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The purpose of this study was to investigate and compare the performance of a stepwise variable 
selection algorithm to traditional exploratory factor analysis. The Monte Carlo study included six factors 
in the design; the number of common factors; the number of variables explained by the common factors; 
the magnitude of factor loadings; the number of variables not explained by the common factors; the type of 
anomaly evidenced by the poorly explained variables; and sample size. The performance of the methods 
was evaluated in terms of selection and pattern accuracy, and bias and root mean squared error of the 
structure coefficients. Results indicate that the stepwise algorithm was generally ineffective at excluding 
anomalous variables from the factor model. The poor selection accuracy of the stepwise approach suggests 
that it should be avoided. 
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Selection of Variables in Exploratory Factor Analysis: An 
Empirical Comparison of Stepwise and Traditional Approaches 

Exploratory Factor Analysis (EFA) is among the most widely used statistical methods in 
psychological research. Despite the popularity of the method, concerns have been raised with 
respect to the quality of EFAs reported in the psychological literature (Fabrigar, Wegener, Mac- 
Callum, & Strahan, 1999). Criticism of the work in this area stem, to a large extent, from ques- 
tionable methodological decisions made by researchers. Fabrigar et al. (1999) identified five 
major methodological issues requiring decisions on the part of the researcher in the implemen- 
tation of exploratory factor analysis. These include (a) the selection of variables to be used in 
the study, the size and nature of the sample, and consideration of the psychometric properties 
of the measures, (b) the determination of whether EFA is the most appropriate form of analysis 
given the goals of the research project, (c) the choice of method to fit the common factor model 
(e.g., factor extraction procedures), (d) the criteria to employ to determine the number of factors 
to retain, and (e) the method for rotating factors to yield a final interpretable solution. Failure to 
make an appropriate decision regarding one or more of these methodological issues may lead to 
erroneous results and limit the utility of the factor analysis. 

Over the years, much attention has been given in the literature to several of the methodolog- 
ical decisions noted above (e.g., methods of factor extraction, the number of factors to retain, and 
factor rotation methods). In contrast, research methodologists have given limited consideration 
to variable selection. Little, Lindenberger, and Nesselroade (1999) have suggested that the selec- 
tion of indicators (or variables) has typically relied on informal or intuitive reasoning or historical 
precedent. They note that the issue of variable selection is directly related to the quality of the 
research design and the value of the results. 
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There are two distinct phases in the conduct of an exploratory factor analysis in which a 
researcher must make decisions regarding variable selection. The first phase occurs during the 
development of the research design when decisions are made with respect to which variables 
from the domain of interest should be included in the study. Of course, the decision regarding 
what measured variables should be included is of critical importance to a study (Cattell, 1978). 
Inadequate sampling of measured variables from the domain of interest may lead to failure to 
uncover important common factors. On the other hand, the inclusion of variables that are irrel- 
evant to the domain of interest may mask the true common factors or lead to the emergence of  
spurious factors (Fabrigar et al., 1999). Issues central to the selection of  variables include both 
the number of  variables to be included in the study and the nature of those variables. 

The second phase of  variable selection occurs during data analysis, when decisions are made 
relative to the number of  common factors to be retained in the model to yield a parsimonious set 
of  factors that best reflects the underlying constructs being measured and the selection of  vari- 
ables that adequately represent each of  these common factors. There is evidence to suggest that 
the results of exploratory factor analysis are more accurate when each common factor is repre- 
sented by multiple variables in the analysis. In this regard, MacCallum, Widaman, Zhang, and 
Hong (1999), and Velicer and Fava (1998) recommend that a minimum of three to five variables 
represent each common factor. Additional considerations regarding the nature of  the variables 
include both cost and availability, as well as the meaning of the variables and the relationships 
among them (Tabachnick & Fidell, 1983). 

Further, Gorsuch (1988) identified two basic criteria for the selection of  variables, namely 
the reliability of the variables, and the expected correlations with other variables in the analysis. 
If  the reliability of variables is low, or if the correlation of a given variable with the other variables 
in the domain of interest is low, then the communality of the variable will be low, as it would share 
little in common with the other variables in the domain. Fabrigar et al. (1999), and MacCallum 
et al. (1999), posit that when EFA is performed on variables with low communalities substantial 
distortion in results may occur. 

The focus of this paper is on variable selection of the second nature, that is, variable selec- 
tion that occurs during the data analysis phase of exploratory factor analysis. Because there is a 
relative lack of formal guidelines for informing critical decisions on variable selection during this 
phase, there is a compelling need for continuing efforts to explore and develop methods in this 
regard. In EFA, the magnitude of factor loadings is frequently used as a criterion to determine 
which variables are substantially related to a given factor and thus should be retained. Several 
"rules of thumb" are presented in the literature to provide guidance in this area. For example, 
while the .30 loading magnitude is one of the most popular criteria for the interpretation of factor 
analysis results (e.g., Nunnally, 1994; Tabachnick & Fidell, 1983), Comrey (1973) offers the ad- 
ditional suggestion that loadings in excess of  .71 are excellent, .63 are very good, .55 are good, 
.45 fair, and .32 poor. These rules, however, do not represent an undisputed choice, and often 
researchers choose different values based on other preferences. According to Cudeck and O'Dell  
(1994), although a variety" of  rules of thumb of  this nature are venerable, they are often ad hoc 
and ill advised. For example, the practice of  scanning coefficients for the largest loading while 
disregarding the others is sometimes employed, but such a criterion ignores the possibility of any 
complexity in the neglected variables. An alternative method noted by these authors is to interpret 
the loadings in the context of  their standard errors (using a rough approximation for the standard 
error such as the reciprocal of the square root of  N). Clearly, simple rules of  thumb do not make 
allowances for the influence of  many other important factors, such as estimation method, factor 
rotation, number of  factors, sample size, and the clarity of  the factor solution (Cudeck & O'Dell,  
1994). 

In an attempt to find a more objective method for making decisions about variable selection 
in factor analysis, Kano and Harada (2000) proposed the use of goodness-of-fit statistics within 
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the context of  stepwise variable selection procedures. Because of the controversy surrounding 
the use of stepwise procedures and the paucity of  research regarding the use of  these methods 
for factor analysis, the primary focus of  this study was to examine the behavior of  this proposed 
stepwise algorithm developed for variable selection (Kano & Harada, 2000). 

