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I t  is assumed tha t  the investigator has set up a simple s tructure hypoth-  
esis in the sense tha t  he has specified the zero loadings of the factor matrix. 
The maximum-likelihood method is used to estimate the factor matrix and 
the factor correlation matr ix directly without  the use of rotat ion methods, 
and the likelihood-ratio technique is used to test  the simple structure hypoth-  
esis. Numerical examples are presented. 

1. Introduction and Summary 

We shall be concerned with factor analysis of the confirmatory type. 
I t  will be assumed tha t  the experimenter has set up a particular simple 
s t ructure  hypothesis in the sense tha t  he has specified loadings in the factor  
matr ix  tha t  are to be zero or close to zero. I n  such a case the factor analysis 
m a y  be regarded as a problem of statistical est imation and hypothesis 
testing, The simple s tructure factor matr ix  can be est imated directly from 
the observed correlations, avoiding completely the rotat ional  step, and  
the hypothesis can be tested by  a statistical test. This approach has been 
considered by  Anderson and Rubin  [2], Howe [6], and Lawley [10], all using 
the maximum-likelihood method and all arriving at  essentially the same 
solution. These works have not been given much attention. In  fact, as far 
as the writer knows, there has been no application of their  method reported 
in the literature. The  number  of existing numerical illustrations of the 
method is two, viz., those given by  Howe and by  Lawley. 

In  this paper  we shall consider this problem more thoroughly. We 
shall show tha t  the numerical method for obtaining the maximum-likelihood 
solution involves considerable difficulties. The procedures proposed by  
Howe and Lawley either fail to converge or converge a t  an extremely slow 
rate. We shall discuss various other methods to obtain the solution. These 
methods have the advantage tha t  they  always converge. One of them is 
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superior to all the others and is strongly recommended. This is a generalization 
of the method of resultant descents proposed by Finkel [5] as a numerical 
method for minimization of a function of many variables. This method 
appears to be very  powerful for solving our problem. A computer program, 
based on the method, will be briefly described and some results, based on 
empirical and artificial data, will be presented. 

2. Factor Analysis Model and Simple Structure Hypothesis 

The fundamental equation of the factor analysis model is 

(1) y = Ax + z, 

where y is a vector of p components (the test  scores), x is ~ vector of k < p 
components (the conlmon factor scores), z a vector  of p components (the 
unique par t  of the test  scores) and A = ( ~ )  is a p X /c matrix (of factor 
loadings). I t  is assumed tha t  x und z are independent random vectors with 
g(x) = g(z) = 0, g(zz') = 9,  a diagonal matrix and g(xx') = 4, a matrix 
having unities in the diagonal. From these assumptions one deduces tha t  
the dispersion matrix 2: of y is given by  

(2) Z = AOA' + 9 .  

The elements of A, 4, and xI, are parameters of the model. The  main 
statistical problem of factor analysis is to estimate these parameters on 
tile basis of an estimate S of Z. If A, 4, • satisfy (2) for a certain value of k 
and T is any nonsingular k X k matrix, such tha t  TOT' has unities in the 
diagonal, then also A*, O*, ~I, satisfy the equation for the same value of/c, 
where 

(3) A* = AT -1 

mid 

(4) ¢* = TehT'. 

Though A* and h are equivalent from the mathematical  point of view, 
they may not be so from the psychologicM point of view. The problem of 
choosing one particular psychologically meaningful A out  of the infinite 
set {AT -1 } has been called the problem of rotation, although the problem 
of transformation would be a bet ter  term, since it includes also the trans- 
formation to oblique factors, in which case the transformation matrix T 
is not  orthogonal and hence does not  represent only a rotation. The problem 
of rotat ion has largely rested with the psychologists, perhaps rightly so. 
But  once the psychological meaning is translated to mean some precisely 
s tated restrictions on A, it  is quite conceivable tha t  its choice will turn 
out to be a problem of statistical estimation. 

