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Note is taken of four related sources of confusion as to the usefulness of 
Thurstone's factor analysis model and of their resolutions. One resolution uses 
Tucker's distinction between exploratory and confirmatory analyses. Eight 
analyses of two sets of data demonstrate the procedures and results of a con- 
firmatery study with statistical tests of some, but not all, relevant hypotheses 
in an investigation of the stability (invariance) hypothesis. The empirical 
results provide estimates, as substitutes for unavailable sampling formulations, 
of effects of variation in diagonal values, in method of factoring, and in samples 
of cases. Implications of these results are discussed. 

I t  has been said tha t  a work of ar t  should provoke favorable or un- 
favorable reactions, and tha t  a scientific theory should lead to further  empiri- 
cal and theoretical work. Factor  analysis, which has been called both  an 
ar t  and a scientific approach to the s tudy of individual differences, certainly 
has evoked strong emotional responses as well as extensive empirical and 
theoretical studies. However,  neither reaction has succeeded in clarifying 
either the role of factor  analysis or the appraisal  of its usefulness as a research 
technique. One might  say confusion, if not chaos, is the norm in this field. 

In  the development of a science of psychology, confusion about  the 
usefulness of a set of procedures such as those of factor analysis should be 
a ma t t e r  of great concern. This paper  takes the position tha t  the present 
confusion stems, in part ,  f rom disagreements as to definitions of terms or 
concepts, and, in part ,  f rom failures to make certain analytical distinctions. 
A recent symposium on the "Fu ture  of factor analysis" [42] exemplifies 
several of these semantic and analytical confusions. The objectives of the 
present paper  are threefold: (i) to call a t tent ion to these sources of confusion, 
to some of their implications, and to procedures for resolving the confusion; 
(ii) to demonstrate  a type  of factor  analysis in which the usefulness of some 
hypotheses related to the stabil i ty or invariance of factor  analysis da ta  can 
be evaluated; and (iii) to provide, for several factoring procedures, empirical 
est imates of the sampling variat ion in objectively determined oblique simple 
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structure values based on data from two samples. Since available solutions 
to some statistical problems associated with factor analyses are impractical, 
such empirical estimates are useful but limited substitutes for the desired 
analytical formulations. 

Sources of Confusion 
One of the most insidious and ubiquitous sources of confusion is the 

ambiguity of the term factor analysis. That different models are classed 
under this single term is well known, but discussions of the objectives, 
techniques, and results obtained often do not make clear the specific model 
under consideration. For example, the principal components model must 
be distinguished from factor analysis models. The several factor analysis 
models in turn are differentiated on the basis of the postulation of a general 
factor, the acceptance of the necessity for rotation, and the criteria for the 
final solution (orthogonal vs oblique axes, simple structure, etc.). Statements 
appropriate to one model often do not apply to another even though certain 
transformations from one model to another may exist. 

The present discussion deals with the model as formulated by Thurstone 
[52, 54, 55] and extended or modified by the work of Anderson and Rubin [2], 
Bargmann [3, 4], Guttman [29, 30], Howe [36], Koopmans and ReiersS1 [38], 
Lawley [39], Rao [46], ReiersS1 [48], and Tucker [62, 63]. These papers indi- 
cate the relevance to factor analysis theory of the problems concerned with 
(i) the existence of the model (solvability), (ii) the identification of the 
parameters (uniqueness), (iii) the determination of the number of factors 
(rank), (iv) the criteria for rotational transformations, and (v) the test 
of the hypothesis that  the model fits a set of data. The acceptability of 
Thurstone's formulation involving oblique simple structure with common 
and unique factors reqnires consideration of solutions to these problems, 
several of which Thur~one explicitly recognized ([54]; [55], pp. v-xiv). 
Unfortunately, the extensions and clarifications of Thurstone's earlier work 
in the articles noted above have not been considered in recent articles critical 
of this factor analysis model [32, 33, 42, 58, 59, 60, 66, 67]. A minor but 
frustrating related source of confusion is the introduction of different names 
for the operations and concepts of Thurstone's model [60]. Furthermore, 
the implications of these papers have not been adequately considered by 
some proponents [17, 26] who use this model of factor analysis with test data. 
The result has been a proliferation of irrelevant and unacceptable arguments 
as to the usefulness of Thurstone's method as well as that of any other model 
of factor analysis. 

A second source of confusion derives from failures to make or to main- 
tain distinctions related to the objectives of an investigation. Such dif- 
ferences in purpose exist between the type of factor analysis which Tucker 
[63] calls exploratory as opposed to the type that Tucker calls confirmatory. 
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Basically his distinction depends upon the amount of information and of 
precision of knowledge in an area. The exploratory factor analysis, being the 
first, is used to generate hypotheses while a confirmatory factor analysis is 
designed subsequently to test these hypotheses. It  is generally accepted as 
a principle of hypothesis testing that the same set of data cannot be used 
both for inventing or generating hypotheses and for evaluating the usefulness 
of the hypotheses. I t  is, of course, conceivable that an initial analysis could 
be sufficiently precise to permit the use of the term confirmatory and to permit 
the testing of certain hypotheses. 

The purpose of an exploratory analysis, as stated by Thurstone, is 
" . . .  to discover the principal dimensions or categories . . .  and to indicate 
the directions along which they may be studied by experimental laboratory 
methods" ([54], p. 189, [55]). The principal dimensions ure discovered by 
the appearance of trans-situational response consistencies defined by the 
operations of factor analysis discussed in detail by Thurstone [55] and Tucker 
[61, 63], for example. This objective also can be expressed as the development 
of definitions of new composite variables and as the invention of hypotheses 
involving such variables [8]. In either type of activity the creative, artistic 
judgment of an investigator is as relevant in an exploratory factor analysis 
as in other creative endeavors; but the prior compulsions ~f the investigator 
for orthogonality or for a general factor, for example, will also be represented 
in his judgments and formulations [18]. The reader of the factor analysis 
literature should recognize that different compulsions lead to difi~erent results, 
i.e., to factors differently defined. Factors from two or more studies logically 
are not the same factors unless the defining operations including the reference 
tests and factoring procedures are the same. They may be similar factors 
or even parallel factors, provided definitions of such terms are specified, 
as Gulliksen does for parallel tests [27]. 

Since the initial formulation or invention of a variable or of a hypothesis 
cannot be useful by fiat, subsequent research to evaluate this usefulness is 
necessary. For this latter purpose, one may compare the empirical results 
using new samples from the same population with those obtained in the 
initial investigation; this procedure checks the stability or the invariance 
of the factor pattern [55]. Another stability question deals with the con- 
sistency of the empirical relations among modified or improved reference 
variables with those observed with the initial or unimproved variables, 
i.e., invariance under changes in the stimulus-response features of the task 
[6, 26]. Other hypotheses formulated in the initial exploratory study may 
deal with the number of significant factors and the location of specified zero 
factor loadings. For the investigation of such questions, subsequent con- 
firmatory factor analyses on new samples of cases would be appropriate. 
Completely objective techniques for the conduct of such studies, if they are 
properly designed, are available together with some of the desired statistical 
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tests. The design of such confirmatory studies is not a matter of guesses or 
hunches, nor can iust any available table of correlations be used because 
specific and often testable hypotheses are involved. The problems of designing 
such studies have been considered repeatedly by Thurstone [52, 53, 54, 55] 
and by Tucker [63]; necessary and sufficient conditions for existence and 
uniqueness of solutions are indicated by Anderson and Rubin [2]. 

A third source of confusion in the literature is associated with the types 
of hypotheses that can be evaluated by factor analysis procedures. Some 
aspects of this distinction have been noted by Eysenck [21] and by Peel [44]. 
Only a few specific hypotheses of the many considered in the factor literature 
can be appropriately investigated with the conventional factor analysis 
models. For many hypotheses, a distinction is made, or implied, in the state- 
ments of the hypotheses between a set of reference variables and/or a set 
of treatment conditions as the independent variables on the one hand and 
the experimental or dependent variables being studied on the other. This 
distinction is associated with differences in status for these two classes of 
variables. For factor analyses, Thurstone specifically rejects this distinction 
between independent and dependent variables ([54]; [55], p. 59); in fact, the 
accepted principle in the several factor analysis models is that all variables 
are to be treated as coordinate or equal. Thus, for hypotheses expressing one 
or more variables as functions of one or more other variables, the usual 
factor analysis model is inappropriate (unless the modifications noted below 
~re made). Such hypotheses include those dealing with the effects upon factor 
scores of variations in age, kind of instruction, amount of practice, drugs, 
or genetic history, for example. Other nonfactorial hypotheses include those 
dealing with factors as sources of variance in scores on tasks not used in the 
definitions of the factors. Both the distinction between independent and 
dependent variables and the introduction of approximations to part-whole 
correlations are points of issue in attempts to use a factor method for such 
hypotheses. In addition, the problem of eommunalities and the process of 
standardizing scores in computing correlations create further difficulties for 
between-group comparisons [47]. 

