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This paper is addressed to the classical problem of estimating factor 
loadings under the condition that tile sum of squares of off-diagonal residuals 
be minimized. Communalities consistent with this criterion are produced as a 
by-product. The experimental work included several alternative algorithms 
before a highly efficient method was developed. The final procedure is illus- 
trated with a numerical example. Some relationships of minres to principal- 
factor analysis and maximum-likelihood factor estimates are discussed, and 
several unresolved problems are pointed out. 

The  research work reported in this paper  was s tar ted  in early 1964 and 
was initially directed " t o w a r d  an obiective definition of communal i ty ."  I t  
has led to much more general results, including a basic new method of factor  
analysis tha t  bears a strong resemblance to a maximum-likelihood solution. 

For  a clear understanding of the point  of departure of the present paper, 
we distinguish two objectives as the  basis for est imating certain parameters  
in factor  analysis, namely:  

1. to extract  the max imum variance; 
2. to "best" reproduce the original correlations. 

The  first of these readily leads to the principal components  of a correlation 
matr ix  (arrived a t  b y  different routes, some of which are mentioned below), 
while the  second goes back  to Thurs tone ' s  quest for " b e s t  fit" to the  off- 
diagonal  elements of a matrix:  " T h e  object  of a factor problem is to account 
for the tests, or their  intercorrelations, in terms of a small number  of derived 
variables, the smallest possible number  t ha t  is coImistent with acceptable 
residual errors" [17, p. 61]. In  this paper  we solve the  factor  analysis problem 
as posed b y  Thurstone b y  maximally  (in the least-squares sense) reproducing 
the  off-diagonal elements of the correlation matrix,  and, as a by-product ,  
obtaining communalit ies consistent wi th  this criterion. The  method is des- 
ignated "minres" for "minimum residuals." 

1. Briel History 

Conceptually, the idea of getting a factor  solution by  minimizing the  
residual correlations is a a  obviously direct approach;  the wonder is t h a t  i t  

*The authors wish to thank the Factor Analysis Work Group (supported, in part, 
by ONR) for valuable criticisms and suggestions made in the course of a discussion 
of the present work in April, 1965. 

tNow with the Department of Defense. 

351 



352 PSYCHOMETRIKA 

has not been done before. The idea certainly is not new--its accomplishment, 
however, was dependent on the high-speed computer. No doubt the idea must 
have crossed the minds of many workers in factor analysis over the last three 
decades. The first theoretical treatment appeared in 1936, when Eckar~ and 
Young noted that "if  the least-squares criterion of approximation [of one 
matrix by another of lower rank] be adopted, this problem has a general 
solution which is relatively simple in a theoretical sense, though the amount 
of numerical work involved in applications may be prohibitive" ([4], p. 211). 
This was followed in the next couple of years by additional theoretical work 
by Householder and Young [9] and Horst [8]. 

More recently, several papers have appeared that seem to bear some 
relationship to the present work. Whittle [20] specifically considered the 
residual sum of squares, but in relation to the principal-component solution. 
Howe, in his doctoral dissertation, seeks an alternative approach to Lawley's 
maximum-likelihood equations and finds that his method--maximizing the 
determinant of partial correlations--is approximately equivalent to mini- 
mizing the sum of squares of the partial correlations" ([11], p. 22). Even more 
germane is the 1962 paper by Keller [13], which is a generalized mathematical 
treatment skirting the precise problem to which our nfinres solution is ad- 
dressed, but which, in a brief concluding section, actually suggests the form 
of solution contained in our method I (see Section 4). 

I t  should be noted that none (with the possible exception of Keller [13]) 
of the foregoing papers, found after diligent search, considers the minimization 
of off-diagonal residuals--the minimization of the total residual matrix (in- 
cluding diagonal terms) leads to the conventional principal-factor solution. 
The exclusion of the diagonal elements, although appearing trivial, is of para- 
mount importance. More specifically, as will be amplified below, the diagonal 
elements of the sample correlation matrix are not fixed but  are parameters 
to be determined along with the factor loadings. 

Probably the first attempt to obtain a practical factor solution by mini- 
mizing off-diagonal residuals was suggested by Thurstone in 1954 and carried 
out by Rolf Bargmann and also by Sten Heurysson (see [18], p. 61). More 
recently, Comrey [3] independently developed a computing procedure for 
such a solution. However, these investigators do not tackle the complete 
problem of determining a factor solution with the property that the sum of 
squares of residuals between observed and reproduced correlations is a mini- 
mum. Instead they consider what might be termed a "stepwise" minimum 
residual method, obtaining one factor and a residual matrix, which is then 
the starting point for the factor in the next step; this process is continued 
until a desired number of factors are extracted. In general, of course, such a 
solution is different from one obtained under the least-squares criterion for 
the entire set of factors. I t  may be of interest to note similar "stepwise" 
approximations to standard statistical procedures, namely: the determination 
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of the coefficients in multiple regression successively rather than simultaneously 
[6]; and an approximation to a maximum-likelihood factor solution [1]. 