To resolve the problem of rotation Thurstone [14] proposed the concept 



K. G, JORESKOG 167 

of simple structure as a principle for finding psychologically meaningful 
factors. I f  ~,~ = 0 the ruth factor does not enter  into the i th  test. The  general 
idea of simple s tructure is tha t  if the factors have  real psychological meaning, 
then many  tests will not  depend on all the factors. The  factor matrix should 
have as many  zero coefficients as possible. Such a matr ix  can then be 
considered as giving the simplest s tructure and presumably the one with 
most  meaningful psychological interpretation.  More  precisely, ([14], p. 335) 
simple structure requires tha t  the factor  matr ix  A shall have  the following 
properties. (1) Each row of A shall have  a t  least one zero. (2) Each column 
of A shM1 have a t  least k zeros. (3) For  every pair  of columns of A there 
shall be several rows in which one loading is zero and one is nonzero. (4) For  
every pair  of columns of h a large proport ion of rows shall have two zero 
loadings (if k ~ 4). (5) For every pair of columns of A there shall preferably 
be only a small number  of rows with two nonzero coefficients. 

These conditions are not  s ta ted in a mathemat ica l ly  precise form. I t  is 
therefore extremely difficult to tell whether, for a given Z, such a simple 
structure exists or not or, if it exists, to tell whether it is unique or not. 
Reiers01 [12] investigated these conditions and modified them so as to effect 
identification. He assumes tha t  there are at  least k zeros in each column of A. 
Let  A~ (m = 1, 2, - . -  , k) be the submatr ix  of A tha t  has zero elements 
in the  mth  column. ReiersOl further  assumes t ha t  (i) the  rank  of Am is k -- 1, 
(ii) the r ank  of each submatr ix  obtained by  deleting a row of h ,  is k -- 1, 
(iii) the addition to A~ of any  row of h not contained in A.  increases the 
rank  to ]c. Then if ~ is identified, a necessary and sufficient condition for 
the identification of h is tha t  h does not  contain any  other submatrices 
satisfying (i), (ii), and (iii) ([12], Theorem 9.2.). 

In  this paper  we shall use the  t e rm  simple s tructure for any factor  
matr ix  having zeros in specified positions. We shall assume tha t  the experi- 
menter  has set up a part icular  simple s tructure hypothesis in the sense 
tha t  he has specified the zero positions in h. I f  the experimenter is not  able 
to specify such a hypothesis, it is suggested tha t  he divide the sample randomly 
into two halves and use one half to generate such a hypothesis and the other 
to test  this hypothesis. We shall only assume tha t  the following two conditions 
are satisfied: (i) each column of A has a t  least k -- 1 zeros and (i~) the r ank  
of A~ is k -- 1, m = 1, 2, . . -  , k. I t  should be noted t ha t  there 
are k normalizations in ¢ and a min imum of k(k -- 1) zero conditions. This  
is equal to the number  of elements of the t ransformation matrix T. If, for 
a given ~, the matrices A, ~P, • satisfy (2), a nonsmgular t ransformation 
matr ix  T exists such tha t  A* = AT -~ has k -- 1 zeros in each column and 
also satisfies the condition (ii) and such tha t  ~* = T ¢ T '  has unities in the 
diagonal. I f  there are more than  k -- 1 zeros specified in one or more columns 
of A, then  there may  be more conditions than  are required to take  out  the 
indeterminacy in A. I n  this case the conditions m a y  restrict ~.  
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3. Maximum-Likelihood Solution 

In this section we shall consider the statistical problems of parameter 
estimation and hypothesis testing associated with the model presented in 
the previous section. We shall use the method of maximum likelihood for 
parameter estimation and the likelihood-ratio technique for testing the 
hypothesis. These methods have been previously applied to the same problem 
by Anderson and Rubin [2], Howe [6], and Lawley [10] (see also [11], ch. 6), 
all arriving at essentially the same solution. 

