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MODELS FOR CHOICE-REACTION TIME 
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In the two-choice situation, the Wald sequential probability ratio 
decision procedure is applied to relate the mean and variance of the decision 
times, for each alternative separately, to the error rates and the ratio of 
the frequencies of presentation of the alternatives. ]?or situations involving 
more than two choices, a fixed sample decision procedure (selection of the 
alternative with highest likelihood) is examined, and the relation is found 
between the decision time (or size of sample), the error rate, and the number 
of alternatives. 

This paper develops to the point of usefulness several mathematical 
models for choice-reaction time. The working details are confined to ap- 
pendices and only definitions and results appear in the text. I t  is hoped that 
this method of presentation will assist the reader in making a quick 
"calculated-observed" analysis of the data he may have. The choice of 
models is made mainly by analogy with statistical decision procedures, but 
no model is presented which is psychologically unreasonable. Also no com- 
parisons are made with experimental data for several reasons: (i) the paucity 
of available data means that the field should be kept open to avoid premature 
rejections; (ii) published data are often summarized in directions orthogonal 
to our interests; (iii) for the most powerful discrimination, experiments will 
need to be designed with specific models in mind. 

The models are envisaged as applying to the situation in which the 
subject (S) is given a time-stationary stimulus or signal and is required to 
identify some attribute of the signal and make an appropriate reaction. The 
signal remains present until the reaction is made. S is presented with signal 
after signal and the successive attributes form a random sequence; that is, 
for a given run of signals, the attributes of different signals are mutually 
independent and their probabilities of presentation do not change with time. 
The models assume that S has a settled mode of response. They will be hydro- 
dynamic in the following sense. At the onset of each signal, a stream of 
information about the signal flows at a uniform rate into S. After a certain 
time, the input time, the front of this stream reaches S's decision taking 
mechanism or "computer." After a further time, the decision time, S makes 
a response. The time taken for the response to be recorded will be called the 
motor time. Thus the choice-reaction time is made up of three components: 
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the input time, T~ ; the decision time, Td ; the motor time, T~.  The models 
apply to Td, which will be related to the environmental variables (the number 
of signals and their frequencies of presentation) and the rate at which S 
makes incorrect responses. By concentrating on Td in this way, it is not implied 
that T~ and T~ are necessarily independent of these factors. 

Likelihood Ratio Models for the Two-Choice Situation 

I t  is assumed that the subject knows when the signal (either so or s~ , 
say) commences; that is, he knows when to start examining the stream of 
information arriving at the computer. (This stream is "noisy" until the 
stream from the signal is added to it.) This assumption holds in the self- 
paced condition and also when some preparatory warning signal is given. It  
is supposed that there is some overlap in the information; that is, ~some 
patterns of information may arise from either So o1" sl . If there is no un- 
certainty in this sense, there is no need for a statistical computer. The un- 
certainty may arise from the external situation, from noise added at the 
input stage, or from both sources. We will suppose that the information on 
which S's computer operates is equivalent to a series of independent random 
variables at short time intervals t and that each random variable has the 
(stationary) distribution of a random variable x (dependent on which signal 
has occurred) until the response is made. 

Signal 
Xl  X2 X3 . . . . .  

I I . . . . . .  I 
i t t 

Let po(x) and pl(x) be the probabilities of x when the signal is so and s~ , 
respectively. If the x's are instantaneous samples of an almost continuous 
stream of information then the assumption of independence implies zero 
auto-correlation between parts of the stream not less than time t apart. If 
the x's are integrals of the stream over the successive intervals, then the 
assumption requires zero auto-correlation for all time lags (or at least for 
those not small compared with t). Suppose the computer transforms each 
x to a quantit~ c(x) which is then stored in an adder. 

Sequential Case 

The computer makes a running total of c(xl), c(x2), . . . .  Constant log 
A and log B with A > B are preselected so that S decides for so (and makes 
the appropriate motor action) as soon as the total falls below log B, provided 
the total has not previously exceeded log A when the decision would have 
been made for s~ . (The odd way of expressing the constants facilitates later 
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references.) If the decision is made at the nth sample T~ = nt. The theory 
of the sequential probability ratio test [1] shows that the optimum choice 
of the function c(x) is 

(1) c(x) = log pl(x) - log po(x). 