A fourth source of confusion arises from the description of factors as 
underlying causal variables which are not observable, which can only be 
inferred from the response consistencies, and which cannot be explicitly de- 
fined. This linguistic formulation involves a debated point in the philosophy 
of science, a point Bergmann [11, 12] eMls the confusion between meaning 
and siguifieance. A related argument is treated by Henrysson [341 in a discus- 
sion of explanatory factor analysis. The problem for factor analysis is that  
such unobservable variables cannot be directly studied as can other defined 
concepts. The factors cannot be investigated in the laboratory, for example, 
as suggested by Thurstone nor can the relations between factors and other 
variables be evaluated by nonfactorial methods, a procedure considered 
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important by Thurstone [54, 55] as well as by most experimental psychologists. 
The factors are treated as existential hypotheses or almost as reified entities 
[20]. Brodbeek has made several pertinent points regarding this manner of 
speaking [13, 14]. And such writers as Anderson and Rubin [2], Koopmans 
and ReiersSt [38], and Rao [46] also have noted some of the difficulties associ- 
ated with the unobservable characteristic of factors. 

The fourth source of confusion can readily be resolved by using the 
results of an exploratory factor analysis and possibly of one or more con- 
firmatory analyses to provide explicit objective definitions of the factors. 
These definitions will specify a factor as a definite function of observations 
on one or more designated reference variables. Such definitions are consistent 
with the existence of such factored tests as Thurstone's PMA battery [57] 
or of such sets of factor reference tests as the ETS Kit [24]. This resolution 
is consistent with Thurstone's statement of the objective of factor analysis; 
it also has several important linguistic and empirical implications. For 
example, the identification of factors as the same factor is not a problem [10] 
nor are procedures for defining a factor space common to two test batteries 
[64]. The third source of confusion can then be resolved by using explicitly 
defined factors as predictors in combination with the separation of inde- 
pendent and dependent variables in the analysis. With these two modifica- 
tions of the factor analysis model, the several factor techniques can be shown 
to be ways to compute beta weights in the linear regression model. A con- 
venient computing procedure uses the operations of the multiple-group 
method to project the dependent variables onto the space of the independent 
or factor variables. This relation follows directly from the early work of 
Holzinger and Harman [35] and Young and Householder [68]. In addition, 
explicitly defined factors can be used in nonfactorial experiments either as 
independent variables or as dependent variables. When a factor is explicitly 
defined without restricting the sample means and variances, the scores on 
the defined factors can be used as any distribution of test scores is used. 
The usefulness both of hypotheses involving factors and of proposed defini- 
tions of a factor then can be evaluated by the procedures regularly used for 
other hypotheses and other concepts. 

Confirmatory Factor Analysis 
The present study provides a demonstration of a confirmatory factor 

analysis conducted with a set of objective procedures in an investigation 
of the invariance of a simple structure solution, i.e., of the stability hypothesis. 
A series of questions related to the testable hypotheses of a confirmatory 
factor analysis are investigated; the relevance of these questions has been 
emphasized by Maxwell [41]. Answers to the questions were obtained from 
data on two samples of cases for a set of seventeen reference variables hy- 
pothesized on the basis of previous factor studies to be associated with a 
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given number (six) of factors and with a specified set of zero and nonzero 
factor loadings. The following five questions are considered. 

1. Is the hypothesis of two independent random samples from a single 
multivariate normal population tenable with reference to two sets of means 
and two variance-covariance matrices? 

2. If the first hypothesis is tenable, can the set of 17 variables for each 
sample be considered as demonstrating some significant amount of dependency 
as defined by Bargmann ([4], pp. 43-68) (i.e., the rejection of the hypothesis 
of independence)? 

3. If the first two hypotheses are tenable, does the degree of dependence 
(number of factors), as defined by the maximum likelihood or canonical 
correlation procedures for each sample, correspond to a hypothesized value--  
namely six? 

4. If the first three hypotheses are tenabIe, does the factor pattern of 
zero and nonzero loadings for each sample as defined by an oblimax analytical 
rotation correspond to the hypothesized factor pattern for the results ob- 
tained from three factoring methods applied to the data, including one or 
more of four sets of estimated communalities? 

5. Are the results of the simpler graphical (judgmental) rotational 
methods and of the multiple-group methods without rotation consonant with 
those obtained from other methods of analysis? 

Data 
The data are a portion of those originally collected by Thurstone and 

Thurstone ([56], ch. 3) for an analysis involving the hypothesis of seven 
primary mental abilities. Statistical tests of the relevant hypotheses were 
not then available. On the basis of the earlier analysis, the definition of 
the Perceptual Speed factor was judged by Thurstone to be inadequate, and 
it was therefore dropped from the present study of sampling effects. In 
addition, one of the variables for the Memory factor, the Figure Recognition 
test, was eliminated as being an unacceptable defining variable for the 
factor M. The 17 remaining tests were then considered as defining six primary 
mental abilities (PMA's) by six isolated constellations such that variations 
in the rotated factor loadings would provide a useful estimate of the sampling 
fluctuations for the statistics under investigation. Two samples of cases 
(N = 212 and N -- 213) were formed by assigning each of 425 cases alternately 
to one or the other of two groups after the cases were thoroughly randomized. 
The original data in Tables 1, 2, and 9 were computed by Dorothy Case 
Bechtoldt in an unpublished study under the direction of L. L. Thurstone 
and L. R Tucker. 

The list of 17 variables along with the means and standard deviations 
for these two samples as well as the hypothesized nonzero factor loadings 
for each variable are presented in Table 1. The location of each nonzero 
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TABLE 1 

Seventeen Variables With Sample Means and 
Standard Deviations 

411 

Cede Sample I (N=212) Sample II (N-213) 

No. Na~a of Variable Mean S.D. Mean S.D. 

1 F i r s t  Names (M) 9.h4 h.507 9.80 4.554 

2 Word-Number (M) 4.77 3. 602 5. |~ 3.626 

3 Sentences  (V) 13.42 4.730 13.75 4.651 

4 Vocabulary (V) 27,03 10,317 26.71 10.797 

5 Completion (V) 31.97 10.795 31.89 10.581 

6 First Letters (W) 36.65 9.778 36.18 11.152 

7 Four Letter Words (W) 11,08 4.655 10.85 5.312 

8 Suffixes (W) 9,07 4,106 8.46 4.513 

9 Flags (S) 25.08 12.427 24.44 11.256 

I0 Figures (S) 22.70 12.798 22.01 11.451 

ii Cards (S) 26.45 13,215 24.85 11.523 

12 Addition (N) 16.39 6.991 15.92 7.079 

13 Multiplication (N) 32.26 13,430 33.32 12.501 

14 Three-Higher (N) 27.2] 8.740 25.93 9.840 

15 Letter Series (R) 12,40 5,725 12.46 5.718 

16 Pedigrees (R) 16.10 7.678 16.45 7.651 

17 Letter Grouping (R) 13,32 4.171 13.35 3.879 

value is designated by the letter in parentheses. The time limits and scoring 
formulas are given in Thurstone and Thurstone ([55], p. 28). Product moment 
correlations among the 17 variables were computed separately for the two 
samples as shown in Table 2. 

Results and Discussion 

The first question of interest has to do with the comparability of the 
means, variances, and covariances for these 17 variables in the two samples. 
The hypothesis of equal variance-covariance matrices was tested by the 
procedures given by Anderson ([1], ch. 10) and by Federer [22] and reviewed 
by Maxwell [41]. The determinant test indicated that the hypothesis of 
equal variance-covariance matrices was tenable (¢ = - 2  In ~ = 148.697 
for 153 d.f., p > .05). The equality of the two sets of means for the 17 variables 
was evaluated by Hotelling's T 2 statistic ([1], ch. 5). The hypothesis of equal 
means for the two samples (but not the equality of the means within a 
sample) was tenable (F = 1.129 for 17 and 407 d.f., p >  .05). Together 
these two tests indicated that the hypothesis of independent random sampling 
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TABLE 2 

Product Moment Intercorrelations* 

Code I 2 3 h 5 6 ? 8 9 I0 11 
No. 

