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The negative hypergeometrie distribution of raw scores on mental 
tests is derived from certain assumptions relating to test theory. This result 
is checked empirically in a number of examples. Further derivations lead to 
the bivariate distribution of parallel tests which is also verified with actual 
data. The bivariate distribution of raw score and true score is also derived 
from a further assumption. This distribution is used to set confidence limits 
for true scores for persons with a given raw score. 

In  an earlier publication Keats [1] expressed the view that  mental 
test scores could be adequately represented by the hypergeometric distribution 
with a negative parameter. This distribution was referred to as the hypo- 
geometric distribution, but will be referred to here as the negative hypergeometric 
distribution. In  that  account the reasons for choosing this particular distri- 
bution were rather intuitive. Attempts to investigate this distribution pro- 
duced many  interesting results relating to test theory, but  failed to show 
a logical link between the usual assumptions of test theory and the distri- 
bution which, from empirical study, was known to provide a good model 
for scaling tes ts-- in  the sense of providing accurate centile scores and age 
corrections. The present article will relate the derivation of the hypergeometric 
distribution to certain test theory assumptions. Further  properties of this 
distribution as well as certain bivariate distributions are derived and illus- 
trated with actual data.. Let 

x = raw score, 
p = relative true score, 
n = number of items in the test, 

N = number of subjects in the sample, 
u = an arbitrary variable used to define the factorial moment  gene- 

rating function M[x, u], 

*This work was supported in part by contract Nonr-2752(00) between the Office of 
Naval Research and Educational Testing Service. Reproduction in whole or in part for 
any purpose of the United States Government is permitted. 
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P(x ,  p)  = the probability of x and p, 
b = the slope of the regression line of p on x, 
r = Kuder-Richardson reliability formula 21, 

g(x) = frequency distribution of x, 
f (p )  = frequency distribution of p. 

Assume that  at  any given true-score level, p, the errors of measurement 
are independent and have a binomial distribution with parameter  p. If the 

dis t r ibut ion of true scores in a given group of examinees is f (p) ,  then the 
distribution of raw scores will be 

g(x) = fo ~ (;)p~q'-~f(p) dp, 

~here  q = (1 -- p). 
The  equation just given will hold exactly in the special case where 

(i) all items have one and only one common factor, and (ii) for people at  
any given ability level, all items are of equal difficulty (i.e., all items have 
the same item characteristic curve). The equation should provide a good 
approximation in cases where neither (i) nor  (ii) hold, as discussed in [3] 
and [4].* In  the final analysis, the value of the equation will, of course, be 
judged by  the accuracy with which conclusions drawn from it are found to  
fit a var ie ty  of real data. 

The factorial moment  generating function of x is 

f0X (n) " n z M[x ,  u] = (1 Jr u) ~ p q - ](p) dp 
o X 

o x (1 -~ u)~p~qn-~](p) dp 

fo ---- (1 -{- up)~I(p) dp 

f ' fo' -- Jo I(P) dp + nu p](p) dp + . . .  

fo + (n r ) ! r !  P'I(P) dp -t- . . .  -t- u ~ P~I(P) dp. 

The right-hand side of this expression has for the coefficients of u ' / r !  
the moments  about  the origin of the distribution of p multiplied by  n ! / (n - - r )  !; 

*This approximation is believed to be a good one for the present purpose of finding 
practical mathematical forms for representing the distribution of x and the distribution 
of p. The fact that this approximation leads in several eases to the Kuder-Richardson 
formula-21 reliability coeffiemnt, as will be shown in due course, is not to be interpreted 
as suggesting the use of this formula in place of formula 20, however. Such a choice of 
reliability formulas should be based on test reliability theory, which is a much more rally 
developed theory than any presently available for representing g(x) and f(p). 
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but  these coefficients in the expansion of Mix, u] are the factorial moments 
of g(x). Hence the moments about  the origin of f(p) can be written down 
in terms of the factorial moments of g(x) and so of the ordinary moments 
of g(x) together with a function of the constant n. The relationships are 

