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Generalizability theory concerns the adequacy with which a "universe" 
score can be inferred from a set of observations. In this paper the theory is 
applied to a universe in which observations are classifiable according to two 
independent variable aspects of the measuring procedure. Several types of 
universe scores are developed and the variance components ascertained for 
each type. The composition of expected observed-score variance and the 
adequacy of inference to a particular type of universe score is a function of 
the procedure used in gathering data. A generalizability study provides esti- 
mates of variance components which can be used in designing an efficient 
procedure for a particular decision purpose. 

Any measuring procedure involves one or more variable aspects not 
specified in the operational definition of the procedure. Whatever choice 
the experimenter makes regarding these aspects--within broad l imits-- the 
observations remain acceptable as a basis for decision-making. One ordinarily 
interprets a child's Stanford-Binet score in the same manner whether Form 
L or M is used, whether Smith or Jones administers it, and whether it is 
obtained on Tuesday or Friday. The observation is accepted because it is 
considered representative of a universe of observations that  might have been 
made on the child. Even  the most momentary  and local observation is gen- 
eralized in interpretation; at  the least, it is treated as representative of reports 
by other observers who might have made the observation at  that  time and 
place. 

Every  observation is to be regarded, therefore, as a sample from a uni- 
verse of possible observations, any one of which might have satisfied the 
investigator. The subject's mean score over all these potential observations 
is his "universe" score; this, if it were available, would be the ideal basis for 
interpretations or decisions. Since universe scores can only be inferred, it is 
necessary to know how well such inferences can be made from observed 
scores. Generalizability theory is concerned with this question. Cronbach 
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tal Health while the authors were on the staff of the University of Illinois. Dr. Rajaratnam 
shared responsibility for the technical report of July, 1961 on which this paper is based. 
The present revision was made subsequent to her death in 1963. The present addresses of 
the other authors are: Goldine C. Gleser, Department of Psychiatry, Central Clinic, Cin- 
cinatti, 29, Ohio; Lee J. Cronbach, School of Education, Stanford University. 
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et al. [4, 5] have presented the theory for tile one-facet universe. In this paper 
we extend the theory to nmltifacet universes. 

In the muItifacet universe, observations vary in more than one respect. 
For example, an investigator weighing a person on a given day may want to 
generalize to a universe consisting of all weights that could be recorded for 
that person at various times on that day on all weighing machines of a speci- 
fied type by any appropriate observer. We shall refer to each of the identifying 
aspects of the observations--time, instrument, observer, etc.--as a ]acet 
[9]. One particular condition from each facet is employed in making each 
observation. In the example, the particular conditions of observation might 
be 11:00 A.M., the weighing machine in Dr. King's office, observer Nurse 
Thompson. The facets, together with the subjects, are sources of variance 
in observed data. Whatever the conclusion the investigator is interested in, 
one or more of these sources of variance contribute unwanted variance or 
error. 

Several writers have recognized that unwanted variance comes from 
many sources, and that each definition of error changes the meaning of the 
"reliability coefficient." The most systematic of the early papers within a 
correlational framework is that of Gulliksen [8]. Theoretical treatments by 
Thorndike [15] and Cronbach [3], among others, argue that "true score" 
and "error" are to be defined differently depending upon the investigator's 
interest; for each definition a different experimental procedure must be used 
to estimate reliability. Subsequent writers have extended the familiar single- 
facet reliability study to treat multiple sources of variance. Lindquist [10] 
and Medley and Mitzel [12] give general formulas for the reliability of com- 
posite scores obtained when conditions of observation are sampled from a 
multifacet universe. (See also [1, 11, 13, 14].) 

We extend these studies by giving more explicit attention to the universe 
of observations over which generalization is intended and to the experimental 
design for collecting measurements. We distinguish between the generaliza- 
bility study and the decision study [cf. 4]. The generalizability (G) study col- 
lects data for the purpose of estimating the components of variance of a 
measuring procedure; the decision (D) study collects data for the purpose of 
making decisions or interpretations. The published estimates of reliability 
for a college aptitude test, for example, are based on a G study; but college 
personnel men employ these estimates to judge the accuracy of the scores 
they collect (D study) to make decisions about applicants. Sometimes, of 
course, the same data serve both purposes. 

In this paper, we discuss observations classified with respect to only two 
facets, but the same principles extend to more elaborate designs. We restrict 
ourselves to observations obtained under conditions randomly sampled from 
the universe. This random-sampling assumption is much weaker than the 
assumption that variances arising under different conditions are equal and 
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that intercorrelations for the pairs of conditions are equal. These strong equiv- 
alence assumptions have appeared, in one guise or another, in such previous 
treatments as those of Lindquist and Burr. 

Notation and Assumptions 

Letting the subscript p denote persons, and i and j denote the conditions 
of observation with respect to two facets of a universe, we have a datum, X ~ , .  
We assume that the number of conditions for any facet is infinite, although 
our argument can readily be adapted to a facet having a finite number of 
conditions [e.g., 2]. We make these further assumptions. (i) The universe of 
possible observations is completely crossed, i.e., for every person there is a 
possible observation corresponding to each and every pair of conditions 
formed by taking one condition from each facet. (ii) The conditions of i and j 
employed in the reliability study and in the decision data are randomly and 
independently sampled from the universe. (iii) There are no order effects. 

We distinguish between matched and independent observations. Ob- 
servations are matched with respect to a facet when one or more conditions are 
selected from that facet and observations are made on every subject under 
each selected condition. Example: all subjects respond to the same items, or 
are rated by the same judges. The term "matched" could be translated as 
"facet and persons crossed." Observations are independent with respect to a 
facet when conditions for that facet are selected independently for each ob- 
servation without regard to subject or to the condition of other facets. Ex- 
ample: high school grades for job applicants, where only by chance would 
any two grades have been assigned by the same teacher. Observations sampled 
from a multifacet universe may be matched with respect to some facets and 
independent with respect to others. The various experimental designs that 
result will be discussed more fully below. 

We shall be interested in certain means, M~, M.~, M~, M , ,  etc.; each 
of these is the expectation of a subset of the possible scores. In our notation, 
the subscript applied to M indicates the parameters held constant in de- 
fining the subset. For example, 

M~ = E(X~,  [p) and M ,  = E(X~,  lid). 

