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A model for the measurement of the discrepancy between two scores is 
presented and discussed as a paradigm for the study of growth or experi- 
mentally produced change. The model assumes two tests or measures differing 
in complexity, and it analyzes the true difference between the test scores into 
a component that is entirely dependent on the first or base-line test and a 
second component that is entirely independent of it. Equations for estimating 
both components are given and these are compared with other measurement 
efforts with similar goals. 

W h e n  two different  t es t s  have  been  a d m i n s t e r e d  to  t he  same group,  
psycholog is t s  and  educa to r s  o f ten  wish to  s u m m a r i z e  re la t ionsh ips  be tw e e n  
the  two  scores b y  means  of a single number .  Th is  number ,  for example ,  
somet imes  represen ts  r ead ings  f rom two different  i n s t r u m e n t s  g iven  on  a 
single occasion,  as when  pe r fo rmance  on the  v e r b a l  a n d  q u a n t i t a t i v e  subscores  
of t he  Wechs le r  In te l l igence  Scale are  compared .  Some t imes  the  n u m b e r  
r ep resen t s  a d i s c repancy  be tween  scores  on  the  s ame  i n s t r u m e n t  g iven  on  
two  different  occasions,  as when  tes t s  a re  used  to  measu re  m a t u r a t i o n ,  
learning,  or  expe r imen ta l l y  p r o d u c e d  behav io r  change.  F o r  these  pu rposes  

ra t io ,  difference, a n d  res idua l  scores have  been  a d v o c a t e d  and  used  in 
c o m p u t i n g  F tests ,  t tes ts ,  corre la t ions ,  etc.  Th is  p a p e r  will  der ive  a n d  discuss 
measures  of change  or  d i s c repancy  t h a t  are  p r i m a r i l y  i n t ended  for  corre la-  
t i ona l  work .  These  measures  will  be  cal led " i n d e p e n d e n t  and  d e p e n d e n t  
change  scores"  even  t h o u g h  t h e y  m a y  be  used  to  compare  two different  sor ts  
of measures  given s i m u l t a n e o u s l y  as well  as t he  same  measure  given on two 
dif ferent  occasions.  W e  will  compare  the  logic of these  change  scores w i th  
t he  logic of res idual  scores a n d  difference scores and  will  offer some sugges t ions  
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about which of these is most likely to be appropriate to different correlational 
research problems. 

A major attribute of data  to be considered is the lack of perfect reliability. 
The basic data  for both the residual and difference measures are fallible 
scores from ratings, naturalistic observations, tests, or other instruments. 
This fallibility of the basic measures leads to problems in the use of difference 
measures and to questions about the appropriate form and properties of 
residual scores. Some of the points to be considered here relate to the reliability 
of derived measures such as difference scores and residual scores. However, 
the more important  issues are the underlying nature of the derived measures. 
While effects of unreliability of a derived measure on correlations of this 
measure with other variables may  be accounted for by  corrections for aN 
tenuation, the effects of automatic shifts in the underlying variable, or true 
score, induced by unreliability of the basic da ta  can not be accounted for 
by subsequent corrections for attenuation. The unreliability of the basic 
da ta  must be taken fully into account in the formulation of the derived 
measures themselves. 

The raw score on measure X can be subscripted to indicate (i) the 
person to whom it applies and (ii) the occasion on which it was made. Thus, 
X~k represents an observed test score (or other measurement) of individual 
i (i = 1, 2, . . .  , N) on test  X on occasion k (k = 1, 2). 

The notation for population values rather than  sample statistics will 
be used to develop equations for several sorts of scores, bu t  formulas for 
practical work will usually be given both ways. For covenienee in deriving 
correlational formulas we will use deviation scores rather than  raw scores. 
Thus, x,~ = X,k -- E(Xk), where E(Xk) is the expected value or population 
mean of the test X on occasion k. 

Independent Gain Scores Compared with Difference Scores 

Following the usual assumptions of test  theory (Gulliksen [3]) we will 
represent observed deviation scores on the test X as the sum of true score 
and error components 

(1) z , ,  = t~,, q -  e~il , 

(2 )  z ,~  = t~,~ + e~,~ . 