We assume that we have drawn a random sample of N observations 
yl , y~ , "-- , yN from a multivariate normal population with dispersion 
matrix ~. The mean vector of the sample is 

9 = - ~  y , ,  

a~nd the sample dispersion matrix is 

s = N o ~  (Y° - ~)(Y° - ~) '  = N o=1 y°y" - 9~' .  

The distribution of S is the Wishart distribution (e.g., [1], oh. 7). The 
logarithm of the likelihood function for the sample, omitting a function 
of the observations, is given by 

(5) L = - In [ log  I~I q- tr (SN-1)], 

where n = N - 1. We regard L as a function of the nonzero elements of A, 
the nondiagonal elements of • and the diagonal elements of ~I,, defined 
through the relation (2). We consider the function in the region where all 
the diagonal elements of ~ are positive and where h, (I), and ~I, are such 
that  ~ is positive definite. The maximum-likelihood estimates $., 4, and 4 
are the values of A, ~, and ,I+ that  maximize the likelihood function. I t  can 
be shown that the maximum-likelihood method is independent of the units 
of measurements in the test scores in the sense that if a test score is multiplied 
by a constant, the factor loadings for that  test will be multiplied by the 
same constant and the unique variance will be multiplied by the square 
of the constant. We are thus free to use correlations as well as covariances. 

Let us for the moment assume that  we have obtained the maximum- 
likelihood estimates ~, 4, and 4. We then proceed to construct a statistical 
test of our hypothesis. The hypothesis is that 2; is of the form (2) with a 
specified k, with A having zeros in specified positions and with ¢ having 
unities in the diagonM. The maximum-likelihood estimate of y~ under this 
hypothesis is 

2 = £ + ~  + 4 .  

The alternative of the hypothesis is that ~ is any positive definite matrix. 
Let 12 be the set of all positive definite matrices of order p X p and let ~ be 
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the set of all Z of the form (2). Let Lo be the maximum of L for Z in fl and 
let L~ be the maximum of L for 2; in ¢o. Then (see e.g., [1], eh. 3) 

L~ = --½n(log ISI -}-p) 

and 

L~ = -½n[log 121 + tr (S~-')] 

so tha t  ( - 2 )  times the logarithm of the likelihood ratio becomes 

n[log l~l - log ISL + tr ( s ~  -1) - p]. 

This is the same expression as obtained by Lawley ([10], eq. 12). The exac~ 
distribution of the criterion is not  known. If  n is large, however, the 
distribution is approximately a x ~ distribution with degrees of freedom 
equal to the number of restrictions on the free parameters imposed by the 
hypothesis. This is a general property of likelihood-ratio tests [15]. Box [3] 
has shown that  it is possible to improve on this approximation simply by 
multiplying the criterion by a scale factor which results in a criterion having 
the same moments as x 2 ignoring only quantities of order n -2. This requires 
the calculation of the moments of the likelihood-ratio statistic, a formidable 
task which has not been undertaken. The criterion will therefore be takea as 

(6) U = n[log l~l -- log ISI + tr (S~- ' )  - p]. 

If  m is the number of nonzero Ioadings in A to be estimated, the number 
of degrees of freedom is 

d = ½p(p+ 1) -- ½/~(k- 1) - p -  m = ½ ( p -  k ) ( p - l - k -  1) -- m. 

To test our hypothesis we thus compute the value of U and reject the 
hypothesis at the significance level a if this value exceeds the (1 - a) th  
percentile of the x ~ distribution with d degrees of freedom. 

If  the hypothesis is rejected either the number of factors or the pattern 
of zeros is not tenable. The number of factors can be tested by computing the 
unrestricted maximum-likelihood solution and the corresponding likelihood, 
ratio statistic (e.g., [11], ch. 2). If  such a test  indicates tha t  the number of 
factors is tenable it  is possible to test the pattern of zeros against the 
alternative tha t  ]g - xI, is positive semidefinite and of rank k. This provides 
a test of the simple structure hypothesis given tha t  /0 common factors are 
required. 

