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This paper deals with the determination of optimal weights for points 
on scoring scales for subjective comparative experiments. A scoring scale 
with a specific number of points is considered, and it is assumed that verbal 
or other indications imply an order to the scale points. The optimal spacing 
for the scale points is obtained in the sense that treatment or item differences 
are maximized relative to error or within-treatment variation. The method 
is presented in sufficiently generalized form to be used directly with any 
experimental design leading to the analysis of variance. An iterative procedure, 
suitable for computer use, yields the optimal differences among the ordered 
scale points. Properties of this procedure are discussed. 

In  m a n y  comparat ive experiments, it seems necessary to measure the 
responses of individuals on scoring scales. I t  is then also usually necessary 
to assign numerical values to points on these scales and to proceed with 
statistical analyses based on these numerical scores. Problems of this nature  
arise in many  types  of appraisal  situations, and an impor tan t  class of such 
problems arises in the consumer testing of food products. 

Subjective scoring scales of various forms and numbers  of scale points 
are used in food-product evaluations. These scales usually involve verbal  
descriptions for at  least some of the points on the scales, bu t  sometimes 
other representations of scale points are used. In  any  event, it is almost  
always implicitly assumed tha t  the scale points are ordered, although there 
m a y  be rare situations for which it  is not clear tha t  respondents understand 
the intended order. A common practice has been to assume tha t  points on 
scoring scales are evenly spaced, implying an ari thmetic scale, but  such an 
assignment of scale values m a y  not be opt imum. 

Bock [2] has considered the problem of optimal  scaling and he states 
the problem succinctly as follows: 

The approach of optimal scaling is to assign numerical values to alternatives, 
or categories, so as to discriminate optimally among the objects. . ,  in some 
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sense. Usually it is the least squares sense, and the values are chosen so that 
the variance between objects after scaling is a maximum with respect to 
that within objects. 

Sock, in his paper, is largely concerned with the numerical method and with 
examples. Fisher ([3], pp. 285-298) seems to have been the first to use the 
approach. The problem is discussed in detail by  Torgerson ([8], pp. 338-345), 
and his discussion is based on papers by  Gut tman  [5] and more directly 
by  Mosteller [7]. Essentially the criterion stated by  Bock is used to obtain 
optimal discrimination among objects, and the concept of ordered categories 
or ordered scale points has not  been considered by  Torgerson or the earlier 
writers using this criterion. Torgerson includes his discussion under the 
heading "Deterministic Models for Categorical Da ta . "  

Other criteria are possible and have been used in considering ordered 
categories. Such a method has become known as the "method of successive 
intervals"; this is based on accumulated proportions for each t rea tment  
up to specified scale points. Proportions under normal curves are equated 
to these observed proportions, the corresponding normal deviates are ob- 
tained, and estimates of t reatment  means, s tandard errors, and scale values 
are found to minimize a pooled error variance. Basic references to the method 
of successive intervals are Horst  [6], Gulliksen [4], Sock [1], and Torgerson 
([8], Chap. 10). There is clearly no direct mathematical  relationship between 
scale values obtained by  the method of successive intervals and the procedures 
tha t  we develop below; whether or not there is close agreement in scale values 
obtained, even though different criteria are used, must await extensive com- 
parisons with good experimental data. 

We have applied the scaling method for categorical data  following 
Torgerson ([8], pp. 338-345) to the problem of determining scores for scale 
values in food testing. The results were rather  meaningless in tha t  the scores 
obtained did not  at  all match the order suggested by  verbal, or otherwise 
indicated, orders on the scales. In view of this difficulty, the work of this 
paper was undertaken, and the principle of maximizing the variance between 
objects after  scaling relative to within-objects variance was adopted, bu t  
with the difference tha t  the maximization was carried out  subject to imposed 
order restrictions on the scale points. 

Formulation of the Problem 

Suppose that  a scoring scale has k points designated by w1 , . . .  , wk • 
We assume an ordered scale so tha t  wl _< w2 ___ " '"  <_ w, . The origin of 
the scale is arbi t rary (see Appendix A) and may be defined so that  the scale 
values sum to zero, ~ = 1  w~ = 0. In a designed experiment, not necessarily 
a one-way classification, the frequencies of occurrences of w~ , . . .  , wk are 
recorded within each design division (treatments, blocks, replications, etc.) 
of the experiment. I t  is now possible to write algebraically the variance 
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(2) 

ratio F, for the test  for t rea tment  effects for the particular experimental 
design being used, in te rms of the observed frequencies and w~ , - - -  , wk • 

The variance ratio wiI1 have the form 

i= l  i = l  i = l  i~1 

The coefficients a .  and b .  in (1) are functions of the observed frequencies 
and of the design parameters  of the experimental design employed. These 
values will be known for any  given experiment. The optimal  scale values 
for the ordered categories are obtained by  maximizing F with respect to 
the w ' s ,  subject to the restrictions imposed on them. An alternative (and 
equivalent) procedure, for example for the one-way classification, would 
be to maximize R 2, the square of the multiple correlation coefficient as ob- 
tained from the ratio of t rea tment  sum of squares to the total  sum of squares. 
This al ternative has some slight advantages  through simplification of the 
coefficients in the denominator  of R 2 corresponding to the b .  in (1). Both 
F and R ~ are independent of the scale of the w's and, in numerical work, 
it may  be advantageous to use the rule tha t  the range of the w's, wk - w~ , 
be uni ty although this is not necessary. 