These means allow us to define components of the observed score. If an 
observation is made under condition i, for example, we expect the score 
to be increased over M by the component M~ -- M, the "effect" associated 
with condition i. X,~i may be described as a sum of components: 

(1) X , ,  = M +  ( M , - -  M) + (M, -- 3/1) + (M, -- M) 

+ (M~,-- M~--  M, + M )  + ( M ~ . - - M ~ -  M ~ +  M) 

+ (M,; - M, - Mi + 11//) + e~,. 

The term e~, is a residual so that (1) is a tautology defining e~, . 
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We use the following notation for expected mean squares (variances). 

VM~ = E(M~ - M)2; analogously for VM, and VM, • 

(2) VM,, = E(M~, -- M~ -- M~ + M)2; analogously for VM,~ and VM,~ • 

= E(e, ii), since E(e~,i) = O. V e ~  t 2 

V~:,,, = E ( X ~ ,  - M ) L  

Other variance notations will be introduced as needed. 
The variance of Xv~ ~ over population and universe is 

(3) V x . .  = V~ .  + Vu ,  + Vu ,  + Vu~, + VM~ + V M .  + V ~ . .  

That is, the variance of single observations over all p, i, and j is the sum of 
the variances contributed by each of the components of (1). Extension of (3) 
to universes with additional facets requires the addition of terms for the main 
effects of these other facets, and terms for their interactions with each other 
and with p, i, and j. 

The score used in making decisions is often a composite of a number of 
observations. In this paper we assume that in the decision data each person's 
score is the average of scores obtained under U conditions of i and m' con- 
ditions of j--e.g., ratings by m' judges on k' scales. We designate these sets 
of conditions by I and J, respectively. (Since U and m' may be 1, there is no 
loss of generality.) 

To this point we have been discussing the universe of all possible ob- 
servations. The investigator may propose to generalize his D data to this uni- 
verse or he may generalize over only certain selected facets, conditions of the 
other facets being fixed. His choice of a universe o] generalization depends on 
his intended interpretation. Thus while measures of weight may vary with 
respect to occasion, instrument, and observer, an investigator who wants to 
study hour-to-hour fluctuations in weight would define the universe of gen- 
eralization as including observations from all instruments and all observers, 
but on a fixed occasion. Another investigator who will use the same instru- 
ment throughout his entire study might propose to generalize over observers 
and over some range of occasions, but not over instruments. The universe 
score is defined differently for each universe of generalization. M~ is the uni- 
verse score when the universe of generalization coincides with the universe 
of possible observations. M~r. is the universe score when conditions I* are 
fixed and generalization is over facet j. The universe-score variance is the vari- 
ance of universe scores over the population of persons. 

The problem as it presents itself ideally to an investigator is this. He has 
in mind a universe to which he proposes to generalize. This universe defines 
the "wanted" components of score variance. He hopes to plan a decision study 
that will produce scores from which accurate generalizations can be made. 
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Therefore, he conducts a G study, estimates the several components of 
variance, and from this information plans a D study such that unwanted 
components of score variance are minimized. Practical constraints, however, 
often restrict the investigator to a particular design for the D study, or to a 
limited class of not-necessarily-ideal designs. Whatever the design, he needs 
to estimate the accuracy of generalization of his decision data. 

In the following discussion we first consider various types of universe 
of generalization and show the composition of universe-score variance for 
each type. Second, we determine the components of observed-score variance 
for various designs that may be used in D studies. Components included in 
observed-score variance but not in the variance of the appropriate universe 
score constitute error variance for t~hat particular design and interpretation. 
A "coefficient of generalizability," which is the ratio of universe-score vari- 
ance to expected observed-score variance, indicates how well one can gen- 
eralize from one particular type of D data to one type of universe score. Next, 
we consider what information different types of G studies can give about the 
components of variance, and finally how such information is used to design a 
D study. 

Uni~,erse Scores and Their Variance Components 

Let us now consider several types of universe score to which generaliza- 
tion may be intended and identify the components of universe-score variance 
in each case. The material is summarized in Table 1. 

TABLE 1 

Composition of the Universe-Score Variance for Alternative 
Universes of Generalization 

Universe of Generalization Composition of Variance* 

A All conditions of both  i and j 
B All conditions of j crossed 

with k' fixed conditions of i 
B r All conditions of i crossed 

with m' fLxed conditions of j 
C All conditions of j crossed 

with k' conditions of i fixed 
within person p 

C' All conditions of i for m' 
conditions of j fixed within 
person p 

"V,,~, 4- (1 /k ' )  VM,, 

v~. + (:/k') vM., + (1/k') vu, 

I~f ,  4- ( I / r e ' )  VM,,~ 4- (1 /m ' )  VM, 

*The universe score is taken to be the expectation of the  average score over observa- 
tions. If the  universe score is the  expectation of the totM for k'm' items, ull variance com- 
ponents  are multiplied by (k'm') ~. 
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Universe A :  Two Facets Variable 

Sometimes the investigator is interested in generalizing over all identified 
facets of the universe. For example, if he is interested in determining the 
typical aggressiveness displayed by a subject regardless of the observer or of 
the persons with whom the subject is interacting, then the universe score is 
the expected value of all observations that  could be made under any conjunc- 
tion of observer X companion. For each observer i and companion j there is 
a potential score X~,  . The subject's universe score is M~ ; the universe- 
score variance is VM~ • The universe score is the same whether the observed 
score is a single observation or the average of many observations. (Where 
the observed score is to be based on a total  rather than  an average, the 
variance given by our equations wilI need to be multiplied by k '~, m ' ' ,  or 
(/din') 2, depending on whether summation is over conditions of i, j, or both.) 

Universe B: One Facet Variable, One Fixed 

Sometimes the investigator limits generalization to one facet. For ex- 
ample, in a study of job proficiency, he may wish to treat  the scores as rep- 
resentative of ability, anywhere in a long time span; i.e., he will generalize 
over occasions. But  he may  use a fixed set of tasks for all subjects, with no 
generalization intended over a broader universe of tasks. The universe score 
is then the expected value M~r of observations on the set of tasks I* on all 
the possible occasions j. The universe-score variance is E(M~x. -- Mx.) 2. 
Fixing the conditions on one facet reduces the universe of generalization to a 
subset of the universe of possible observations; the universe score is the ex- 
pected score for the person on the remaining facet. 

