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New procedures are presented for measuring invariance and matching 
factors for fixed variables and for fixed or different subjects. Two of these, 
the coefficient of invariance for factor loadings and the coefficient of factor 
similarity, utilize factor scores computed from the different sets of factor 
loadings and one of the original standard score matrices. Another, the 
coefficient of subject invaxiance, is obtained by using one of the sets of 
factor loadings in conjunction with the different standard score matrices. 
These coefficients are correlations between factor scores of the appropriate 
matrices. When the best match of factors is desired, rather than degree of 
resemblance, the method of assignment is proposed. 

Determining the extent to which factors obtained in different studies 
are the same has been a problem which has plagued factor analysts since 
Thurstone [11] proposed that the generality (or invarianee) of factors is a 
major goal in an adequate factor analytic program. The difficulty of the 
task becomes apparent when one considers that a different problem is in- 
volved if there is a change in tests, subiects, or both, or in the method of 
analysis. Methods of measuring invariance have been critically evaluated 
by Henrysson [6], Wrigley [13], and Harman [5]. A number of these are 
considered in the present paper in relation to new methods of measuring 
invariance. 

For N individuals and m tests, the complete system of factor equations 
is expressed by 

Z = F A .  

In this equation Z is an N by m matrix of standard scores for N subjects 
on m tests, F is the matrix of factor scores for the N subjects on q factors, 
and A is the matrix of Ioadings of the q factors on the m tests, where q is the 
rank of the m by m intercorrelation matrix Z 'Z .  T h e  factor score matrix is 
given by the equation 

F = Z A  - l ,  
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where A -1 is the general inverse [9] or pseudoinverse [3] of matrix A. If the 
factor axes are rotated by a given amount, i.e., if the matrix of factor load- 
Lugs A is postmultiplied by a rotation matrix T of order m, new matrices of 
factor loadings and factor scores, B and G, respectively, will be obtained. 

A T  = B, 

Z = G B ,  

G = ZB- ' .  

The relationship between the scores for a given factor in the rotated 
matrix G and the scores for the same factor of the unrotated matrix F is 
the same as that  which exists between the factors of the two matrices A and 
B, since Z is a constant; that  is, the degree of correlation among the factors 
and among the factor scores is a function of the angle of rotation. The correla- 
tion between the two factors, if they are unit vectors, is equal to their scalar 
product, which in turn is equal to the cosine of the angle of separation [5]. 

Measures of Invariance ]or Fixed Samples 

While the model thus far presented is of limited value for practical 
application (where a large number of variables is involved), it illustrates 
at a fairly simple level one possible solution to the problem of invariance, 
namely, determining the angle of separation between the factors in question. 

For the case in which a fixed sample but different variables are involved, 
Wrigley and Neuhaus [14] have suggested using coefficients of congruence. 
In the terms used here, and as set forth by Harman ([5], pp. 259-260), this 
procedure entails computing for the two studies matrices of orthogonal 
factor scores, F, an N by q matrix, and G, an N by q* matrix. The factor 
scores of the one matrix are then related to those of the second matrix in 
order to obtain the correlation matrix R. 

R = ~ LG'J 

__ I IF'F F'G 1 
N t_G'F G'GJ 

|_~rRll R~RI~t 
i P21 ' 

in which R~2 (=R~)  is a set of coefficients of congruence. 
If the two sets of factor scores are transformed so as to be maximally 

congruent and orthogonal within each set, the coefficients of congruence are 
equivalent to canonical correlations. Horst [8] has recently presented a 
solution for generalizing canonical correlations to m sets of data. 

The coefficient of congruence appears to be the most natural method 
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of matching factors ([5], p. 260), and would seem to be a fairly direct measure 
of the similarity of factors obtained from different sets of data. Before accept- 
ing such a conclusion, consider a hypothetical study in which one obtains 
the standard score matrix Z. Suppose that a second standard score matrix 
Y is formed by rearranging the rows of the matrix Z by a random assign- 
ment without, however, changing the row headings. Taking the two matrices 
as if they contained scores obtained on two different occasions, one would 
find, if one took from the two matrices scores on the tests with the same names 
(that is, columns of the same location in the respective matrices), that  the 
test-retest scores would be unrelated, except by chance. However, if matrices 
of correlations are obtained for the two sets of data and these are 
factor analyzed, the factor loading matrices will be identical, as will be the 
correlation matrices, assuming the same rounding and machine errors. On 
the other hand, the factor scores of the first study will be unrelated to the 
factor scores of the second study, except by chance. Thus the coefficient of 
congruence confounds changes in the subjects with changes in the factors. 