I 472 290 401 299 234 254 296 86 61 52 

2 482 189 220 232 209 246 193 44 78 157 

3 299 275 833 761 402 275 374 103 19 ~77 

h 331 3o3 828 772 446 358 h73 lO9 45 lO5 

5 266 273 776 779 394 275 426 342 227 294 

6 335 273 439 493 460 627 516 176 lob 95 

7 342 199 ~32 464 425 674 480 161 138 49 

8 333 290 447 489 443 590 541 79 7 12 

9 124 169 117 121 193 178 223 118 672 606 

I0 32 85 51 77 180 81 192 7 593 728 

Ii 77 193 151 146 174 158 239 114 651 684 

12 151 287 268 3.12 263 241 180 181 208 lO9 21o 

13 259 258 319 3~h 2~i 338 295 23~ I79 ~ 195 

I~ 279 223 359 356 342 290 344 298 362 273 331 

15 3o7 260 447 432 401 381 402 288 252 203 25? 

16 447 293 541 537 534 350 367 320 85 129 151 

17 274 216 380 358 359 424 446 325 270 203 293 

12 13 14 15 16 17 

246 274 25O 332 313 297 

15X 146 6O 238 213 17o 

332 297 352 536 56? L68 

335 352 384 5o? 5xh hob 

329 25 h 438 490 512 430 

375 365 354 404 365 375 

354 327 318 330 275 317 

288 284 280 327 323 285 

286 189 379 289 277 287 

16~ 49 236 16o x65 18l 

171 32 251 200 208 207 

651 517 439 320 399 

661 546 435 293 ~52 

536 548 512 ~42 456 

361 379 44o 671 622 

206 298 438 555 538 

311 329 410 598 452 

* The data for sample I (N=212) are shown above the principal diagonal and those for sa~ole II (N=213) 
below the diagonal. Correlations are multiplied by IO00. 

from a single multivariate normal distribution was reasonable. The dis- 
tributions of scores for the factor M tests, variables 1 and 2, however, were 
somewhat positively skewed. Incidentally, only one of the pairs of sample 
variances (considered separately for each variable) is significantly different 
(for variable 11, F = 1.32, .02 < p < .10). 

Since the hypothesis considered by factor analysis is that the 17 variables 
within each set are not independent, i.e., that one or more degrees of de- 
pendence are indicated [4], the hypothesis of independence (the second 
question) was investigated using the determinant test as given by Anderson 
([1], ch. 9) and Bargmann [4] for both samples. The hypothesis of independence 
was rejected (6 = --m In V; 8 = 1890.303 and 1857.811 with 136 d.f. for 
samples I and II, respectively; p < .001). The values of the determinants V 
of the correlation matrices were 8.6658 X 10 -5 and 11.8518 X 10 -5 for 
samples I and II, respectively. These results indicated that a factor analysis 
is justified for each set of data. 

Since, for this investigation, the first two hypotheses were tenable, the 
hypothesized rank of six was then investigated. The canonical correlation 
(maximum likelihood) approach of Ran [46] was used as a test on the rank, 
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TABLE 3 

Co~mmunallty Estimates* 

413 

Sample: 

Multiple Centrold 
R squared high r 

I II X II 

Centroid Centrold Max. like, Prin. axes Clusters 
mult. R unity mult. R unity unity 

i i i  I I~ x I I  I xI  i i i  

Code 

1 
2 

3 
4 
5 

6 
7 
8 

9 
i0 
Ii 

12 
13 
14 

l? 

370 390 454 474 
312 323 499 ~86 

728 7L7 841 8O7 
79O 756 8~ 84O 
736 699 775 754 

504 569 6a7 694 
480 550 615 666 
~Ol 455 469 541 

572 515 665 627 
6~8 551 753 666 
~94 591 71o 725 

502 533 638 652 
596 523 686 67~ 
~99 512 545 5~ 

6Oo 507 712 586 
544 543 638 631 
49o 451 55o 522 

382 789 452 606 396 731 712 759 747 751 
762 328 606 hl? 681 367 791, ?a0 747 751 

838 809 832 805 835 823 869 861 889 876 
853 828 846 836 859 840 885 867 890 879 
796 767 808 772 775 744 864 846 860 846 

643 727 658 736 604 732 754 783 740 776 
626 635 632 631 696 648 778 765 725 755 
452 518 447 501 429 506 634 698 652 700 

607 591 608 585 639 588 750 734 757 738 
819 631 816 651 762 654 830 772 828 763 
672 738 668 728 698 723 796 793 785 797 

550 655 560 688 566 793 758 826 735 757 
81o 658 799 656 789 590 813 773 772 759 
522 544 518 535 529 517 653 64! 688 697 

736 680 735 640 731 633 78~ 739 792 752 
612 561 595 612 646 61~ 761 752 746 694 
535 556 543 562 534 543 705 715 707 703 

* Estimates are multiplied by I000. 

i.e., a test on the number of significant factors. The squares of the multiple 
correlations of each variable with the remaining 16 variables of each set for 
each of the two samples were computed and used as initial estimates of the 
diagonal values (in the University of Illinois Illiac program). These values, 
recommended as lower bounds to the communalities [31], are shown in the 
first two columns of Table 3. Incidentally, none of the differences between 
the 17 pairs of corresponding multiple correlation eoet~cients is significant 
by Fisher's z transformation (~,,_,.~ = .102; for all pairs, p > .05). 

The hypothesis of not more than five factors was rejected by the x ~ 
test used in tile Illiae program (x 2 = 105.740 for sample I and 117.698 for 
sample II, with critical x 2 value of 79.9 for 61 d.f., p < .05). The hypothesis 
of only six significant factors, however, was retained since the value of x 2 
quickly dropped below the critical 5 percent value for x 2 of 66.1 for 49 degrees 
of freedom (after 5 cycles, the sample I value of x 2 = 56.033 and the sample 
II value of x 2 = 52.939). Comparable results were obtained for Lawley's 
approximate test for the number of significant factors as given by Thomson 
[51]; these computations started from the eentroid factor matrix (using 
adjusted high r values as esgmated communaligies) and used two cycles of 
Bargmann's procedure for determining factor loadings [4]. For both samples, 
the hypothesis of only five factors (x ~ = 175.831 for 61 d.f. for sample I 
and x ~ = 160.592 for 61 d.f. for sample II) was rejected (p < .05) while 
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the hypothesis of six factors (seventh not significant) was tenable (x ~ = 
62.319 for 49 d.f. for sample I and x 2 = 61.394 for sample II, p > .05). 
The results of these two methods should agree since both are ways of com- 
puting solutions of Lawley's maximum likelihood equations. The second 
procedure illustrates, however, the usefulness and convenience of the centroid 
method with Bargmann's procedure for testing a given hypothesized rank. 

A test of the first ten latent roots was made using Bartlett 's test [5] 
although the results are only of incidental interest since the model being 
used here is not the principal components model. The first ten latent roots 
for sample I, as computed on the IlIiac from the correlation matrix with unity 
in the diagonals, are 6.31, 2.25, 1.41, 1.27, 1.11, 0.79, 0.58, 0.49, 0.47, and 0.42. 
The corresponding ten latent roots for the second sample are 6.33, 2.21, 
1.42, 1.14, 1.05, 0.95, 0.62, 0.51, 0.44, and 0.39. All ten roots in each sample 
are significant at the 5 percent level. Kaiser [37] has suggested using the 
number of latent roots exceeding unity as the number of factors; here that  
number is five, not six. 

After the test of the hypothesized number of factors, the next question 
of the series is concerned with obtaining an objective statement of the factor 
pattern of rank six for the six significant factors. Three different aspects of 
this question can be distinguished: the estimation of communalities, the 
computation of the factor structure, and (for all but one pair of factor 
matrices) a further rotational operation. The first phase deals with estimates 
of the communalities to be inserted in the diagonals prior to factoring. How- 
ever, in both Bargmann's and Rao's procedures, the iterated factor loadings 
and, therefore, the communalities, are estimated simultaneously with the 
test of the number of factors. Since many acrimonious and conflicting state- 
ments about the effects of differences in diagonal estimates on factor results 
have been made, four other sets of estimates of the communalities were 
computed. Because procedures for iterating communalities converge so 
slowly, no attempt was made to carry through the iterations to the 50 to 100 
cycles that would probably be necessary to obtain convergence to four 
digits. However, for a given number of factors in a study satisfying the con- 
ditions for the existence of a solution, there will be a unique and determinate 
set of communalities [4]. 