Some Properties of Difference Scores 

The most obvious way to represent the discrepancy between two scores 
is by  means of a raw difference score, which can be denoted by d ~ ,  

(3) d~ = x~ -- x~1 . 

On substituting (1) and (2) in (3), we have 
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(4) d~, = (~,2 - -  ~, , )  + ~ , ~  - -  e~ , ) .  

The difference between the true scores is the true difference, denoted as ~ .  

(5) ~ ,  = t~,~ - t ~ , , .  

Substi tut ing (5) into (4) 

(6) d~,  - -  ~x, - b  (e~,2 - -  e ~ , , ) .  

The observed difference score can be seen to consist of true score and an 
error component  like any  ordinary test  score. 

Some Properties o] True Independent and Dependent Change Scores 

These preliminaries lead directly into the " t r u e  independent change 
score" which is a major  topic of this paper.  The  true score on the second, 
more complex test,  t~2 , can be defined as the sum of two independent  com- 
ponents, one of which is specific to this second test  and one of which is wholly 
predictable from the true score on the first test. The  first or specific com- 
ponent  is the true independent gains score, wri t ten 7x~ . These assumptions 
lead to the equation 

( 7 )  tx,2 = a f l ~ , ,  -P  "r~, • 

The a~ in (7) is the coefficient for the regression of the t rue scores f rom the 
second test ing on the t rue  scores from the first testing. By  revising (7) the  
true independent change score becomes 

(8) 7 ~  = t ~  - -  a ~ t ~ l  , 

and the relationship between this new score and the more conventional 
difference score is seen to be 

(9) ~ ,  = %, -~ (a~ -- 1)t~,, . 

Equat ion  (9) says t h a t  the  t rue  difference score can be expressed as the sum 
of two components:  the t rue independent gains score, %~ , and a second 
component  which is entirely dependent on the first test. We m a y  call this 
la t ter  component  a true dependent change score and designate it ~ .  

(10) r , ,  -- (a~ - -  1)t~,, . 

Therefore, 

and the t rue difference score will equal the true independent change score 
only in the special case where a = 1 and ~ = O. 

When scores are defined in this way, the correlation between the t rue 
independent change score, 7~, and the true score for the first test  is identical 
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FmURE 1 
t~elationships in terms of vector diagrams. 

In Fig. 1A, a > 1; 
in Fig. 1B, a = 1; 
in Fig. 1C, a < 1. 

to zero, as is the correlation between the true independent change score, 
% ,  and the true dependent change score, ~ .  Thus, 

(12) p r . , . , _~  p~=r.~ 0. 

As a consequence, the variance in the true difference scores is the sum of the 
variances of the true independent change score and true dependent change 
score, 

(13) a~, = a~ ,  q- a ~ , .  

The relationships among the variables t~: , t~2 , 5~ , % , and ~', can be 
represented by  the vector diagrams shown in Fig. 1 if the length of each 
vector  is set equal to the s tandard deviation of the corresponding true scores. 
In  these diagrams the x subscript has been ddropped. Each of the diagrams 
shows tha t  the t rue difference vector, 8, can be represented not  only by  
the difference between vectors t2 and t l ,  but  also by  the sum of the vectors 

and "r. The  lat ter  system is advantageous because { and V are dways  or- 
thogonal whereas there may  be a substantial correlation between t~ and t~.. 

These diagrams also provide a graphic interpretat ion of the regression 
coefficient a. Given (10), the standard deviation of the true dependent 
change scores may  be writ ten 

(14) at. = (a, -- 1)~,., . 

Again dropping the x's, we have 

(15) ~r = a~,, - ~ , . ,  

~nd 



L. R. TUCKER~ F. DAMARIN AND S. M E S S I C K  461 

O't I - ~  O'i" 
(16) a - , 

where the sum in the right-hand term is understood as a vector addition. 
Equat ion (16) can be rewritten in terms of the cosine of the angle between 
tl and t2 , 

(17) a = (~ , /~1)  cos 0. 