M~(p) = M~(x) 
n 

U~(p) "= U~(x) - M~(x) 
~(~ "~) , 

M~(p) = M~(x) - 3M~(x) + 2Mf(z) 
- ' -  1 ) ( n -  2) ' i ~ \ , v  

M~,(p) = M~(x) - 6M~(x) --}- 11M~(x) - 6M~(x) 
- ' -  ~ ~ ' -  3) 

Mean (p) - Mean (x) . 
n 

1 [Variance (x)] Mean (x) In - Mean (x)]. Variance(p)  = n ( n -  t) - - -  n 

This last result has some theoretical interest. Let  y = n p ,  so that  y is the 
number-correct true score. Then 

Var (y) n Var (x) -- np~. 
~ - F ' ( ~ ' - - - n  - 1 Var (x) 

The right-hand side of this formula is thus the Kuder-Richardson formula 
21 for reliability and can be interpreted as the ratio of the variance of the 
underlying probability distribution with range 0 to n to the variance of 
obtained scores. 

In  a similar way the first product  moment  and hence the correlation 
between p and x can be found. The result obtained is the square root of 
the Kuder-Richardson formula 21 as expected. 

The derivation of the negative hypergeometrie distribution will now 
be given. The original assumptions imply that  P(x, p), the joint distribution 
of p and x, is 

P(x, p) = ( ; )p  " q'-~,(p). 

Consequently, the conditional distribution of p for given x is 

P(P Ix) = g(x) - '  

and so on. 
In particular, 
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where g(x)  is the frequency distr ibution of x. In  part icular  

1 F1 ~x] p[n~ ~+lq . . . .  ](p), 
M e a n  (p ] x) = . q ~  Jo dp. 

A little algebraic manipula t ion shows tha t  1 -- M e a n  (plx)  = Mean  (1 -- plx) ,  
i.e., 

 f(n) 
1 -- M e a n  (p Ix) = ~ p~q . . . .  1f(p) dp.  

Thus,  

g(x)[1 - M e a n  (p Ix)] -- n - x + 1 M e a n  (p ] x - 1)g(x - 1). 
x 

This is an impor tan t  relationship between the frequency distr ibution of raw 
scores and the regression (linear or curvilinear) of p on x. I f  the regression 
is assumed to  be linear, then g(x)  can be explicitly stated.  I f  the regression 
of p on x is linear, then 

M e a n  (p [ x) = Mean  (p) -~ b(x - 2),  

where b is the usual regression coefficient of p on x; but  

r 
= - and b = - ,  Mean  (p) n n 

when r is the Kuder-Richardson formula 21. Hence 

g(x)(1 (I --nr)2 r x )  n --Xx +l[nX-- + n r-(x - - 1  -- 2 ) jg (x  -- 1), 

g(x) = ~(n - x + 1 ) ( r x +  (1 - r ) 2 -  
x(n  -- (1 --  r)£ --  rx) r ) 'g (x  1) 

In -- (x -- 1)] M 2 - F  n (x  -- 1) 
x M ( n  -- ~-~ -~ n (n  -- x) "g(x 

1), 

where 

n n(1 -- r) 
r - -  or M -  • 

n -4-/1I r 

Then it m a y  be shown tha t  

(1) g(x) = K ( : ) [ ( M 2 ) ( M 2  + n) . . .  ( M 2  -5 n x  -- n ) ] [ { M ( n  - 2)} 

{ U ( n  - 2) + n} . . .  { U ( n  - :~) + n (n  - x - 1)}], 

where 

1 _ M ( M +  1) . - -  ( M q - n - -  1)n ~. 
K 
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This distribution is expressed in terms of constants all of which are either 
known or can be estimated from the data; ~ represents the population mean 
of x which is estimated by the sample mean. The distribution is hypergeo- 
metric in form with a negative parameter; it will be denoted here by H(x), 
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or simply by H. (A discussion of some of the properties of this distribution 
and of a convenient method for computing its frequencies will be found in 
[8, sec. 7.11] where it is called the beta-binomial distribution.) Thus on quite 
general assumptions this distribution could be expected to give a reasonable 
representation of actual test score distributions. The fact that it does in 
many cases is reported in [1]. Further verification is presented below. 