A criterion of convergence was set arbitrarily at the relatively gross 
level of a maximum communality difference of 4-.01 between two successive 
cycles. This criterion was met for both samples after five complete cycles of 
the Illiac program prepared for Rao's procedure. The resulting values are 
shown in Table 3 in the columns headed with the abbreviations "Max. 
like., mult. R, (Rao)." Since Dr. Kern Dickman (personal communication) 
has prepared a rapid program for iterating communalities using the centroid 
factoring procedures, his program was used for two additional sets of esti- 
mates. The first of these started with multiple correlation coefficients and 
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required 15 cycles to reach the criteria of a maximum difference of .01 in 
communalities. As noted earlier, these multiple correlations, shown in the 
first two columns of Table 3, are the multiple correlations between each 
variable and the remaining 16 variables for each sample. The resulting 
iterated values are shown in Table 3 in the column headed "Centroid, mult. 
R, (15 cycles)." Since interest in starting with an arbitrary value such 
as unity in the diagonals has been expressed, Dickman's procedure was 
applied to this situation with the results shown in columns of Table 3 headed 
"Centroid, unity, (20 cycles)." These three iterative solutions seem to be 
approaching similar limits. Such estimated diagonals need to be compared, 
however, with those obtained from the widespread (and often ridiculed) 
practice of inserting the highest correlation coefficient or the highest residual 
value in each column in the corresponding diagonal cell when the centroid 
method is used. The results of one cycle of this successive adjustment pro- 
cedure for six factors are shown in Table 3 in the column headed "Centroid, 
high r (adjusted)." The remaining two sets of columns in Table 3, one labeled 
"Prin. axes, unity" and the other labeled "Clusters, unity" are the sums 
of the squares of the row values in an orthogonal factor matrix of six columns 
and %he squares of a kind of multiple correlation coefficient, both computed 
with unity in the diagonals of the correlation matrix by means of the principal 
axes and multiple-group methods, respectively. 

The two analyses involving unit diagonals are not factor analyses. By 
definition the unique variances in the factor analysis model are positive and 
greater than zero; therefore, the diagonal values (communalities) for a factor 
analysis are in the range 0 < hl < 1 [2, 4, 55]. The rotated principal axes 
solution with unit diagonals is a rotated principal components solution based 
on the first six latent vectors corresponding to the first six latent roots listed 
above. The cluster formulation utilizes a set of explicit objective definitions of 
six linearly and experimentally independent composite variables ([55], p. 63) 
as an illustration of one possible solution to the fourth source of confusion 
about  factors discussed previously. 

The principal axes method is well known and is unambiguous. The 
multiple-group cluster method, however, requires precise definitions of the 
.clusters and linear function used. The cluster variables (composites) were 
defined as the average standard scores on the two or three reference tests 
for each factor. The variables combined are those hypothesized as associated 
with the PMA factor as indicated by the letter within the parentheses of 
Table 1. For example, the score for any individual on factor M is defined as 
the average of the standard scores obtained by that individual (using the 
means and variances of the appropriate sample) on the two variables, First 
Names and Word Number. For all other factors, an average of three standard 
scores would be used to compute (not estimate) the individual's factor score. 
These definitions are readily applied in the computations of the factor load- 
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ings on the normals by the multiple-group method using the sums of cor- 
relations procedure [8]. The factor loadings as computed are proportional to 
beta weights from the linear regression model with unit diagonals [7]. I t  
should be noted that part-whole correlations are involved in the computa- 
tions. The residuals within each cluster, including residual diagonals, sum 
to zero since these cluster vectors are group centroid vectors of the subsets 
of reference tests. 

With the rank and the diagonal values specified, the second phase of 
determining the factor pattern for the six significant factors can be ac- 
complished using the resulting covariance matrix (the correlation matrix 
with communalities in ~he diagonals). Although, theoretically, any method 
of factoring should be equally effective in reducing the rank of these matrices, 
some methods are considered as more appropriate than others as judged on 
the basis of efficiency or of simplicity of computations. The functions used 
do differ for the different methods, and these differences in method may lead 
to differences in the simple structure solutions. The methods used were 
selected, therefore, to provide data relevant to current discussions of the 
best method of factoring. 

Eight analyses using four methods of factoring were made for each 
sample. These eight analyses included four complete centroid analyses, two 
principal axes analyses, one canonical correlation analysis, and one multiple- 
group analysis. The four applications of the centroid method used, as diagonal 
values, the one-cycle "adjusted high r" values, the 15-cycle values, the 
20-cycle values, and Rao's maximum likelihood values. Both Rao's values 
and unity were used as diagonal entries in the principal axes analyses. 0nly 
Rao's values were used in the canonical correlation analysis. These data 
provide estimates of the effects upon factor loadings of three methods of 
factoring using a single set of diagonal values (Rao's) and of several varia- 
tions in diagonals for a single method of factoring (centroid and principal 
axes). 0nly a single multiple-group analysis using diagona ! values of unity 
was made as a demonstration of one of the many possible and simple direct 
solutions to a factor pattern [30]. The direct maximum likelihood solution 
of Howe for his Model I case ([361, pp. 82-96) was not considered for this 
study since invariance over diagonal estimates and method of factoring for 
a single rotational procedure was of primary concern. 

The distributions of the 136 sixth-factor residuals from each of these 
applications of the four factoring methods are shown in Table 4. The means 
and standard deviations of the residuals are shown at the bottom of the 
table. Discrepancies between the distributions of residuals for the two samples 
are clearly shown with sample II  having consistently the larger standard 
deviation. As one might expect, the standard deviations of the residuals 
computed from the "adjusted high r" centroid method are somewhat, but 
not markedly, larger than those obtained using the iterated communality 
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estimates. The distributions of residuals from the tirineipal axes factoring 
method using Rao's maximum likelihood estimates have the smallest variance 
while the mean values are closest to zero for Rao's factoring procedure and 
for the eentroid factoring method using the 15-cycle diagonal estimates. 
However, from these distributions of residuals, little preference for one 
method of factoring over another can be justified, even for the different sets 
of estimated communalities (excluding unit diagonals). 

Since the approximate tests of the number of signifieant factors given 
by Burr [15], Cureton [19], and Thomson [51] are especially useful as guides 
in the searching, subjective, variable-defining, and hypothesis-generating 
process of an exploratory factor analysis, several of these tests were applied to 
the residuals and factor loadings of the fifth, sixth, and seventh factors of 
the original "adjusted high r" analysis of D. C. Bechtoldt. The data for 
these approximate tests are shown in Table 5. Some question as to the desira- 
bility of a seventh factor would be raised by some of these data for sample II 
in that original analysis. However, MeNemar's test of the number of signifi- 
cant factors [43] based upon the ratio of the standard deviation of the dis- 
tribution of residuals to the average eommunality agrees with the maximum 

TA~L~ 4 

Frequency Distributions, Means, and Standard Deviations of Residuals 

8smple: 

Residual 

Centreld Centrold Cent~oid 
high r . mult. R unity 

(adjusted) (15 c[cles) (90 cycles) 

I II I II I II 

Centroid Max. llke. Prin. axes prin. axes Clusters 
m~x. like. mult, R max. like. unity unity 

( ~ o )  ( ~ o )  ~ o ) .  

I I I  I I I  I I I  1 I I  I I1  

,or 1 
.08 0 

.oN 2 0 0 0 0 0 0 0 

.06 2 1 1 1 1 1 2 1 

.o5 I 1 2 1 1 o 1 1 1 

~05 2 2 0 3 i I I 3 6 2 I 2 5 3 2 3 
.03 7 4 12 3 10 5 9 2 0 6 5 7 lO 9 ? 5 
.02 12 13 13 13 18 lh 17 17 !I I0 9 9 17 17 ? 13 

.01 24 25 25 31 16 26 24 31 25 21 32 25 17 19 26 27 
OO 39 29 28 38 41 38 36 36 53 59 hi 45 20 24 35 36 

-.01 26 22 32 25 20 23 20 22 21 17 2h 25 18 9 25 15 

-.02 14 19 20 7 24 16 22 II lh 7 18 12 13 II 9 12 
-.o3 8 9 6 9 5 5 ? 7 3 8 5 7 1L 6 7 6 
-.Oh 2 h 0 3 I 2 0 3 3 2 1 2 4 12 2 5 

-.05 2 3 0 3 I I I 2 2 I I 
-.06 0 2 0 I 0 0 3 2 I i 
-.07 I 0 0 O i D 2 2 2 O 

-.08 2 3 i i 
-.09 2 3 2 2 
-.IO 9 I0 9 i0 
or less 

Mean 
x 1000 -1.4 -1.7 -.02 -0.i -0.I -0.3 0.3 0,4 0.I 0.2 -0.7 -0.h -14.0 -14.2 -13.8 -i[!.0 

S.D. 
x I000 17.2 22.7 16.1 18.6 16.5 18.6 16.3 18.5 15.3 17.8 14.5 16.8 ~4.5 45.2 42.4 45.2 
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TAXI2 5 

Data for Approximate Te~ts of N~ber of "Significant" Factors 

From ~revious factor 

Mean Largest 
residual abselute 

Sample Factor (less diag.) residual 
being after sign 
tested change 

Centreid factor Ioadin~s 

Ne. of Ioadings 
Pr@duct exceeding 

Largest two largest critical value 
(absolute) (absolute) 1.5o 2o 3~ * 

II 

5 .028 .190 .318 .08? 13 IO 7 

6 .022 .109 .338 .086 IO 8 2 

7 .007 .049 .186 .031 5 2 0 

5 .041 ,160 .398 .145 14 12 ? 