I t  is interesting to examine vector diagrams corresponding to various 
values of a. In  Fig. 1A, the regression coefficient a is greater than  -}-1.00. 
Here the projection of t2 on tl is longer than tl and the direction of the true 
difference vector, 5, shows tha t  the true difference scores will be positively 
correlated with true scores on the first test. 

In  Fig. 1B, the coefficient a is unity. The projection of t2 on t~ is now 
exactly equal to t, ; the true difference vector, 5, is collinear with the true 
independent gain score, % and the true difference scores correlate zero with 
scores on the first test. Because the standard deviation of the true dependent 
change scores, a~, is now zero, the vector { will have zero length. 

Fig. 1C illustrates the condition where a < 1. The projection of t2 
on t~ is shorter than t, ; { and tl are oriented in opposite directions, and 
the direction of the true difference vector, &, is such tha t  true difference 
scores will have a negative correlation with true scores on the first test. 

Estimating Components of True Difference Score 

Procedures to estimate scores for the true independent change com- 
ponent, "F=~ , will be presented first. We require an estimate of the coefficient 
a, which was defined earlier as the regression of the true scores of the second 
testing on the true scores for the first testing. Dropping the x subscript, 

(18) a = p=,,,(~=,/~=~). 

In  using this expression we shall wish to exclude such trivial cases as p . , .  = 0 
or a .  = 0, for then a -- 0 and the change score, ~t, , is equal to the true 
score on the second test, ~2. We also wish to exclude the case where a,, = 0, 
tha t  is, where there is no true score variance on the first testing because 
the pretest  is completely unreliable. 

Into (18) we may substitute the familiar relationships between true 
and observed scores which may be found, for example, in Gulliksen [3], 
to yield 

(19) a - -  %/p .. . .  p . . . .  z~ ~v/p:::: , 

where p=,~, and p~.=, are the population reliabilitics of the first and second 
administrations of the test. On cancelling terms in (19), 
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pz~x~tJt'x~ 
(20) a = - -  . 

-"-Pxzz~ o'z, 

In  empirical work with large samples of subjects we may  find 4, which 
is an estimate of a ,  by substituting the appropriate sample statistics into (20). 

rxlx~ ~st 
(21) d = rx,---~,S~," 

Note tha t  this is the ordinary regression of the observed scores of the second 
test on the observed scores of the first test divided by the reliability of the 
first test. 

The next step in estimating independent gains scores for specific in- 
dividuals requires substituting (1) and (2) into (8). As a result we have 

(22) -/, =- x,~ -- a x , ,  - -  (e,~ - a e , 1 ) .  

Let g~ be defined as an observed independent gains score in deviation form, 
i.e., 

(23) g ,  = x , 2  - -  axe1  . 

By combining (22) and (23), 

(24) g ,  = '1, + (e,2 - -  a e , 1 ) .  

This equation resembles (6) which was derived for difference scores, for 
in both cases the measure of discrepancy or change (d~ and g~) is seen to 
consist of a true score and an error term. 

These considerations depend upon a knowledge of a. In  empirical work 
we seldom know this value exactly; a t  best we have a more or less satisfactory 
estimate of a, defined as d in (21). If  this estimate is satisfactory, it  can 
be used to compute estimated independent gains scores, denoted 9, - In  
deviation score form, 

(25) 9, = x , ~  -=- d x , 1  . 

In raw score form, 

(26) ¢ ,  = X,2 -- d X , , .  

When a base-free measure of change or discrepancy is required for correla- 
tional work, (26) or (25) may  be used in conjunction with (21) to provide 
a satisfactory solution as long as the sample size is reasonably large. 

The second problem is estimating scores for the true dependent change 
component, ~,~ . Substituting (1) into (10) (and again dropping the x sub- 
script), 

(27) ~ -= ( a -  1 ) x , t  - ( a -  1)e,, . 
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Let w~ be defined as an observed dependent gains score in deviation form, i.e., 

(28) w,  -- ( a -  1)x,,  . 