We proceed by  transforming to new variables. Let  

Z2 ~ W 3 ~ W2 

Z k _  1 = W k  ~ W k _ l  , 

z~ = w~ + . . .  + w~ . 

In  matr ix  notation, 

(3) z '  ~- Tw' ,  

with z '  and w' being column vectors, and T being the matr ix  of coefficients 
indicated by  (2). Now w~+l >_ w~ implies tha t  z~ >_ 0, i = 1, - . .  , k - 1, 
and ~ = 1  w~ = 0 implies tha t  zk = 0. Substi tut ion in F in (1) yields a new 
form, 

k--1 k--I / k--1 k--~ 

(4) F =  c,lz,z  d . z , z ,  , 
iffil i ~ l  i ~ l  iffil 

where the c .  and d .  are obtained directly from the a .  and b . ,  respectively. 
The  problem has been reduced now to the one of maximizing F in (4) with 
respect to the z's, subject to z~ > 0, i = 1, . - -  , k --  1. When values of 
z~ , • • • , zk-t are obtained, values of w~ , • • • , w~ follow. 

In  practice, computer  programs have been developed for various ex- 
perimental  designs to obtain the c .  and d .  coefficients in (4); these are de- 
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term;ned numerically through substitution of the required frequencies into 
the computer. Development of such programs is straightforward and will 
not  be discussed here; it  is sufficient to note tha t  

(5) c, ,  = ~ ~ a , , , ,  , 

and tha t  

(6) d,,= E E b , . . ,  
i '=1 ~ '=I  

as is demonstrated in Appendix B. 
Some difficulties may  enter. Suppose an extreme scale point, say u,, , 

is never used. Then wk does not appear in (1) and 

a,~ = a~i = b,k = bk~ = 0 ( i ,  j = 1, . . .  , k ) .  

This results in 

Ci,k--1  ---- C k - l , i  = d~.k-1 = dk-l.i = 0 (i, j = 1, . . .  , k -- 1), 

as can be seen from (5) and (6) and the fact tha t  
k - - 1  k - - I  k - -1  k - - I  

Za,,= Za,,= F_.D,,= Zb .=O 
i - 1  i = l  i=1 i = l  

resulting from the discussion of Appendix B. Now wk and zk_l are not esti- 
mable; a sensible rule is then to consider the original scale to be one with 
only k - 1 points and to proceed. Similarly, if wl is never used, the first row 
and first column of the C matr ix and of the D matr ix  consist of zeros and 
again a (k - 1)-point scale must  be considered. If  more than  one adjacent 
extreme scale point is not  used, similar reduction of the number  of original 
scale points must be made. If a central scale point is not  used, say w, , 
1 < s < k, the procedures outlined below may  still operate. However,  an 
element of indeterminancy enters, and the values of z l ,  • .- , z~_, to maximize 
(4) are not  unique with z ,  and z,_z being determined only to the extent  of 
obtaining the optimal value for z, ~- z,_, . 

Let  us consider the C and D matrices in more detail. In  the analysis 
of variance, the t reatment  and error sums of squares ma y  be writ ten in the 
forms y S , y '  and y S , y ' ,  where y is the vector of the total i ty  of N original 
observations, and S, and S, are nonnegative definite, symmetric,  square 
matrices of order N and of ranks equal to the degrees of freedom for treat-  
ments  and error, respectively. In  the situation with a scoring scale of k 
points, there exists an N by k matr ix  A associating the observations y with 
the scaIe points w so tha t  h contains one and only one nonzero element, 
unity,  in each row; thus 

A w '  = y ' ,  A = A 'S ,A ,  and B = A 'S .A .  

Transformation to the z's yields 
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C* = (T-') '  £VS, AT-'  and D* = (T-')' A'S, AT-' 

as defined in Appendix B with C and D being the (k - 1)-square, first prin- 
cipal minors of C* and D*, respectively. If all scale values are used at least 
once in the experiment, the rank of A is k. Since the rank of S, or S, is that  
of the degrees of freedom associated with it, it follows that  the rank of C* 
cannot exceed the smaller of k and the number of degrees of freedom for 
treatments, and the rank of D* cannot exceed the smaller of k and the number 
of degrees of freedom for error. Similarly, the rank of C cannot exceed the 
smaller of k - 1 and the number of degrees of freedom treatments; the rank 
of D cannot exceed the smaller of k - 1 and the number of degrees of freedom 
for error. I t  follows that C is more likely to be singular than D because often 
the degrees of freedom for treatments will be less than k -- 1, whereas usually 
the degrees of freedom for error will exceed k -- 1. 

To proceed, it would be easy if we could assert that D is positive definite 
(of rank k - 1) but such is not always the case. A clear exception occurs 
when a subset of adjacent extreme scores is used exclusively to evaluate all 
samples on one treatment. In this exception an infinite F can be obtained by 
setting all w's in the subset equal to one value and the remaining w's equal 
to another value. This may not be the only type of exception, and we have 
not been able to catalog all of the possibilities. I t  is clear that the difficulties 
arise in those configurations of score assignments that  permit a zero error 
sum of squares. Thus, the difficulties are less likely to arise in larger experi- 
ments and in well-designed experiments without extreme treatments. 