6 .016 .126 .~12 .]17 8 5 h 

7 .011 .07! .~68 .063 6 3 I 

Critical values based on Curetoc~s solution (19) of Burt~s fonuulafor °a. 
The critical values for 1.50 are .I16, .120, and .126 for factors 5, 6, and 
7 respectively; for 20 , the values are .153, .159~ and .166; and for 3c , 
the values are .223, .232, and .241. 

likelihood procedures as to the number of significant factors; the seventh 
factor would not be significant by his test for any of several analyses using 
values other than unity in the diagonals. Since in an exploratory study, no 
proper test of significance of the sequential successive trial type is available, 
one or two additional factors might indeed be computed as suggested by  
Thurstone [55] and Roe [46]. Clear-cut residual planes would then aid the 
investigator in formulating hypotheses for a further confirmatory study using 
statistical tests of the hypothesized rank [4, 36]. 

Although the distributions of residuals were very similar from one 
method of factoring to another within each sample (excepting those methods 
using unity in the diagonals), the communality estimates shown in Table 3 
did differ, especially for the two tests of factor ~f (rote memory factor). 
The discrepancies in the communality estimates for variables 1 and 2 call 
attention to basic and oft-repeated design requirements of factor analysis. 
These requirements are the necessary and sufficient conditions for identifi- 
cation, i.e., for a unique solution, for the case of one or more common factors 
as given by Anderson and Rubin [2]. Three or more variables (with nonzero 
elements) must be used to define a single factor in a factor analysis. (This 
is not a requirement, however, for the definition of factors by specified 
linear functions of observed variables as illustrated by the cluster solution 
since communality estimates are not involved.) For the case of two or more 
factors, three tests on each factor of a cluster configuration will satisfy the 
requirements. In the case of factor M, however, there are only two values 
which both by hypothesis and by the empirical data consistently exceed 
the definition used here of a zero or near zero factor loading as the range 
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±.10. It appears likely that this failure is responsible for the consistent 
large shifts in the communality estimates for variables 1 and 2 over the two 
samples for the three iterated sets of estimates, although smaller shifts in 
the corresponding estimates of other variables did occur. 

Given a factor matrix from each of the several factoring operations on 
each of the two samples, the next phase of determining the factor pattern 
is to define objectively the oblique simple structure solution. Since the study 
was designed to provide a cluster configuration, the characteristics of the 
oblimax solution of Carroll [16] as modified by Pinzka gnd Saunders [45] 
should be adequate. The results of the oblimax solution expressed as factor 
loadings, i.e., as orthogonal projections on normals to the fitted hyperplanes, 
are presented for three representative factors M, V, and S in Tables 6 to 8, 
respectively. The three selected tables illustrate the range of variation in 
sampling fluctuations found in these analyses. These solutions may be termed 
objective ones since no change was made in any of the oblimax results of 
the Illiae or IBM 650 output except to define the positive direction of each 
normal as toward the variables with the highest factor loadings. 

The oblim~x solutions using only six factors can be compared on these 
three factors with the graphic solution shown in Table 9 and with the clusters 
solution given in Tables 6 to 8 in considering the fifth question of interest. 
The general agreement of these several solutions is clear from an inspection 
of the data of these tables. With an isolated configuration, the hypothesized 

TABLE 6 

Rote Memory (M) Factor Loadlnge* 

Method: Centroid Centroid Centroid Centroid Max. like. Prin. axes Prin. axes Clusters 
high r mult. R unity max. like. mult. R max. like. unity unity 

(adjusted) (I~ c[cles) (20 c~cles) (Rao) (~o) (Rao) 

Sample: I II I II I II I II I II I II I II I II 
Code No, 

I 508 463 42L, 757 501 640 452 717 449 713 447 714 716 708 752 730 
2 638 566 820 402 715 475 766 436 763 433 765 439 838 786 808 773 

3 -043 -001 -056 -048 -061 -045 -068 -051 -050 -046 -055 -049 -048 -037 -042 -005 
4 054 024 025 -013 028 -011 024 -012 007 -012 022 -013 039 000 041 023 
5 -019 -022 -026 -048 -020 -046 -021 -046 -004 -056 -008 -052 -009 -044 001 -018 

6 -041 005 -058 -003 -057 -004 -050 002 -034 -007 -042 -001 -056 005 -044 -004 
7 031 -098 031 -o34 035 -o21 022 -032 029 -002 029 -o19 049 -057 o31 -045 
8 037 099 036 086 051 113 047 094 020 078 027 088 023 103 013 049 

9 -103 I01 -067 020 -065 033 -062 022 -074 029 -071 028 -074 056 -052 032 
I0 027 -078 035 -035 025 -032 026 -035 015 -030 023 -037 029 -031 009 -040 
II 105 060 068 010 068 009 070 011 094 -012 085 002 079 035 O43 008 

12 031 044 -016 -038 -014 -034 -015 -042 005 -064 003 -050 021 012 020 005 
13 033 -021 004 -001 005 014 003 013 022 O19 021 011 037 026 040 017 
lh -120 -049 -094 -002 -083 009 -089 002 114 035 -108 018 -119 -002 -060 -023 

15 025 032 031 -011 O~ -020 036 -013 034 -027 026 -017 042 -031 017 -032 
16 008 079 017 168 024 200 027 171 013 182 010 175 018 162 002 103 
17 017 084 004 -051 005 -064 001 -056 -008 -058 -006 -052 -002 -103 -019 -071 

* Loadings multiplied by IOOO. 
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TABLE 7 

Verbal Facility (V) Factor Loadings* 

Method: 

Sample: 

Code No. 

Centreid Centroid Centrold Centroid Max. like. Prin. axes Prin. axes Clusters 
high r mult. R unity max~ like, mult. R max. like. unity unity 

(adjusted) (15 c~cles) (20 c~cles) (Rae) (RaQ) (Rao) 

I I! I II I II I II I II I II I II I II 

I 021 -078 O88 -080 083 -086 092 -082 072 -089 064 -O92 072 -115 033 -034 
2 -olo o~ -041 030 -056 oo5 -051 01~ -042 039 -033 040 -095 o16 -033 035 

3 624 591 580 634 562 626 566 635 600 643 593 640 675 705 694 701 
4 649 601 629 625 616 630 630 629 639 633 639 633 696 685 693 680 
5 590 571 610 632 625 635 608 618 586 610 589 614 696 719 687 697 

6 01,3 -903 004 -O10 006 008 025 -OO4 024 -005 025 -CO1 CO6 O18 008 -012 
? -!01 -O51 -090 -007 -986 -CO1 -096 -005 -093 -019 -097 -O19 -138 -018 -010 -038 
8 140 109 152 I04 163 102 167 III 151 116 154 116 218 123 092 050 

9 -022 -023 -005 -036 007 -044 001 -035 -030 -018 -022 -020 -014 -025 -013 -008 
I0 -030 004 -024 042 -027 045 -031 042 -020 012 -025 020 -032 039 -028 009 
Ii 035 002 046 007 056 O10 051 005 046 • 018 045 013 061 015 O41 -001 

12 038 032 022 -Oil 017 -003 015 -009 016 020 022 016 032 022 003 O13 
13 -025 -004 -035 -009 -036 -002 -038 -002 -014 -011 -021 -010 -051 -013 -047 -008 
14 040 -001 046 042 051 043 053 040 034 008 040 011 068 017 045 -005 

15 -028 -107 -046 -026 -055 -024 -043 -026 -043 -020 -048 -024 004 -003 -004 -037 
16 066 103 069 206 078 179 064 202 052 179 051 185 105 257 068 154 
17 -052 100 -044 -094 -055 -103 -052 -131 -035 -092 -036 -092 -091 -135 -064 ~I18 

* Loadings are multiplied by leo0, 

TA~L~ 8 

Space (S) Factor Loadings* 

Method: 

Sample: 

Code NO. 