Finally, work being done by Boldt [2] certainly is related to the present 
paper. He poses the problem in essentially the same form as is done here (see 
Section 2) and considers solutions by procedures that are very close to our 
Method I and the basic gradient method at the beginning of our Method II 
(see Section 4). While it is interesting to note some similarities in the inde- 
pendent attacks on the problem, the present paper only refers to those methods 
as background for the development of the more efficient techniques. 

Interestingly enough, in the course of discussion of the Thurstone paper, 
John W. Tukey raised the question: "Would we not be better off, in principle, 
• . .  to accept this formula and minimize with respect to [all the factors postu- 
lated] at the same time?" ([18], p. 65). To which Thurstone replied that  the 
only reason he did not consider doing so was because it would get too unwieldy 
to handle. I t  is the problem suggested by Tukey that  is the subject of the 
present paper. 

2. The Problem 

The basic problem with which factor anMysis is concerned is the resolu- 
tion of n variables zi linearly in terms of some smaller number m of common 
factors, with error or unique factors introduced to account for any unex- 
plained variance. This may be expressed algebraically by 

(1) z, = ~ ai~F~, + d,U, (j = 1 ,2 ,  . . .  , n) 

or, in matrix form, 

(1') Z = A F  + DU, 

in which only the common-factor loadings a;~ (or the matrix A) are the param- 
eters to be estimated. I t  is important to distinguish model (1) from the al- 
ternative model 

(2) z~, = ~a¢~F~, + d i U i ,  (j = 1, . . -  , n ; i  = 1, --- ,N)  

in which the factor values F~ as well as the factor loadings a~ are treated 
as parameters to be estimated. In addition, varying assumptions may be made 
about the nature of the residuals and the distribution function of the common 
factors (see Lawley [14]). 

Our concern in this paper is exclusively with model (1), but the alterna- 
tive (2) is noted because that is the model employed by Eckart and Young 
[4] and Whittle [20], whose work otherwise is in the spirit of this paper. Start- 
ing with model (2), their least-squares fit to the "score" matrix leads to the m 
highest eigenvalues and corresponding eigenvectors of the correlation matrix. 
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This conclusion was stated by Eckart and Young: " T h u s ,  if the best approxi- 
mation to the score matrix is found, then the correlational matrices calculated 
from it will automatically be the best approximations to the correlationM 
matrices cMculated from the orginal score matrix" ([4], p. 216). Whittle also 
concludes: " . . .  the solution turns out to be nothing else than an analysis 
of the covariance matrix X X '  into principal c o m p o n e n t s . . . "  ([20], p. 226). 
These methods, as well as the basic work of Hotelling [10], maximize explained 
variance (or minimize uniqueness) of the variables in standard measure. They 
do not maximally reproduce the original correlations, which is the aim of the 
present paper. 

Once a solution (1) is obtained, the fundamental theorem of factor 
analysis gives (assuming, without any loss in generality, that the factors are 
uneorrelated): 

(3) R t = A A ' ,  

where R* is a matrix of reproduced correlations with communalities in the 
pJdneipal diagonal. A solution to the problem, then, is to get a "best"  fit to 
tim observed correlation matrix R by the reproduced correlations employing 
model (1). A least-squares fit can be obtained in either of two senses: 

o r  

(5) 

fitting R by (R* + D 2) 

fitting (R -- I) by (R t - H) ,  

where H -- I -- D 2 -- diag ( A A ' )  is the diagonal matrix of reproduced com- 
munalities. In the case of (4), the minimization of residuals of the total matrix 
leads to the principal-component solution. In the ease of (5), however, mSni- 
mizing only the off-diagonal residuals leads to the minres solution. The con- 
dition for the minres solution may be expressed more precisely by: 

(6) min I][R - I] - [ A A '  - diag (AA')]I[ 
A 

in which it is emphasized that both A and H vary. The norm as expressed in 
(6) may be written out algebraically as 

(7) ] = ~7, i~ - -  ai~ak,, --- min. 
i = l  k = i + l  p = l  

To call attention to the fact that this is a function of the n ( n  - 1)/2 off- 
diagonal residual correlations, which are dependent upon the elements in the 
factor matrix A, it may be designated ] (A) .  The objective of minres is to 
minimize the function ](A) ,  for a specified m, by varying the values of the 
factor loadings. The diagonal matrix of communalities, 
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(hl) 2 g = = a;~ , 

is obtained as a by-product of the method. 