The use of  stepwise methods for the selection of  a subset of  variables or to evaluate the 
order of  importance of variables has been the subject of  much criticism in the literature (see for 
example Huberty, 1989; Snyder, 1991; Thompson, 1988b, 1989). Three commonly stated crit- 
icisms surrounding conventional stepwise methods include a dramatic inflation of  Type I error 
rates, the failure to identify the best set of  predictor variables of  a particular size, and a tendency 
to capitalize on sampling error, yielding conclusions that often are not replicable. Although pre- 
vious indictments of stepwise approaches have focused primari ly on regression analysis (Thomp- 
son, 1988b, 1989, 1995) and discriminant analysis (Huberty, 1989), concerns with data driven 
approaches to model modification can be found elsewhere. For example, in structural equation 
modeling similar concerns have been raised about the use of modification indices (MacCallum, 
Roznowski,  & Necowitz, 1992), which allow researchers to free and constrain parameters in a 
model. Since many analytic methods are correlational and are related (Knapp, 1978; Thomp- 
son, 1988a) these concerns may generalize across the family of commonly applied correlational 
methods. 

In this study the performance of a stepwise selection algorithm was investigated and com- 
pared to a traditional approach to variable selection in exploratory factor analysis using Monte 
Carlo methods. The majority of variables included in the design phase of the study were con- 
sistent with a pre-determined common factor model. However, anomalous variables were also 
considered to facilitate assessment of the extent to which each of the approaches to variable se- 
lection was effective in excluding anomalous variables from the resultant common factor model. 

A Stepwise Dwiable Selection Algorithm 

Consider a p-variate  sample covariance matrix, S, that is hypothesized to result from an un- 
derlying common factor model (Thurstone, 1947). That is, the observed values of the p-variables,  
x, can be modeled as 

x = I ~ + A f +  u (1 )  

where 

= a vector of  population means 

A = a p x k matrix of factor loadings 

f = a vector of  scores on k common factors, and 

u = a vector of  scores on p unique factors. 

When the common factor model  underlies the data, and the Var (f) = Ik, Cov (f, u) = 0, and the 
Var (u) = ~ ,  then the covariance matrix of x will be 

Var (x) = A A '  + • (2) 

The parameters in A and • can be estimated, and these estimates can be used to obtain an implied 
covariance matrix for x, 

= 3.3.' + + (3) 
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The implied covariance matrix can then be compared to the observed covariance matrix, S, to test 
the adequacy of a common factor model. More specifically, a goodness of fit )~2 statistic based 
on the l ikelihood ratio test (LRT) can be computed 

L R T  = n ( l o g  I:Cl - log  ISl) (4) 

If  the covariance matrix implied by the model  is statistically significantly different from the 
observed covafiance matrix, the k factor model can be considered inadequate. 

If  the k factor model is found to be inadequate, the researchers may wonder if the inad- 
equacy of the model  is arising from an anomalous variable. The researchers could remove the 
first variable, and then check for congruence between the covariance matrix of the remaining 
variables, Sp-1,  and the covafiance matrix implied by the k factor model, ~ p - 1 .  This process 
could be repeated for each of the p variables. The researchers could then remove the variable that 
would most improve the fit between the k factor model and the data. If  the test statistic was still 
statistically significant indicating the model  was inadequate, the researchers could then remove 
another variable. The process of removing variables could continue until a subset of variables 
was found that was consistent with the k factor model. 

Conversely, researchers working with a set of p variables for which the k factor model  
fits adequately, may wish to entertain the possibil i ty of including additional variables. The re- 
searchers could add a single variable and then check for congruence between the sample co- 
variance matrix, Sp+l ,  and the covariance matrix implied by the k factor model, ~ p + l .  The re- 
searchers could use this method to check each of the variables that they are considering adding. 
The variable leading to the smallest test statistic when Sp+l and ~ p + l  are compared would be 
added, as long as the resulting test statistic was still not statistically significant, which would 
indicate the k factor model adequately fit the data. This process could then be repeated to include 
additional variables. 

Kano and Harada (2000) developed a stepwise algorithm that integrates these steps for 
eliminating and adding variables. To ease the computational demands, a Lagrange Multiplier  
Test (LMT) was developed and substituted for the LRT. Consideration of this algorithm reveals 
both similarities and differences with other stepwise procedures. Like other stepwise procedures, 
one would anticipate that this algorithm would capitalize on sampling error as it steps through 
the data using statistical tests that do not adequately account for the degree to which the data are 
being examined. Also like other stepwise procedures, each step is conditional on the results of 
previous steps. This leaves one wondering if a better subset of variables could have been found 
by considering all possible subsets. Although these similarities would lead one to be skeptical 
of the performance of the stepwise factor analysis, there is a difference between stepwise factor 
analysis and other stepwise algorithms that should also be considered. 

The stepwise factor analysis seeks to maximize the number of variables in the model  under 
the constraint that the covariance matrix of the variables does not differ significantly from the 
covariance matrix implied by a k factor model. The notion is that more indicators are better 
as long as they are consistent with the model. Since exclusion is based on obtaining statistical 
significance, one would anticipate that low power would lead to the inclusion of anomalous 
variables. In contrast, both stepwise regression and stepwise discriminant function analysis are 
designed such that inclusion, not exclusion, is based on obtaining statistical significance. Thus 
with these other stepwise procedures one would anticipate that low power would result in the 
failure to include key variables. 

Also note that it can be anticipated that the stepwise algorithm would only be able to identify 
some kinds of anomalous variables. In particular, the algorithm looks for variables that are in- 
consistent with a k factor model. If  we have p variables that are consistent with a k factor model, 
then ~p - Sp approaches 0 as n approaches oc. If  we then add a variable such that ~ p + l  - Sp+l  



K.Y. HOGARTY, J.D. KROMREY, J.M. FERRON, C.V. HINES 597 

does not approach 0 as n approaches cya, we have added a variable that is inconsistent with the 
k factor model, and would suspect that the stepwise algorithm would identify the variable given 
an ample sample size. There are variables, however, that are consistent with a k factor model, 
f;,p+l - Sp+l approaches 0 as n approaches ,ex~, but that are also a poor choice for a factor an- 
alytic study. It would appear that the stepwise algorithm would have difficulty identifying this 
type of  anomalous variable. 

As an example, consider a variable i that is uncorrelated with p variables that are consistent 
with a k factor model. The population covariance matrix, 

can be obtained from model parameters, 

where 

Np+l = Ap+lA1p+l + q@+l, 

For this type of anomalous variable ~p+l  - Sp+l approaches 0 as n approaches oc, making the 
variable difficult to identify. As a second example consider a variable i that has a relatively small 
level of relationship, say pattern coefficients less than .3, with each of the k factors. Again the 
population covariance matrix could be obtained from the model parameters, 

Gp+l = Ap+lAp+l -/- ~p+l,  

where 

a is a vector of  small pattern coefficients, and t)~ is the unique variance of variable i. One would 
anticipate that this type of anomalous variable would also be difficult to detect using the stepwise 
algorithm. 