Put in a slightly different way, in a factor analytic study in which one 
obtains the same measures on two different occasions on the same sample, 
one seeks to determine the comparability of the two different methods of 
weighting the same measures for obtaining scores on composite variables 
(factors). In using the coefficient of congruence, however, one is actually 
comparing the two different methods of weighting when applied to the 
different sets of measures. The means of avoiding this problem are evident. 
The two factor score matrices F and G are obtained by using different sets 
of factor loadings A and B but the same standard score matrix Z; i.e., 

F = Z A  -1, 

G = ZB -1. 

The Coe~ien t  o] Invariance--Di fferent Samples 

The correlation of the scores on one factor from the first matrix F with 
scores on a factor from the second matrix G is termed the coe~cient o] in- 
variance r lv ,  where the subscript I stands for invariance and the subscript 
V stands for fixed variables. This coefficient reflects both the angle through 
which one would need to rotate the second factor in order for the factors to 
coincide and the differences between them at that  location in factor com- 
position, i.e., configuration of the loadings. (The angle of separation by itself 
provides an overestimate of the invariance of the factors. In computing such 
an angle one would need to assume that the factor spaces for the two factor 
matrices were the same, an issue to which attention is directed in a later 
section.) 

If, prior to the computation of the coefficients of invariance, one of the 
four methods set forth by Horst [8] is used to obtain a transformation of the 
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two factor score matrices F and G to maximum congruence while at the same 
time insuring mutual orthogonality of the factors within each set, the co- 
efficient will reflect only the difference in factor composition. A different 
designation, say the coefficient of factor similarity, would seem to be ap- 
propriate in this instance, since one has discarded the original criteria for 
positioning the vectors. In essence, the question has been changed from how 
invariant are the factors from one set of data to another to how similar they 
can be made to be by rotation. A comparison of the coefficient of similarity 
for the two factors with the cosine of the angle of rotation required to maxi- 
mize their congruence indicates the extent to which their dissimilarity is a 
function of the positions of the vectors and the extent to which it is a func- 
tion of differences in composition of the factors. Changes in subjects and 
changes in the methods of weighting the variables are, of course, confounded 
in the coefficient of similarity if the factor score matrices are based on different 
standard score matrices rather than on the same matrix. 

While the logic of the coefficient of invariance was developed using for 
illustrative purposes matrices of data on the same variables and subjects on 
two different occasions, its application is not restricted either to longitudinal 
data or to data on only two samples. I t  is directly applicable to data collected 
on the same variables on different samples. On the other hand, as developed 
thus far, the coefficient of invariance is not readily applicable to data for 
which Wrigley and Neuhaus [14] developed their coefficient--different vari- 
ables, fixed samples. 

With respect to the coefficient of invariance, the question arises as to 
whether values obtained using A and B with Y would be different from those 
obtained using A and B with Z. Slight differences in the results are certainly 
to be expected as a function of chance fluctuations in the shapes of the dis- 
tributions for the variables and of the differences in the homogeneity of the 
samples (or of the sample in question on two occasions). Greater than chance 
differences would certainly raise a question as to the comparability of the 
samples. 

Configurational Invariance 

The coefficient of invariance which has been presented reflects what 
Henrysson [6] has called configurational invariance, since it is not sensitive 
to differences in the numerical size of the loadings. A measure of relationship 
reflecting numerical differences, as well as coniigurational changes, is the 
intraclass correlation, which may well be a useful measure when a coefficient 
of numerical invariance is desired [4]. 

Tucker' s Coefftcient of Congruence 

I t  may be desirable to contrast the coefficient of invariance with the 
most frequently suggested measure of invariance for fixed variables and 
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different samples, tha t  is, Tucker's coefficient of congruence ([12], p. 43). 
This measure is the sum of the cross products of the loadings for the two 
factors under consideration divided by the square root of the product of the 
sums of the squared loadings. Let 

1 

n o r m e d  A, 

1 

and similarly for B . . . .  ~; then 0 = A . . . .  ~ (B . . . .  ~)', and its elements are 
given by 

~~ ak~bki 
~ i i  ~ k = l  ............. 

a ~ ~ k~ bki 

(Note: If  A and B consist of q and q* rows of normal orthogonal eigenvectors, 
then the denominator of ¢~; is equal to one.) This is also the procedure which 
has been recommended by Burt  ([1], p. 185) and by Wrigley and Neuhaus 
[14]. As Harman points out ([5], p. 258), this measure is not a correlation, 
since the raw loadings used in the formula are not deviates from their re- 
spective means and the summations are over the number of variables rather 
than the number of individuals. 