In applications of the method to be developed, we have encountered 
cases wherein C is singular, but we have not encountered cases where D is 
not positive definite. In the following work, we shall assume that D is positive 
definite and suggest that the nonsingularity of D be checked in applications 
before proceeding further. Several of our demonstrations will depend on D 
being positive definite, but the method of estimation may still be valid. The 
procedures will be valid still if D is singular provided the subspace over 
which the singularities exist does not intersect the principal quadrant of the 
z space. The procedures should also lead to a point in the principal quadrant 
of the z space for which an infinite F exists, but the proof of convergence 
given does not apply. I t  is very unlikely that a well-designed and com- 
prehensive experiment for the calibration of a k-point scale will lead to D 
singular. 

First Quadrant Maximization 

To maximize F in (4), we require the point in, or on a boundary of, 
the principal quadrant of the z space that yields the supremum of F. While 
the procedures to be outlined may apply in somewhat more general situations, 
we shall limit consideration to the situation in which the denominator of (4) 
is a positive-definite quadratic form (D is positive definite). I t  does not 
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follow that  F has a zero-derivative maximum, and an iterative procedure 
has been developed for the maximization. I t  does follow that ,  if D is positive 
definite, we do have a finite maximum in, or on a boundary of, the principal 
quadrant  and tha t  F and its derivative are continuous. Th a t  F has an absolute 
maximum and tha t  the procedure to be given yields tha t  maximum, subject 
~o D being positive definite, will be demonstrated in Appendix C. 

Consider the partial derivatives 

OF 2 [ ( E  c, : ;z ,)(E E d,z,zi) -- ( E  d~iz~)(E E c,z,z,)] 
i i i i i i (7) - -  = 

oz, ( E  E d.z,zi)  2 
i i 

= g(z)[(E c.z )(E E 4.z,z ) - (E  d.z )(E c.z,z3], 
i ~ i i ~ i 

wherein K(z) >_ 0 and the summations with respect to i and j extend over 
values 1, . . -  , k -- 1. The procedure is a simple one. Take i = 1 in (7), 
substitute simple initial values of z2 , . . .  , zk-1 in (7), and then obtain the 
value of zl that  maximizes F in (4) under the required conditions and on 
the line described by  the initial values. When z, has been so obtained, designate 
it  by  z~ 1). If  the initial values were z2 (°), ---  , zk_l ,(°) repeat  setting i = 2 in (7), 

,~) z~O), _~o) to obtain z~ ~ and so on. This procedure and substitute zl , . . .  , z~_~ 
always converges since the values of F corresponding to each stage of the 
iterations form a bounded increasing sequence. We now consider how (7) 
is used in this process. 

To be specific, consider i = 1 in (7) and substi tute z~ (°~, . . .  , ~-i-(0) with 
these numerical values less than unity without loss of generality. I t  is clear 
tha t  the sign of OF/Oz, depends on 

(8) Q, = ( E  c.z~)(E E d.z,z~) - ( E  d . z i ) ( E  E c.z,z~). 
i i i i i i 

When i = 1 and the initial values have been substituted, Q~ is a polynomial 
in z~. This polynomial is at  most of degree three, but  it is immediately evident 

2 is 3 is always zero. The coefficient of z~ tha t  the coefficient of z~ 

(9) eli ~ a, izi }--dH(i~=2clizi ,], 
i = 2  

the coefficient of z~ is 

k-1 k - ,  ~o) (o)~ k-,  ~ (o) ~o)~ 
(10) C l 1  ~ a.z, zi ] -- dl, Z., c, iz, zi 1, 

x i = 2  i = 2  i = 2  t 

and the constant term is 

(11) c,~z~ °) ~ /_., d z!°)z !°) - ~ d,~z~ °' ~ ~ c,z, zi }. 
\ i~2 t x  i ~ 2  i f f i2  ,1 t l ] i = 2  i = 2  i f f i2  

We shall consider two main cases separately, (i) Q~ quadratic and (ii) Q~ 
not  quadratic. 
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(i) Q1 Quadratic 

Consider the graph of Q~ plotted against z~ . Ordinarily, a quadratic 
form can have one of the six shapes shown in Figs. 1, --- , 6. We observe 
first that Figs. 1 and 4 are impossible in the present situation. The proof 
is given in Appendix D. We discuss the remaining figures under two subcases. 
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(a) The Coe~icient o] ~ > 0 

2 in (9) exceeds zero, Fig. 2 or 3 applies. If  the When the coefficient of zl 
graph is as in Fig. 2, the maximum of F occurs either a t  zl = A, the smaller 
root of the quadratic, or at  Zl = ¢o. This follows since OF/Ozl > 0 for 0 _< 
z~ < A and for zl > B, the larger root of the quadratic, indicating tha t  F 
is increasing in these regions. F is evaluated for zl = A (z2 = z2 (°), . . .  