Method 

The performance of  the stepwise algorithm was investigated using Monte Carlo methods, 
in which random samples were generated under known and controlled population conditions. In 
the Monte Carlo study, samples were generated from known populations and exploratory factor 
analyses were conducted on each sample. The conditions for the study were designed to model 
the situation in which a researcher obtains Observations on a sample of p + q variables with 
the intent to estimate k common factors (i.e., the number of  factors is determined a priori). The 
p + q variables represent a "menu" of  possible variables to be included in estimating the final 
factor solution. However, only p variables are well explained by the k common factors. The 
remaining q variables have population correlations with the p variables that are low, zero, or not 
well explained with the k common factors. 

The Monte Carlo study included six factors in the design. These factors were (a) the number 
of common factors, k, present in the population (populations were simulated with k = 2, and 5 
uncorrelated factors), (b) the number of variables, p, that are well explained by the common 
factors (with p = 3k, 5k, and 10k), (c) the factor loadings of the p well explained variables (with 
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)v = .4, .6, and .8), (d) the number of variables, q, that are not well explained by the common 
factors (with q = 1 and k), (e) the type of anomaly evidenced by the q poorly explained variables 
(no correlation with the other variables, low level of correlation dispersed among all the other 
variables, and focused correlation inconsistent with the k factor model), and (f) sample size (with 
samples of 5 (p + q), 10(p + q), and 50(p + q)). Crossing the six factors leads to 324 conditions. 
The combination of p and q variables provide population conditions that range from those with 
2% of the items being anomalous (with p = 10k, k = 5, and q = 1) to those with 25% of the 
items being anomalous (with p = 3k, k = 2, and q = k). 

Traditional approaches and recent practices using factor analytic methods were used to 
guide the selection of the aforementioned factors and conditions. For example, Gorsuch (1973) 
suggested a ratio of 5 participants per measured variable, but a sample size never less than 100, 
while Nunnally (1994) and Everitt (1975) proposed ratios of 10 to 1. These guidelines were con- 
sidered and coupled with the findings of more recent research (MacCallum et al., 1999; Velicer 
& Fava, 1998) suggesting the inclusion of other important characteristics of the data such as the 
extent to which factors are overdetermined and the level of communality. 

Because the extant literature provides no empirical evidence regarding the performance of 
the stepwise method, the conditions examined in the Monte Carlo study were selected to repre- 
sent the simplest data structures for exploratory factor analysis. For this reason, the samples were 
generated from populations characterized by orthogonal factors, completely simple structure, and 
a consistent number of variables loading on each factor. 

The samples were generated by first constructing a population covariance matrix for each 
condition simulated, then generating random samples from that population. The population cor- 
relation matrix was defined as 

R = F Rpp Rpql ( 5 )  
LRqp RqqJ' 

w h ~ e  

Rpp = A A  I + co, 

A = the p x k population factor structure matrix, 

= the p x p diagonal matrix of unique variances, 

Rqq = a q x q symmetric correlation matrix, and 

Rqp = a p x q asymmetric matrix of correlations. 

The elements of A were set to )~(= .4, .6, or .8) for one of the factors and were set to zero 
for the other factors (i.e., representing a perfectly simple factor structure in the population for 
the p variables). The elements of Rqq and Rqp depended on the type of anomalous variables. 
For conditions containing variables with no commonali ty  Rqq ---- I and Rqp ---- 0. For conditions 
with low-level dispersed correlations, the elements of Rqq and Rqp were generated from R = 
A A  I + ~ ,  setting the elements of A corresponding to the q variables to 

with h :  = .02. Finally, for conditions with focused correlations that could not be explained by 
the k common factors, Rqq = I and each row of Rqp contained a single nonzero element of .2, 
with the constraint that no two rows could have the same column with a nonzero element. 

The research was conducted using SAS/IML version 8. Conditions for the study were run 
under Windows 98. Normal ly  distributed random variables were generated using the RANNOR 
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random number generator in SAS. A different seed value for the random number generator was 
used in each execution of the program. The program code was verified by hand-checking results 
from benchmark datasets. For each condition investigated, 10,000 samples were generated. The 
use of 10,000 samples provides adequate precision for the investigation of the sampling behav- 
ior of the variable selection algorithm. For example, 10,000 samples provide a maximum 95% 
confidence interval width around an observed proportion that is -t-.0098 (Robey & Barcikowski,  
1992). 

In each sample, the stepwise algorithm proposed by Kano and Harada (2000) was run. 
The algorithm was started using principal axis factor extraction based on the p variables that 
are well explained by the k common factors. Squared multiple correlation coefficients (SMCs) 
were used as initial communali ty estimates. Following the stepwise algorithm's use of LMTs 
for variable inclusion and exclusion decisions, the procedure concluded with a varimax rotation 
of the solution based on the selected variables. As a comparison procedure, a traditional least- 
squares exploratory factor analysis was conducted on each sample, using all p + q variables 
without incorporating any variable selection procedure. The traditional procedure used principal 
axis factor extraction with SMCs as initial communali ty estimates and a varimax rotation of the 
k factor solution. 

The relative performance of the stepwise algorithm was evaluated by comparing the ob- 
tained loading matrix to the population loading matrix. Since the order of the factors (columns) 
in the obtained loading matrix may differ from the ordering in the population matrix, an algo- 
rithm was written to reorder the columns in the obtained loading matrix to minimize the squared 
differences with the population loading matrix. Several indices were then developed to summa- 
rize the differences in the matrices. 

1. Sensitivity was calculated as the proportion of samples that yielded the correct selection of 
the p variables that are well explained by the factors. 

2. Specificity was calculated as the proportion of samples that yielded the correct exclusion of 
the q variables that are not well explained by the factors. 

3. Selection accuracy was defined as the proportion of samples that yielded the correct inclusion 
of the p variables and the correct exclusion of the q variables. 

4. Pattern accuracy was determined by the proportion of samples in which the p variables loaded 
on the correct factor. 

According to Tabachnick and Fidell  (1983), as a general rule of thumb, loadings in excess of 
.30 are eligible for interpretation, whereas lower ones are not. A factor loading of .30 is indicative 
of a 9% overlap in variance between the variable and the factor. The choice of a "rule of thumb" 
regarding the size of a loading to be interpreted is, of course, a matter of researcher preference. 
When employing our comparative procedure, an item was considered to be "selected" if it had at 
least one factor loading > .30 in absolute value. For both procedures, an included variable was 
considered to have loaded on the correct factor if the absolute value of its loading on that factor 
was > .30, regardless of magnitudes of loadings on other factors. 

In addition, the bias and RMSE of the sample factor structure coefficients resulting from 
the stepwise algorithm were estimated. For comparative purposes, bias and RMSE were also 
calculated based on the loading matrix that resulted from the traditional analysis using all the 
variables with no variable selection procedure. The estimate of statistical bias for the coefficient 

^ 

of the j t h  variable with the kth factor, )Uk, is given by 

M 
1 ~ 2 ( ~ j k  ~ _ x jk ) ,  Bias (2jk) = ~ m=l (6) 
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where )~jkm = the coefficient obtained from the ruth sample, ;~jk = the population parameter, 
and the summation is over the M samples included in the Monte Carlo study. 