Centre[d Centrold Centroid Csntroi4 Max. like, Prin. axes Prin. axes Clusters 
high r mult. K unity max. llke. mult. R max. likeo unity unity 

(~d~?9~d) (15 o~o~) (20 ezole~) ~ (~0) (~o) 

I II i II I II I II I II I II I I[ I II 

i -019 -051 -039 -018 -O3O -028 -035 -024 -032 -034 -036 -029 -O42 -O65 -O42 -052 
2 081 122 063 082 063 076 060 084 061 076 064 078 082 097 043 052 

3 -105 -042 -124 -032 -124 -034 -118 -030 -102 -025 -106 -028 -Iii -028 -104 -035 
4 -057 -032 -o64 -020 -072 -020 -067 -o17 -053 -018 -058 -o18 -069 -024 -068 -031 
5 186 063 196 O81 189 087 194 082 192 075 194 080 199 089 171 066 

6 006 -027 008 -039 010 -0~44 005 -043 002 -043 004 -040 011 -036 022 -019 
7 027 036 031 061 032 061 028 057 028 062 027 056 034 070 035 077 
8 -056 -031 -o74 -052 -073 -055 -o75 -054 -064 -048 -068 -048 -065 -057 -058 -058 

9 681 708 662 676 664 66h 679 6?4 677 679 677 679 762 785 782 796 
I0 822 713 873 740 872 757 849 75O 835 753 838 749 885 838 885 838 
ii 775 765 769 775 766 770 7~I 767 781 765 780 766 854 823 846 828 

12 038 -006 048 -038 042 -049 044 -047 051 -046 052 -044 043 -041 021 -045 
13 -112 -060 -!28 -057 -129 -054 -125 -047 -!i0 -046 -116 -047 -135 -074 -123 -064 
14 096 113 118 133 118 150 122 137 126 131 126 131 133 137 102 109 

15 -066 -014 -044 -016 -037 -010 -034 -011 -050 -014 -046 -011 -027 005 -018 022 
16 -022 -132 013 -069 014 -067 010 -076 -013 -066 -007 -070 006 -078 010 -079 
17 -009 171 o16 033 017 028 019 032 004 033 008 033 -008 O39- 008 057 

* Loadings multiplied by IOCO. 
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simple structure for either sample is reproduced with minor variations by 
any of these techniques. The results of the graphic and cluster methods are 
consonant with those of the other methods. It should be noted, however, 
that the graphic solution shown in Table 9 was made in a six-factor sub- 
space of an eight-factor (centroid) structure. Two more factors than hy- 
pothesized were computed to compensate for the inefficiency of the centroid 
method. The six-factor subspace was then set orthogonal to the two thinnest 
residual hyperplanes defined by the two principal axes corresponding to the 
two smallest latent roots. 

The invariance of the simple structure solution over two samples of 
cases can be demonstrated by graphical methods, as illustrated for four 
representative solutions in Figures 1 and 2. Each graph contains 102 points 

TABLE 9 

SLmple Structure Solution by Graphic Techniques 

i .......... 

A. Factor Loadiugs (x i00) 

Estimated 
C ommunality 

Factor M V W S N R 8 factsrs 

Sample: 
I II I II I II I II I II I II I II 

Code No. 

I 56 55 -Of -O4 -Of O8 01 -0S O2 -01 O6 O9 499 552 
2 59 55 00 03 02 -03 00 09 -02 02 -03 -06 517 5o4 

3 -07 -01 61 65 -05 -01 -09 -06 -02 -02 08 04 861 818 
4 08 02 60 64 04 OI~ -01 -03 00 02 -06 -04 892 843 
5 04 -03 44 62 03 02 I0 03 01 -04 -03 01 801 760 

6 -06 -06 02 -03 61 61 -01 -08 OO OO 04 05 679 702 
7 02 -08 -06 -06 62 61 06 08 01 -01 01 I0 636 682 
8 I0 07 05 06 43 48 -07 -I0 -01 -01 -02 -07 481 562 

9 -06 -01 -09 -04 04 0~ 61 55 07 01 05 00 679 652 
I0 00 -05 01 O2 05 -02 78 74 -08 00 -05 02 765 698 
II 06 03 02 00 -07 02 63 75 -02 00 -01 00 733 740 

12 Ol -02 02 Ol 00 -06 00 -01 60 63 -04 -05 648 697 
13 03 01 -02 -03 00 05 -07 -02 62 65 01 -05 691 689 
14 -05 -o2 -o5 o3 Ol el o9 o2 37 45 17 o8 570 617 

15 o3 03 -04 05 -01 03 -05 04 07 Ol 51 52 716 638 
16 04 22 02 25 oo -06 -02 -09 -08 oo 49 35 647 658 
17 0o -o4 02 -05 OO 17 07 05 I0 -02 40 49 564 577 

B. Correlations Between Frlmarles(x I00)* 

Factor M V W S N R 

M ~ 41 o7 33 41 
V 40 49 06 46 63 
W 48 61 IO 52 49 
S O9 13 13 28 26 
N 37 42 38 27 6O 
~ 35 47 42 25 56 

* Sample I values above the principal dlago~el and sample II values below. 
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Invarianee Of Factor Loadings for Representative Simple Structure Solutions 

(6 factors X 17 variables). The hypothesis of invariance implies that a 
graph of all factor loadings for one sample plotted against all factor Ioadings 
for the second sample for any one solution should show a bivariate distri- 
bution with the plotted points symmetrically placed and close to a radial 
line of 45 degrees. Configurational or even possibly metric invariance, as 
discussed by Thurstone [55], of the simple structure solution over two samples 
from the same population is clearly suggested by such graphical techniques 
for the following four solutions: the clusters with unit diagonals, the principal 
axes with unit diagonals, the centroid high r (adjusted), and the graphic 
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(judgmental). Somewhat larger deviations for several variables from the 45- 
degree line will be found for the other five solutions using iterated com- 
munatities (e.g., the maximum likelihood plot in Fig. 2). The shifts for the 
two variables defining factor M are most conspicuous. 

Figures 1 and 2 also indicate the number of nonzero loadings in each 
set of 102 values. Bargrnann's [3] vaIue of =l=.10 was used to define the zero 
range drawn on each graph. The clusters solution has the smallest number, 
19, of nonzero values (for sample I), while the principal axes, also with 
unit diagonals, has the largest number, 30 (for sample II). In the graphic 
solution, sample I has 18 nonzero values (see Table 9). Since the hypothesized 
value for any one sample was 17, none of the several solutions meets this 
level when the data for only one sample are considered. However, two solu- 
tions, i.e., the clusters solution and the graphic solution, have only 17 pairs 
of loadings both greater than ±.10, and the centroid high r solution has 
only 19 pairs with such loadings. For these three solutions, the agreement 
between prediction and observation is encouraging with respect both to the 
number of nonzero values and to the closeness of fit of the data to the 45- 
degree line. All of the other solutions have more than 19 pairs of loadings 
greater than =h.10. Under certain conditions, Thurstone's concept of in- 
variance of a simple structure solution [55] receives strong support. 

Within a single sample, the variation in factor loadings associated with 
four different sets of communalities and a single factoring method (centroid) 
is markedly greater than is the variation associated with three methods of 
factoring using a single set of communalities (Rao's). These results indicate 
that, for a reasonably well-desigued study, the centroid method is not as 
vastly inferior as has been suggested [37]. The effect upon the factor loadings 
of variation in diagonal values arising from the use of inaccurate communality 
estimates, however, is not the essentially irrelevant problem discussed by 
Wrigley [67] and Guttman [33]. They a t tempt  to factor any arbitrary 
symmetric matrix and to apply to such a matrix the population rank and 
communality notions of factor analysis. The communality problem is a 
pseudo-problem unless the necessary and sufficient conditions are met for 
the existence of a permissible solution ([4], p. 59) to the factor analysis 
equations. With empirical data, the question of rank in the population is 
given a statistical answer under conditions for the existence of a solution. 