_ (o~ and as zl -~ co. If the larger value of F occurs when zl A, Zk--1 -'~ ~ k - - 1 )  --~ 

we take z~ ~) = A. If  the larger value occurs when z~ = co, we take z~ ~) large, 
bu t  finite, relative to z~ °), • • • , ~k-1- (o) and proceed. In  numerical work we have 
simply adopted the rule of taking z~ 1) to be 20 times the larger of z2 (°) _ (o) , " " " , ~ k - 1  

and proceeding. 
If the graph is as in Fig. 3, z~ 1) = 0 or z~ ~) = co. As for Fig. 2, the decision 

between these alternatives is made by calculating F for each and taking 
the alternative leading to the larger F. If B < 0, i t  is clear tha t  z~ °) = ~ .  

(b) The Coefficient o] z~ < 0 

When the coefficient of z~ in (9) is negative, Fig. 5 or 6 applies. If Fig. 5 
is appropriate,  z~ ~) = 0. Similarly, if Fig. 6 prevails, z, ¢" = B. 

Now the general procedure is to fix zl at  z~ ~), to fix z3 , - . .  , zk-~ at  
( 1 )  Z2(~) z~ °), " '"  , ~k-~-(o) , and to repeat  the procedure outlined for z~ to obtain 

and so on. The i terative procedure is continued until successive sets of values 
of zl , . . .  , zk_~ are nearly equal, implying convergence of the process. (In 
programming this problem for the IBM 650 computer, we repeated the 
iterations until successive values of the maximum of F were in agreement 
to a desired accuracy--we chose the change in F to be less than 10-~.) 

The details of recognizing which one of the configurations of Figs. 2, 
3, 5, and 6 applies may  be set forth. The first step is to evaluate (9) to decide 
whether (a) or (b) applies. One next considers the roots of the equation Q1 = 0. 
With the smaller root designated by  A and the larger by B, for (a), the graph 
is as in Fig. 2 if A >_ 0 and  as in Fig. 3 if A <_ 0. Similarly, for (b), the graph 
is as in Fig. 5 if B _< 0 and as in Fig. 6 if B >_ 0. The figures for successive 
z, are, of course, of the same form and all of the arguments above apply at  
all stages of each cycle of iterations. 

(ii) Q1 Not Quadratic 

When Q1 is not quadratic, several situations may again prevail. The 
most obvious one is tha t  for which the first row and the first column of both 
C and D matrices are entirely zeros. Then all coefficients of Q1 vanish, and 
OF/Ozt ----- O. Thus zl is indeterminate, and we have the situation previously 
d i s c u s s e ~ h e r e  we must  effectively consider not a k-point scale but  a t  most 
a (k -- 1)-point scale. 

When the first row and first column of the C matrix consist of zeros but  
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2 the D matrix does not have this form, we may proceed. The coefficient of z~ 
in (9) is now zero but  the coefficient of z~ and the constant term are not zero. 
We may rewrite (10) !as 

o Z z, / (12) 

and (11) as 

k - 1  k - I  ~ ' x  (0) (0)~ 
(13) -- d,,z~ °' ~ /_., c,iz, zi ] ,  

i ~ l  i ~ l  

and hence Q~ and OF/OZl are zero when 

) /  (14) zl = -- d,z~ du • 

Thus, since (12) is negative because the C and D matrices are nonnegative 
definite, it follows tha t  the line Q~ has negative slope with z~ intercept as 
given in (14). Hence to maximize F, take zl as in (14) if the right-hand 
member of (14) is positive and take zl = 0 otherwise. 

We have not  encountered other situations where (9) may  be zero. I t  
is clear tha t  values of z~ (°), • • • , z,-1-(07 may  be chosen which by chance will 
make (9) zero; if this occurs, it should be possible to take new trial values 
and to proceed. If  other special configurations of scale-point frequencies in 
special experimental designs lead to difficulties through the vanishing of (9), 
they will require special consideration. 

The remarks of this subsection apply to all Q~ as the iterations proceed. 
Details on computer programming will not be outlined. We have an 

IBM 650 program tha t  is initiated with the input of the coefficients o ,  
and d ,  of (4) and (8), and trial values z2 (°), • • • , ~k-1- cot . Output  shows succes- 
sive values of the z's and corresponding values of F as the iterations proceed. 
This program has also been adapted for use, with some refinements added, 
with the I B M  1620. I t  is perhaps sufficient to state tha t  this program is 
quite long, due to the various decisions needed in regard to Figs. 1 to 6, 
but  the principles employed are as outlined in this section. When final values 
of z~ , • . .  , zk_l have been obtained, values of wl , . - -  , wk, suitably scaled, 
follow from (2). 

Examples 

Optimal scale points have been obtained for a number of scoring scales 
and a number of product  groups. The examples below all relate to one-way 
classifications, and the D matrices are for the total  sum of squares rather  
than the error sum of squares. The first example is given in "some detail 
whereas only data  and results are reported for the remaining. 

Table 1 shows the data  for a three-treatment experiment with a five- 
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point scoring scale. The C and D matrices are given in the bottom of the 
table. Note that the C matrix has rank 2 whereas the D matrix has rank 4. 