By combining (27) and (28), 

(29) w, = ~, + (a -- l)e, ,  , 

which consists of a true score and an error term like (6) and (24). 
If d is used as an estimate of a in (28), one may compute estimated 

dependent gains scores, denoted ~ .  

(30) = ( a -  1 )x , , .  

In raw score form, 

(31) if.z, = ( a -  1 ) X , , .  

In corrdational studies of change, however, these estimated scores need not 
be computed, for they are a linear function of scores on the first test. The 
absolute value of the correlation of any variable with ~ or l ~  will be exactly 
the same as the absolute value of the correlation of the same variable with 
the scores on the first test, that  is, with x~l or X~,. The sign of the correla- 
tion may be different, however, for when any variable is correlated with 
~ or Ig~ the sign of the correlation depends upon the value of & If d > 1 
the correlation wiU have the same sign and value as the correlation of this 
variable with scores on the first test. If d < 1 the correlation will have the 
opposite sign (but the same absolute value) as the correlation of this variable 
with scores on the first test. If ~ = 1 the correlation will be indeterminant 
because the *rue dependent change scores, ~-~. will have zero variance. 

Formulas for estimating the reliability of the true independent change 
score and the true dependent change score are given in a technical appendix. 
This appendix also contains formulas for computing the correlations between 
these two components of change and vaxious external or predictor variables. 

Independent  Change Scores and Residual  Scores 

DuBois [2], Lacey [6], and Manning and DuBois [14] have also sought 
base-free measures of change. 0ttr equations differ from theirs in utilizing 
true scores rather than observed scores in the measurement model. Some 
further comparison of their equations with ours is, perhaps, in order. 

Earlier we noted in (20) that 

and we may rewrite this as 

(32) 

a = P . . . .  o-~, 

p=,=~,o-=, 

1 
a = ~ b ,  

Pxzzl 
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where b is the ordinary regression coefficient. Lacey [6] has constructed 
an autonomic lability score by using b in place of a. His score differs from 
ours in severM other ways as well, but  these differences should not affect 
correlations. Thus, Lacey uses standardized initial and finM scores, divides 
his regressed scores by the standard error of estimate, and converts the 
result to a McCall's T score. Where z~l and z x , 2  are standard scores on test 
X for subject i on occasions 1 and 2, Lacey's equation is 

Zx~2 ~ r x l ~ Z ~ l  

Since 50, 10, and ~¢/1 - r~,x. are all constants, (33) should give the same 
correlations as the following formula advocated by DuBois [2] and Manning 
and DuBois [14]: 

(34) z ~ 2 . 1  = z ~  - -  r x . ~ , z ~ i l  • 

Upon substituting deviation scores for the standard scores of (34), 

(35) x , 2 . 1  = x , ~  - b x , ~  , 

where b is the ordinary regression coefficient for x2 on xl . Equation (35) 
is the analogue of our (25): it  differs only in using b instead of d as a regression 
coefficient. When the first test, x~ , is perfectly reliable, there will be no 
difference in the correlations computed with (25) and (35), but  as the initial 
position measurement becomes more unreliable the difference in the cor- 
relations computed from the two models begins to widen. Equation (35) 
may appear to give higher correlations in some cases of this type, but  this 
should not be construed as an argument in its favor, for these higher cor- 
relations may be the result of ignoring the full effects of initial score un- 
reliability on the slope of the regression line and removing too little of the 
variance of the initial position on the scores from the final testing. Equa- 
tion (35) is less "base-free" than it ought to be, but (25) is more nearly 
optimal in this regard. 

D i s c u s s i o n  

These equations are offered as part  of the continuing discussion of the 
fundamental  logic of the measurement of change; a partial list of recent 
contributions to this field would include DuBois [2], Harris [4], Lacey [6], 
Lacey and Lacey [7], Lord [8, 9, 11, 12], Manning and DuBois [14], and 
McNemar [15]. Harris [5] has recently edited a volume of conference papers 
tha t  adds to the growing literature on this topic. 

