential 
of this function is given by  

(11) d] --- ½ t r  [2- ' (1  -- 2 )2- 'd£1 .  

I t  follows from (6) tha t  the m largest eigenvalues of I - ~ are ~/,, ---  , 7~ • 
Let  ~ , ,  • • • , % denote all the eigenvalues of I - ~ and let v , ,  • • • , v. denote 
the corresponding eigenvectors normalized so tha t  v,v~' = 1. Then  

(12) (I  -- 7~)v, = y , v , ,  v,v; = 1. 

I t  follows tha t  g, = - '/2v 7, ; for i < m and hence 

(13) X3_'v, = ~ v ,  , i <_ m. 

Thus by  (12) and (13), ~ has the spectral representation 

(14) 2 = v,v~ + ~ (1 -- ~,)v,v~ 

and hence, 

(15) 2- ' (1  - 2 ) 2 - '  = ~ ~,(1 - -  .),,)-~v,v' . 
i = r a + l  

Finally from (11), 

1 
~_, a,v' dZ, v, (16) dl = ~ ,-m+, 

where a, = y, (1 -- ~,)-2. Let  ddl denote the second differential element of the 
function J corresponding to the differential elements d~,  and d ~  . Then  

(17) dd] = ~ (a; d~,, v~ d~,  v, -t- 2a,v~ d~, dr,) 
, = m + l  

where a~ = dc~ffd~,~ and dv~ and dv~ are the differential values of ~ and v~ 
corresponding to dTb.  From (12), 

(18) --dT~2v, -+- (I  -- ~) dr, = d',/,v, -at- "),, dr, 

and  v' dr, = 0. Multiplying both members of (18) by  v' gives 

(19) d T , =  --v'~ dZ,2v, 
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and multiplying both members of (18) by v~ , where j # i ,  gives 

v; d r ,  = - - ( ' y ,  - -  -1 , "Yi)  v i  d Z ' 2 v ,  • 

Multiplying both sides of this equation by v; and summing over all j # i gives 

(20 )  dr, ~ (~, -1 , = - -  - - % )  v i v i d T ~ 2 v ,  

Using (19) and (20), (17) becomes 

i - m + 1  j = l  
(21) 

where 

('! d -- -1( 1 ._L. (22) ~,i = ~2 , - 2~ - -~ , ) (1 - -~ , ) - a ,  i =  j 

L~,(~,  - ~ ) - 1  = ~ , (1  - ~ , ) -2(~ ,  _ ~ 3 - 1 ,  i # i .  

Let g denote the function which takes 52 into ¢ and let u~ = A - l / 2 v ~  . I t  
follows from (16) and (21) that the first and second differentials gt and g" 

d g  = ~ ~=~+1 

d d g  = -  

of g are given by 

(23) 
a~u~ d A  2 u i  

f ~ , u ;  dA~ u i u ;  d A22 Ui • 
; = m + l  j - -1 

The matrices (g~) and (g~.) of these differentials are given by 
n 1 ~ ,~,u~, 

g '  = 2 ,-m+l (24) 

g',: = 

i = m + l  i=1  

Finally, the matrices (~) and (~:) of ~ and ~" are given by 

(25) ¢ '  = 2 ~ ,  g' 

where 8.  denotes the Kronecker delta. In summary, the computational form 
of the Newton-Raphson algorithm is given by (10) where ~' and ~" are 
obtained from equations (22), (24), and (25) and the solution to the eigen 
problem 

(26) A - 1 / 2 ( A  - -  A 2 ) A - I / ~ v ,  = ~ , , v , ,  v~v, = 1. 

It  is useful to have a computational formula for the likelihood L or, equiva- 
lently, for ~. Such a formula, which follows from (3) and (14), is given by 
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1 E (27) 4, - --2 log (2~r) + log IAI -]- m 

+ { log  (1 - ,,,,,) + (1 - ",',)-'1|' 
' / = m + l  ,--I 

This equation clears up a difficult point, hi  effect we have presented an. 
algorithm for solving the likelihood equations under the restriction that  3. 
is a function of A give~ by (7). I t  would be comforting to know that  such a 
pair of values can produce an absolute maximum likelihood. We may assume 
without loss of generality that for an absolute maximum A'A-1A is diagonal. 
I t  follows from (6) that gl , " '" , t= must be eigenvectors of (A -- ~)A -1 
but not that they must, as we demanded, correspond to the m largest eigen- 
values. Since ArA-1A is non-negative definite, the eigenvalues corresponding 
to the ~ must be non-negative. Since log (1 - ~,) + (1 -- ~,)-~ is a mono- 
tonically increasing function of -/for ~, >_ 0 it follows from (27) that  for an 
absolute maximumy~, - - - ,  ~,~ must be the largest eigenvalues of (A -- A)A -1. 