In the preceding paragraphs it was assumed tha t  the maximum- 
likelihood estimates had been obtained. These estimates cannot, however, 
be obtained easily. The reason for this is twofold. Firstly, in a medium-sized 
factor analysis, with 40 tests and 10 factors, say, the number of parameters 
is almost 400. Our problem is then equivalent to maximizing a function 
of 400 variables. This is clearly not  an easy problem. Secondly, the function 
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is very complicated. If, for example, the function had been a quadratic, 
the problem would have been much easier. 

I t  will be convenient to minimize the function 

F = n[log IEI - log IS] + tr (S~ -~) - p] 

instead of maximizing the likelihood function. The function F is nonnegative 
and is zero only when S is exactly of the form (2). This never happens with 
real data. The minimum value of F is the value of the test  criterion U. The 
partial derivatives of F are given in [10]. 

O F  2n[Z-:(Z - S)E-:]A¢, 
0A 

OF _ 2nh ' [Z- ' (~  -- S)27:]A, 
0¢ 

OF 
O'I' - n d i a g  [Z-~(~ - S)2-:] .  

The elements of O F / O A  tha t  correspond to zero elements of A and the diagonal 
elements of O F / O ~  are zero. 

The usual way to find the maximum-likelihood estimates is to set all 
partial derivatives equal to zero and solve the corresponding equations. 
In this case, however, these equations cannot be solved algebraically. 
Lawley [10], using the following expression for the inverse of ~, 

~-I ---- ~i,-1 __ el,-1A(~-: + At~It-iA)-IA,~-t, 

t:ransformed the likelihood equations to an equivalent set of equations for 
computational purposes. This set of equations is 

CA' -" (ff~-: + A'~I,-1A)-'A'T-1S, 

eb = ( A ' ~ - I A ) - I ( A ' ~ z - ' S ~ - : A ) ( A ' ~ z - ~ A )  -~ -- (A'~I,-1A) - t ,  

~I, = d i a g  (S - A@A'), 

where - in the first equation means tha t  the corresponding elements are 
to be equated only when they correspond in position to nonzero elements 
of A. Lawley suggested an iterative procedure to solve these equations. 
This procedure involves (i) finding initial estimates A: , @1 , and @t , (ii) 
using these estimates in the right-hand side of the equations to determine 
new estimates A2 , ~2 , and ~ , and (iii) repeating this until  convergence 
is obtained. Howe [6] suggested a slightly different procedure with the object 
of increasing the rate of convergence. I t  is extremely difficult to establish 
exact conditions under which such iterative procedures converge. All we 
can do is to hope tha t  the procedures converge if the initial estimates are 
close enough. In the last section of this paper we shM[ give an example 
where Lawley's procedure actually diverged. In cases when convergence 
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occurs i t  is usually very slow. I t  is quite possible to stop a t  a point  in the  
iteration where there is no change in the value a t  the decimal place to which 
accuracy is desired, and ye t  the correct est imate is a long way off. 

Because of these difficulties we have investigated the possibilities of 
solving our problem by  other kinds of methods. Efficient numerical methods 
for minimizing a function of several variables have been devised by numerical 
analysts.  For a review of such methods we refer to Spang [13]. We shall 
describe three methods here. 

To  simplify the description we assume tha t  the arguments  of the function 
F have  been arranged as a vector  x of q components x l ,  x2, • • • , x , ,  where 

,q = m + -~k(k - 1) + p ,  

and m, as before, is the number  of nonzero loadings in A. We also assume 
t h a t  we have found initiM est imates A1 , ~1 , and 91 , represented by  the 
vector  x m.  These est imates do not  affect the  finM solution. They  may,  
however, affect the  number  of iterations required to reach the solution. 
The  closer the initial est imates are to the final solution the more rapidly 
will the procedure converge. In  all methods to be described we shall construct 
a sequence of points x m,  x C2), . . .  in q-dimensional space such tha t  

F ( x  "+1~) < F(z"~). 