Unfortunately, the application of available sampling formulations for 
the evaluation of these variations in an oblique simple structure, within a 
sample or between samples, either is not appropriate, or as noted by Anderson 
and Rubin [2], is not feasible at this time. The effect of variation in factor 
loadings attributable to differences in estimates of communalities (within 
one sample) is not a proper statistical problem since these variations represent 
failures to carry the iterations to convergence. Even the data from the 
clusters solution, however, expressed either as beta weights or, as here, as 
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factor loadings, cannot be evaluated in a within-sample comparison by tests 
of regression parameters since the factors (the independent variables) are 
defined by the observed test variables (the dependent variables). Such 
procedures as developed by Gulliksen and Wilks [28], for example, are 
appropriate for between-sample comparisons of beta weights or oblique 
projections when the separation of the independent variables and the de- 
pendent variables is maintained in the analysis. The tests of regression 
parameters in a single-group study are also well known for this case. 

Such congruence indices as suggested by Tucker [62] and others are of 
little value for the matching of factors from the two samples in the current 
study since the congruence is so uniformly high. Instead, as descriptive 
statistics of congruence, the second moments (mean squares) of the differences 
between the pairs of corresponding columns of the rotated factor matrices 
as well as the second moments of the respective columns were computed. 
These values are shown in Table I0 for the four representative solutions 
exhibited in Figures i and 2. Tucker's index is defined as a ratio of the sum 
of the cross products of two columns of factor loadings to the geometric mean 
of the product of the sums of squares of these same two sets of values; the 
index, therefore, has been termed an unadiusted correlation coefficient. If 
desired, such congruence indices can be readily compuLed from the mean 
squares of Table 10 by means of the well-known difference formula for a 
correlation coefficient (without corrections for means). One of the lowest of 
such congruence indices, that for factor M from the maximum likelihood 
solution, is .826; the total congruence indices computed over 102 pairs of 
differences for each of these four representative solutions (in the order given 
in Table 10) are .987, .967, .945, and .967. Values of this order of magnitude 
are considered as very acceptable [62]. 

For any one factor, the mean squares for the sample values tend to be 
larger for the two solutions using unit diagonals. The larger loadings for the 
defining variables in these two solutions can be seen also in the figures. In 
addition , the mean squares of the differences are smallest for the cluster 
solution. These values reflect the closeness of fit of the points to the 45-degree 
line. For four factors, the mean squares of the differences for the centroid 
adjusted solution are next to the smallest although the mean squares for 
columns also tend to be relatively small. The largest mean squares for columns 
are found for factor S; this factor also has relatively small mean squares of 
the differences in the principal axes solution and in the maximum likelihood 
solution. 

Comparable analyses for the several sets of data of this study indicate 
that differences in the stability of factor loadings do result both from the 
method of factoring and from the diagonal values used as communality 
estimates as welt as from the characteristics of the data. The effects of the 
iteration procedures are especially evident in the mean squares of the dif- 
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TABLE IO 

Second Moments (MS)* of Oblique Factor inad~:gs 
aud of Differences Between Factor Loadings 

425 

Method ~f M~, like. Ce~id 
analysis Clusters Prin. exes mult. K high r 

unity ~nity (B~o) (adjusted) 

Data MS ! MSzI MS D MS I F~II MZ D MS I M~II MS D MS I MSII MS D 

Factor 

M ' 7.26 6.76 2.39 7.4h 7.18 5.86 4.78 4.39 16.02 5.22 3.50 6.17 

V 8.55 8.75 1.83 9.12 9.52 5.69 6.86 7.33 3.83 7.02 6.41 3.08 

W 8.16 7.88 2.02 7.99 8.16 7.13 5.3h 5.57 5.33 5.37 5.61 2.75 

S 12.84 12.26 2.55 15.81 12.08 2.95 10.99 9.72 2.91 10.78 9.85 5.24 

N 7.95 8.89 2.31 7.83 8.84 6.88 5o08 6.98 9.37 5.06 6.71 3.80 

R 6.35 6.~9 1,93 6.60 7.10 6.12 3.99 4.08 3.25 4.12 3.87 9.17 

* MS I AND M~Ii multiplied by I00, MS D by lOOOo 

TABLE II 

Congruence Indices fol- Arbitrary Orthogensl FacLor Loadlngs 

Max.. like, Ceutro~h 
Method of Pr~n. axes mult. R hizh r 

Factors 

I .995 .995 .996 

I~ .958 .942 .975 

Ill .66~ .323 .~58 

IV .824 .626 .o5o 

v .686 .859 .933 

v~ .846 .8oo .83 

ferences for factors IV[ and N. The small mean squares of the differences for 
the cluster solution are suggested as useful reference indices of the uncon- 
taminated sampling fluctuations while the larger mean squares for the other 
three solutions include the effects of factoring method and of communality 
estimates. From these data as well as from similar calculations on the other 
solutions, one might suggest the iterated solutions fit each set of data perhaps 
too well from the invarianee point of view, but such iterated solutions are 
indicated for the model under consideration. 

The results of applying both the graphic and the congruence techniques 
to the original or~hogonal factor matrices indicate little invariance for such 
values. The results of three such congruence analyses of representative 
orthogonal factor matrices are illustrated in Table 11. Tueker's index was 
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computed for pairs of columns of the orthogonal factor matrices ordered in 
terms of decreasing variance contributions of each factor. The inefficiency 
of the centroid method required reordering of the six "centroid high r" 
factors as foltows: for sample I, factors 1, 2, 4, 3, 5, 6; and for sample II, 
factors 1, 2, 3, 5, 4, 6. No changes in order of factors were made for the other 
two sets of calculations, Le., for the principal axes (unit diagonals) and for 
the maximum likelihood solutions. The consistency is acceptable only for 
the first two factors for all three analyses although some consistency is indi- 
cated for the other four factors in certain analyses. The poor showing of the 
centroid "adjusted high r" solution in Table 11 should be contrasted with 
the very acceptable degree of congruence associated with the mean squares 
of Table 10 and with the graphs. These data support the frequent suggestion 
that invariance will not be found for arbitrary orthogonal factor matrices 
although such invariance may be clearly indicated for a rotated simple 
structure solution. 

The consistency indices above do not differentiate, however, between 
a simple structure solution and any one of the other possible factor solutions. 
A more direct attack on the problem of the adequacy of a simple structure 
solution has been made by Bargmann [3]. He considered the probability of 
obtaining a given number of vectors within a hyperplane section of small 
range (4-.10) by rotational methods in a random configuration; the sampling 
effects (of cases) are not considered. The probability of obtaining a given 
frequency of zero (4-.10)values of the ratios of factor loadings to length of 
the vectors (i.e., a~m/hi) in a random configuration was computed by Barg- 
mann for 2 to 12 factors and for 5 to 70 variables, the range of the number 
of variables varying with the number of factors. For 6 factors and 17 variables 
(the values for the present study) Bargmann gives the number of (a/h) 
values in the zero range of 4-.10 as 10, 11, and 12 for the rejection at the 
5, 1, and 0.1 percent levels respectively of the random configuration hy- 
pothesis ([3], p. 18). 

The number of ratio values in the critical region for the six factors of 
the seven oblimax solutions and of the multiple group clusters solution are 
shown in Table 12. All six factors for both samples would be considered as 
acceptable by the simple structure 5 percent level criterion for the maximum 
likelihood and principal axes solutions which use the same communality 
estimates (i.e., Rao's) and for the multiple-group duster solution. All but  
one of the other analyses had only one factor in one of the two samples with 
only nine ratios in the 4-.10 range; the "centroid high r" solution has two 
unacceptable planes. The number of unacceptable solutions were four for 
factor S in sample I, one for factor V in sample II, and one for factor R in 
sample II. 

The relatively slight effect of factoring method on the adequacy of the 
simple structure can be seen in the variation in the number of zero ratios 
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for the three analyses using the same diagonal values (i.e., Rao's). The 
variations in the number of zero ratios for these three analyses represent dif- 
ferences of =t=.03 or less in the values of the ratios. The relatively greater 
effect upon factor loadings of changes in diagonal values are indicated by 
the variations among the other analyses. 

TABLE 12 

Number of  (a/~n) Ratios in  Zero Range* 

Method of Factor 
analysis Sample M V W S N R 

Centroid I 12 12 13 9 13 ii 
high (r) II 12 9 ]3 IO 13 Ii 

Centroid I 14 ii lh 9 12 12 
mult. R II 13 II 12 I@ 13 13 

Centroid I 14 Ii 14 9 12 12 
Unity II 13 IO 12 12 13 Ii 

Centroid I 14 Ii 14 9 12 12 
Rao II 13 II 12 12 13 13 

Max. llke. I 13 II 14 IO 12 13 
Rao II 13 IO 12 12 12 II 

Prin. axes I 13 12 14 IO 12 ~3 
Rao II 13 I0 12 12 12 ii 

Prin. axes I 14 I0 14 I0 12 I0 
Unity II 13 IO 12 12 12 9 

Clusters I 15 13 I~ IO 13 14 
Uuity II I~ 12 13 13 14 13 

Hypothesized 15 14 14 14 14 14 
Number 

* The number of values in the "zero" range of +.I0 associated 
wlth5%, I~, and 0.1% "probabillt~ ~ levels are-lO, II~ and 12, 
respectively. 