The estimate of RMSE is given by 

RMSE (~-jk) = (~.jkm -- ,~jk) 2 (7) 

where the elements are as defined above. 
Of  the indices examined, selection accuracy is most consistent with the purpose behind the 

development of  the stepwise algorithm and thus is central to its evaluation. The indices of  sensi- 
tivity and specificity support the examination of selection accuracy, and are useful in isolating the 
source of  difficulty in circumstances where the selection accuracy is not adequate. In situations 
where selection accuracy is adequate, attention can be turned to pattern accuracy, which is central 
to the purposes motivating a factor analysis. The estimates of bias and RMSE are computed to 
help provide insight if  pattern accuracy is not high, and to provide a basis for choosing between 
the stepwise and more traditional method if pattern accuracy is comparable and acceptable for 
both. 

Results 

To save space, detailed results are provided only for conditions with moderate population 
factor loadings ()~ = .6). The pattern of results was consistent across the other )~ values examined, 
although more favorable results were obtained in general with )~ = .8 and less favorable results 
with L = .4. The complete results may be obtained from the authors, 

Selection Accuracy 

The estimates of selection accuracy and its two components (sensitivity and specificity) 
obtained for the stepwise (SW) and traditional ( IA)  methods are presented in Tables 1-3. For ex- 
perimental conditions with q variables that evidence no correlation with the p variables (Table 1), 
the SW method provided sensitivity values of .95 or higher across all conditions. In contrast, the 
sensitivity of the TA method varied from .79 to .96, with sensitivity increasing as a function of 
both the number of variables and the sample size. For example, with k = 2, p/k  = 3, and q = 2, 
the sensitivity of TA ranged from .79 (with n = 5 per variable) to .94 (with n = 50 per variable). 
With larger matrices, the sensitivity was higher across sample sizes. With k = 5, p/k = 10, and 
q = 5, for example, the sensitivity ranged from .94 to .96 across the three sample sizes examined. 

In contrast to these sensitivity results, the SW method evidenced a lack of specificity across 
the experimental conditions (ranging only from .00 to .04). The TA method, however, showed 
a specificity pattern that was consistent with the sensitivity results, increasing with both sample 
size and the number of  variables. For example, with k = 2, p/k = 5, and q = 2, the specificity 
of  TA ranged from .69 (with n = 5 per variable) to .95 (with n = 50 per variable). With k = 5, 
p/k = 10, and q = 5, the sensitivity was high across sample sizes, ranging from .94 to .96. 

With specificity and sensitivity combined into selection accuracy, the SW method performed 
very poorly, with selection accuracy ranging from only .00 to .03, while the TA method's  selec- 
tion accuracy ranged from .27 to .96. As with the sensitivity and specificity results, the selection 
accuracy of  the TA method increased dramatically with larger sample sizes and with larger ma- 
trices. 

The selection accuracy results for conditions in which the q variables evidenced low, diffuse 
correlations with the p variables are presented in ']hble 2. The overall pattern of  results with this 
type of anomalous variable was consistent with that obtained with the uncorrelated q variables. 
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TABLE 1. 
Selection accuracy for stepwise and traditional factor analytic methods [anomaly = no 
correlation]. 

601 

Selection 
Sensitivity Specificity accuracy 

k P / K  Q N/Vax SW TA SW TA SW TA 

2 3 1 5 98 79 3 48 3 42 
2 3 1 10 98 90 3 79 3 75 
2 3 1 50 97 94 3 94 3 94 
2 3 2 5 99 79 0 30 0 27 
2 3 2 10 98 91 0 71 0 69 
2 3 2 50 98 94 0 94 0 94 

2 5 1 5 96 87 3 78 3 72 
2 5 1 10 97 94 3 93 2 92 
2 5 1 50 97 95 2 95 2 95 
2 5 2 5 97 89 1 69 0 65 
2 5 2 10 97 95 0 92 0 92 
2 5 2 50 97 95 0 95 0 95 

2 10 1 5 95 93 3 92 3 92 
2 10 1 10 96 95 3 95 2 95 
2 10 1 50 97 96 2 96 2 96 
2 10 2 5 96 93 1 91 1 91 
2 10 2 10 97 95 1 95 1 95 
2 10 2 50 97 95 1 95 1 95 

5 3 1 5 98 89 2 57 2 53 
5 3 1 10 97 95 2 92 2 91 
5 3 1 50 95 93 3 93 2 93 
5 3 5 5 99 88 0 17 0 17 
5 3 5 10 99 95 0 86 0 86 
5 3 5 50 98 93 0 93 0 93 

5 5 1 5 96 94 3 91 2 90 
5 5 1 10 97 95 2 95 2 95 
5 5 1 50 97 96 2 96 2 96 
5 5 5 5 98 95 1 84 1 84 
5 5 5 10 98 95 1 95 1 95 
5 5 5 50 98 95 1 95 1 95 

5 10 1 5 96 94 4 94 3 94 
5 10 1 10 97 96 3 96 3 96 
5 10 1 50 97 96 3 96 2 96 
5 10 5 5 97 94 2 94 2 94 
5 10 5 10 98 96 2 96 2 96 
5 10 5 50 98 96 1 96 1 96 

Note. Values have been multiplied by 100 and rounded. Estimates are based on 10,000 
replications. 
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That is, the SW method evidenced extremely high sensitivity but near absence of specificity 
across the conditions examined. Also consistent with the previous results, the TA method showed 
increasing specificity and sensitivity with larger matrices, larger samples, and larger population 
factor loadings. 

Finally, the selection accuracy results for conditions in which the q variables evidenced 
focused but inconsistent correlations with the p variables are presented in Table 3. With this type 
of anomalous variable, the SW method showed improved performance. The sensitivity of SW 
remained high across the conditions examined, but the method showed an increase in specificity 
as sample size increased. For example, with k = 2, p/k  = 5, and q = 2, the specificity of SW 
increased from .02 (with n = 5 per variable) to .78 (with n = 50 per variable). The SW method 
also evidenced increased specificity with larger numbers of variables. With k = 5, p/k  = 10, 
and q = 5, for example, the specificity ranged from .03 (with n = 5 per variable) to .87 (with 
n = 50 per variable), somewhat greater specificity than was evident with smaller matrices. The 
performance of the TA method with this type of anomalous variable was consistent with that 
obtained with the other anomalies examined. That is, both the sensitivity and the specificity of 
TA increased with larger sample sizes and larger numbers of variables. The overall selection 
accuracy results (combining sensitivity and specificity) ranged from .01 to .88 for SW and from 
.05 to .96 for TA. The largest differences between methods were evident with moderate sample 
sizes (n = 10 per variable) and a trend to convergence was seen with large samples. 