The process will continue until no further  decrease of the function is possible. 
The  first method is the method o] steepest descent (see, e.g., [13]). In  

this method we determine x c~+'~ by  moving f rom x (~) along the direction 
in which the function is decreasing most  rapidly. This direction is called 
the (negative) gradient and is defined by  the vector  

OF 

We thus determine the new point x c~+1~ as 

(7) x "+"  = z "~ + ~"~ g"~,  

where a "~ is a suitable positive constant. I f  the gradient vector  g"~ is not  
zero and if the step-size a c° is sufficiently small, the step will always result 
in a decrease of the  function. The  choice of the  step-size a c~ is of some 
importance for the ra te  of convergence. The  opt imal  choice of a C° is such 
tha t  the function F is minimized on the line 

y = x c° - t-Tg ") ,  7 > 0. 

The  optimal  value can be approximated by  various interpolation procedures. 
Davidon [4] has suggested finding a trial point z ") on the line and then 
interpolating cubically using the values of F and the slopes a t  x (° and z c~. 
This involves the computat ion of the function and the gradient a t  two 
poh~ts in each iteration, but this is usually worthwhile. We have  used 
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Davidon's interpolation technique not only in this but also in the other 
two methods which will be described and have found that it works quite 
satisfactorily. 

After arriving at the new point x ci÷l~ we again determine the gradient 
m~d move along it. After many repetitions we arrive at a point from which 
no iznprovement is possible, in other words, at the minimum. We know 
when this happens, for at the minimum all the partial derivatives are zero, 
i.e., the gradient vector is zero. 

The method of steepest descent has often very slow convergence. This 
is so because the path to the minimum is long and irregular. The step taken 
in each iteration is often very small and the gradient is changed considerably 
from one iteration to tile next. I t  is possible to accelerate the convergence 
by, in every third iteration, moving along the direction which is the resUltant 
of the two preceding gradients. We thus determine x (~+1) and x (~+~ as in 
tim method of steepest descent but instead of determining x "+~) from x C~÷2) 
by the formula (7) we determine x (~+3) as 

This is the method of resultant descents proposed by Finkel [5]. If F were a 
quadratic function in two variables, the resultant direction would pass 
through the minimum and the function would thus be minimized in three 
iterations. For nonquadratic functions further iterations would be necessary. 
Finkel has reported that the method is fairly successful even for general 
functions of q variables. We have found that  the number of iterations is 
often reduced by a factor five as compared to the method of steepest descent. 

The type of cycle represented by (8) will be called a cycle of order 1. 
The procedure is easily generalized to cycles of higher order. Figs. 1 and 2 
show examples of cycles of order 2 and 3. In these figures all directions 
except those which are continuations of broken lines are taken as the gradient 
direction. Each new point is taken so as to minimize the function along 
the lkm. This guarantees that the function is decreased in each step. 

In a cycle of order 1 most of the computation time is devoted to the 
computation of the function and the gradient at the points x ~ and x "~) .  

X(i÷l) 

x~) 
FmURE I 

A Cycle of Order 2 
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X(i+7) 
X(i +4) / / ~  

x r, i~1) , / ~  j~..~.,-6) \ 

Fmu~E 2 
A Cycle of Order 3 

The time to compute the resultant direction is small compared to this time. 
I t  is therefore clear that the time for a cycle of order 2 is approximately 
two times larger than for a cycle of order 1, the time for a cycle of order 3 is 
three times larger than for a cycle of order 1, etc. We have experimented with 
cycles of orders 1, 2, 3, and 4 and have found that high-order cycles are 
better far away from the minimum, whereas low-order cycles are better 
in the neighborhood of the minimum. 

4. Numerical Illustrations 

The author has constructed a computer program for the IBM 7094. 
This program performs the computations involved in the generalized method 
of resultant descents as described briefly in the preceding section. 