Our methods of correcting for the unreliability of a control or base-line 
variable have antecedents and analogies in previous statistical articles. 
Berkson [1], for example, pointed out tha t  errors of measurement in the 
control variable tend to flatten the slope of the regression line. Madansky 
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[13] discussed the fitting of regression lines under several different assumptions 
about  errors of measurement. Stouffer [17, 18] provided methods for correct- 
ing unreliable control variables when computing partial correlations, and 
more recently Lord [10] devised a method for using the analysis of covaxiance 
with fallible control variables. Methods of this sort extend the usefulness 
of many classical statistical paradigms, but  they have received, perhaps, 
insufficient at tention in introductory boolcs on psychological statistics. 

As shown in Fig. 1 there are two ways of representing change or dis- 
crepancy: we may estimate the true difference score, 8, or we may estimate 
the true independent and dependent change scores, ~ and ~'. Which method 
is preferable? The choice may  depend largely on information already in the 
experimenter's hands and upon his research goals. 

If the experimenter wishes the best possible estimate of the gain or 
loss experienced by  specific individuals or groups, he may be advised to 
estimate the true difference scores (cf., Lord [8, 9, 11, 12]; McNemax [15]). 
Experimenters may  also wish to use difference scores in correlational work 
when the knowledge of just these scores maximizes some predictive payoff. 
Again, difference scores may  be the more useful when we know little about 
the factorial composition of the tests being studied. One usually prefers to 
regress the factorially simpler test  out of the faetorially more complex one; 
but  if there is some uncertainty about which is which, it may be bet ter  to use a 
difference score, for the latter is symmetrical. Except for the change in sign, 
it does not mat ter  whether tl is subtracted from t~ or t2 from t l ,  for the re- 
liabilities will be the same and the correlation with other measures will 
have the same absolute value. I t  may mat ter  very  much whether tl is regressed 
out  of t2 or t2 out of tl for the reliabilities may differ and so may the cor- 
relation of the change scores with other variables. 

Finally, observed difference scores may  be preferred in some sorts of 
work because they are properties of the subject himself whereas the estimated 
scores, particularly the independent and dependent change scores, reflect 
not  only the properties of the person, bu t  the properties of the group used 
to make the estimate.* Whenever an experimental or administrative program 
requires tha t  change scores characterize the person while he is transferred 
from one group to another, the difference score may be the more useful 
statistic. 

There axe many research problems, however, in which the experimenter 
computes correlation coefficients in order to refine his analysis of the deter- 
minants of a discrepancy or of a change produced by  some treatment.  In  

*It is possible to compute estimated difference scores or estimated independent 
change scores separately for each of N individuals by subjecting each person to the experi- 
mental conditions n times. In this case the a of (18), (19), and (20) and the d of (21), (25), 
and (26) is calculated separately for each person on the n replications of the experiment. 
The relationship of this sort of measure to the group statistics version of a and d is an inter- 
esting theoretical problem but beyond the scope of the present paper (cf. Lacey, [6]). 
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problems of this sort it is often important to learn which variables determine 
the subject's position on the initial base-line or control score and which 
variables contribute to change in ways that  are independent of this initial 
position. Experimenters often explore many independent variables in an 
effort to predict change. When n such variables are available, the experi- 
menter may wish to construct a 2 X n table showing the correlation of each 
predictor with estimates of the independent and dependent true change 
scores. He may also wish to correct these correlations for attenuation in the 
ordinary way by using the reliabilities of the predictor variables and the 
reliabilities of the components of change as these appear in a technical 
appendix to the present paper. 

Certain problems arise when one of the components of the test used to 
measure change is also used as a predictor variable. If, for example, the 
base-line measure x~ is correlated with the true independent change score ~x, 
and if the measures are less than perfectly reliable--as is usually the case-- 
there may appear to be a negative relationship between the two variables. 
Nevertheless, the correlation between the ~rue scores for the two variables 
was assumed to be zero in deriving ~ .  Therefore, any relationship between 
the observed scores stems entirely from correlated errors of measurement 
and should be disregarded. The correlation between the base-line measure 
x and the estimated true dependent change score ~ will be +1.00 when 

> 1, and --1.00 when d < 1. I t  will be indeterminant when d = 1, for 
at this value ~ will have no true score variance. The latter relationships 
do not involve correlated error and are thus independent of the (identical) 
reliabilities of xt and ~ (assuming that these reliabilities differ significantly 
from zero). 