3. Canonical Form 

Before the actual discussion of alternative computing procedures for the 
solution of the problem, a general observation should be made. I t  is a well- 
known fact that for a given correlation matrix a factor solution usually yields 
a unique common-factor space but not a unique set of factor loadings (an ex- 
ception is a principal-factor solution). Because of the arbitrariness of repre- 
sentation of a factor solution in a fixed space, it is desirable to select a "canon-  

ical" form. Of course, rotation to such form has nothing to do with the 
"rotation problem" in factor analysis to attain "psychological meaning- 
fulness" (say, in Thurstone's "simple structure" sense). Rotation to canonical 
form is merely a suggestion to bring an arbitrary solution to a well-defined 
form in a mathematical sense. Among other values, it may be useful in re- 
solving the question of the meaning of equivalence of two solutions--they 
may look different, but if they are truly equivalent then, when each is brought 
to canonical form, they will be identical. 

The canonical form adopted in this paper has the property that successive 
factors account for maximum possible variance. I t  is arrived at in the following 
manner. Let 

A = arbitrary form of factor matrix (n X m) produced by criterion (7), 
B = canonical form of factor matrix (n X m), 
T = orthogonal transformation matrix (m X m); 

then 

(8) B = A T  

will yield the desired form of the factor solution, and the immediate problem 
is to determine the matrix T. Premultiplying (8) by the transpose of B and 
then pre- and postmultiplying by T and T', respectively, produces the  final 
result 

(9) A ' A  = T L T ' ,  

where L = B 'B .  It  is apparent that L is the diagonal matrix of eigenvalues 
and T the matrix of corresponding eigenvectors of the matrix A ' A .  Thus, it is 
only necessary to determine the eigenvectors of an m X m matrix to obtain 
the transformation matrix which carries the arbitrary pattern matrix A into 
the canonical form B. 

Of course, the matrix of residuals remains unchanged whether computed 
from A or B since 

B B '  = A T T ' A '  = A A ' ,  
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and the objective function ] has the same value whether computed from A 
or B. 

4. Experimental Solutions 

Strangely enough, there are a variety of approaches to the problem, each 
yielding an appropriate solution but with varying degrees of efficiency. In 
order to save the researcher the unnecessary labor of retracing some of the 
less efficient methods, we shall briefly review several techniques we tried before 
discussing in greater detail the recommended procedure. The experimental 
work on minres may be grouped into the following categories. 

Method I. Principal-factor Iterations 
Method II. Gradient Methods 

Parallel tangents (partan) 
Higher-order cycles 

Method III.  Successive Approximations of Factor Loadings (Gauss- 
Seidel) 

Method I. Principal-lactor Iterations 

All the early experimental work (actually three versions) are included 
under Method I. The basic procedure starts with the choice of the number of 
factors m and the selection of an arbitrary set of communality estimates for 
the n variables. A factor matrix is determined from the m largest eigenvalues 
and associated eigenvectors of the observed correlation matrix with these 
communalities. Then, the communalities reproduced from this factor matrix 
are employed as the new set of trial values for the calculation of the next 
factor matrix. This process is continued until acceptable stability is attained. 
The algorithm for this method may be expressed in the following form. 

Step 1. Start with the observed correlation matrix with arbitrary 
diagonal: (R - I ~ H). 

Step 2. Compute: (R - I -~ H) = QAQ p, where h is the diagonal 
matrix of the eigenvalues and the columns of Q are the as- 
sociated eigenvectors. 

Step 3. Determine the first m principal factors: A = Q~A~ where 
A~ is the m X m submatrix of A containing the m largest 

(I0) eigenvalues, and Q~ is the corresponding n X m submatrix 
of Q. 

Step 4. Determine the reproduced communalities: H = diag (AAt). 
Step 5. Repeat Steps 2-4 until the convergence criterion is met. (The 

criterion used was A]~ ~ 10 -s >__ 0 where Af~ = ]~ -- ]~-1 for 
iteration i.) 

Step 6. Convert the arbitrary solution to canonical form by trans- 
formation (8), with T determined from (9). 
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Essentially, what we have grouped under Method I are procedures in 
which an arbitrary diagonal matrix H of communalities is selected, and by 
successive calculations of a principal-factor matrix A and its associated com- 
munalities H, improvements in ] are obtained. While this process works, it 
has been found to be rather slow, and thus we were led to explore alternative 
procedures. 