Pattern Accuracy 

The estimates of pattern accuracy obtained for the SW and TA methods are presented in 
Tables 4-6.  These estimates reflect the percentage of samples in which the p variables, those 
variables well explained by the common factors, loaded on the correct factor. Two different 
estimates of pattern accuracy are presented. The first estimate of pattern accuracy (per item), 
represents an average of the proportion of times each of the p variables loaded correctly on the 
k factors, the second estimate (all items), represents the proportion of samples in which all of 
the p variables loaded correctly on the k factors. Both methods evidenced a relatively high and 
consistent degree of pattern accuracy on a per i tem basis. The per item pattern accuracy exceeded 
.90 for all conditions examined, with estimates reaching 1.0 with larger matrices, larger sample 
sizes, and larger number of factors. 

Both the SW and TA evidenced consistent and increasing pattern accuracy for all items, 
across the various anomalous conditions, with larger sample sizes and larger matrices. For most 
of the conditions examined, the SW method evidenced higher overall pattern accuracy, but the 
difference in the two methods was relatively minor. As might be expected, the overall pattern 
accuracy was poorest with smaller sample sizes, smaller numbers of factors, and a lower p/k  
ratio. For example, for experimental conditions with q variables that evidence no correlation 
with the p variables (Table 4), with k = 2 and p/k  = 3, the pattern accuracy ranged from .69 to 
.98 for SW and from .68 to .94 for TA. For the same condition, but with p/k  = 10, the accuracy 
ranged from .95 to .97 for SW and from .93 to .96 for TA. 

Statistical Bias 

The estimates of statistical bias in the factor structure coefficients obtained for the SW 
and TA methods are also presented in Tables 4-6.  These estimates, the average bias in sample 
structure coefficients, were calculated for both the p variables and the q variables separately. In 
addition, an overall estimate of statistical bias for each of the conditions under study was com- 
puted. For all conditions examined, the estimated bias in the coefficients of the p variables was 
negligible for both SW and TA methods (with no bias value exceeding .02); however, differences 
were evident in the bias of the structure coefficients for the q variables. 
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TABLE 3. 
Selection accuracy for stepwise and traditional factor analytic methods [anomaly = 
focused inconsistent correlation]. 

Selection 
Sensitivity Specificity accuracy 

k P / K  Q N/Vax SW TA SW TA SW TA 

2 3 1 5 97 77 7 39 7 34 
2 3 1 10 96 89 13 66 12 63 
2 3 1 50 94 94 76 93 73 93 
2 3 2 5 98 77 1 20 1 18 
2 3 2 10 97 89 3 52 3 50 
2 3 2 50 94 94 69 93 68 93 

2 5 1 5 95 87 7 73 6 67 
2 5 1 10 96 95 14 90 13 90 
2 5 1 50 95 95 84 95 80 95 
2 5 2 5 96 88 2 59 2 56 
2 5 2 10 96 95 5 88 5 88 
2 5 2 50 95 95 78 95 74 95 

2 10 1 5 94 93 9 92 7 91 
2 10 1 10 95 95 15 95 12 95 
2 10 1 50 96 96 89 96 85 96 
2 10 2 5 94 93 4 91 3 90 
2 10 2 10 95 95 8 95 7 95 
2 10 2 50 95 95 85 95 80 95 

5 3 1 5 97 88 4 42 4 39 
5 3 1 10 96 95 11 81 10 81 
5 3 1 50 94 94 86 94 81 94 
5 3 5 5 97 84 0 6 0 5 
5 3 5 10 96 95 1 58 1 57 
5 3 5 50 93 93 79 93 75 93 

5 5 1 5 95 94 7 87 6 86 
5 5 1 10 95 95 14 95 12 95 
5 5 1 50 95 95 89 95 85 95 
5 5 5 5 94 94 1 73 1 73 
5 5 5 10 95 95 3 94 3 94 
5 5 5 50 95 95 83 95 79 95 

5 10 1 5 95 94 10 94 8 94 
5 10 1 10 95 95 16 95 13 95 
5 10 1 50 96 96 92 96 88 96 
5 10 5 5 94 94 3 94 3 94 
5 10 5 10 96 96 8 96 6 96 
5 10 5 50 96 96 87 96 83 96 

Note. Values have been multiplied by 100 and rounded. Estimates are based on 10,000 
replications. 
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TABLE 4. 
Statistical bias, RMSE and pattern accuracy for stepwise and traditional exploratory factor analyses [anomaly = no 
correlation[. 

Bias RMSE Pattern accuracy 

p Vaxs q Vars Overall p Vats q Vaxs Overall Per item All items 

k p / k  q n/Vax SW TA SW XTk SW 'IA SW TA SW TA SW TA SW TA SW TA 

2 3 1 5 
2 3 1 10 
2 3 1 50 
2 3 2 5 
2 3 2 10 
2 3 2 50 

2 5 1 5 
2 5 1 10 
2 5 1 50 
2 5 2 5 
2 5 2 10 
2 5 2 50 

2 10 1 5 
2 10 1 10 
2 10 1 50 
2 10 2 5 
2 10 2 10 
2 10 2 50 

5 3 1 5 
5 3 1 10 
5 3 1 50 
5 3 5 5 
5 3 5 10 
5 3 5 50 

5 5 1 5 
5 5 1 10 
5 5 1 50 
5 5 5 5 
5 5 5 10 
5 5 5 50 

5 10 1 5 
5 10 1 10 
5 10 1 50 
5 10 5 5 
5 10 5 10 
5 10 5 50 

- 2  - 1  - 1  0 --2 --1 18 18 20 22 19 20 93 92 69 68 
- 2  - 2  0 8 --2 0 11 12 17 32 12 15 98 98 91 89 
- 2  - 2  - 2  5 --2 2 6 7 6 15 6 11 99 98 97 94 
- 2  - 1  - 1  0 - 1  0 17 17 20 23 19 21 93 93 72 69 
- 2  - 2  0 4 - 2  0 11 11 16 30 12 16 99 98 93 90 
- 2  - 2  - 1  10 - 2  5 6 7 6 20 6 15 100 98 98 94 

0 0 0 1 0 
- 1  - 1  0 23 - 1  
- 1  - 1  - 1  4 - 1  

0 0 0 1 0 
- 1  - 1  0 13 0 
- 1  - 1  - 1  8 - 1  

0 0 0 2 0 
0 0 0 30 0 
0 0 0 3 0 
0 0 0 3 0 
0 0 0 26 0 
0 0 0 5 0 

- 1  0 0 1 0 
- 1  - 1  0 6 - 1  

--1 --1 0 11 --1 
--1 --1 0 1 0 
--1 --1 0 2 --1 
- 1  --1 0 11 --1 

0 0 0 7 0 
0 0 0 12 0 
0 0 0 12 0 
0 0 0 2 0 
0 0 0 7 0 
0 0 0 12 0 

0 0 0 12 0 
0 0 0 12 0 
0 0 0 12 0 
0 0 0 5 0 
0 0 0 12 0 
0 0 0 12 0 

1 12 12 13 16 12 14 99 98 87 85 
2 8 9 12 40 8 11 100 99 96 94 
2 4 4 4 11 4 8 100 99 97 95 
1 11 12 13 17 12 15 99 98 90 87 
2 8 8 11 33 8 12 100 99 97 94 
4 4 4 4 15 4 11 100 99 97 95 