The correlation between the base-line measure and the observed difference 
score, d~ , is affected both by correlated errors of measurement and by real 
relationships between the true score components, t~ and & Typically one 
wishes to obtain a correlation that  is free from the effects of correlated error, 
and there are two ways of doing this. One may, for example, administer 
two parallel forms of test X to obtain the first or base-line measurement. 
The errors of measurement of parallel forms are independent (cf. Gulliksen 
[3]), and therefore one of the two forms may be used to calculate the difference 
score, while the other is used to obtain the correlation of the difference 
score with initial position. The alternative method involves correcting the 
correlation between the difference score and the base-line measurement for 
correlated errors. Thomson [19, 20] devised an equation for this purpose and 
Zieve [21] provided an alternative form, which is given in the technical ap- 
pendix as equation (62). The Thomson and Zieve equations, however, correct 
not only for correlated error but for attenuation as well, and this second 
correction should be taken into account when comparing the initial position 
with various independent variables for their relative merits in predicting a 
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difference score. One should either correct all correlations for attenuation 
before making such comparisons or modify the Thomson and Zieve equations 
by multiplying them by the geometric mean of the reliabilities of the two 
variables involved. A corrected version of the Zieve equation appears in the 
technical appendix as equation (63). 

One may conclude that once a treatment is understood well enough 
to know whether it makes subjects simpler or more complex and once a 
study has been designed so that subjects in the treatment group can be 
compared meaningfully for response to this treatment, then the two new 
measures developed in this paper are likely to be useful and appropriate 
statistics for the study of change. 

Technical Appendix 
This appendix will offer reliabilities for estimated independent and 

dependent gains scores and formulas for the correlation of scores of this 
type with other variables. These expressions will be compared with analogous 
formulas for residual scores and difference scores in order to clarify various 
properties of independent gain. 

We may develop a reliability for the estimated independent gains scores, 
Q in (25) or ¢ in (26), in terms of population values and then use sample 
statistics to  estimate that reliability in specific empirical problems. Con- 
ventionally, we define the reliability as the proportion of true score variance 
in the total variance of the gain scores, 

2 

(36) p,, = 

where -¢ is defined in (8) and g in (23). The variance of tlle true scores may 
be found with the aid of (8) to be 

(37) a~ = E[(t2 -- at1)2]. 

Expanding the right-hand side of (37) and substituting observed for true 
scores, 

If we substitute for a the value given in (20), 
2 pL ,) 

(39) ~ = 
Pxl:tt 

The variance of the estimated scores may be obtained in a like manner from 
(23). 

( 4 0 )  = EE(x  - 

Expanded, this becomes 
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2 (41) z~ = ~ ,  -- 2 a p  . . . .  ~ , ~ ,  + a ' z~ ,  . 

Substituting for a, as before, 
2 2 

( 4 2 )  ~ - 

Combining (36), (39), and (42), we obtain an expression for the reliability 
in population notation 

p .... (p .... p . . . .  - , ~ . ~ , )  
(43) p ,  = 2 

- -  P x l x =  

When the sample size is reasonably large, the sample correlations and re]i- 
abilities may  be substituted into (43) to obtain an estimate of the reliabi]ities 
of the gains scores. 

r . . . .  (r .... r . . . .  - r~,~,) 
(44) p~ = r~ r 2 2 2 2r~,~,r . . . .  --~ z~x~ -- rxlx= 

The adequacy of (44) with small samples has not yet  been investigated. 
Inspection of (43) and (44) reveals some important properties of in- 

dependent change scores. When, for example, the reliabilities of both com- 
ponent variables are unity, the independent change scores will also have 
unit  reliability no matter  what the correlation between the first and second 
testing may be. When the product of the reliabilities of the two components 
equals the squared correlation between them, the independent change scores 
will have zero reliability. When there is no correlation between the two com- 
ponents, the reliability of the change is the same as the reliability of the 
test  on its second administration. 