Such a function implies that S is familiar with the probability distributions 
po(x) and p l (x ) .  Such familiarity may be the result of a process of learning, 
provided S has performed many trials of the discrimination task and is 
given knowledge of results. S ' s  computer may be thought of as exploratory, 
trying out different c(x)'s until the optimal one is found. However it is con- 
ceivable that the distributions can be deduced by S from the structure of 
the situation and then imposed on his computer. The optimality of (1) is 
stated by Wald [1] in the following terms: let rio, fii be the averages of the 
number of samples necessary for decision when the signals presented are 
so , sl , respectively. If ~* ,  g* are the averages for any other decision pro- 
cedure based on x l ,  x~, etc., with smaller probabilities of incorrect response 
to So and s~ , then fi* >_ So and n* _> ~1 . It is possible that this form of 
optimality does not appeal to S, who may have to be trained to use it by 
suitable reward. 

Before testing the model, it must be remembered that it is T which is 
measured and not Ta . Even so, a test is available which requires only the 
following assumption. Consider trials leading to a decision for so. The assump- 
tion is, given the value of Td, that the distribution of T~ + T~ is the same 
whether the decision is right or wrong. (The same assumption is made for 
decisions for s~ .) This does not exclude the possibility that T~ + T .  and T~ 
be correlated. The length of time, T~ , may affect the uncertainty in the 
information presented to the computer and therefore may affect Td ; alter- 
natively, if T~ is long, T ,  may be deliberately shortened. However, it does 
assume that Tm cannot be influenced by information processed since the 
initiation of the motor action. In Appendix 1 it is shown that, with mild 
restrictions on po(X) and p~(x), the distribution of the n's, and therefore of 
the T~'s, leading to a decision for so (or of those leading to s~) is the same 
whether the decisions are correct or incorrect. With the above assumption, 
this implies that the same result should hold for a comparison of the correct 
and incorrect T's leading to so (and for a comparison of those leading to sl). 
This provides the basis of a reasonable test of the model. However, a fair 
proportion of errors would be needed to give a powerful test. 

Without making assumptions about po(x) and p~(x),  it is difficult to 
think of more ways of examining the validity of the model. Since x is an 
intervening variable without operational definition, it would clearly be 
unwise to assume much about po(x) and p~ (x). However, there is one assump- 
tion, called the "condition of symmetry," which in some discrimination 
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tasks may be reasonable. This is that  the distribution of pl(x)/po(X), when 
x is distributed according to po(x), is identical with that  of po(x)/pl(x),  when 
x is distributed according to pl(x). I t  is shown in Appendix 2 that,  if this 
condition holds, 

(2) ~ / ~ o  = J(~, a ) / J (a ,  f~); 

(3)  J ( . ,  ~ )v l  - J ( ~ ,  .)~,o 
= 4 [ J ( ~ ,  . ) ~ ( 1  - . ) ~  - J ( ~ ,  ~ ) ~ ( 1  - ~ ) n ~ ] / ( 1  - ~ - .8)L 

where a and fl are the probabilities of incorrect response to a single so and s l ,  
respectively, v~ is the variance of the sample sizes when s~ is presented, and 

J(a,  {3) = a log [a/(1 -- fl)] + (I -- a) log [(1 -- a)/fl]. 

If it is feasible to estimate T~ directly for each trial by  eliminating T~ + T~ 
from T, then (2) and (3) imply 

(4) ~'d,/T~o = J(f~, a ) / J (a ,  f~), 

(5) J (a ,  ft) var Tal - J(f~, a) var Td0 

- -  4 [ J ( ~ ,  a ) a ( 1  - -  a ~ 2 / e ,  - -  J ( a ,  3 ) 3 ( 1  - f l ) T ~ o ] / ( 1  - a - f l )2 .  

Equations (4) and (5) are most relevant if S can be persuaded to achieve 
different (a, fl) combinations without changing the distributions po(X) and 
p~(x). When a = 3, then no = fi, and vo = v~ ; with the assumptions tha t  
T, + T .  is (i) uneorrelated with Ta and (ii) independent of the signal pre- 
sented, this implies equality of means and variances of reaction times to the 
signals. So, for the latter special case, it is not necessary to measure Ta.  