1 8 8 8 11 8 10 100 99 95 93 
1 6 6 8 43 6 8 100 100 96 95 
1 3 3 3 6 3 5 100 100 97 96 
1 8 8 8 12 8 10 100 99 95 93 
2 5 6 8 42 6 9 100 100 97 95 
3 2 3 3 9 3 6 100 100 97 95 

0 11 11 17 22 12 12 98 97 81 79 
0 7 8 11 23 8 9 100 99 97 95 
0 4 4 5 25 4 6 100 99 95 93 
0 11 11 16 20 12 13 97 97 79 77 
0 7 7 10 18 8 10 100 99 98 95 
1 4 4 4 24 4 8 100 99 98 93 

0 8 8 11 25 8 9 100 99 95 94 
0 6 6 8 27 6 7 100 99 97 95 
0 3 3 3 26 3 4 100 99 97 96 
0 8 8 11 19 8 10 100 99 98 95 
1 5 6 7 20 6 
1 3 3 3 22 3 

0 5 6 7 28 5 
0 4 4 5 27 4 
0 2 2 2 27 2 
0 5 5 7 21 5 
0 4 4 5 26 4 
0 2 2 2 24 2 

8 100 99 98 95 
5 100 99 98 95 

6 100 100 96 94 
4 100 100 97 96 
2 100 100 97 96 
7 100 100 97 94 
5 100 100 98 96 
3 100 100 98 96 

Note. Values have been multiplied by 100 and rounded. Estimates are based on 10,000 replications. 
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For experimental conditions with q variables that evidence no correlation with the p vari- 
ables (Table 4), the TA method evidenced greater statistical bias than the SW method, with bias 
ranging from .00 to .30. The statistical bias in the TA method was largest with k = 2, p/k = 10, 
and moderate sample sizes (n = 10 per variable). The bias estimates for conditions in which the 
q variables evidenced low, diftuse correlations with the p variables are presented in Table 5. The 
overall pattern of results with this type of anomalous variable was consistent with that obtained 
with the uncorrelated q variables. That is, the SW method provided unbiased estimates across 
nearly all of the conditions examined. Also consistent with the previous results, the TA method 
showed relatively greater bias with small k, large p/k, and moderate sample sizes. 

Lastly, the bias estimates for conditions in which the q variables evidenced focused but 
inconsistent correlations with the p variables are presented in Table 6. The performance of the 
SW method with this type of anomalous variable was notably different from the performance 
observed with the other anomalies examined. For this particular anomaly, the SW method evi- 
denced more pronounced positive bias in the resulting structure coefficients than that obtained 
under the other two anomalous conditions. However, the bias for the SW method was still sub- 
stantially less than the bias witnessed for the TA method. For the SW method, bias was reduced 
with larger matrices (both for more variables per factor and for larger numbers of factors). For 
the TA method, the bias pattern was consistent with the pattern observed for the other types of 
anomalies (with the largest bias observed for conditions with small k, large p/k, and moderate 
sample sizes). 

RMSE 

In addition to estimates of statistical bias, the root mean squared errors (RMSEs) of the fac- 
tor structure coefficients of the SW and TA methods are provided in Tables 4-6.  These statistics 
reflect sampling variabili ty in terms of squared deviations from the population parameter. The 
average value of the RMSE of sample structure coefficients for both the p variables and q vari- 
ables are presented, as well as an overall estimate. If  a statistic is unbiased, the RMSE is the same 
as the standard error. Because these statistics reflect sampling error, it may be expected that the 
RMSEs would become smaller with larger sample sizes (e.g., for conditions with a large N per 
variable). When estimators are biased, however, the RMSE may not decrease with larger sample 
sizes. 

The RMSE of the p variables was consistent in magnitude for both the SW and TA methods 
across virtually all conditions. These estimates were seen to decrease dramatically with larger 
sample sizes and larger matrices. For example, with k = 2, p/k = 5, q = 2, the RMSE of 
the p variables decreased from approximately .11 to .04, across the three sample sizes examined 
(Table 4). This pattern was also consistent across the three anomalous conditions. 

For the q variables, the magnitude of the RMSE associated with the factor structure coef- 
ficients for the TA method generally exceeded those estimates for the SW method (as expected, 
because of the greater bias in the TA estimates). Although sampling error was substantially re- 
duced for both methods with an increase in sample size and number of factors, this reduction was 
somewhat more pronounced for the SW method. For example, with k = 2, p/k = 3, and q = 2, 
RMSE ranged from .20 to .06 for the SW method and from .30 to .20 for the TA method across 
the three sample sizes examined (Table 4). 

Discussion 

Although this empirical comparison of a stepwise selection algorithm to a traditional ex- 
ploratory factor analysis approach revealed many similarities in the resulting factor solutions, 
two maj or areas of difference were evident: selection accuracy and statistical bias in factor struc- 
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TABLE 5. 
Statistical bias, RMSE and pattern accuracy for stepwise and traditional exploratory factor analyses [anomaly = low 
level dispersed correlation]. 

Bias RMSE Pattern accuracy 

p Vaxs q Vars Overall p Vaxs q Vaxs Overall Per item All items 

k p / k  q n/Vax SW TA SW TA SW TA SW TA SW TA SW TA SW TA SW TA 

2 3 1 5 
2 3 1 10 
2 3 1 50 
2 3 2 5 
2 3 2 10 
2 3 2 50 

2 5 1 5 
2 5 1 10 
2 5 1 50 
2 5 2 5 
2 5 2 10 
2 5 2 50 

2 10 1 5 
2 10 1 10 
2 10 1 50 
2 10 2 5 
2 10 2 10 
2 10 2 50 

5 3 1 5 
5 3 1 10 
5 3 1 50 
5 3 5 5 
5 3 5 10 
5 3 5 50 

5 5 1 5 
5 5 1 10 
5 5 1 50 
5 5 5 5 
5 5 5 10 
5 5 5 50 

5 10 1 5 
5 10 1 10 
5 10 1 50 
5 10 5 5 
5 10 5 10 
5 10 5 50 

--2 --1 --1 1 --1 0 18 17 19 21 19 19 93 92 70 68 
--2 --2 1 11 --2 0 11 11 17 26 12 13 98 98 91 89 
--2 --2 --2 3 --2 1 6 7 6 13 6 10 100 99 97 94 
--2 --1 --1 2 --1 1 17 17 20 22 19 20 94 93 73 70 
--2 --2 1 11 --1 1 11 11 16 24 12 14 99 98 93 90 
--2 --2 --1 5 --2 2 6 6 6 16 6 12 100 99 98 94 