To obtain the C matrix, the A matrix must first be calculated and is 
found from the coefficients of the quadratic form, 

[(w, -{- 2w2 + 18w~ ~- 12w4 + 11w5)~/44] 

-{- [(5w, -}- 7w2 -}- 12w8 -}- 14w4 -~ 5w5)~/43] Jr [(27w, -]- 7w2 + 9w3)~/43] 

- -  [(33w, + 16w2 -}- 39w3 -}- 26w4 -'b 16w5)2/130]. 

To obtain the D matrix (for the total sum of squares), the B matrix is cal- 
culated from 

33w~ + 16w~ -I- 39w~ -~- 26w~ -~ 16w~ 

- -  [(33w~ ~- 16w2 -}- 39w~ + 26w4 -{- 16w5)~/130]. 

The C and D matrices follow from A and B matrices through (5) and (6). 
Iteration was begun with z, = z2 = z3 = z4 = 1 for initial trial values. 

The corresponding value of R ~ (R 2, not F, since we are maximizing the ratio 

T A B L E  1 

Frequencies of Scale Values and  C and D Matr ices  for Example  1 

Scale va lues  T r e a t m e n t s  Tota ls  
I II III 

w 5 Excel lent  

w 4 Good 

w 3 F a i r  

w 2 Poor  

w 1 Te r r i b l e  

11 5 0 

12 14 0 

18 12 9 

2 7 7 

1 5 27 

16 

26 

39 

16 

33 

Totals 44 43 43 130 

C Matrix 

9. i8068 10.37390 7.92950 3 ,230t4  
i i .  96787 8.96026 3.88542 

6.84884 2.79007 
i. 36216 

D Matr ix  

24.62307 20.56153 10.66153 4.06153 
30.53076 15.83076 6.03076 

28.43076 i0 .83076 
t4 .03076 
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T A B L E  2 

S u c c e s s i v e  Cyc l e s  of I t e r a t i o n s  fo r  E x a m p l e  1 

365 

Score  D i f f e r ences  

Cyc le  no. z 1 z 2 z 3 z 4 R 2 

t 1 1 1 

1. t00 0 .774  0 .682  0 .036  

1. 085 0. 797 0. 628 0. t35 

1 .084  0 .795  0 .618  0. t59  

i. 084 0. 795 0. 616 0. 163 

i .  084 0. 795 0. 615 0. 164 

0 .4439719 

0.4691211 

0.4696671 

0 .4696947 

0 .4696956 

0 .4696956  

of treatment to total sums of squares) is 0.44397. The results of complete 
cycles of iterations are given in Table 2. 

Successive scale values may be obtained by accumulating the z's. Thus 
wl = 0, w2 -- 1.084, w3 = 1.879, w4 = 2.494, and w~ = 2.658. But for standard- 
ization, we adjust these to sum to zero and to have unit range: wl = --0.611, 
w2 = -0.203, w~ = 0.096, w~ = 0.327, and w5 -- 0.389. 

Four additional experiments with the same scoring scale and other 
variants of the same product type have been completed. We summarize these 
briefly by showing the data in Table 3, values of the z's and R 2 in Table 4 
and values of the scale points in Table 5. 

I t  is to be noted in Table 2 that  values of R 2 do not ehanse greatly as 
we move towards the optimal scale values. Also, in Table 5, it is seen that  
the standardized optimal scale vMues are similar for all five examples. In 
Table 6, we show values of R: obtained as the scales are interchanged among 
examples. Optimal values of R 2 show on the principal diagonal and, for 
example, the second R 2 in the first row is that obtained using the scale of 
Example 1 on the data of Example 2. I t  is seen that  scales may be inter- 
changed without great reduction in values of R ~ and that equal spacing gives 
an intermediate value of R 2 for all but the data of Example 3. 

Discussion 

We have provided a method for obtaining optimal weights for scoring 
scales while retaining the intended order on the scale. Some of the properties 
of the procedure have been investigated but others have not. Further work 
might be undertaken on the reliability of scale point estimates obtained and 
on the resulting distributions of the optimal F or R 2 derived. While these 
further investigations would be helpful, we believe that the applicability of 
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T A B L E  3 

F r e q u e n c i e s  o f  S c a l e  V a l u e s  f o r  F o u r  A d d i t i o n a l  E x a m p l e s  

No. Sca l e  v a l u e s  T r e a t m e n t s  

I II HI IV V 

2 

3 

5 

w 5 

w 4 

w 3 

w 2 

w 1 

w 5 

w 4 

w 3 

w 2 

w i 

w 5 

w 3 

w 2 

w I 

w 5 

w 3 

w 2 

w i 

iO 5 l i  0 0 

8 24 10 3 4 

iO i i  i5 9 5 

4 3 5 i 6  7 

i 3 3 i l  i 6  

I I I  I I I  IV  V 

4 4 0 8 2 

13 20 7 5 30 

9 lO 6 3 iO 

5 3 i3  i5  2 

9 7 i4  1 t  0 

I II lII 

9 4 0 

9 i 4  i 

i 6  i7  3 

5 4 27 

2 5 i2  

I II HI IV V VI 

2 . 5 *  7 4 5 6 t 

i9  21 i5 i9  11 5 

Z 5* 13 12 11 16 t5  

t i  l 3 4 i0  i 4  

6 3 10 3 2 10 

*Due to  a t t e m p t s  to s c o r e  b e t w e e n  s c a l e  po in t s .  
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TABLE 4 