4. W h y  Simple Iteration Doesn't Work 

I t  was stated earlier that when A is singular the differential of the trans- 
formation which takes A s into diag (A - AA0 has an eigenvalue of 1 and 
hence the simple iteration given by (9) is numerically unstable for singular 
4. I t  is sufficient to prove that the differential of the transformation h which 
takes A s into diag (A - 2;) is singular when A is singular. We have 

(28) A -- 2; -- (AA' + A~)Z-I(A -- Z)2;-~(AA ' + As) 

and hence, using the first equation in (5), 

(29) diag (A -- Z) = A 2 diag [Z-I(A -- Z)Z-~]A ~. 

Viewing diag [Z-I(A -- Z)~ -~] as a function w of A s, let dh and dw denote 
the differential elements which correspond to dA 2. Then, 

dh = 2A~w dA 2 + A4 dw. 

If a is singular, then as dh 2 ranges over the space of n by n diagonal matrices, 
dh ranges over a proper subspaee of such matrices. I t  follows that  the differ- 
ential of h is singular wheI1 h is singular. 

5. Examples 

In this section we shall look at the results of applying the Newton-Raphson 
algorithm to two examples in the literature, both of which use real data. 
The first was given by Rao [1955, p. 110] and the second by Harman [1960, 
p. 376]. Both authors used simple iteration algorithms similar to (9) to 
obtain the solutions they present. Table 1 shows the results of applying the 
Newton-Raphson algorithm to Rao's example using his solution for starting 
values. The algorithm converged cleanly and solidly in six steps to a singular 
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4. That Rao's solution does not correspond to a maximum likelihood solu- 
tion is indicated by the fact that ~ increases from --2.8733 to --2.8573. 
That the solutions differ substantially can be seen by looking at  
the corresponding factor loadings presented in Table 2. The fact that 
max, [~b'[ = 1.3.10 -B indicates that the solution given in Table 2 is at least 
a stationary point of the likelihood function. To show that it is a local maxi- 
mum one could compute the eigenvalues of the matrix (~",) and verify that 
they are all negative. Equivalently one could verify that the tolerance of the 
matrix --(¢%') is positive [Jennrich and Sampson, 1968]. Since this tolerance 
is a standard output of the matrix inversion routines used by the authors, 
the latter criterion was used. The tolerance of the solution given in Table 1 
is .963 and hence the solution is at least a local maximum of the likelihood 
function. 

TABLE Z 

Rao' s Loading__~s 

Factor 1 .845 .817 .477 .401 .669 .891 .834 .651 .833 

Factor 2 -.309 -.084 .012 .153 .161 .145 .081 .122 .080 

N e w t o n - R a p h s o n  Loading s 

F a c t o r  1 1 .000 

F a c t o r  2 .000 

.720 .410 .280 .5Z0 .710 .680 .510 .680 

.370 .242 .326 .444 .556 .491 .425 .489 

The results of applying the Newton-Raphson algorithm to Harman's 
example are given in Table 3. Originally the authors used Harman's answers 
as starting values, but the likelihood function was not concave down at this 
starting point and the algorithm converged to a saddle point of the likelihood 
function. Investigation of the solution suggested that the starting value of 
A8 was too small. After increasing this value to .700 the Newton-Raphson 
iteration converged to the local maximum presented in Table 3. The value of 
¢ corresponding to Harman's solution was -1.5273. The Newton-Raphson 
value of -- 1.4863 indicates again that Harman's solution does not correspond 
to a maximum of the likelihood function. That the solutions differ substanti- 
ally can be seen by comparing the factor loadings presented in Table 4. 
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It  should be pointed out that Harman apparently performed his calcula- 
tions by hand and carried out only five iterations. He also suggested that  he 
may not have achieved convergence. Rao's calculations on the other hand 
were carried out on an electronic computer presumably to a point that  
appeared stationary. 

While both examples produced singular A estimates, this is the exception 
rather than the rule. The examples demonstrate that this exception occurs 
in practice and with it the convergence problems discussed in Section 4. 
The fact that  the estimate of A is singular does not imply that  the population 
A is singular. Thus, the zero estimate for A1 in the first example suggests 
that the corresponding population value is small, but it need not be zero. 

An interesting consequence of singular A estimates, or singular A's in 
general, can be seen from Tables 2 and 4. In each table one variable has a 
loading of exactly one on one factor and exactly zero on the remaining. 

TABLE 4 

Harman' s Loadings 

F a c t o r  1 

F a c t o r  2 

F a c t o r  3 

.874 .874 .838 .849 .710 .596 .534 .612 

-.258 -.370 -.358 -.281 .625 .529 .544 .423 

-.I02 .081 -,013 -.093 -.141 -.021 -.028 .493 

Newton-Raphson Loading s 

F a c t o r  1 

F a c t o r  Z 

F a c t o r  3 

. 8 4 6  1 . 0 0 0  . 8 8 1  . 8 2 6  . 3 7 6  . 3 2 6  . 2 7 7  . 4 1 5  

• 189 . 0 0 0  . 0 5 5  . 1 6 0  . 8 7 6  . 7 2 5  . 7 0 4  . 5 4 3  

- . 3 4 8  . 0 0 0  - . 1 6 4  - . 3 6 8  . 0 3 1  . 0 9 3  . 1 3 0  . 2 0 4  

This phenomenon occurs as follows. Any variable with a zero unique vari- 
ance must lie in the common factor space. If there is only one such variable 
it must be a canonical variable and, in the case of Rao's canonical factor 
analysis, colinear with a factor. The phenomenon would disappear if some 
other rotation criterion, such as varimax, were used. 