0 0 0 2 0 1 12 12 13 15 12 13 99 98 87 85 
--1 --1 0 15 --1 1 8 9 12 27 8 10 100 99 96 94 
--1 --1 --1 3 --1 1 4 4 4 10 4 7 100 99 97 95 

0 0 0 3 0 2 11 12 13 15 12 14 99 98 90 87 
--1 --1 0 13 0 2 8 8 11 23 8 11 100 99 97 94 
--1 --1 --1 5 --1 2 4 4 4 13 4 9 100 99 97 95 

0 0 0 2 
0 0 0 19 
0 0 0 2 
0 0 0 2 
0 0 0 16 
0 0 0 3 

--1 0 1 3 
--1 --1 
--1 --1 
--1 --1 
--1 --1 
--1 --1 

0 0 0 5 
0 0 0 6 
0 0 0 5 
0 0 0 5 
0 0 0 5 
0 0 0 5 

0 0 0 6 
0 0 0 6 
0 0 0 6 
0 0 0 5 
0 0 0 5 
0 0 0 6 

0 1 8 8 
0 1 6 6 
0 1 3 3 
0 1 8 8 
0 1 5 6 
0 2 2 3 

8 10 8 9 100 100 95 93 
8 35 6 7 100 100 96 94 
3 6 3 4 100 100 97 96 
8 11 8 10 100 99 96 94 
7 26 6 8 100 100 97 95 
3 8 3 6 100 100 97 95 

0 0 11 11 17 20 12 12 98 98 80 79 
1 5 --1 0 7 8 11 19 8 9 100 99 97 95 
0 5 --1 --1 4 4 5 23 4 6 100 99 96 94 
0 3 0 0 11 11 15 18 12 13 98 97 82 79 
0 4 0 1 7 7 10 15 8 
0 5 --1 0 4 4 4 23 4 

0 0 8 8 11 20 8 
0 0 6 6 8 25 6 
0 0 3 3 3 24 3 
0 1 7 8 10 16 8 
0 1 5 6 7 16 6 
0 0 2 3 3 21 3 

0 0 5 6 7 25 5 
0 0 4 4 5 25 4 
0 0 2 2 2 25 2 
0 1 5 5 7 17 5 
0 0 4 4 5 25 4 
0 0 2 2 2 20 2 

9 100 99 98 94 
7 100 99 98 94 

9 100 99 96 94 
7 100 99 96 95 
4 100 99 97 96 
9 100 99 97 95 
7 100 99 98 95 
5 100 99 98 95 

6 100 100 96 94 
4 100 100 96 96 
2 100 100 97 96 
6 100 100 97 94 
5 100 100 97 95 
3 100 100 98 96 

Note. Values have been multiplied by 100 and rounded. Estimates axe based on 10,000 replications. 
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TABLE 6. 
Statistical bias, RMSE and pattern accuracy for stepwise and traditional exploratory factor analyses [anomaly = 
focused inconsistent correlation]. 

Bias RMSE Pattern accuracy 

p Vaxs q Vars Overall p Vaxs q Vaxs Overall Per item All items 

k p / k  q n/Vax SW TA SW TA SW TA SW TA SW TA SW TA SW TA SW TA 

2 3 1 5 --2 --1 0 2 --1 
2 3 1 10 --2 --2 7 15 --1 
2 3 1 50 --2 --2 0 5 --1 
2 3 2 5 --2 --2 1 4 0 
2 3 2 10 --2 --2 6 14 0 
2 3 2 50 --2 --2 1 7 0 

2 5 1 5 0 0 0 2 0 
2 5 1 10 --1 --1 4 22 0 
2 5 1 50 --1 --1 0 4 0 
2 5 2 5 0 0 1 3 0 
2 5 2 10 --1 0 4 17 0 
2 5 2 50 --1 --1 0 4 0 

2 10 1 5 0 0 0 3 0 
2 10 1 10 0 0 2 30 0 
2 10 1 50 0 0 0 3 0 
2 10 2 5 0 0 0 3 0 
2 10 2 10 0 0 2 27 0 
2 10 2 50 0 0 0 3 0 

5 3 1 5 --1 --1 3 4 0 
5 3 1 10 --1 --1 3 6 0 
5 3 1 50 --1 --1 3 11 --1 
5 3 5 5 --1 --1 3 4 0 
5 3 5 10 --1 --1 3 6 0 
5 3 5 50 --1 --1 2 11 0 

5 5 1 5 0 0 1 7 0 
5 5 1 10 0 0 2 11 0 
5 5 1 50 0 0 1 12 0 
5 5 5 5 0 0 1 4 0 
5 5 5 10 0 0 1 7 0 
5 5 5 50 0 0 1 12 0 

5 10 1 5 0 0 1 12 0 
5 10 1 10 0 0 1 12 0 
5 10 1 50 0 0 1 12 0 
5 10 5 5 0 0 1 6 0 
5 10 5 10 0 0 1 12 0 
5 10 5 50 0 0 1 12 0 

1 18 18 21 23 20 21 92 91 67 65 
1 12 12 20 32 13 15 98 97 88 86 
2 6 7 7 15 7 11 99 99 94 94 
2 18 18 22 25 20 22 92 91 68 65 
2 11 12 19 30 13 17 98 97 90 87 
4 5 7 8 16 7 13 99 98 94 94 

1 12 12 13 16 13 14 98 98 86 85 
1 8 9 13 36 9 11 99 99 95 94 
2 4 4 4 11 4 8 100 99 95 95 
2 12 12 13 17 13 15 99 98 88 86 
2 8 8 13 31 9 12 100 99 95 95 
2 4 4 5 11 4 8 99 99 95 95 

1 8 8 8 11 8 10 100 99 94 93 
1 6 6 8 43 6 8 100 100 95 95 
1 3 3 3 6 3 5 100 100 96 96 
2 8 8 8 12 8 10 100 99 94 93 
2 5 6 8 42 6 9 100 100 95 95 
1 2 3 3 6 3 5 100 100 95 95 

0 12 12 19 22 12 12 97 97 76 75 
0 7 8 13 21 8 9 100 99 95 95 
0 4 4 7 25 4 6 100 99 94 94 
0 12 12 17 21 13 14 96 95 71 67 
1 7 8 12 18 8 10 100 99 95 94 
1 3 5 6 24 4 7 99 98 93 93 

0 8 8 12 23 8 9 100 99 94 94 
0 6 6 9 27 6 7 100 99 95 95 
0 3 3 4 26 3 4 100 99 95 95 
1 8 8 11 19 8 10 100 99 94 94 
1 5 6 8 18 6 
1 2 3 4 20 3 