I t  frequently happens tha t  the fixed conditions for the decision s tudy are 
unknown at the time the G study is conducted. For example, an investigator 
is interested in rating the morale of persons who will be observed on the same 
specific occasion, but the occasion might be any day on which the observation 
happens to be made. He wants to estimate the generalizability of the ratings 
made on that  unspecified day, the universe of generalization consisting of 
ratings by all possible observers. If I*, the subset of k p conditions of i, is un- 
known, the investigator can best use the expected universe-score variance for 
an I selected at  random, i.e., E ( M ~  - M~) 2. Since 

1 
(M~ -- M~ -- M~ + M), (4) M~r--  M,  = (M~--  M) + F  

1 
E(M~, -- Mx) 2 = VM, + -ff VM~, . 

Hence with one facet fixed but unspecified, and the other facet variable, the 
universe-score variance includes, along with V~, , the component VM,, 
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which represents the expected variance in response under condition i not at- 
tributable to variance in M~ . 

There is a universe of generalization B' symmetric to B, which has con- 
ditions of facet i variable and J* fixed. Universe-score variance for B' is 
given by (4) with i replaced by ] and k' replaced by m'. 

Universe C: One Facet Variable, One Facet Fixed within Person p 

In universe B the same fixed conditions were used with every subject. 
I t  is conceivable that the investigator will instead allow the conditions of 
facet i to vary from subject to subject, but will hold the conditions of i 
fixed for any one subject. For example, he might ask each subject to rate his 
spouse on items related to adjustment. While the spouse is fixed for the sub- 
ject, each subject has a different spouse. Generalization is intended over some 
other facet, such as items in this example. 

The universe of generalization for each person is defined by the U fixed 
conditions of i (call this set I~) and the variable conditions of ]. The universe 
score is M~, . The expected value of the universe score in this case is M, 
since I~ ranges over all values of i as p varies over the population. The uni- 
verse-score variance is 

(5) E(M,x, -- M) 2 = E ~ (M~,~ -- M) 2 

1 1 
- k' V~" + ~ V~' + V ~  . 

Again there is a universe of generalization C', with fixed conditions J ,  
and variable conditions i. The universe-score variance is given by (5) with 
appropriate modification. 

Components o/ Expected Observed-Score Variance 

We now consider the observed-score variance in the decision data. This 
variance is a function of the variances of the means of the particular judges, 
items, etc. used in the study, rather than universe variance components 
which derive from all conditions. Usually, however, the data of the G study 
are not collected under the precise combination of conditions that will appear 
in the decision study. Hence the expected observed variance for a randomly 
sampled set of functions is the best available estimate of the observed variance 
for the D data. This variance is a function of universe and population com- 
ponents. 

The composition of observed-score variance in the D study depends upon 
its experimental design. Decision data may be gathered according to designs 
ranging from complete matching (every person tested under the same set of 
crossed conditions) to procedures in which conditions are selected indcpend- 
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ently for each observation. Once a design is specified we can determine which 
components contribute to the expected variance of observed scores in decision 
data collected according to that design. Estimates of these components then 
yield estimates of the unknown observed-score variance. 

We assume that decisions are to be based on scores obtained by averaging 
k'm' observations for each person. (In some examples to follow, k' or m' is 
one.) For each of the designs applicable to the two-facet universe, we shall 
examine the algebraic composition of the observed variance--rather, of its 
expectation--over all sets of k'm' observations per person that might be 
sampled from the universe. 

Table 2 summarizes the statements about composition of expected ob- 
served variance to be developed below. Designs 1, 2, 4, and 5 permit gen- 
eralization to universe A or B; while it is technically posible to generalize to 
C, such use is unlikely. Design 3 is primarily useful in generalizing to A. 
Designs 6 and 7 permit generalization to A or C, but not to B because I is 
not fixed. Design 8 is useful only in generalizing to A. 

Design 1: Matched Data, i and j Crossed 

In design 1, decision data are matched over persons and conditions of 
facets i and j are crossed. The investigator selects, by random sampling, h' 
conditions of i and m' conditions of j, and each person is observed under all 
k'm' paired conditions. The resulting X~, form a complete three-way cross- 
classification. An example would be a study in which a checklist of symptoms 
of tension is filled out by a set of raters, each of whom examines all subjects. 

The observed score, X~x.z., for person p is the average of k'm' observa- 
tions for him. It  can be expressed as follows 

(6) x , , . , .  - E x , , ,  
= 1  i = 1  

1 (M, -- M) + 1, ~_,(M,_ M) = M + (M~ -- M) + ~ 7  ,=, ~-- ~=1 

1 ( M , , - M ~ - - M , + M ) +  1 ~ ( M , , _ M , _ M ~ + M )  

+ .1.,.,_, ( M ,  - M ,  - M ,  
i = 1  i ~ l  i = l  i ~ l  

where the i and j are conditions within se t s /*  and d*. 
The expectation of X,~.j. over the population of persons is 

1 (M, -- M) (7) Mx.j. = E(X~.j.) = M + -~ ,-~ 

1 E ( M , -  M) + E ( M , , -  M , - -  M , + M ) .  
, -1 
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This equation includes those terms of (6) that are constant over persons, all 
others havingan expectation of zero as a consequence of their definitions. The 
population variance, E(X~t*s. -- M~*j.) 2, involves both the variances and 
covariances of the specific means, but the expected variance of X,z*j* for 
an unspecified set of U matched conditions of I J  is 

1 1 V,, i  + ~ V.~,i (s) v x . .  = v . .  + ~7 v.. . ,  + ~ -  

The control introduced by matching data has eliminated variance due to 
facet i, facet j, and their interaction from expected observed-score variance, 
because these effects are the same for all subjects. 