Score  Dif ferences  and Rz for  Four  Addit ional  Examples  

Example  z i z 2 z 3 z4 R2 

0.690 1.568 0.589 0. 606 

0 41.563 7.652 0 

0 2.563 2.260 0 . 5 t 5  

0 8 . 9 8 t  0 .513 0 .870 

TABLE 5 

Values  of Scale  Poin ts  for  the F ive  E x a m p l e s  

0 .347 

0. 244 

0 .124 

0 .474 

Example  w 1 w 2 w 3 w 4 w 5 

-0 .611  -0 .203  0.096 0.327 0.389 

-0 .536  -0 .336  0.118 0. 288 0.464 

-0 .569  -0 .569  0 .276 0 .431 0.431 

-0 .557  -0 .557  0.310 0 .359 0 .443 

-0 .477  -0 .477  0.003 0 .427 0.523 

TABLE 6 

Values  of R2 Obtained on In te rchanging  Opt imal  Sca les  

Data of 
Example  

Opt imal  Scale for  Example  
1 2 3 4 5 

0.470 0.455 0.414 0,408 0 .408 

0 ,333  0,347 0,325 0,327 0,322 

0. 195 0. 205 0.244 0. 215 0. 234 

0. t03 0. 113 0. 110 0. 124 0. 106 

0.340 0.419 0.472 0.406 0,474 

Equal Spacing 

0 .444 

0.333 

0.174 

0.111 

0.343 
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the method will be in the conduct of methodological studies to ascertain 
scale values for subsequent routine use of the scale with the same product 
type. 

Use of the method for various scales and product types suggests the 
following conclusions. 

(i) When many scale points are used, optimal scale values induce a 
collapsing of the scale and the effective number of points is smaller than the 
original number of points or categories. 

(ii) When real and appreciable product acceptability differences occur, 
increased stability in scale values has been observed, and the scale values 
that are optimal tend to approach equally spaced scale values. 

(iii) The results obtained generally add assurance in the continued use 
of equally spaced scales with approximately five points. 

These conclusions should be regarded as tentative; they are, however, 
based on fairly extensive studies. Verification in other types of applications 
of scoring scales should be undertaken. These conclusions are based on ex- 
tensive applications of the method of this paper to problems in food testing. 
Between fifty and one hundred sets of data have been considered. We hope 
to summarize these applications in a subsequent paper but this has not yet 
been done; such extensive summaries would not be appropriate here. 

One concluding note is needed. It is clear that the method for ordered 
categories will yield the same result as the similar method (based on the 
same criterion) for unordered categories when the unrestricted maximum 
occurs in the principal quadrant of the z space. A reviewer has noted that 
this is true for Examples 1 and 2. This reviewer has also noticed that the 
remaining examples are disordered only in neighboring categorie s and that 
the method gives such categories identical scale values; the same results 
would have been obtained if one had decided a priori to group these categories 
and apply the method for unordered categories. From these examples, one 
might believe that perturbations in the data would suggest appropriate 
initial groupings of adjacent ordered categories. But we do have many sets 
of data where such grouping would not be obvious a priori and where the 
method of unordered categories would scramble scale values to orders where 
at least an extreme amount of grouping would be necessary. The important 
point of this paper is that such a priori judgment and insight is not required. 
One might argue that, where the intended natural ordering is not achieved, 
reconsideration of the scale used and descriptive terminology related to it 
should be reconsidered. 

Appendices 
A. Arbitrary Origin and Scale 

The scoring scale or w scale has been discussed, and it has been noted 
that, for convenience, we can set ~]~-1 w~ = 0 and take wk -- wl = 1. I t  
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is perhaps intuitively obvious that  this may be done but a further note may 
be helpful. 

In  the analysis of variance with N total observations, there are N - 1 
degrees of freedom associated with the analysis after estimation of the over- 
all mean. These N - 1 degrees of freedom are associated with N - 1 ob- 
servation contrasts, some assignable to the measurement of error, some of 
treatment effects, some of blocks, and so on. The sums of squares and mean 
squares for error, treatments, and blocks are either simple sums of squares 
of these contrasts or perhaps quadratic forms in them. If  observations are 
denoted by y , . . .  , a contrast is a linear function ~ a , . . .  y , . . .  of the ob- 
servations, with ~ a ,  . . . .  0. This implies that  a contrast may always be 
written in terms of a linear function of differences Y~i.,- - Y~,; . . . . .  But  in 
our situation each y~;.., is equal to one of w~ , • • • , w~ and y~... - y~,~ . . . . .  
wh - w~, , a difference in the w's. Hence, if each w~ = a ~- w~ , this relation- 
ship constituting a change in origin, the contrasts in terms of the w"s are 
identical to those in terms of the w's. The choice of a, or the choice of origin, 
is thus arbitrary and we have made this choice by taking ~ - ' ~  w~ = 0. 