For the "condition of symmetry"  it is sufficient that,  with x represented 
as a number, po(x) = p,(x  - d) for some number d with po(x) symmetrical 
about its mean. This might occur when so , s~ are signals which are close 
together on some scale and the error added to the signals to make x has the 
same distribution for each signal. Symmetry would not be expected in 
absolute threshold discriminations or in the discrimination of widely different 
colors in a color-noisy background. Another sufficient condition is tha t  x be 
bivariate, Ix(l), x(2)], the probabilities under so obtained from those 
under s~ by interchanging x(1) and x(2). For instance, x(1) and x(2) may  
be the inputs on two noisy channels and so consists of stimulation of the first 
while s~ consists of stimulation of the second. 

A further prediction of the model for the symmetrical case can be made 
when S is persuaded by a suitable reward to give equal weight to errors to 
So and s~ , tha t  is to minimize his unconditional error probability, by adjust- 
ment  of the constants A and B in his computer. I f  po is the frequency of 
presentation of so then the error probability is po a + (1 -- Po)fl or e, say, 
and the average decision time is poT~o + (1 -- po)Td~ or Ta,  say. I t  is shown 
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in Appendix 3 that, provided 10e < P0 < 1 - lOe, the minimization results 
in the following relation between Te, e and p0 : 

T~ ~ [ g ( e ,  1 - e)  - J ( p o  , 1 - P o ) ] .  

The Non-Sequential Fixed-Sample Case 

If S has an incentive to react quickly and correctly, then the advantage 
of the sequential decision procedure is that those discriminations which by 
chance happen to be easy are made quickly and time is saved. However it 
is possible that S may adopt a different, less efficient strategy--which is to 
fix Ta for all trials at a value which will give a certain accepted error rate. 
Let the sample size corresponding to this decision time be n. The likelihood 
ratio procedures are as follows: decide for so if c(xl) + . . .  + c(x~) < log C; 
decide for sl if c(xl) + . . .  + c(xn) >_ log C; c(x) = log pl(x) - log po(x) 
and C > 0. These procedures are optimal in the sense that, if any other 
procedure based on xl ,  • .- , x~ is used, there exists one of the likelihood ratio 
procedures with smaller error probabilities. I t  was remarkable that in the 
sequential case useful predictions were obtainable under mild restrictions 
on po(x) and p~(x). Unfortunately this does not hold for the fixed-sample 
case, making more difficult the problem of testing whether such a model 
holds. 

If there is no input storage, it is possible that the results of the self- 
imposed strategy ~ust outlined are equivalent to those obtainable when the 
experimenter himself cuts off the signals after an exposure time Td . But 
this is the type of situation considered by Peterson and Birdsall [2]. The 
emphasis of these authors is mainly on the external parameters (such as 
energy) rather than on any supposed intervening variable. They define a 
set of physical situations for auditory discrimination in terms of a parameter 
d, which is equivalent to the difference between the means of two normal 
populations with unit variance. (For, in the cases considered, it happens 
that the logarithm of the likelihood ratio of the actual physical random 
variables for the two alternatives is normally distributed with equality of 
variance under the two alternatives.) This parameter sets a limit to the various 
performances (error probabilities to So and sO of any discriminator using the 
whole of the physical information. I t  therefore sets an upper bound on the 
performance of S who can only use less than the whole. In [2] the authors 
make the assumption that the information on the basis of which S makes 
his discrimination nevertheless gives normality of logarithm of the likelihood 
ratio. They examine data to see whether S is producing error frequencies 
that lie on a curve defined by a d greater than that in the external situation. 

More than Two Alternatives 

For m alternatives there are m probability distributions for the inter- 
vening variable x (which may be multivariate); that is, signal st induces an 
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x with the probabil i ty distribution p~(x) for i = 1, . . -  , m. We will consider 
the consequences of a fixed-sample decision procedure based on x~ , -. • , x~, 
where n is fixed. 

I f  the signals are presented independently with probabilities p , ,  • • • , p~ 
(adding to unity) and if a~(~) is the probabil i ty of error to signal s~ when the 
decision procedure 5) (based on x~ , . . .  , x~) is used, then the probabil i ty 
of error to a single presentat ion is 

m 

e = X p,a,(li)). 
1 

I t  is shown in Appendix 4 tha t  the ~ minimizing e is tha t  which effectively 
selects the signal with max imum posterior probabili ty.  In  this section, this 
minimum e will be related to n (or Td/t) and m when distributions are normal. 
However  in the validation of the model it might  be necessary to supplement  
T~ with a t ime T~,  representing the t ime the computer  requires to examine 
the m posterior probabilities to decide which is the largest. For, al though it 
might  be reasonable to suppose tha t  T~ -~ T~ is independent of m, one would 
expect T~ to vary  with m. The Simplest model for T~ would be to suppose 
tha t  T~ = (m - 1)t', where t' is the t ime necessary to compare any  two of 
the probabilities and decide which is the larger. 