Although three solutions can be considered acceptable simple structure 
solutions, the data from none of these several analyses agree completely 
with the hypothesized number of 15 or 14 zero ratios as shown in the last 
line of Table 12. As noted above, the agreement is better between the number 
of zero factor Ioadings (not ratios) and the hypothesized number 15 or 14. 
A more adequate test of this simple structure hypothesis will probably require 
the use of such maximum likelihood solutions as are presented by Howe 
together with further developments of the sampling formulation. 

The corre]ations between the primary axes or factors are shown for each 
oblimax solution and for the clusters solution in Table 13. The corresponding 
correlations for the graphic solution are given at the bottom of Table 9. 
These correlations between the factors are all positive, but the differences 
from sample I to sample II and from one solution to another within a sample 
are appreciable. The values do differ somewhat for identical diagonal values 
(Rao's) as a function of three methods of factoring. However, larger differences 
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TABLE 13 

Correlations Between Pairs of Factors Defined by Primary Axes* 

Methods: Centroid Centroid Centrold Centrcid Max. like. Prin. axes Prin. axes Clusters 
high r mult. ~ unity nax. like. mult. R max. like. unity unity 

(adjusted) (15 cycles) (20 c[cles) ~Rao) (Pao) (Rao) 

Sample: I II I II I II I II I II I II I II I II 

Factor 
Pairs 

M-V 349 386 334 538 370 567 353 550 329 539 330 535 299 418 342 365 
M-~ 364 430 347 51~ 374 527 355 517 326 521 335 518 279 374 33~ ~00 
M-S 034 045 048 178 058 191 056 184 048 206 049 190 040 Iii 105 151 
M-N 204 347 221 435 247 441 23~ 437 196 439 204 423 189 293 259 332 
M-R 302 366 296 542 331 580 316 561 281 558 295 54~ 256 420 353 419 

V-W 560 639 580 620 572 599 57~ 611 575 613 57~ 613 490 507 493 571 
V-S 212 225 201 200 200 191 199 196 206 194 206 191 163 135 179. 166 
V-N 474 391 499 461 496 431 508 443 496 413 495 417 426 350 436 402 
V-K 674 6?6 714 646 72o 646 721 654 71o 634 714 634 606 543 617 574 

W-S 178 277 174 258 166 260 171 262 184 273 180 275 116 198 12h 195 
W-N 572 426 583 426 569 404 575 418 583 410 577 418 448 333 462 367 
~-R 559 607 558 576 549 568 548 575 567 590 564 595 429 492 465 516 

S-N 322 342 310 367 309 362 311 361 313 364 312 360 256 302 262 302 
S-R 421 438 356 375 347 389 348 395 387 406 378 404 300 302 289 282 

N-R 696 527 683 598 676 573 683 592 704 573 695 577 586 465 573 500 

Correlations multiplied by I000. 

are found for a single method (centroid and principal axes) as a result of 
changes in communahty estimates; these effects on the correlations involving 
factor M are especially noticeable. The smallest between-sample differences 
were found for the cluster solutions which reflect most directly the general 
consistency of the original set of test intercorrelations. 

It seems clear thut any second- or higher-order analysis will be influenced 
by the diagonal values used in the first-order analysis (as well as by the 
number of factors and by the type of preferred solution). Invariance of 
second-order factor loadings can hardly be expected even from a distinctive 
isolated configuration unless the first-order factors are explicitly and com- 
pletely defined as is the case with cluster solution. When the first-order 
factors are so defined, both the rank and the adequacy of the solutions of 
the second-order structure can be investigated as in a confirmatory first- 
order analysis. 

The use of orthogonal simple structure [25] or of hierarchical orthogonal 
solutions [49, 65] does not offer any hope of greater invariance than does an 
oblique structure since communahty estimates are involved in all of these 
procedures. Analytical solutions for an orthogonal structure are indeed 
available, but such solutions will exhibit in their first-order factor loadings 
a combination of the variation found here in oblique factor loadings and in 
correlations between factors. The forcing of orthogonality between factors 
in each sample (by definition) also precludes the empirical study of cor- 
relations between factors as functions of differences between treatments or 
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populations, differences which Anderson and Rubin [2], Raseh [47], and 
Thurstone [55] all noted might be associated with changes in these corre- 
lations. The regression formulation of factor analysis also indicates the 
irrelevance of the preference for orthogonal factors. A hypothesis of ortho- 
gonality or independence of factors in a population, of course, can be directly 
evaluated in terms of the correlations between explicitly defined factors in 
the sample. 

The lack of precision of statement in the above discussion of the evalua- 
tion of sampling fluctuations is intentional. No sampling formulation for 
the evaluation of variations in factor loadings and in correlations between 
factors over both sampling fluctuations and diagonal estimates is currently 
available. Extensions of the work of Anderson and Rubin, Bargmann, and 
Howe may lead to more useful sampling formulations in the future. I t  is 
suggested that such sampling formulations for existing factor analysis models 
will require consideration of the several problems developed in this empirical 
study, i.e., the design of the study, the method for stabilizing communalities, 
and the method of factoring and of rotation (i.e., the specification of the 
properties of the preferred solution). However, the restatement of the objective 
of factor analysis as including the explicit definition of factors changes 
drastically many sampling problems. Those problems dealing with objectively 
defined factors are simply the usual univariate or multivariate ones. For 
other factor theory questions, areas of statistical theory currently under 
development are relevant. These areas include the identification of param- 
eters of a structure [38] and the fitting of straight lines when both variables 
are subject to error [40]. When the factors are explicitly defined, these newer 
analytical developments also become relevant to statements about factors. 

The concept of simple structure, however, warrants a brief comment. 
The theoretical and empirical work of Thurstone and his associates suggests 
the general usefulness of the concept of simple structure for the variable- 
defining goal of an exploratory analysis. The objective application of the 
concept in the current study and the results thereof indicate the possible 
usefulness of the concept for a confirmatory analysis. The maximum likeli- 
hood solutions using good estimators (i.e., unbiased, efficient, etc.) developed 
by Howe [36] make the concept a precise one. Desired analytical sampling 
formulations have been indicated and may eventually be developed in a 
usable form. For these reasons, the rejection by Maxwell [41] of the simple 
structure concept as not "a precise concept in a valid and efficient statistical 
theory of factor analysis" seems unduly severe. Under specified and attain- 
able conditions in properly designed confirmatory factor analysis studies 
with zeros in designated locations, the simple structure concept of factor 
analysis is indeed offered as a precise concept in an incomplete but valid 
statistical theory. 

The opinion held by Maxwell, however, can be accepted for the vast 
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majori ty  of investigations entit led factor analyses and claiming to use the 
simple structure concept. These studies, by  and large, are exploratory factor  
analyses (often poorly conceived) for which no statistical tests are available. 
Variations between investigators in the adequacy of the design of the study, 
in the procedures for estimating eommunalities, in the criteria as to when 
to stop factoring, and in the criteria for rotation, all create differences in the 
results of the factor analyses. The outcomes of these studies can be repre- 
sented, a t  best, by  lists of possible reference variables for defining an ever 
increasing list of factors. 

But  the list of possible factors is endless, or at  least practically so, as 
emphasized by  Thurs tone ([54], pp. 194, 201-204, 209; [55], pp. 55-59, 62) 
and others, since any source of systematic differences between individuals 
may  appear as a factor. A few of these factors, however, may  indeed be 
selected as a stable and useful reference set of concepts accounting for most  
of the variance of a larger number  of variables not  used in the definitions 
of these concepts. The definition of these observable concepts by  factor  
techniques insures some degree of linear independence among them. The  
usefulness of a proposed set requires in addition, however, evidence of lawful 
relations derived from experimental laboratory (nonfaetorial) investigations 
of the kind recommended by  Thurstone and conducted, for example, to a 
degree by  Stuk£t [50]. Starting from the available suggested definitions in, 
say, the ability domain [23], any investigator can provide empirical evidence 
as to the usefulness of these proposed definitions and of hypotheses in- 
volving them. 
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