0 5 6 7 28 5 
0 4 4 5 27 4 
0 2 2 3 27 2 
0 5 5 7 18 5 
0 4 4 5 27 4 
0 2 2 3 27 2 

8 100 99 95 95 
4 100 99 95 95 

6 100 100 95 94 
4 100 100 95 95 
2 100 100 96 96 
6 100 100 94 94 
4 100 100 96 96 
2 100 100 96 96 

Note. Values have been multiplied by 100 and rounded. Estimates axe based on 10,000 replications. 
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ture coefficients. In selection accuracy, both methods were comparable in sensitivity across the 
conditions examined (i.e., both methods identified the p variables that were well explained by 
the k common factors). However, the stepwise method showed poor specificity (the ability to 
exclude the q variables that were not well explained by the factors) for all but a limited number 
of conditions. Specifically, the stepwise method showed virtually no specificity with anomalous 
variables that evidenced either no correlation with the other variables or a low-level diffuse cor- 
relation. Further, this lack of specificity was evident across all sample sizes examined. Only with 
anomalous variables that produced focused but inconsistent correlations did the stepwise method 
exclude the q variables from the final solution. For this type of anomalous variable, the power of 
the test of fit was a critical factor in the resulting specificity (i.e., specificity increased with larger 
samples). 

Such a result was anticipated because the fit statistic used to drive the stepwise approach 
considers a rather narrow definition of an "anomalous variable." Many variables that would ap- 
pear to be a poor choice for inclusion in a factor analysis (e.g., variables that do not correlate 
with the other variables in the matrix or variables that correlate at a low level with all other vari- 
ables) do not impact the degree of correspondence between the observed and implied covariance 
matrices. As evidenced in these simulations, such variables are not adequately screened out by 
the stepwise algorithm. 

Despite the poor specificity of the stepwise method, the sample factor solutions obtained by 
this method evidenced less bias in the structure coefficients than those obtained by the traditional 
method. The increased bias seen in the traditional method, however, was localized in the q vari- 
ables. Such an increase in bias was also anticipated because of the particular inclusion criterion 
that was employed in the traditional approach as operationalized in this study. Variables were 
only selected for inclusion in a factor solution if  the absolute value of the sample factor loading 
exceeded .30. Thus, with the traditional approach, the samples with smaller loadings (both pos- 
itive and negative in direction) were not included in the factor solution and did not contribute to 
the bias calculations. Because the stepwise method was not constrained to exclude the q variables 
if  the loadings were small in magnitude, the biases in the loadings resulting from the use of this 
method were typically close to zero. 

The interpretation of these results needs to be considered in the context of the limitations of 
this research. Specifically, all of the simulations were conducted with orthogonal factor solutions 
in which the number of factors was predetermined. The decision to examine only orthogonal 
factor solutions was made in order to provide an initial evaluation of the performance of the 
stepwise method under rather simple conditions. If  the stepwise method had evidenced superior 
performance under the conditions currently examined, then exploration of oblique factor solu- 
tions would appear warranted. The failure of the stepwise method to perform adequately under 
such parsimonious conditions essentially circumvents the need to examine more complex, so- 
phisticated models or conditions. 

In the conduct of actual exploratory factor analyses, a researcher must decide on the number 
of factors to extract and on the form of rotation that is most appropriate. Further, the population 
matrices for the p variables were constructed to represent perfectly simple structure, with each 
variable being a function of only a single factor and with identical loadings present for each vari- 
able. Routinely, social science data are characterized by less clear structures and the performance 
of any exploratory factor analysis technique is l ikely to be less optimistic than results obtained 
in this study. Addit ional ly  in these simulations, only three types of anomalous variables were 
examined, and for no conditions were the types of anomalous variables mixed. Since the perfor- 
mance of the stepwise algorithm depended on the type of anomalous variable, one may question 
how the algorithm would perform with other types of anomalous variables, such as those that 
have correlations with other variables that can be partially, but not fully explained by the factor 
structure. 
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In addition to broadening the range of  data contexts examined, future research should con- 
sider the details in the application of  the variable selection methods. The initial factor solution 
that is required for the stepwise algorithm was always the "correct" one (i.e., the stepwise method 
began with a factor solution that included all of  the p variables and none of  the q variables). The 
performance of  the stepwise algorithm may deteriorate under less optimal starting conditions. 
Additionally the steps in the stepwise algorithm were based on an overall chi-square test of  fit. 
More traditional stepwise algorithms are based on incremental changes, and the performance of 
the stepwise algorithm may be altered if steps were responsive to incremental changes in fit. It 
would also be interesting to see how performance would respond to shifting focus from a chi- 
square test of  statistical significance to a descriptive fit index, such as the Comparative Fit Index 
(CFI; Bentler, 1990) or the Root Mean Square Error of  Approximation (RMSEA; Browne & 
Cudeck, 1993). Again overall levels of  fit or incremental changes in fit could be considered. 

Finally, in the traditional factor analysis approach, only a single rule of thumb was em- 
ployed. We recognize and appreciate the difficulty of developing an objective set of  rules to 
capture the multifaceted heuristics that researchers use in applied exploratory factor analysis. 
However, our decision to apply this single rule of thumb was deemed appropriate because we 
have found that the .30 saliency rule is the most commonly used method in a variety of fields 
in the social sciences. Improved results for the traditional approach may be found for rules that 
incorporate the influence of sample size through explicit consideration of anticipated sampling 
error of the factor loadings (see, for example, Cliff & Hamburger, 1967; Cudeck & O'Dell, 1994). 
Because these rules require substantially larger loadings than .30 for small sample analyses, they 
may be expected to provide improved specificity in such conditions. Similarly, the use of more 
elegant rules (such as a "simple structure" rule, requiring a substantial loading on only a single 
factor) may yield higher specificity than was obtained with the simple .30 rule applied in this 
research. 

In summary, although the stepwise selection approach examined here performed better on 
many criteria than stepwise approaches used in regression and discriminant function analyses, 
our results do not support its use in exploratory factor analysis. An important distinction is that 
stepwise approaches used in the latter applications seek to maximize a relationship with a min- 
imum number of  variables, thus capitalizing on chance relationships that occur in samples. In 
contrast, the stepwise selection approach t'or exploratory factor analysis seeks to include a maxi- 
mum number of  variables without substantially deteriorating the fit index. Despite the better than 
anticipated performance of  the stepwise procedure in terms of  criteria such as statistical bias 
and RMSE in the factor structure coefficients, the results suggest that the stepwise procedure 
is generally ineffective at excluding anomalous variables from the factor model. The stepwise 
algorithm only evidenced reasonable exclusions for a limited type of  anomaly (variables with a 
focused correlation inconsistent with the k-factor model) and only for large sample sizes. The 
poor selection accuracy of  the stepwise approach suggests that it should be avoided. In the ma- 
jority of  conditions examined, better factor solutions were obtained from the simpler traditional 
approach. 
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