Design 2: Data Matched, j Nested in i 

In design 2, the decision data are matched over persons, but the con- 
ditions of j are nested in i. That is, k' conditions of i are selected and then 
m t conditions of j are independently selected for each such i. Example: each 
of several specified raters (I*) observes all subjects on two occasions, but the 
raters do not make their observations simultaneously; occasions vary from 
rater to rater. In this design i and j are confounded. The observed score for 
person p, which we denote as X~*s,* , is the average of k'm' observations. 
Then the expected observed-score variance is given by 

1 

The expected observed-score variance for design 2 differs from that of design 
1 only in that V,,~ is divided by Urn' instead of m'. Thus the contribution 
from this source of variance is reduced here. 

Design 3: Data Matched, Conditions of i and j Independent 

In design 3 decision data are matched over persons, but conditions of i 
and j are selected randomly, independently of each other. Thus some number 
of paired conditions i X j are selected and each person is observed under every 
combination. Facets i and j are confounded so that this design resembles the 
unifacet model, i X j forming a single complex facet. An example would be 
the administration of four alternate forms of a test, one on each of four dif- 
ferent occasions, to a group of subjects. The number of paired conditions will 
be represented by Urn' to enable comparison of formulas resulting from various 
designs. However, in this design there are Urn' conditions of i and k'm' con- 
ditions of j involved. The expected observed-score variance is 

0o) v~:.,j = vM. + ~ (vM., + v..~ + v~.). 

Since this design minimizes the contributions of both VM., and VM~ to ex- 
pected observed variance, it is the most efficient design for generalization to 
universe A whenever both V~,, and VM,; are relatively large. 
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Design 4: Matched on i, j Nested within Persons, i and j Crossed 

In the fourth design, certain values of i are used as conditions for ob- 
serving all persons. Values of j are selected independently for each person, 
producing sets J~.  Each j in J~ is paired with each i to obtain one observa- 
tion. For each person there is a U by m' matrix of scores. In this design, p 
and j are completely confounded, j being nested within p. An example is 
the application of the rating scale of symptoms of tension (i) to subjects, each 
of whom is judged by a different rater or raters (j). Another example: certain 
judges (i) working simultaneously observe each subject in turn, but the oc- 
casions (j) differ from subject to subject. 

The observed score ill this design may be denoted X~I*~, . Equation (6) 
indicates the composition of observed score if j is replaced by j . .  The expecta- 
tion of X. , . j .  over persons is simply 

1 
(M,  - M )  M + ~ , ° I  

all other terms vanishing. 
Over all sets I that might be used in decision-making, the expected 

observed-score variance is 

1 1, V~s~j + 1, V~,, (11) Vx~,j~ = VM,-b F VM ~, + ~ -  m" 

+ + v o , , ,  . 

Two components of variance associated with j are added when the design is 
changed from completely matched to matched-within-persons-ou-j (cf. Table 
2). 

Design 5: Matched on i, Independent on j 

In the fifth design all persons are observed under the same conditions 
I*. But for each p X i combination, different values of j are selected, inde- 
pendent of the j for any other p or i. Example: the same group of raters (i) 
observe all subjects, but observations occur on different occasions (j) for each 
subject-rater pair. This allows a two-way classification (subjects X raters) 
with m' entries (occasions) per cell. The conditions j are different for each 
p,i pair and hence we shall designate them as j~- . 

The observed score obtained by averaging all Um t scores for p is denoted 
X~.~ . The expectation (over all sets of I) of the observed-score variance is 

1 
(12) Vx. .  = VM. + ~ VM., + u--~ VM.~ "+" ~ VM i 
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The expected observed-score variance for this design contains the same 
components as design 4 (cf. Table 1), but the effect of VM~ and VM,~ is reduced 
since each of these is divided by the total number of observations k'm'. 

Design 6: i and j Crossed, Both Nested within Persons 

The sixth case is that in which k' conditions of i and m' conditions of j 
are selected independently for each person and all pairs are formed. Observa- 
tions of persons p are made under each of the k'm' pairs selected for him. For 
example, acceptance of peers is studied by having the subject rate a limited 
number of peers (i), all on the same occasions (j), neither peers nor occasions 
being the same for different subjects. 

The observations form a k' by m' matrix for each subject, but the con- 
ditions of i and j are both dependent on p. The average of these observations, 
X ~ , : , ,  may be expressed as in (6), replacing i and j by i~ and j~, respectively. 
Assuming that the conditions of i and j are randomly sampled, the expectation 
of these scores in the population is M, since all other components vary with 
p and hence have expectations of zero. The variance of observed scores in the 
population does not differ from the expected observed variance in this case. 
(This!is also true of designs 7 and 8, below.) 

( 1 3 )  = - M )  

1 1 1 1--7 VM, + ~ Y~., + -~ V.. ,  = VM, T ~ V M ,  + m 

VM" + V. . , -  

Design 6 (ef. Table 2) allows all components of X~, to enter the observed 
variance. I t  therefore yields the largest observed variance of all designs, and 
hence the lowest generalizability, other things being equal. 

Design 7: i Nested within Persons, j Independent 

For each person, k' conditions of i are selected independently, and for 
each consequent p X i combination, m' conditions of j are selected independ- 
ently. Example: each subject is judged by two raters (i) on each of several 
occasions (j); the raters differ from subject to subject, and the occasions 
regarding which each rater reports differ from rater to rater. The data can 
be arranged in n rows of k' cells each, with m' observations per cell. The 
variance of observed scores, X~r~j,, , is 

1 1 ~ 
(14) Vx,,. , , ,  -= VM, + ~ Vg, + ~ VM,, + VM, 

• 

This variance incIudes all components, but compared to that of design 6 
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where both facets are nested within persons the contributions of V ~  and 
V~j  are reduced by a factor of M. It  differs from the variance in the matched- 
independent case (design 5) only by the added component VM, • (See Table 
1.) 

Design 8: Both i and j Independent 

The last design is that in which the conditions of i and j are selected ran- 
domly and independently for each observation, k'm' observations being made 
on each person. In effect,/din' conditions of ij are randomly and independently 
selected for each person. An example would be speech samples of a person as 
he talked to various companions, no companion appearing on more than one 
occasion. Another example is high school grades of job applicants considered 
as reports from various teachers, each having observed the applicant on dif- 
ferent occasions. In this design, p, i, and j are completely confounded. 