The investigation presented here is similar in some respects to that  of 
Karl JSreskog [1967]. His basic iteration uses the method of Fletcher and 
Powell [1963] and resembles our Newton-Raphson iteration in a number 
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of ways. His treatment of the singular A problem, however, differs sub- 
stantially. No attempt will be made to compare the two algorithms syste- 
matically but it is perhaps worth pointing out that, in personal correspon- 
dence, Harry Harman has observed that, when applied to the second example 
discussed above, both algorithms converged rapidly to identical answers. 

6. Some Practical Considerations 

The existence of solutions involving singular ~ suggests that if the diagonal 
components of 42 were permitted to be negative, then larger values of the 
likelihood function might be obtained. Such solutions would suggest that the 
factor analysis model may not represent the population being sampled. I t  
was hoped that if A s were replaced by A in the original model, thus in effect 
allowing negative unique variances, the resulting solutions would indicate 
the degree, if any, to which the original model failed to represent the sampled 
population. It  was also hoped that such a modification would eliminate 
saddle points associated with singular A's. In some cases, including Harman's 
example, finite solutions involving negative unique variances were found, 
but in others neither hope was realized. Instead, zero unique variances were 
replaced by negatively infinite unique variances and singular A saddle points 
by saddle points at infinity. Because of this and because negative variances 
make little sense, it seems that for a general purpose algorithm it is best to 
retain the A s formulation. 

The major computational effort in our Newton-Raphson algorithm is 
devoted to the computation of the matrix (g~t). This requires on the order 
of ½(n -- m)n 8 multiplications. It  is in theory possible to reduce this to about 
½mn 3 multiplications. Since in practice m is frequently less than n/ lO this 
modification could result in as much as ten-fold increase in computation 
speed. The modification is based on the observation (stated here without 
proof) that g'r~ can be written in the form 

(30) g;: = (½ A: '  -- A: 6 A, ,)  ~ ,  + ~ ~ fl,,u,,u,,u,,uo, . 
i ~ l  i - -1  

When A is nearly singular this formulation has obvious numerical problems 
which may or may not be serious. I t  was a fear that they might be serious 
that prompted the authors to use formula (24) rather than (30). Moreover, 
the actual computation time required by the original formulation seems 
quite modest. Using an IBM Model 75 computer, the 8 and 9 variable 
problems discussed in Section 5 required about 10 seconds of computing 
time each. 

The algorithm presented here has been used on a total of about ten prob- 
lems. While this is sufficient to prove its feasibility, it does not demonstrate 
its practicality. The latter, in the opinion of the authors, requires a user- 
oriented program and extensive use on a large variety of problems. 
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7. Conclusion 

This paper demonstrates the feasibility of using a Newton-Raphson 
algorithm to solve the likelihood equations which arise in maximum likeli- 
hood factor analysis. The algorithm leads to clean and solid quadratic con- 
vergence which in applied problems contrasts significantly with the slow 
linear convergence of popular simple iteration algorithms. In addition, the 
Newton-Raphson algorithm provides a means of verifying that the solution 
obtained is at  least a local maximum of the likelihood function. 

I t  has been shown that for a popular simple iteration algorithm, con- 
vergence to a solution is impossible under conditions which are encountered~ 
in practice. Because of this and because of the characteristically slow con- 
vergence of simple iteration algorithms, false solutions have been presented 
in the literature. 

The maximum likelihood method of factor analysis, as compared to other 
methods, is relatively unpopular. Considering the difficulties encountered in 
the use of formula (9), this is perhaps a tribute to the insight of factor analysis 
practitioners. However, the simple iteration algorithm given by (9) is quite 
similar to the simple iteration algorithm used in least squares factor analysis: 
[Harman, 1960, p. 89]. The latter algorithm, which is usually referred to as: 
"iteration for eommunalities," is a feature of most standard factor analysis 
programs and its use is quite popular. We know from experience that the 
algorithm converges slowly and one wonders to what extent it is plagued 
by the same difficulties that plague algorithm (9). Using the techniques of 
Section 3 the authors have derived Newton-Raphson formulas for the least 
squares factor analysis problem, but  to date the algorithm has not been 
programmed. 

The key to deriving a Newton-Raphson algorithm for maximum likeli- 
hood factor analysis was the development of a formula for the matrix (¢,~,~). 
This matrix is also the key to formulas for the asymptotic variances of 
parameter estimates. For example, (~ ) -1  is a consistent estimate of the 
asymptotic covariance matrix of the maximum likelihood estimates of the 
unique standard deviations. The authors hope to discuss related results in a 
subsequent paper. 
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