We will s ta te  the relation between n and m when e is constant  in the 
following special case ( treated by  Peterson and Birdsall [3], who s tated the 
relation between e and m when n is held constant  by  the experimenter):  we 
take pl = P2 . . . . .  p~ = 1/m and x a mul t ivar ia te  random variable 
x(1), . . .  , x(m). Under s~ , suppose tha t  x(1), . . .  , x(m) are independent 
and tha t  x(i) is normally distr ibuted with  mean u > 0 and unit  variance, 
while the other components of x are normal with zero means and unit vari-  
ances. Thus  there is all-round symmetry ,  x(1), . . .  , x(m) can be regarded 
as the inputs  on m similar channels. The i th  channel is s t imulated under s~. 
I t  is readily seen tha t  the opt imal  procedure is to choose the signal correspond- 
ing to the channel with the largest total. I t  is shown in Appendix 5 that ,  
with this procedure, 

ng 2 -- {1 ~- [0.64(m - 1) -~/~ -{- 0.45]~}[~-~(1 - e) - ~-~(1/m)] ~ 

for those m for which e < 1 - ( l /m) .  ~-~ is the inverse of the normal  s tandard-  
ized distribution function. The values of n~ 2 for certain values of e and m 
have been calculated. I f  # is independent of m, then T~ is proportional to 
n~ 2 and the results are plotted in Figure 1. I t  can be seen tha t  T~ is very 
nearly linear against log m, which agrees with some experimental  findings 
in this field. 

The  question m a y  be raised whether any  m-choice task  can obey the 
symmet ry  condition of the model. Peterson and Birdsall apply  the model 
to the case where an audi tory signal is presented in one of four equal periods 
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of an exposure of S to "white" noise. In this case symmetry is superficially 
present, but any memory difficulties of S would upset it. We would not 
expect the model to apply to the case of response to one of m fairly easily 
discriminable lights arranged in some display, for the noise would be highly 
positional. However, in the case where the lights are patches of white noise 
on one of which a low intensity visual signal is superimposed so that  response 
is difficult, the positional effect may not be important and there may be 
symmetry.  

Appendix 1 
Let n ,  be the sample size for a decision in favor of s~ when s~ is presented. 

The distribution of n ,  is completely determined by its moment generating 
function, ~b,. From A5.1 of [1], if 

(p,(t) = ~ p,(x) [p,(x)/po(x) ]*, 

then 

(6) (1 -- a)B'¢oo[--log to(t)] + aA'~b,o[-- log to(t)] ~ 1, 

(7) /3B'~bol[--log gl(t)] + (1 -- /3)A'¢/l~[-log gl(0] -~ 1, 

provided the quantities E~,  V~ defined in Appendix 2 are small. If ~ < 0.1 
and/3 < 0.1 then to a good approximation A = (1 - # ) /a  and B =/3/(1 - a). 
Now go (1 -}- u) = g~(u); so, putting t = 1 + u in (6) and (7), 

#B"~bo0[--log ¢,(u)]-]- (1 -- /3)A"@,o[-log g,(u)] - 1, 
(1 -- a)B'~b0, [-- log g0(u)] + a A " ¢ , , [ - l o g  go(U)_] -= 1. 
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By comparing these equations with (6) and (7), it is found that  ¢oo = ~bol 
and ¢~o = ¢~11 • Therefore the distributions of noo and no1 (and similarly those 
of nio and nil) are identical. 

Append ix  2 

In the case of symmetry,  

~_~ pc(z) log [po(x)/p,(x)] = ~ p,(x) log ~,(x)/po(x)] = E ,  
z z 

and 

car log ~po(x)/pl(x)] under pc(x) = car log [pl(x)/po(x)] under p~(x) = V .  

From A:72 of [1], if E and V are small, 

(8) ~o = J(a ,  ~) /E;  ~, = J(fl, a ) / E .  

Therefore 

~,/~o = J(~,  a ) / J ( a ,  8). 