The variance of observed scores X~irJl, (where IJ  is bracketed to em- 
phasize that it is the ij combination that is selected) is given by 

(15) Vx~,~, = V ~  + ~ [V~, + V~  + V~,  + V ~  + V~,  + V~,,,]. 

Since, for this design, increasing the number of conditions of either facet im- 
plies utilizing more conditions of both facets, every variance term except 
VM, is divided by the total number of observations per person, Mm'. 

Coe~eient o] Generalizability Expressed in 
Terms 01 Variance Components 

We define the accuracy of generalization as the ratio of expected uni- 
verse-score variance to expected observed-score variance. This variance 
ratio, which we shall call VR, can be shown to be a lower bound to the ex- 
pected squared correlation between observed score and universe score. For 
any particular universe of generalization and decision-study design, VR can 
be expressed in terms of a ratio of the appropriate variance components. When 
these variance components can be estimated from a G study, an estimate of 
VR can be obtained. 

Without for the moment considering how variance components are 
estimated, we may express VR for any particular universe of generalization 
and decision-study design by an appropriate selection of numerator and de- 
nominator from Tables 1 and 2, respectively. Not all possible ratios are 
meaningful since a certain decision-study design may be incompatible with 
one or more of the universes of generalization. For example, if one desired to 
generalize to universe B or B' with I or J fixed, he would not employ a D 
study in which the conditions of i and j vary from person to person (designs 
6, 7, 7', and 8). Similarly, designs 1, 2, 2', 5, and 8 are not compatible with 
generalization to universe C or C'. 
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Several of the  ratios formed in this w a y  have  appeared  in the  l i terature  
before; for  example, L indquis t ' s  [10] formula  180 applies to  design 1 and  
universe A, whereas his formulas  177 and 178 app ly  to  design 1 wi th  universe  
B and  B' ,  respectively.  Nes ted  designs have  been ignored in the  previous  
l i terature on reliability with the one exception of Lindquis t ' s  formula  181. 

Estimation of Components Jrom Matched G Data 

Whenever  possible, da ta  for a generalizabil i ty s t udy  should be collected 
by  a ma tched  design wi th  conditions of the  facets  crossed and  wi th  two or  
more  condit ions used for each facet. T h e n  no facets are confounded and all 
componen ts  can be est imated.  This no t  only gives a more  complete  under -  
s tanding  of the  sources of error in inferring universe scores f rom observed 
score, bu t  permits  an  invest igator  to  design his decision s tudy  for greates t  
precision with any  fixed cost  of da ta  collection [10]. Regardless  of the  design 
the  invest igator  u l t imate ly  uses for a D s tudy,  the  complete ly  crossed G s t u d y  
provides  all the  informat ion  he could need for evaluat ing VR.  

I t  is necessary to assume tha t  the  condit ions of i to  be employed  in t he  
D s tudy,  and  the  condit ions of i employed in the  G s tudy,  are r a n d o m  samples 
f rom the  same universe;  likewise for j and for p. G da t a  are collected for  n 
persons, on k condit ions of i and  m condit ions of j, where/c  and m are grea te r  
t h a n  one. A th ree -way  analysis of var iance gives the  following mean  squares.  

Sum of 
Source df Squares Mean Square 

Persons n - 1 
Facet i k - 1 
Facet j m - 1 
Persons X Facet i (n - 1)(k -- 1) 
Persons X Facet 3 (n - 1)(m -- 1) 
Facet i X Facet 3 (k - 1)(m - 1) 
Residual (n - 1)(k - 1)(m - 1) 

SSp :MSp = SSp/(n - 1) 
SS~ MS~ = SS~/(k - 1) 
SSi MSi = S S J ( m -  1) 
SSp~ MS~ = SS~i/(n -- 1)(k - 1) 
SSpi MS~i = SSpi/(n -- 1)(m - 1) 
SSii MSii = SSI~'/(k -- 1)(m - 1) 
SS~ MSr = S S , / ( n - - 1 ) ( k - 1 ) ( m - 1 }  

(17) 

The  var iance components  m a y  be es t imated  b y  the  following formulas.  

~,, , ;  = M S , ,  

~rM i 

~M~ 

(MS~, - M S r ) / m ,  

(Ms~i - MS, ) /k ,  

(MS, ;  --  M S , ) / n ,  

(MSi  - MS~; --  MS~j + MS,)/nlc, 

(MS~ -- MS.~ - M S .  -~ MSr)/mn, 

( M S .  --  M S ~  -- M S . ;  -~ MSr) / lcm.  



G. C. GLESER~ L. J. CRONBACH AND N. RAJARATNAM 

TABLE 3 

Illustrative Data for a Completely Matched G Study 

4 0 9  

I II III IV V VI 
Persons Tp 

J1 Jz J1 J~ J~ J~ J1 J~ J1 J2 J1 J~ 

a 2 1 2 2 2 0 4 1 2 1 2 1 20 
b 2 3 2 0 0 0 3 3 3 3 1 2 22 
c 1 3 3 6 1 2 2 1 2 3 2 1 27 
d 4 1 2 0 2 0 3 1 3 3 2 1 22 
e 4 5 3 2 3 4 5 5 3 3 2 2 41 
f 2 1 2 0 0 0 1 2 1 1 2 1 13 
g 2 1 3 3 0 0 1 2 2 1 1 1 17 
h 1 2 2 0 0 0 2 1 2 1 2 1 14 
i 3 4 4 3 0 0 3 3 2 3 0 1 26 
J 3 4 3 i 0 I 2 3 2 2 3 1 25 
k 2 2 3 3 0 1 3 1 3 5 2 4 29 
l 3 3 4 4 1 1 6 6 4 6 2 4 44 

Total 29 30 33 24 9 9 35 29 29 32 21 20 300 

Variance Analysis 

Source df Sum of Squares Mean Square 

Persons 11 84.1667 7.6515 
Judges 1 1.0000 1.0000 
Items 5 64.6667 12.9333 
P X J 11 19.5000 1.7727 
P X I 55 81.1667 1.4758 
I X J 5 4.3333 .8667 
Residual 55 34.1666 .6212 

Total 143 289.0000 

A n  example of the  analys is  of complete ly  ma t c he d  re l iabi l i ty  d a t a  is 
g iven  in  Tab l e  3. Two psychia t r i s t s  each ra ted  pa t i en t s  on six i t ems  a t  t he  
t i m e  of in terview.  (The n u m b e r  of pat ients ,  12, is m u c h  smaller  t h a n  one would  
desire. T h e  smal l  k a n d  m also lead to a large sampl ing  error i n  the  va r i ance  
est imates.)  The  i tems, scaled 0 to  6, referred to the  i n t ens i t y  of s y m p t o m s  of 
anx ie ty  (e.g., agi ta t ion,  pupi l la ry  di lat ion) .  The  popu la t ion  var iance  es t imates  
ob ta ined  from this  sample are as follows. 