The input to the program consists of the correlation matrix S and a 
specification of the zero positions of the hypothesized factor matrix. The 
initiM estimates hi and ¢1 , necessary to start the iterative procedure, may 
either be determined by the program or specified by the user. In the former 
case these initial estimates are determined by an oblique rotation of an 
unrotated orthogonal factor matrix. The method of rotation is the least- 
squares procedure described in [9]. The unrotated factor matrix, necessary 
for this rotation, may either be determined by the program or specified by 
the user. In the former case the unrotated factor matrix is computed by the 
method of JSreskog ([7], pp. 43-48). Thus there is great flexibility in the 
program in that data nBy be analyzed making use of various results from 
previous analyses. 

The program is written in FORTRAN IV. The FORTRAN list and 
a brief description [8] of the program is available from the author. 

The author has also programmed Lawley's method ([11], pp. 82-83) 
and the method of steepest descent. These methods cannot be recommended, 
however, since they are usually much slower than the generalized method 
of resultant descents. 

In this section we shall give some results obtained by these computer 
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programs. To illustrate the methods we shall use the same data as used 
by Lawley [10] and Howe [6]. Lawley's data consists of eight tests with 
the following correlation matrix: 

-1. 

0.691 1. 

0.679 0.791 1. 

0.149 0.285 0.314 

0.409 0.505 0.472 

0.382 0.443 0.372 

0.346 0.471 0.426 

_0.270 0.355 0.254 

1. 

0.470 1. 

0.385 0.680 

0.434 0.639 

0.218 0.504 

The simple structure hypothesis 
of zero and nonzero loading's: 

X 

X 

0 

0 

X 

X 

× 

_× 

1. 

0.576 1. 

0.452 0.395 I. 

is represented by the following pattern 

X 0 

X X 

X X 

0 X 

0 X 

0 X 

0 X 

0 0 

Using only this information the program determines the following initial 
estimates. 

-0.229 0.694 0. 

0.167 

0. 

0. AL - - ~  

0.554 

0.626 

0.381 

D.656 

I -1. 1 ~l = 0.368 1. ; Ti = 

L0.485 0.238 1. 

0.717 0.214 

0.758 0.306 

0. 0.682 

0. 0.418 

0. 0.213 

0. 0.485 

0. 0. 

?0.350 

0.215 

0.222 

0.535 

0.293 

0.356 

0.440 

_0.569_ 
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To save space we have here written ~1 as a column vector though it is a 
diagonal matrix. The value of the function F at  this initial point is 

F1 = 10.275. 

Using these initial v~lues we have performed 180 iterations with Lawley's 
procedure. The behavior of the function in these iterations was as follows. 

The procedure diverged. In  the first 79 iterations the function was 
decreased in a regular cyclical manner but  then it started to increase rapidly. 
In  the 180th iteration one of the elements of • became negative. We had 
therefore come outside the region of definition for the function F. 

The important  question now arises whether actually the absolute 
minimum was reached at the 79th iteration. The answer is no. The results 
of the 79th iteration are 

-0.286 

0.232 

0. 

0. 
A7~ = 

0.616 

0.655 

0.456 

_0.607 

and the value 

0.658 0. 

0.699 0.20~ 

0.780 0.367 

0. 0.677 

0. 0.375 

0. 0.214 

0. 0.404 

0. 0. 

-1. 

~7~ = 0.331 1. 

L0.526 0.169 

of F at this point is 

F79 = 5.468. 

maximum-likelihood estimates (correct to The 
by the generalized method of resultant descents, are 

-0.353 0.644 0. 

0.268 0.241 

0. 0.451 

.~ = 0. 0.651 

0.601 0.369 

0.662 0.187 

0.440 0.400 

_0.600 0. 

[-1. 

= [ 0.237 1. 
[ 
L0.588 0.088 

0.676 

0.769 

0. 

0. 

0. 

0. 

0. 

-0.3617 

0.210 ] 

0.160 I 

0.5411 
, xlf79 -~ 

1. 0.2371 

0.378] 

0.434 

_0.631_ 

three decimals), obtained 

11 = 

-0.352~ 

0.224r 

0.144 I 

0.576 I 

0.242 I 

0.3801 

0.439 I 

_0.640J 



176 PSYCHOMETRIKA 

and the minimum value of F is 

F~,o = 5.202. 