A variety of test-score distributions were selected from nation-wide 
psychological testing programmes to represent a wide range of differently 
skewed shapes; a negative hypergeometric distribution was fitted to each. 
The first four distributions in Fig. 1 cover the full range of shapes and display 
as bad fits as any obtained for these data. The last two sets of data in Fig. 1 
were selected from some experimental tests that Mollenkopf [6] had specially 
constructed to produce peculiarly shaped distributions. (Certain other dis- 
tributions developed by Mollenkopf to be leptokurtic and symmetric ([6], 
p. 211) are not considered here, since it is known in advance that a symmetric 
negative hypergeometric distribution, H(x), is always platykurtie--and, for 
that matter, so are symmetric test-score distributions in actual practice [5].) 

In the diagrams, the solid-line frequency polygons represent ungrouped 
observed distributions, the histogram represents grouped observed data. The 
fitted hypergeometric distributions are represented by dotted "frequency 
polygons" in which the angles have been rounded off slightly so that they 
appear to be smooth curves. Frequency polygons are used for graphic clarity; 
the reader must keep in mind that aI1 these distributions really represent 
discrete, not continuous variables. 

Relevant statistics for the six sets of data are summarized in Table 1. 

TABLE 1 
Statistics for Six Distributions 

Stand-  Parameters for H 
ard 

Chi 
Number (levi- M ~  M ( n  -- ~) square Significance** Test of cases Mean ation r n 

code (N) (~) (s~) n n (x 2) level for x ~ 

TQS8 388,071 25.82 7.28 .780 50 7.269 
SSCAZ 10,203 88.08 21.73 .936 142 6.047 
MACAA 6,103 32.93 8.04 .843 50 6.135 
GANA 2,354 27.06 8.19 .892 40 3.283 

~ ' 6 . 7 6 5 . 1 2 ~  
WM8 1,000 [6.75 5.11~ "830 30 1.386 

5.59 ~23.755.69~.8732j 303 .457  WM1 1,000 L23.88 

6.81 * .001 > P(x ~) 
3.70 31.7 .10 > P(x~I) > .05 
3.18 50.9 .10 > P(xa2s) > .05 
1.57 50.6 P(x~s) ~ .025 

~24.1 .70 > P(x~s) > .50 
4.77 120.2 .90 > P(x~s) > .80 

.,(84.9 .001 >P(x~9) 
0.90 * 

*Not computed. 
**These levels underestimate the obtainable fit (see text). 
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For each of the last two sets of data, there are two very similar empirical 
frequency distributions; for each set, a single H has been fitted, using ap- 
propriate averages of the empirical means and of the empirical standard 
deviations. 

The discrepancies between the first set of data (TQS8) and the fitted 
H can be seen without much computation to be highly significant, since 
there are more than 20,000 cases for each value of x in the neighbourhood 
of the mode (the best fitting normal curve, incidentally, gives a slightly 
worse fit, lying somewhat further above the mode of the TQS8 distribution 
than H lies below). The last set of data (WM1) also gives a highly signifi- 
cant chi square, presumably because its shape is so extreme. Three of the 
remaining chi squares are fairly close to the five percent significance level. 
However, it should be remembered that each distribution has 1,000 or more 
cases. Moreover, the ehi-square significance test underestimates the fit 
obtainable for H(x), because the method used here (the method of moments) 
for estimating the parameters of H is not fully efficient, especially for highly 
skewed distributions. Examination of Fig. 1 suggests that all these fits may 
be adequate for many purposes. In fact, when it is considered that no measure 
of the skeumess of the observed data has been used in the process of fitting H 
(the parameters of H were computed from the mean, the standard deviation, 
and the upper bound of the observed variable), the fits obtained appear to 
be surprisingly good for such a wide variety of distributional shapes. 