Tests of significance are not available for this index, and its interpreta- 
tion is ambiguous. Consider as an example the sets of loadings obtained on 
four variables in two separate studies--.01, .03, .02, .04, and .91, .93, .92, .94, 
respectively. The patterns are identical, although the points are separated 
by a constant of .90. In  this case the coefficient of congruence is only .92. 
Consider as a second example two sets of factor loadings whose values are as 
follows: .2, .4, .1, .3, and .3, .2, .4, .1. In this case the coefficient is .70. Indeed, 
the lowest value the coefficient can take for the "poorest" configuration of 
the second set of loadings (i.e., tha t  pattern which results in the smallest 
sum of cross products) is .67. Thus, factors whose loadings are of the same 
sign will have high coefficients of congruence. The consequence of this for 
centroid factor analysis is tha t  the first factors from two different matrices 
(for fixed variables and different subjects) will ahnost always have high co- 
efficients of congruence because of the high proportion of large positive 
loadings. 
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Correlation of Loadings 

Correlating factor loadings also gives ambiguous coefficients. Consider, 
for example, a factor from matrix A which has loadings varying between 
.00 and .85, and a factor from a second matrix B whose distribution of loadings 
has the same shape but whose loadings vary between - . 85  and -~ .85. Since 
in the process of computing correlations one converts the raw scores into 
standard scores, one would be giving equivalent standard score value to 
loadings of .00 on the first factor and to the very high negative loadings of 
--.85 on the other. One thus equates a variable which contains none of the 
common variance of the factor with one which shares a great deal of the 
common variance of the factor on which it loads. To avoid equating loadings 
which have quite different meanings, the correlation between the squared 
loadings could be obtained. This procedure presents an equally difficult 
problem. Loadings which previously had opposite meanings are equated, 
e.g., d-.85 and - .85 .  

ttorst 's suggestion, in his development of relations among m sets of 
measures ([7], p. 133), that the rows of his supermatrix are variables and the 
columns are factors, i.e., that  the supermatrix should consist of a combined 
matrix of two or more sets of factor loadings, appears to be similarly limited 
by such considerations. Means of avoiding this limitation were suggested at 
the beginning of this section. The problems presented by Tucker's coefficient 
of congruence and by the correlation of factor loadings are avoided in the 
coefficient of invariance. 

Indices of Proportionality 

To use this procedure, according to Cattell's account, "It is necessary 
that  the two experiments have the same variables and yield the same factors 
but that the variance of each ]actor in one experiment shall be different, through 
accidents of sampling or through deliberate manipulation of experimental 
conditions, ]rom that ol the corresponding ]actor in the second" ([2], p. 246). 
When this is the case, the two factors are rotated to the one position in which 
the loading pattern of one factor corresponds to the loading pattern of the 
shnilar one of the other study. (Numerically, of course, the loadings of the 
two factors may differ at this position.) I t  is fairly evident that when this 
rotation is effeeted, one discards whatever criteria one established for po- 
sitioning the vectors in the first place, a criticism which also applies to 
canonical correlations and, as earlier noted, to the coefficient of factor simi- 
larity. In addition, some degree of subjective judgment may on occasion be 
required in deciding which factors to rotate to proportionality. 

In contrast, the coefficient of invariance can be meaningfully applied 
whether or not the variance of each factor in one study is different from that  
of the corresponding factor in the other. In the case in which the factors are 
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exactly the same, the matrix of coefficients of invariance is a permutation 
matrix. The use of the coefficient of invariance does not require modifying 
the position of the vectors or dropping the earlier criteria of rotation, nor 
does it require that  the factors be the " s a m e "  either in number or in apparent 
similarity. 