Once the origin has been determined, the choice of scale or units of 
measurement is also arbitrary. The effect of a change in scale is to multiply 
each contrast by the same constant, to multiply each sum of squares or mean 
square by the square of that  constant, and to leave ratios of mean squares, 
such as F or R ~, unchanged. 

B. Trans]ormation to Differenoe Variates 

The transformation (2) permits expression of F in (1) in terms of 
z~ , . . .  , zk_l in (4). The new coefficients c,i and d ,  in (5) and (6) have been 
expressed in terms of the original coefficients a ,  and b ,  . This requires proof. 

The inverse of T in (3) is 

(B1) T-~ = _ !  
k 

- k - -  1 k - - 2  k - - 3  . . .  1 - -1-  

- -1  I t - -  2 k - -  3 . . .  1 - -1  

- -1  - -2  k -- 3 . . .  1 - -1  

- 1  - 2  - 3  • • • 1 - 1  

--1 --2 --3 . . . .  ( k -  1) --1_ 

and the pertinent quadratic forms, w A w '  and wBw' ,  transform to z ( T - I ) ' A T - l z  ' 
and z ( T - 1 ) ' B T - l z  '. Thus C* = ( T - I ) ' A T  -~ and D* = ( T - ~ ) ' B T  -~. Direct 
matrix multiplication yields 
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i / k i 

(B2) c , , - -  ~ ~ ] a , , ; ,  - - ~  /_, ~ ] a , , ; ,  
i ' = l  i ' = l  i ' f f i l  j ' = l  

j ~ ij 
i ' = 1  1"=1  i ' = l  i ' - I  

(B3) d ,  = b,,i,  -- ~ b,'i" 
i ' l l  ~*=l i ' l l  j ' f f i l  

i ' = l  i ' = l  i ' = l  i ' = l  

for i, j = 1, . . .  , k -- 1. Since zk = 0 by  definition, we are only interested 
in the principal (k - 1)-square minors, C and D, of C* and D* and their 
elements are those of (B2) and (B3). 

Fur ther  simplification follows from the nature of A and B. We consider 
A and note tha t  the t rea tment  mean square in the analysis of variance is 
a quadratic form, say tat ' ,  in the t reatment  contrasts of the vector t. (Often 
A = K I ,  i.e., a multiple of the identi ty matrix.) The t rea tment  contrasts 
are linear functions of w~ , •. • , wk, say t' = rw' ,  and r has elements ~¢~; 
such tha t  ~]~.~ ~,~ = 0. I t  follows that  A = r ' A r  and tha t  ~]~=, a ,  = 

~ _ ~  a ,  = 0. Then  (5) follows, as does (6) by a similar argument.  

C. The At ta inment  ol an Absolute M a x i m u m  

First  we shall eliminate the indeterminate situations for which a scale 
of less than/c  points should be considered. Thus, we shM1 take C to be non- 
negative definite and D to be positive definite (making the same restriction 
on D tha t  was made in discussing the iterative procedure). We show tha t  the 
iterative procedure tha t  we have employed reaches a unique absolute maxi- 
mum for F. This maximum is unique in the sense tha t  points z~ , . . .  , zk_~ 
and Kz~ , . . .  , Kzk_~ , where K > 0, are taken to be identical and yield the 
same optimal scaling. 

We refer to (8) and note tha t  OF/Oz, = 0 at no more than two points. 
Thus, in reference to Figs. 1 to 6, it  is clear tha t  F has a t  most one maximum 
at  a finite point on a line parallel to an axis in the z space. Furthermore,  
since C and D are nonnegative definite and D has nonzero diagonal elements, 

I i m F =  lim F = c , / d , .  
z~ ~o~ z ~ - ~  

Hence, for zt fixed, j ~ i, the graph of F plotted against z~ must  have 

(a) one maximum, one minimum, and equal horizontal asymptotes  
(Fig. 7), (b) one maximum, no minimum, and equal horizontal asymp- 
totes (Fig. 8), (c) no maximum, one minimum, and equal horizontal 
asymptotes (Fig. 9), or (d) zero slope everywhere on the line. 
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That F simply cannot have constant but nonzero slope follows from 
(9), (10), and (11) for the expression in (11) must be zero if those of (9) 
and (10) are zero. I t  is to be noted that the maxima and minima in Figs. 
7, 8, and 9 may occur for any values of z~, positive, negative, or zero. 

Consider a one-to-one linear transformation on the z~ , say from z's 
to t's. Now in matrix notation F = TUT' /TVT ' ,  wherein U and V are again 
nonnegative definite. The arguments above apply again, and hence we may 
conclude that  the plot of F along any straight line in the z space is either 
constant or as in ohe of Figs. 7, 8, or 9. In particular note that F is constant 
on any straight line through the origin but that  points on such lines are 
identical in regard to the maximization of F. 

We shall now prove the uniqueness of an absolute maximum in the 
positive quadrant of the z space by reductio ad absurdum and through elimi- 
nation of possible alternatives. Several cases arise and they will be treated 
separately, 

(i) There cannot be more than one looal maximum of F in the interior 
o] the prinoipal quadrant of the z spaoe and not vollinear with the origin. 