Under the present assumptions the Kuder-Richardson coefficient becomes 

n 

r = M +  n , 

and this may be tested for significance from zero using chi square in the 
following way: 

(N  - 1)(M + n) 
X/¢'- 1 ~- 

M - I - 1  

where N is the number of persons in the sample [i]. 
I t  can be shown that the Spearman-Brown correction formula applies 

to the Kuder-Richardson formula under the present assumptions. Suppose 
that a test is increased in length from n~ to n2 items by the addition of items 
of the same type as were in the original test. Then it is reasonable to assume 
that M is the same for the new test as it was for the old. 

Then 

n ~  _- n~ and r2 - , 
rl M + nl M + n2 

and after equating values of M and simplifying 

]crl where k n2 
r2 ---- (k - -  1)rl  + 1 ----" n-~" 
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Since it is assumed that a person's score is determined by a probability 
figure related to his ability plus random fluctuation, it follows that when 
p is fixed, performance on one item is independent of performance on any 
other item. I t  is thus possible to divide a test into two parallel parts and 
observe the relationship between the scores obtained for each part. 

Let xo and x~ represent the scores on the two parts of the test which 
have no and n~ items respectively, i.e., xo -t- xl = x and no q- nl = n. 

I t  is assumed that 

P(xo I P) = [xo]P q , 

I p) =  xjp q , 

and since 

P(xo  , x l  , p) = P(xo  l p)P(x~ I P)](P), 

it is possible to determine the bivariate distribution P ( x o ,  x l )  by integrating 
the expression for P ( x o ,  x ~ ,  p)  with respect to p over the range (0, 1). When 
this is done and the resulting expression is simplified, 

• [ / / ( n  - 2 ) } / M ( n  - 2) + n }  . . .  

• { M ( n  - -  F~) + n ( n o  + n l  - -  xo - x ,  - 1)}], 

where 

1 
k - M ( M  + 1) . . .  (t1i -[- no + n l  - 1 )n ' .  

This result gives the theoretical bivariate distribution of xo and x~ 
which may be compared with the bivariate distribution actually obtained 
by splitting the test into two parts. (This comparison will be made for one 
set of empirical data in the second paragraph beIow.) The parameters of 
this distribution are those already estimated for the univariate distribution 
together with the lengths of the two parts of the original test. 

The conditional distribution of xl on x0 may be derived from the equations 
already presented: 

P ( x ,  [ Xo) - P(xo  , x l )  
P(x .~  

: k ( : : ) [ [ ~ I 2  "~ n x o } { M 2  + n ( x o  + 1)}- . -  

• { M 2  + n(xo + x~ - -  1)} ] [ {M(n  --  2) + n(no - -  xo)} - .-  

• { M ( n  - -  2) q- n(no q- n~ - -  xo - -  x l  - -  1)}], 
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where 

1 
= (M + no)(M + no + 1) . . .  ( M  + no + nl  - 1)n"', 

i.e., a hypergeometric distribution with parameters depending on x0 • The 
bivariate distribution is thus not homoscedastie, but  see below for a suggested 
method of dealing with this defect. The  product  moment  correlation coefficient 
between x0 and xl can be readily obtained from the variances of x0 , x~ , 
and x. Since the bivariate distribution is certainly not normal and in fact 
not even homoscedastic the value of this coefficient is not great; however, 
in this case it has some theoretical interest: 

~.(  non1 
r( . . . . .  ) = M + no)(M + nl) 

If no = n~ then this value is equal to the Kuder-Richardson coefficient of 
the subtest of length no . Thus the Kuder-Richardson coefficient has the 
further interpretation that  it is the product moment correlation coefficient 
between the given test and a test of equal length and with similar items. 
However the bivariate distribution is of much more value in determining 
the range of scores likely to be obtained on a second test by people who all 
obtain the same score on the first test. 