If factors of greater generality are desired, as appears to be the goal 
for which Cattell strives, this "collapsing" of the factors of the two studies 
can be achieved by a factor analysis of the two sets of factor score matrices 
combined; for example, of the N X q matrix F and the N X q* matrix G: 

[F IG]  = Z = F ' A ,  

where the combined matrix Z is an N X q + q* standard score matrix, A 
is the matrix of loadings of the q + q* "tests" on the p new factors, and F* 
is the matrix of scores of N subjects on these factors. Since F and G are based 
on the same standard score matrix rather than on different standard score 
matrices, the major factors obtained will be composites of the congruent 
factors. 

Matching Factors and the Ass ignment  Problem 

Using the matrix of invariance coefficients, one can match the factors 
from the two studies on the basis of the high relationships. While using the 
coefficient in this manner would be as defensible as other methods used in 
this way, such an interpretation would seem to be somewhat naive since the 
coefficient reflects the degree of invariance. Thus the correlation of scores on a 
given factor from one matrix with scores on the factors in the other matrix 
shows the extent to which the factor in question is similar to each of the factors 
of the other matrix. 

As an alternative to using the coefficient of invariance as a procedure 
for obtaining the best match between factors, when the same number are 
available in both sets, the writers propose the method o] assignment.  (Silver 
has presented an algorithm for the assignment problem [10].) For factors 
which should be paired, the differences between loadings should theoretically 
be constant. In practice, of course, this will not be the case; however, the 
standard deviation of the differences should be small. To establish the basis 
for matching factors, let z ,  be the standard deviation of the differences be- 
tween the loadings of the ith factor of the first matrix and the #h  factor of 
the second set. Since only one factor in the first may match one factor in the 
second set, one takes a set of ( r , ' s  (i = 1, • . .  , q, and i is a permutation of 
the values 1, . . -  , q) such that the sum of the squares is a minimum; i.e., 
so that  the sum of the variances, Z v , ,  is a minimum. Computationally, this 
is the assignment problem for the q × q matrix of V = (v,,.). (Whether or 
not a unique solution has been obtained could be determined by increasing 
the magnitude of the selected ~ , ' s  one at a time, determining whether another 
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set of ¢~i's is obtained whose 2;v~i is as small as that originally obtained. In 
actual practice the original solution for a given set of data will, except in a 
very rare instance, be unique.) This procedure as currently developed is 
only applicable in instances in which the same number of factors are obtained 
from the two matrices. When this is not the case, the procedure would need 
to be modified. 

Where a match for every factor is desired, but it is not required that  one 
factor in one set match only one factor in the other set, the assignment could 
be made so that those showing the smallest standard deviation of differences 
are paired (or grouped), 

Comparability o] Factor Space 

In this section a procedure is presented for measuring the extent to 
which the same factor space is occupied by factors obtained on data from 
different samples of subjects, the factors being treated as vectors of unit 
length. The same subjects and variables are utilized in computing the factor 
scores for the two or~hogonal loading matrices. Hence, one can combine the 
two factor score matrices so that  for each subject the number of scores Q 
is equal to q, the number of factors of the first matrix, plus q*, the number of 
factors of the second matrix. (The number of factors from the two matrices 
need not be the same.) If the complete matrix of intercorrelations between 
factor scores, Riv , with order q W q*, is determined, it will be as follows. 

Matrix Rqq and matrix R,.,. consist of the intercorrelations among the factor 
scores for the first and second study, respectively. Assuming that the inter- 
correlations for each of the two matrices are zero, 

q*q ~qtq*J 

and concern focuses on the matrix R~., , which is equal to R~'¢.. If the co- 
efficients of invariance in R~., and Ro~, are squared and their columnar sums 
are obtained, one obtains for each factor a measure of the extent to which its 
variance can be accounted for by factors of the other study. Thus one can 
use the coefficient of invariance to show the extent to which two factors from 
different studies share common variance and, when the factors are orthogonal, 
to show the extent to which the variance of a given factor is common to the 
total variance of the second study. In addition, assuming orthogonal factors 
in both matrices, the sum of all the squared coefficients in either of the two 
matrices provides a measure of the extent to which the factor space occupied 
by the factors in one study is comparable to that  occupied by those in the 
second study. 



SAMUEL R. PINNEAU AND ALBERT NEWHOUBE 2 7 9  

In the case of the coefficient of similarity, all nondiagonal values of 
matrix R~.¢ are zero and the coefficients in the diagonals directly reflect the 
extent to which the congruent factors share common variance. The sum of 
the squared values in the diagonal in this matrix provides a measure of the 
extent to which the two sets of factors occupy the same factor space. 