Suppose that  A and B are two points in the principal quadrant of the 
z space yielding local maxima for F and that  A and B are not collinear with 
the origin. F has zero derivatives at both A and B points on the line AB. 
Since A and B both yield maxima, there must be a minimum between A 
and B and one with a zero derivative. Thus the existence of A and B implies 
that F has zero derivatives at three points (but not all points) on the line 
contrary to the possible graphs of F in Figs. 7, 8, or 9. This contradition 
establishes the proposition (i). I t  also follows that A and B, not collinear 
with the origin, cannot exist anywhere in the z space, both with zero deriva- 
tives on AB. 

(it) There cannot be both a local maximum ]or F in the interior and on a 
boundary o] the prinoipal quadrant of the z space. 

Suppose that one or more local maxima of F are on the boundaries of 
the principal quadrant of the z space, and let A be the point yielding the 
largest of these. Let B be the point in the principal quadrant yielding a 
local maximum for F. Consider the line AB and note that  OF~as < 0 at A 
when s is the direction A to B; this follows since A would not be a local maxi- 
mum if OF~as > 0 and OF~as ~ 0 by (i). The graph of F on AB must be 
as in Fig. 7 with a minimum between A and B and a maximum at B. If the 
line AB is not perpendicular to the boundary containing A, the extension 
of AB intersects another section of the boundary at A'. Furthermore, since 
the figure is as described, F~ (F at point A) is less than and F~, is greater than 
the horizontal asymptote. Then A' is a boundary point yielding a larger F 
than A, and we have a contradiction. If the line AB is perpendicular to 
the boundary at A, F~ < F~s~,  where F~s~ is the height of the asymptote 
on AB. But now FAs~ is achieved as a limit of F as the nonzero coordinates 
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of A are held fixed and as the other coordinates become large in fixed ratios 
(described by these coordinates at B). An equivalent value of F is obtained 
when those values of the z's that approached infinity in constant ratios are 
held finite in the proper ratios and the remaining z's are taken to be zero. 
Hence, there is a point on a boundary of the principal quadrant yielding 

GRAPHS OF F SHOWING MAXIMA, 

MINIMA, AND HORIZONTAL ASYMPTOTES 

FIGURE 7 F 

FIGURE 8 F 
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F~B® > FA and again we have a contradiction. Proposition (ii) now follows. 
(iii) There cannot be two local max ima  for F, not coUinear with the origin, 

on the boundary of the principal quadrant of the z space. 
Let A and B be two points, not collinear with the origin, on the boundary 

of the principal quadrant of the z space yielding local maxima for F, and 
let one of A and B be the point yielding the largest local maximum. Consider 
two cases: (a) A and B in the same boundary subspace and (b) A and B in 
boundary subspuces orthogonal to each other. If  (a) prevails, the argument 
of (i) applies in the subspace and yields the contradiction. If (b) applies, 
join A B  and, since the derivatives at  A and B on A B  must be of opposite, 
nonzero signs, there must be a minimum between A and B. Since one of A 
and B is the largest local maximum on a boundary and since there cannot 
be a local maximum in the principal quadrant as well, there cannot be a 
maximum between A and B. Then Fa and FB are both less than F~s ,  and 
this implies tha t  there is a point in or on the boundary of the principal 
quadrant with a value of F exceeding FA and Fs  , yielding a contradiction. 
Thus, this third proposition follows. 

We have established that  there is at  most one local maximum in or on 
the boundary of the principal quadrant of the z space. F has one maximum 
since F is finite for all Zl , - . .  , zk_l • The iterative procedure will yield in- 
creasingly larger values of F as the path of iteration moves in the principal 
quadrant of the z space, and larger values of F can be found until the path 
reaches the point yielding the maximum. Hence we have shown that  F has 
a unique absolute maximum and tha t  it is attained by the iterative process 
described. 

D. Figures 1 and 4 are Impossible 

Consider the maximization of F with respect to z~ (when z2 = z2 (°), --- , 
_ (o)~ and note tha t  we may  write ~k--1 = ~'k-- l . ,  I 

2 alzi -5 a2zl -5 a3 
(D1) F = 5:z~ 4- 5:z: .4- b3 

Since the numerator and denominator in (D1) are nonnegative definite, 
we have 

(]32) a ~ < 4ala3 2 - -  $ 

(D3) b~ <_ 4b~b~ . 

We observe first that  we can take a2 - 0 without loss of generality for, 
if a, ~ 0, this involves only a translation and if a~ -- 0, (D2) implies that  
a2 - 0. With a2 = O, OF/Oz~ leads to 

(]94) Q~ -- z~(a~b2) -5 2z,(a~b3 -- a3b~) - a3b~ -- O. 
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The discriminant of Q1 is (alb3 - a3bl) 2 ~- 4ala3b~ , and this is obviously 
nonnegative in view of (D2). Hence Figs. 1 and 4, depending on negative 
discriminants, are ruled out. 

When the discriminant is positive, the roots of Q1 are unequal and the 
graphs in Figs. 2, 3, 5, 6 follow. When the roots of Q1 are equal, this implies 
tha t  the max imum of F is the same as the min imum of F and indeed F is 
constant  independent of Zl • An algebraic proof has been obtained to show 
directly tha t  this is so but  it is not included here for brevi ty .  
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