Because of their very  skewed distributions, the two WM8 tests shown 
in Fig. 1 and described in Table 1 were chosen to illustrate the use that  
can be made of the results derived so far. These two tests are really the 
matched halves of a 60-item test, the items having been matched by  Mollen- 
kopf on difficulty and item-test correlation. The actual scatterplot between 
the two halves is shown in Fig. 2, the data having been arbitrarily grouped 
without reference to the observed frequencies (except to the observed mean 
and variance) in order to make possible the computation of a chi square. 
The numbers in parentheses are the theoretical frequencies obtained by 
fitting a bivariate negative hypergeometric (the theoretical frequencies were 
obtained from equation (2) by substituting the following values: n = 60, 

= 13.51, r -- .907). The marginal distributions shown are the actual ones. 
The chi square between theoretical and observed bivariate distributions 

has 16 degrees of freedom and is at about the 90-percent significance level. 
The fit is so good as to require consideration. The explanation presumably 
is that,  because of the matching, the two marginal distributions are more 
similar than two randomly parallel halves would be, thus reducing the value 
of the chi square. 

The Distribution of True Scores 

So far the distribution of p in the population has remained arbi t rary 
with the restriction that  the regression of p on x should be linear and tha t  
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p is continuously distributed in the range 0, 1. In general these restrictions 
do not determine the distribution of p uniquely, however it is known that  
if the distribution of p on x is linear, then the Pearson Type I or Beta dis- 
tribution is a possible distribution for p. Furthermore, since the Beta distri- 
bution has at most one turning point and two points of inflection, it can be 
shown tha t  all other solutions must  have a large number (of the order n 
at  least) of turning points or points of inflexion. Such distributions are unlikely 
to occur in practice, and as n becomes large it can be shown tha t  their ap- 
proximation by a Beta distribution becomes closer. I t  therefore seems reason- 
able to assume that  the simplest distribution, i.e., the Beta distribution, is 
the correct one and proceed to develop the theory further on this assumption. 

Let f(p) --  kp~(1  - -  p)'~, where k is a constant and l and m are the param- 
eters of this Beta distribution. Then 

fol(;) g(x)  = p~(1 -- p)" - ' kp~(1  - -  p ) "  d p  
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= the right hand side of (1) with M = 1 + m + 2 and with M__~ = 1 + 1.  
n 

Of great practical value is the possibility of writing down the likely 
distribution of values of p for persons who all obtain the same raw score. 
This is in effect the range of relative true scores for persons who all obtain 
the same raw score. What  is required is the conditional distribution of p 
given x which can be found in the following way. 

P(x,  p) = (n)p~q~-~kpZ(1-- p) "~ 

and 

g(x) = (:)k, F(l + 

but 

x + 1) r (m + n -- x + 1) 
t'(1 -~- m -t- n + 2) 

p(p  i x  ) = P__(x, P) 
g(z) ' 

therefore, 

P(P l X) = k'pZ+~(1 -- p) . . . . .  , 

where ]g is a new constant. 
Thus the conditional distribution of p is also a Beta  function but  with 

parameters depending on the raw score and the number  of items as well 
as l and m. As the number of items increases, with corresponding increase 
in the possible values of x, the conditional distribution of p will have smaller 
and smaller variance and the distribution will become more and more con- 
centrated about a point which approaches the value x /n .  The value x / n  
as n becomes indefinitely large is usually referred to as the relative true score. 

More precisely 

l ~ - x - b l  
M e a n ( p  l x) = l +  m + n - t -  2 " - ~ x / n  

as x and n become large, 

Mean (p I x )  
Var (p  Ix) = l +  m ~ - n ~ - 3  [1 -- M e a n ( p  Ix ) ] - -~0  

as x and n become large. 
From the variance of the distribution of p I x it is possible to deduce the 

product  moment  correlation between p and x. Thus 

2 r(,.x) ] _ ~ Var ( p ~  g(x). 
Var (p) 
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The  right-hand side of this equation simplifies to n/(M q- n) which 
is the Kuder-Richurdson formula. Hence the product  moment  correlation 
coefficient between raw score and p is equal to the square root of the Kuder-  
Richardson coefficient. This result is not  new, but  its derivation is very  
simple here. The lack of homoscedastici ty of the bivariate  distribution makes  
the result o f  doubtful value, and although this difficulty m a y  be removed 
a t  least to  a considerable extent, i t  is probably  just  as simple and certainly 
more exact to work with the bivariate  distribution. 