Var iance  due to differences in  the anxie ty  of pa t i en t s  over 
all raters  and  symptoms  ~M~ = 0.419 
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Variance due to differences in symptom means over all raters 
Variance due to differences in average judgment of raters 
Variance due to differences in patient's standing from 

one symptom to another 
Variance due to differences among raters in their over-all 

judgments of specific patients 
Variance due to differences in symptom means from rater 

to rater 

Residual variance 

~'M, = 0.471 
l?Mi = - - . 0 1 4  

~r~, = 0.427 

?M,~ = 0.192 

~M,t = 0.021 

"l?,~,i = 0.621 

The large variance components are those arising from M~, M~ , M~ , 
and the residual. The variance of M~ reflects individual differences, probably 
the information of greatest interest to the investigator. The large ~'M, in- 
dicates that  differences in symptom means are substantial. Whether a group 
of individuals receives high or low absolute scores depends on the symptoms 
used to assess anxiety. ]TM,, is also large, indicating that  persons may score 
relatively high on some symptoms of anxiety and low on others. The person's 
standing on any one symptom therefore has limited value as an indication 
of his standing on the universe of symptoms. The small variance for M; 
indicates that raters differ very little in their use of the scale. (]TM; is in fact 
negative; such a value could arise only from a zero or small positive variance 
in the universe.) 17M,~ shows that raters vary in their over-all rating of the 
same patients, but this variation is relatively small. The residual variance is 
large, i.e., there is considerable variance among observations not accounted 
for by main effects associated with persons, judges, or symptoms, nor by their 
pairwise interactions. This residual of course includes all the "random errors" 
of observation and judgment and the triple interaction p X i X j. 

The sizes of these components imply that  it is especially important, if 
generalization to universe A, B', or C' is intended, to increase k', the number 
of symptoms rated in the decision data. This reduces the contributions from 
M~ , M~ , and e ~  , all of which are irrelevant variance for these purposes. 
Another possibility to consider, as can be seen from Table 3, is to redefine 
the universe by dropping symptom III, which is evidently not closely related 
to the other symptoms. 

Whatever the design to be used in collecting decision data, we may 
substitute appropriate estimates for the variances required according to 
Tables 1 and 2. Suppose, for example, matched decision data will be obtained 
using six symptoms and two judges (design 1, k' = 6, m' = 2), and gen- 
eralization is intended to the universe of judges for a fixed set of six symptoms 
(universe B). We then estimate the ratio of "wanted" (universe-score) 
variance to observed variance to be 

122[.419 -1- (.427/6)] _ .490 -- .768. 
123[.419 + (.427/6) + (.192/2) + (.621/12)] .638 
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F o r  gene ra l i za t ion  over  b o t h  s y m p t o m s  and  judges  (universe  A) ,  however ,  
V R  is on ly  .657. T h a t  is to  say,  t he  b roade r  genera l i za t ion  (and  p r o b a b l y  the  
one of g r ea t e r  scientif ic  significance) invo lves  g rea t e r  e r ror  t h a n  t h e  more  
l imi t ed  genera l iza t ion .  

I f  i t  is n o t  feas ib le  for  th i s  i nves t i ga to r  to  m a t c h  judges  in  col lec t ing  
dec is ion  da t a ,  so t h a t  d i f ferent  pMrs of judges  r a t e  each  pe r son  ( s y m p t o m s  
sti l l  be ing  ma tched ) ,  t h e n  he would  use row 4 of T a b l e  2 to  o b t a i n  the  denomi -  
n a t o r  for VR.  I t  appea r s  t h a t  cont ro l  on judges  can  be  re laxed  wi th  l i t t l e  loss 
in  accu racy  of genera l iza t ion ,  s ince tT ,  i is n e g a t i v e  and  ~?g,, is v e r y  smal l .  

Variance Estimates Obtained from Other 
Experimental Designs 

W h i l e  t h e r e  a r e  obv ious  a d v a n t a g e s  in  s t u d y i n g  gene ra l i zab i l i t y  b y  m e a n s  
of a c o m p l e t e l y  m a t c h e d  design,  such a s t u d y  is n o t  a lways  p rac t i cab le .  W e  
shal l  the re fo re  d iscuss  o the r  designs,  i nd ica t ing  w h a t  va r i ance  c ompone n t s  

TABLE 4 

Components (or Combinations of Components) That Can Be 
Estimated from Various G-Study Designs 

Design for G Study 

Facet i 

Components Estimated* 

Facet j VM~ VM~, Vu, VM~ VM~ Vu,i V~. 

1. Matched 

2. Matched 

2'. Matched; 
nested in j 

3. Matched 

4. Matched 

¥.  Nested in p; 
crossed with j 

5. Matched 
5 t. Independent 
6. Nested in p 

7. Nested in p 
7'. Independent 
8. Independent 

Matched; 
crossed with i X X X X X X X 
Matched; 
nested in i X X X 3 2 2 3 
Matched X 3 1 X X 1 3 

Matched; in- 
dependent of i X 3 2 3 2 2 3 
Nested in p; 
crossed with i X X X 2 2 3 3 
Matched X 1 1 X X 3 3 

Independent X × × 3 3 3 3 
Matched X 3 3 X X 3 3 
Nested in p; 
crossed with i X 1 1 2 2 3 3 
Independent X 1 1 3 3 3 3 
Nested in p X 3 3 2 2 3 3 
Independent X 3 3 3 3 3 3 

*In any row, components designated by the same numeral are tied to each other 
and cannot be estimated separately. 
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TABLE 5 

Applicability of Various G-Study Designs to Estimate 
Expected Observed Variance in Decision Data 

Design Design for D Study 
for 

G Study 1 2 2' 3 4 4' 5 5' 6 7 7' 8 

1 X X X X X X X X X X X X 
2 X X X X 
2' X X X X 
3 X X 
4 X X X X X X 
4' X X X X X X 
5 X X X 
5' X X X 
6 X X X X 
7 X X 
7" X X 
8 X 

An X indicates that the G design provides the information required to estimate 
generalizability for the D study. 

they can estimate and how they can be used to analyze generalizability for 
various types of decision data.  In  designs other than design 1, confounding 
reduces us to  estimating certain variance components in combination. The  
components tha t  can be estimated separately from any given design are 
indicated by an × in Table 4; a common numeral indicates components tha t  
can be estimated only in combination. In design 4, for example, p and ] are 
confounded; as a result the estimation procedure produces an estimate of 
VMi + VM~ and another  for VM, + V,~,~ . 