Inspecting the differences between ATg and .~ we see that the largest 
difference is 0.084 for ~33 . For the factor correlations the largest difference 
is 0.094 for ¢k~, • Thus, with Lawley's procedure, the best possible result 
is not correct to one decimal. This is not considered satisfactory. 

We proceed to report the analysis of the same data with the method 
of steepest descent and the generalized method of resultant descents. As 
mentioned already in the introduction, these methods converge by theory. 
The results can be obtained as accurately as desired. We have chosen to 
terminate the procedures when all the partial derivatives are less than a 
prescribed quantity e. We have used several e and have found that  when 
e = 0.0001 the result is usually correct to three decimals. 

We have performed 300 iterations with the method of steepest descent. 
This procedure is extremely slow. After 300 iterations the value of F was 
5.213 (c.f., F ~  above) and the partial derivatives were still of order 10 -2. 
This is a surprising result since the method of steepest descent is generally 
regarded as an efficient method for minimization. We conclude that  the 
method of steepest descent cannot be used for our purposes. 

TABLE i 

Number  of Cycles  Required To Reach the Solution with 
the Generalized Method of Resultant  Descents  

Lawley's  data HoweSs data 

Cycles  of Number of Number  of Number  of Number  of 
order cyc les  s teepest  descents  cyc les  s teepest  descents  

75 

2 i  

9 

t2 

i50 

84 

54 

96 

i0  

t2 

iS 

24 

With the generalized method of resultant descents we have used cycles 
of order 1, 2, 3, and 4. The number of cycles required to reach the ~solution 
with e = 0.0001 is given in Table 1, column 2. Since a cycle of order 2 is 
equivalent to two cycles of order 1 etc., we have, for the sake of comparison, 
given in  column 3 the number of times a step was taken in the direction of 
the steepest descents. We thus see that the method was most effective when 
we used cycles of order 3. 

In his report Howe [6] has used a set of artificial data representing five 
tests and two factors. The following correlation matrix was used 



K .  G. J O R E S K O G  1 7 7  

"1. 

0,43 1. 

0,50 0.56 1. 

0.35 0.40 0.44 1. 

0.30 0.37 0.41 0.58 1, 

I t  was postulated that the first three tests should be loaded only in factor 1 
and the last two tests only in factor 2. This constitutes an ideal simple 
structure and the method of Howe is restricted to such cases. Our method 
is not, however, restricted to such pure patterns only. 

Using the initial estimates 

-0.6 0 .  

0.7 0. 

Ai = 0 . 8  0 .  , 

O. 0 . 8  

O. 0.7 

CI) 1 ----- E::o 11 
0.64 t 

0.51 

• 1 = 0.36 , 

0.36 

0.51] 

the following maximum-likelihood estimates were obtained 

0.619 0. 

0.703 

= 0.799 

o. 
0. 

. 

0. 

0.796 

0.729 

°:E 1. J 
0.702 1. 

-0.6171 

I 0.505 I 

= J 0.362 t. 

l 0.366 1 

[_0.469J 

These results agree with those obtained by Howe. The number of cycles 
required to reach the solution is given in Table 1, column 4, and the number 
of steepest descents taken is given in column 5. In this case the method is 
most effective with cycles of order 1. This is probably due to the fact that  
the initial estimates were very good in this case. 

We have deliberately chosen to illustrate the methods with small sets 
of data. I t  should be pointed out, however, that the method is quite feasible 
even with larger sets of data. We have also analyzed several other sets of 
real data. The time taken to analyze Lawley's data was approximately 
10 seconds. Data with 17 tests and six factors took approximately one minute. 
Another set of data with 33 tests and 10 factors took approximately six 
minutes. This gives a rough idea of how fast the computation time increases 
with the number of tests and the number of factors. 
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