To  illustrate one of the applications of the derivations f rom the assump- 
tion of a Beta  distribution of true scores, the 95-percent confidence limits 
of relative true scores were est imated for each raw score on a 20-item test  
administered to 100 children. These are tabulated in Table  2, values are 
found to the nearest  .05 and were obtained f rom [7]. 

Corrections for Lack of Homoscedasticity 

I t  has been noticed tha t  the various bivariate surfaces studied are not 
homoscedastic, i.e., tha t  the conditional distributions have variances which 
are not  constant  from one conditional distribution to the next. However  in 
all the cases noted this lack of homoscedastici ty can be overcome at  least 
part ial ly because the change in variance is soIely due to a change of mean,  
i.e., Var  = ]~ Mean  (1 --  Mean) where k is constant  for all possible con- 
ditional distributions in the bivariate surface. Under  these conditions Kendal l  
[2] has shown tha t  it can be confidently expected tha t  the t ransformation 
u = aresin ~/v  will give some improvement .  In  the case of P(p [ x) the 
t ransformation would be u = arcsin %/p, which would lead to a nearly 
constant  column variance of 1/(1 + m + n q- 3) and there would be similar 

TABLE 2 
Five-Percent Confidence Limits of Relative True Scores 

Raw Range of relative Raw Range of relative 
score true scores score true scores 

0 0-.15 
1 0-.15 
2 0-.25 
3 0-.30 
4 .05-.35 
5 .10-. 40 
6 .10-.45 
7 .15-.50 
8 .20-. 55 
9 .20-.60 

10 .30-. 70 

11 .40-.80 
12 .45-. 80 
13 .50-.85 
14 .55-.90 
15 ,60-.90 
16 .65-.95 
17 .70-1.00 
18 .75-1.00 
19 .85-1.00 
2O .85-1.00 
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transformations for x, xo, and x~ with variances (M -b n)/n(M -b 1), 
(M -b no + nl)/no(M + nl + 1), etc. 

The correction for lack of homoscedasticity affects the values of the 
product  moment  correlation coefficients derived above. By  similar methods 
to those used above it can be shown that,  if x~ and x~ are the transformed 
values of xo and x l ,  

4i r(~o, ~,,) = M + nl)(M + no + 1) ' 

which is slightly different from the Kuder-Richardson formula. The cor- 
relation between probability or relative true score and raw score becomes 

r(,,.~,) = + M + 1 ' 

which is slightly different from the square root of the Kuder-Riehardson 
formula. However the Kuder-Richardson formula itself remains invariant 
under the transformation if it is defined as the ratio of the variance of rela- 
tive raw score to the variance of relative true score. 

Summary 

Assumptions 

1. The distribution of the raw scores, x, can be represented by 

2. The regression of the proportion-correct true score, p, on x is linear. 

Deductions 

1. The distribution g(x) is the negative hypergeometrie distribution. 
2. The bivariate distribution of randomly parallel tests is the bivariate 

negative hypergeometric distribution. 
3. The Kuder-Richardson formula 21 has a unique interpretation in 

terms of a parameter of the negative hypergeometric distribution, and the 
Spearman-Brown formula applies to it. 

Further Assumption 

1. The  frequency distribution f(p) is continuous. 

Deduction 

1. The only "reasonable" distribution function for p is the Pearson 
Type  I or Beta function. 

2. Confidence limits of p for each value of x can be calculated or ob- 
tained from Pearson's Tables of the Beta Function. 
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T h e  empir ical  results  presented  here and  in the  references ci ted suggest  
tha t ,  if the  usual  checks for  goodness of fit are applied, the  theory  presented  
will h a v e  m a n y  appl icat ions  to  pract ical  p rob lems  of tes t  cons t ruc t ion  and 
in te rpre ta t ion .  
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