By differentiating (6) twice with respect to t and substituting t = 0, using 
(8) and the fact tha t  ~ i  is the moment generating function of n , ,  

Vo = [ v J ( , ~ ,  ~ ) / E ' ]  - 4 [ . ( 1  - . ) ~ / ( 1  - .  - ~)~]. 
By symmetry 

v~ = [VJ(~,  & / E ' ]  - 4[~9(1 -/~)~o2/(1 - a -- 3)2]. 

Hence 

J(a ,  fl)v~ --  J(/9, &co = 4[J(fl, ~)a(1 -- a)fi~ 

- j ( ~ ,  ~ ) ~ ( ~  - ~ ) ~ ] / ( ~  - ~ - ~)~. 

Append ix  3 

If  a < 0.1 and B < 0.1 then, by (8), T~ c¢ poJ(a,  ~) -5 (1 - po)J(f~, a). 
Keeping e [or Pc a -5 (1 - Po)f~] constant at  a value in the range given by 
10e < pc < i - t0e, the condition on a and fl will be satisfied. I t  is found by 
the usual methods tha t  the minimum Td is proportional to J(e, 1 -- e) --  

J(po , 1 - pc). 

Append ix  4 

Let X be the set of all possible values of x = (x~ , . . .  , x.) and X~ the 
set of x for which a decision is made for s t .  Then 

e= p, E 
4=I : c z X - X ~  

Suppose X~ and X; have a common boundary; then, for e to be a minimum, 



MERVYN STONE 259 

i t  will no t  be  changed b y  small  d isp lacements  in this boundary .  Hence ,  on 
the  boundary ,  p~p~(x) = p~pi(x); t ha t  is, the  poster ior  p robab i l i ty  of s~ 
equals  t h a t  of s~ . Consider ing all possible boundaries ,  the  solut ion is t h a t  
X ,  is the  set  of x ' s  for  which s~ has  grea ter  poster ior  p robab i l i ty  t h a n  the  
o the r  signals. 

Wri te  

Appendix 5 

~(i) = ~:  x.( i) /n.  

Then ,  unde r  sl , %/n2(1) is N ( x / m * ,  1) and  %/n2(i) is N(0 ,  1) for  i # 1. 
Therefore ,  

= l -  ''.'2 f "  exp [--½(u -- %/~ .)2] du. 

On in tegra t ion  by  par t s ,  

(9) e = ~ p,~,(~)) 

= ( m  - fro - ,) exp (--½u s) du 

= c , ~ ( o ) ,  

say,  where  0 = ~¢/n~. Pe te r son  and  BirdsaU [3] use this fo rm as the  basis  of 
the i r  t abula t ion .  H o w e v e r  e~(t~) -~  0 as 0 --) co and  e,~(0) - ~  1 as 8 - ~  --  ~ ; 
while e~(0) _~ 0. There fore  {e~(0){ is a "p robab i l i t y  dens i ty  func t ion"  for  0. 
T h e  character is t ic  funct ion and  hence the  d is t r ibut ion of 0 tu rns  out  to  be  
the  same  as t h a t  of v + w, where  w = max  (v~, . . .  , v~_~) and v, v~, . . .  , v~_, 
are  m independen t  s t anda rd  no rma l  variables.  Referr ing to G r a p h  4.2.2(7) 
of [4], i t  can be seen tha t ,  for  m < 20, the  first and  second m o m e n t  quot ien ts  
of w are  not  ve ry  different  f rom those of a normal  dis t r ibut ion.  Also the  
addi t ion  of v to  w will improve  normal i ty .  Hence  0 is app rox ima te ly  normal ,  
agreeing wi th  the  calculat ions of Pe te r son  and  Birdsall .  I f  0 is N(v, a2), we 
de te rmine  v and  a 2 as follows. F r o m  (9), e~(0) = 1 - ( I / m ) .  Also e~(0) = 
1 -- • (-- v/(*). Therefore  

,,/~ = - ~ - ~ O / m ) .  

Also 2 = v a r v  + va r  w and  f rom G r a p h  4.2.2(6) of [4], v a r  w = 
[0.64 (m --  1) -=* + 0.45] 2 for  ra < 20, which de te rmines  2 .  P u t t i n g  e.(t~) = e, 
the  cons tan t  error  ra te ,  

n,, 2 = {1 + [0.64(m - 1) -1/2 + 0.4512} [¢- ' (1  - e) - q , - ' (1 /m)]  ~. 
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