The reliability of the estimated dependent gains score, ~ in (30) or 
l~ in (31), is the same as the reliability of the first test or basal measure. 
Consider tha t  

2 

(45) P~. = a_;~. 
0",o 

By squaring both sides of (14) (and dropping the x subscript) 

= - 1 )  ~,~ . 

The variance of the observed scores may  be found with the aid of (28). I t  is 

(47) 

which becomes 

( 4 S )  

Therefore 

E[(a 1)~x~], 

2 ( a  2 
= -- 1)~, 
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(49) 
(a 2 2 2 

- -  1 )  ~ , ,  o- , ,  
pww ffw ( a  z 2 ~ p,,=, • 

-- I) a~, o'=, 

Compar i sons  wi th  Other Rel iabi l i t ies  

Alternative versions of (43) and (44) might have been derived from 
(36), (38), and (41) in place of (36), (39), and (42). The new version of (43) 
would be 

2 

( 5 0 )  p .  = 

In  terms of sample statistics, 

(51) r ~  = S ~  --  2dr~,~,S~.S~, + d2S~, 

Equation (51) is equivalent to (44) but  it  is more instructive when compared 
to the usual formula for the reliability of observed difference scores, which 
appears in Lord [12], Manning and DuBois [14], and McNemar [15]. This 
equation--in terms of sample statistics--is 

Equations (51) and (52) have much the same form except for the appearance 
in (51) of an d or an d 2 in every term containing S~. or S~, . Clearly then, 
when d = 1, the independent gains score is the same as the difference score 
and r~, = rdd. 

The reliability for the regressed score used by Lacey and DuBois has 
been given by Manning and DuBois [14] and by Messick and Hills [16]. 
In  sample statistics this is 

r . . . .  - -  2r~,~, + r ~ , r  . . . .  . 
(53) r . . . . . . . .  - 1 

- -  r x l x ~  

I t  is instructive to compare (53) with the reliability of our independent 
gains score, given in (44). If  we assumed, for example, tha t  the "pre tes t"  
were perfectly reliable we could set r~.r~, at unity, then (44) and (53) would 
reduce to the same form, namely 

2 

(54) r . . . . . . . .  = r ~ ,  = 1 - - r  ~ ........... 
~lxa 

This result also follows from (32). 
The two reliabilities to, and r . . . . . . . .  begin to diverge as the reliabilities 

of the initial scores diminish. At  first the differences are not large. When, 
for example, r . . . .  = .900, r . . . .  = .880, and r . . . .  = .389, then the residual 
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score reliability r~ . . . . . . .  = .840, and the estimated independent gains score 
reliability ro~ = .740. But  when, as in the s tudy reported by  Manning and 
DuBois ([14], p. 303), r~,~. = .490, the two reliabilities diverge more sharply. 
I f  r~.=. = .880 and r=,~. = .389 again, we find r= .. . . . . .  = .770 while r~° = 
.564. The regressed score is not to be preferred on account of its higher 
apparent reliability, for this high reliability was obtained by regressing out 
too little of the variance of the initial testing from scores on the final testing. 

Corre la t i ona l  F o r m u l a s  

An expression for the correlation of two independent change scores, 
can be derived by utilizing equations like (42) for the variances and by 
expanding the following expression for the eovariance: 

(55) coy . . . .  = E[ (x2  - -  a~x,)(y2 - -  a~yl)] .  

The actual equation, in population notation, is 

( 5 6 )  P ' " ' -  2p ,,.p . . . .  + . . . . . . .  " 

The correlation between an independent change score and an ordinary 
" s t a t i o n a r y "  test score, k, has a simpler form, viz., 

( 5 7 )  = 2 , 2 " 
~¢/p~,=, - -  2p~,=,p=,., -p p=,,~. 

Equations (56) and (57) assume tha t  tests X and Y have significant 
true score variance on their first administration and tha t  the error of measure- 
ment associated with the use of ¢= in place of % is uncorrelated with the errors 
of measurement in ~, and k. This assumption is violated, of co'urse, in the 
special case where an estimated independent gains score is correlated with 
either of its component parts. 