Different Factor Analytic Solutions 

The logic basic to the invariance coefficient Rzv has been set forth for 
the special case in which the number of factors obtained is equal to the rank 
of the matrix. In practice, this is rare in the behavioral sciences regardless 
of which method of extracting factors is used. Further complicating the 
problem is the frequent assumption that in terms of factors the total variance 
of statistical variables consists of three components--common variance, 
specific variance, and error variance. If this assumption is made, the total 
number of factors exceeds the number of variables, and an inverse does not 
exist for the factor loading matrix. One may, however, by using the general 
inverse or pseudoinverse matrix obtain a unique solution in the least squares 
sense [3]. 

Alternatives include the complete estimation method of linear regression 
[5] and procedures utilizing the reproduced correlation matrix, i.e., the 
total common variance of the factors extracted. The order of matrix used 
is equal to the number of factors derived and hence is typically much smaller 
than that  of the matrix whose order is equal to the number of variables in- 
volved. The assumption is made that the observed correlational matrix would 
be equal to the reproduced correlational matrix provided no specific or error 
variance were involved. The reproduced correlational matrix is then factor 
analyzed with ones in the diagonals, factor scores being derived as earlier 
set forth. Factor loadings of the variables on the new factors must then be 
obtained. Since the new factor loadings represent rotations of the vectors 
formerly obtained, the task becomes one of defining the rotation matrix 
required to transform the old factor loadings into loadings on the new factors. 

Subject Invariance--Reliability and Stability 

In the development of the coefficient of invariance, individual differences 
were kept constant while variations were permitted both in the number 
of factors and in the values of the factor loadings. When the two original 
data matrices contain scores obtained not only on the same variables but 
on the same subjects, an additional question is raised; how invariant (re- 
liable or stable) from one occasion to the other are the subjects' scores on 
the obtained factors? The coefficient of congruence provides one estimate 
of the invariance of the subjects' scores. However, the same problem is 
present in using it as a measure of reliability or stability as was present in 
using it as a measure of factor invariance; changes in the factor loadings are 
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confounded with subject change. As an alternative, the writers propose using 
a measure which employs factor score matrices derived using the same set 
of factor loadings but  the two original s tandard score matrices. In this way, 
the " i t em weights" are kept  constant for the same variables in the 
two matrices. Hence, 

F = Z A  -~, 

F * =  Y A  -1. 

The correlation of scores on one factor from matr ix F with scores on 
the same factor from the second matrix F* is termed factor score reliability 
or, when longitudinal da ta  are involved, the coefficient of subject invariance, 
r s r ,  where the subscript S stands for fixed subject, and the subscript I stands 
for invariance in the factor loadings, i.e., fixed factor loadings. 

Some variations would be expected in the values obtained if the co- 
efficients of subject invariance were based on the matr ix  of factor loadings 
B rather  than  on A. Greater  than  chance differences are to  be expected, of 
course, when the factors differ in composition or in number. The  procedure 
is also applicable when there are n sets of measures rather  than  just two. 

Summary  

The coefficient of invariance is a measm-e of the degree of invariance 
of factors obtained from data  collected on the same variables on the same 
or different subject samples. Basic to the computat ion of the coefficient are 
the two sets of factor scores obtained when one utilizes the different sets 
of factor loadings with one of the original s tandard score matrices. The  use 
of the coefficient of invariance is further extended in measuring the  extent  
to which the variance accounted for by a factor in one set is accounted for 
by  factors in any one of the other sets. In addition, it provides the basis for 
an over-all measure of the comparabili ty of the space spanned by  the different 
sets of factors. The proposed coefficient of factor similarity is recommended 
when concern focuses on the  extent  to which sets of factors can be made 
congruent rather  than  on the invariance of factors across studies. 

The  method of assignment is suggested as an alternative procedure to 
matching factors on the basis of the highest invariance coefficients. This 
method is applicable when one wishes to obtain the best match between 
factors and when the matrices are of the same rank. A modification is sug- 
gested when the numbers of factors for the two matrices differ. 

When the concern of the investigator is focused on the invariance of the 
factor scores, i.e., on their stability or reliability, the coefficient of subject 
invariance is suggested. In  the computation of this measure, different stand- 
ard score matrices are utilized but  the factor loading matrix is constant.  
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