The  use of this information is indicated in Table  5. This is based on a 
comparison of Table 4 - -wha t  can be es t imated--wi th  Table 1 - -what  one 
desires to estimate. Note tha t  for any design in the D study, the same design 
used in the G study (with or without  k = k', m = m') estimates the pert inent  
variances and VR. 

We shall describe the estimation procedure more fully for only one design: 
design 4 in which data  are matched on i and nested within persons on y, with 
i and ] crossed. Assume tha t  k conditions of facet i are used throughout,  m 
conditions of facet y are selected randomly and independently for each subject, 
i and y are crossed, and that  n randomly selected subjects are observed. Then  
the analysis of variance given on page 413 can be performed. 

In  this formulation, a dot indicates summation over the subscript it 
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replaces. Then 

est (V~,, + Ve,,+) = MS~ , 

?~,, = (MS, ,  - M S r ) / m ,  

(18) est (VM,. -b VM,,) = (MS;~ -- MS,)/k, 

t?M, = (MS~ -- MS~i)/mn, 

~ M ,  = ( M S p  - -  M S i w  ~ - -  MS~, -~ MS~)/mlc. 

While separate estimates of VM,I , VM~ , and VM, are obtained, the re- 
sidual term also contains the ij interaction, and the variance due to differences 
in mean for conditions of facet j cannot be separated from that due to the 
pj interaction. Thus, unless both VM~ and VM,~ are zero, this design gives 
an unsatisfactory estimate of expected observed variance for decision data 
matched on both i and j (designs 1 -- 3). However, it can be used to obtain 
the expected observed variance of data gathered by designs 4, 5, 6, 7, 7', and 
8 (cf. Table 5). 

Discussion 

The concept of generalization underlying our model is one that serves to 
unify and clarify much of the disparate material on reliability. I t  brings to 
focus the fact that a test, a rating scale, or other measuring instrument has 
many "reliabilities," one for each combination of intended interpretation 
(universe of generalization) and data-collection design. Each VR indicates 
the accuracy with which one can make a particular generalization on the basis 
of decision data obtained under a specified procedure. 

One fundamental feature of our model is the assumption that conditions 
of observation are randomly and independently sampled from a multifacet 
universe of possible conditions. This assumption does not imply equivalence 
of scores in the classical sense of equal variability of scores under all conditions 
and equal intercorrelations, whereas the assumption made by Lindquist [10] 
that the components of observed score are independent random variables 
does imply classical equivalence. Removal of the equivalence assumption 
improves the model as a description of data from ratings and test items where 
variances are rarely uniform. However, it also makes possible a different 
coefficient of generatizability to My for every set of k'm t conditions in designs 
1, 2, 3. Ratings made by one rater, for example, may agree more with the 
universe score than those made by another rater. We estimate the expected 
coefficient of generalizability for matched data under any set of k'rn' conditions 
that might, be drawn from the universe, rather than the specific coefficient for 
a particular set of conditions. With matched data the expected coefficient 
is identical to the specific coefficient only when conditions are equivalent in 
the classical sense. The specific coefficient would be preferred, in principle, 
where one knows what conditions will be used in the matched D study, but 
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it can almost never be estimated (see [4], pp. 148-149). With data where 
conditions of observation vary randomly with persons, the variance of ob- 
served scores in the population is the same for every set of observations, and 
no distinction is required between the specific and the expected coefficient of 
generalizability. 

While we have limited this paper to conditions randomly sampled from 
an infinitely large two-facet universe in which all combinations of pairs of 
conditions theoretically exist, it is possible to extend our model. The ex- 
tension to a universe of more than two facets follows directly from the present 
development. The random-sampling model can be altered to consider strati- 
fied sampling on one or more facets. Results for generalization to a finite 
universe of conditions may be obtained with the aid of the pigeonhole model 
and expected mean squares presented by Cornfield and Tukey [2]. Using this 
model, Medley and Mitzel [12] have presented rules for obtaining variance 
components from a completely crossed G study in which conditions of one 
facet are assumed fixed. I t  should be noted that the resulting VRs are alge- 
braically equivalent to generalization to our universe B (or B'), but apply 
logically only to the conditions of the fixed-facet used in the G study since 
these conditions exhaust the universe for that facet under their assumptions. 

The most important function of a G study is to estimate variance com- 
ponents. This information not only can be used to design the D study but also 
may answer important substantive questions. Endler, Hunt, and Rosenberg 
[6], for example, were interested in the extent to which "anxiousness" as a 
trait is dependent on the situation in which the subiect is observed and the 
modes of response considered in judging anxiety. They constructed an S-R 
Inventory of Anxiousness in which the subject indicates the intensity of his 
feeling on 14 five-point response scales such as: "heart beats faster," "get 
an uneasy feeling," etc., considering eleven situations in turn. Data from this 
inventory are matched, with situations and response scales crossed (design 
1). The investigators originally attempted to answer their questions by a 
comparison of mean squares, which is incorrect. In a further study (in prep- 
aration) they interpret variance components. The estimates for one sample 
(169 male and female students at Pennsylvania State University) are as 
follows. 