I f  we set the reliability of the first of the two test administrations equal 
to uni ty  in (56) and (57), we will obtain formulas for the correlation of two 
residual scores with each other and the formulas for the correlation of 
residual score with an external variable. 

(58) p . . . .  , , . ,  ----- p . . . . .  - -  p . . . .  P . . . .  - -  P " ' " P ' " '  J r  p . . . .  P . . . .  P = , , ~ .  

- -  p ~ , = = ,  - -  p ~ , = , , ,  

(59) P=,.,' = ~v/l " 2 ........ 
Pxz=t 

Equation (59) is the "pa r t  corre]ation" used by DuBois [2] in his s tudy of 
change. Equations (58) and (59) may yield higher correlations than (56) 
and (57) when applied to the same data, but  this is not- -as  we have already 
suggested--an argument in their favor. 
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A formula for the correlation of two difference scores, d~ and d, can 
easily be obtained. I t  is 

(60) P "  -V'o-= - + o-:, - + ,,,.= 

The corresponding formula for correlating an observed difference score with 
an ordinary variable, k, is 

p x , k o ' , ,  - -  p~,,kO'=, 
(61) pa., = %/a=-~. -- 2p . . . .  a=,a=. -b a~= 

Again we call at tention to the assumption tha t  the error components 
in the variables being correlated are independent. This is patent ly false 
when difference scores are correlated with initial and final scores on the same 
test. The correlation between the true difference score and true initial position 
will not  usually be zero, however, but  correlated errors will still affect our 
estimate of this value from raw scores. Thomson [19, 20] developed an equa- 
tion for finding the correlation of true scores, and Zieve [21] provided an 
alternative form which is 

(62) p,,a = P~'~ -b (a~,/a~)(1 -- p . . . .  ) 

where t, is the true score for the initial position and ~ is the true difference 
score. This equation, like those proposed by  Thomson, is a correlation 
between true scores and is thus corrected, not only for correlated error, 
but  for at tenuation as well. If correction for at tenuation is not desired, 
p,, ~ may be multiplied by the geometric mean of the reliabilities of the two 
variables involved. Equat ion (62) now becomes 

(63) ,p=,~ = p=,~ + (~,,/¢~)(1 -- p~..=), 

where x~ is the observed initial score and d is the observed difference score 
and .p.,~ refers to a correlation between these variables tha t  has been cor- 
rected for correlated error. 

A n  Interpretation o] the " L a w  o] Initial Values" 

The correlation between the initial position and the difference score is 
related to a, the regression coefficient for independent change scores. Using 
(61) we have: 

( a -  1)o'=,p=,,, 
(64) P==d = ~v/~, _ 2p . . . .  a,,a=. -b a~, 

Clearly, when a is greater than one there will be a positive correlation between 
initial position and change. When a is equM to one this correlation will be 
zero, and when it is less than  one the correlation will be negative. 
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I n  explicating these relationships it m a y  be helpful to consider a as 
the product  of two ratios 

( 6 5 )  a = 
\pxl=~l \ f f  z=/ 

I f  the sys tem under consideration changes cumulatively, then the greater  
the t ime lapse between the first and second testings the lower the first of 
these ratios will be. This occurs because the reliability of the first test ing 
remains constant  while the correlation between the first and second' test ing 
decreases with the passage of time. I f  under these circumstances the popula-  
t ion grows more heterogeneous with time, the increase in ~=, m a y  make up 
for the decrease in px~, in such a way tha t  as = 1. I n  this case there will 
be no correlation between change and initial position. But  some psychological 
and biological systems show a conservative tendency in tha t  the s tandard  
deviation of a t rai t  tends to remain constant even while real changes are 
taking place (cf., Lord [12]). As a result 

and a < 1. In  a sys tem of this sort  the correlation between initial position 
and  the difference score will tend to be negative, and a " l a w  of initial va lues"  
as discussed by  Lacey and Lacey [7] will appear.  
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