Subject (S) .103 
Situation (Sit) .094 
Mode of response (M-R) .438 
S X Sit .179 
S X M-R .2O0 
Sit X M-I~ .118 
Residual .660 

Residual variance, mode of response, and the S X Sit and S X 7Y[-R 
interactions make the largest contributions to variance in the universe of 
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observations. The large M-R component indicates that any assessment of 
anxiety depends to a considerable extent on which modes of behavior are 
considered. Any D study should use the same set of I~I-R for all persons-- 
a remark that  is less obvious than it may seem. Endler et al. [7] have pointed 
out that in ratings and observations of anxiety the observer is very often left 
to decide for himself what symptoms or cues he will attend to, a procedure 
which evidently attenuates the generalizability of the ratings. While the 
smaller components for Sit and Sit × M-R suggest that matching on situ- 
ations is less vital, this too is desirable in the D study. Some situations produce 
more anxiety, on the average, than others, and different situations tend to 
elicit different patterns of anxiety responses. 

The variance estimate for S, compared to those for S X Sit and S X 
M-R, indicates that the general trait of "anxiousness" makes only a limited 
contribution to score variance; Ss react differentially to situations and utilize 
different patterns of response. A considerable proportion of the variance arises 
from the residual, which includes both the triple interaction (S X Sit X M-R) 
and a component describing variance over observations within cells. Retest 
data would be required to isolate the interaction and thus determine to what 
extent each person has a unique response pattern for each situation. 

The above example allows us to demonstrate another important con- 
clusion. The Spearman-Brown concept of reliability as a function of "length 
of test" is not applicable to a multifacet instrument. While an investigator 
improves generalizability by increasing k' and m', no simple formula suffices 
to relate VR to the over-all number of observations. Accuracy of generalization 
is a function of the sample size on each facet. Consider the efficiency of various 
crossed designs for an S-R Inventory, all of which elicit 144 responses per 
subject, but for which the number of situations (/d) and the number of re- 
sponse modes (m') are varied. The estimated observed variance (assuming 
that  the score on the instrument will be the average response) and the cor- 
responding VR for several possible values of k' and m' are shown in Table 6. 
Each change in the k', m' balance alters VR even though the "length" of the 
instrument remains constant. For this example the maximum VR is obtained 
for k' and m' nearly equal, but in general the oPtimum balance depends on 
the relative size of the interaction components. 

The analysis thus far, illuminating as it is, has not led us to the correct 
answer for all purposes. If the investigator wants to generalize only to M, he 
would do better to use design 3 for his inventory by pairing each situation 
with a di]Jerent mode of response. For a 144-item test this would reduce both 
the S X Sit and S X M-R contributions by a factor of 144, yielding an esti- 
mated observed variance of .107 and a VR of .94. With design 3, increasing 
the number of observations increases both k' and m" equaIly; hence the VR 
increases in accord with the Spearman-Brown formula. 

The investigator may, however, want to preserve information about 
S's reaction to particular situations: i.e., he may want to form one subtest 
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for each situation i and use the observed X ~  as a basis for generalizing over 
the universe of responses to the corresponding universe score M ~  . Each 
subtes t  will have length m', and the number  of subtests will be k t. The expected 
generalizability of each subtest  is indicated a t  the bo t tom of Table 6. The  
components  for both S and S X Sit now contribute to universe-score variance. 
As the number  of situations is increased, with fixed total  test  length, the ac- 
curacy of generalization to each of the M ~  decreases, so tha t  the investigator 
has to compromise between "bandwidth" and "fideli ty." The  k'm' pair  tha t  
produced opt imum generalizability over both  situations and responses (VR 
near .73) permits generalization to twelve or so different M ~  for each person 
with a VR of about  .80. I f  the investigator is willing to learn about  only four 
specific situations, the coefficient of generalizability for the specific inferences 
rises to .92, but tha t  for generalization to M~ drops to .64. Hence an inves- 
t igator  with multiple purposes must  make some delicate compromises in 
designing his D study. 

I t  would be highly desirable for developers of tests to design G studies 
so tha t  they could report  in the test  manual  the magnitude of each component  
of variance tha t  one might  hypothesize to be important .  There has been dis- 
cussion in the APA Technical Recommendations and elsewhere of a distinction 
between the coefficient of stabil i ty and the coefficient of equivalence for a 
test;  reference is also made to a coefficient of internal consistency. From the 
viewpoint of the present  paper,  the first describes generalizability over oc- 
casions, while the second and third describe generalizability over samples of 

TABLE 6 

Composition of Observed Variance for an S-R Inventory of 144 Responses Using 
Differing Numbers of Situations (k') and Responses (m') 

kt: 144 36 12 4 1 
Variance 

Component Estimate Multiplier mr: 1 4 12 36 144 

Subject (p) .10 1 .100 .100 .100 .100 
S X Sit (pi) .18 1/k' .001 ,005 .015 .045 
S X M-R(pj) .20 1/m' .200 .050 .017 .006 
Residual .66 1/k'm' .005 .005 .005 .005 

• 1 0 0  

• 1 8 0  

• 001 
• 005 

Estimated observed variance of 
average score on 144 responses 

VR: percentage of variance 
attributable to Mp 

.306 •160 .137 .156 .286 

• 33 .62 .73 .64 .35 

Estimated variance of average 
subtest score (k' = 1) 

VR: percentage of variance at- 
tributable to Mp~ 

1.140 .495 .352 .304 .286 

.25 .57 .80 .92 .98 
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items. No distinction between "equ iva lence"  and "internal  consis tency" 
is required when items are experimentally independent and have  been ran-  
domly sampled f rom a universe. A suitable G s tudy for these purposes is. 
one in which each person is measured on a t  least two occasions with several 
i tems or a t  least two test  forms. (For m a n y  tests, it would be desirable t o  
augment  the design by  including scorers or examiners as an additional possible 
source of variance.) This type  of analysis not only yields information about  
the stabil i ty of scores over occasions and the equivalence of i tems but  also. 
gives an est imate of the interaction component.  Fur thermore,  the information 
is in a form which can be used by  investigators asking different questions and 
using different designs to collect D data  as well as by  those desiring only t h e  
two cus tomary  coefficients. For  these reasons we recommend reporting 
es t imated components  of variance in test  manuals.  If, in addition, some coef- 
ficient is reported, the manual  should make  very  clear to what  universe of 
generalization and D-s tudy  design the coefficient pertains. 
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