Method II .  Gradient Methods 

The problem of finding a minimum for the function ~ might be considered 
from a purely mathematical viewpoint. A minimum value for a nonlinear 
function I(A), as in (7), is well defined: It occurs at that point where its partial 
derivatives with respect to the nm independent variables are zero and its 
matrix of second derivatives is positive definite. The practical determination 
of a minimum is another matter. Even with modern-day computers, the solu- 
tion of nm nonlinear equations can prove to be a horrendous task. Iterative 
procedures provide the answer to this problem by means of a class of mathe- 
matical techniques known as "gradient methods" (see [16]). The general ap- 
proach is described immediately following. Then two modifications to ac- 
celerate convergence are introduced. 

An optimM value (maximum or minimum) of a function is obtained, itera- 
tively, by proceeding from a trial solution to the next approximation in the 
direction of maximal change in the function. That direction can best be de- 
scribed by use of the concept of the gradient, defined by the matrix 

(11) G = (g;~) (j = 1, 2, . . .  , n ; p  = 1, 2, . . .  , m) 

whose elements are the partial derivatives of the function, namely, 

Oi(A) 
(12) g~,, = - 

Oaiv 

Now, the direction of the nm-dimensional gradient vector G is that in which 
the derivative of the function has its maximum. Hence, by taking the"normal  
derivative," d]/dn, which is in the direction of the normM at the point where 
the derivative is taken, the maximum rate of increase of ] is obtained. The 
direction G is perpendicular to the level surface through the point A (the 
surface being I(A) = constant). The gradient method, or the method of 
steepest descent, seeks the minimum value of ] by moving along the negative 
gradient (but not necessarily to the minimum on the line). 

The general gradient procedures yield successive points by means of the 
iteration equation, 

(13) A~+~ = A~ + tG~ , ( / =  iteration number) 

which represents parametric equations of a line in matrix form. Starting at 
an arbitrary point, determining the gradient at that point and moving along it, 
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yields the next point. After arriving at a new point, this process is repeated 
again and again, until a point is reached at which no improvement is possible. 
That, then, is the minimum, at which the gradient vector is zero. Unfortu- 
nately, the gradient method may converge very slowly. 

As a first step toward hastening the convergence, a procedure known as 
"optimum gradient" [16] was tried. This name comes from the choice of itera- 
tion step size. In seeking a minimum for ](A), the size of the move in iteration 
(i + 1) is chosen to minimize ](A~ -~ tG,) over values of t. This requires mini- 
mizing a fourth degree polynomial in t for the case of the function defined 
in (7). The optimum gradient method, while showing some improvement 
over Method I, still was disappointing. Therefore, the search for better 
methods was continued. 

Parallel tangents (partan). The next improvement was suggested in an 
article by Shah, Buehler, and Kempthorne [15] as the method of "parallel 
tangents" or "partan."  This is a variant of the gradient method in which 
the direction followed is alternatively that of the gradient and that determined 
from points already reached. To grasp an understanding of this method, the 
following heuristic approach beginning with the determination of an optimal 
point on a two-dimensional surface may be useful. 

(1) The contours of a positive-definite quadratic function of 
two variables are concentric and similar ellipses. 

(2) Corresponding points of these ellipses lie on lines through 
their common center (in this case, the location of the 
minimum). 

(3) Contour tangents at corresponding points are parallel. 
(4) The minimum of the function along any line is at the point 

of tangency of the line to a contour. 

Thus, minimizing the function on any two parallel lines furnishes two points 
which are collinear with the location of the over-all minimum. 

This process is generalized to n variables by showing that the minimum 
lies on a line parallel to n - 1 tangent hyperplanes. A proof of the convergence 
of the process to a minimum within 2n steps for a quadratic function of n 
variables is also presented ([15], pp. 75-79). For other than quadratic functions 
there is no assurance of convergence in a finite number of steps, but we have 
found partan to be superior to simple gradient methods. 

The essence of the algorithm for this method consists simply of alterna- 
ting gradient and partan approximations, as follows. 

Step 1. Start with arbitrary Ao. 
Step 2. Calculate: A2 -- Ao -t- tGo (to simplify the notation, AI is 

not used). 
Step 3. Gradient: A2,+~ = A ~  -b tG~, (i = 1, 2, 3, . . . ) .  
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Schematic Representation of Partan Procedure 

Step 4. 

(14) Step 5. 

Step 6. 

Partan: A2~+2 = A2~_2 + t(A2~+I - A2,_2) 
(i = 1 , 2 , 3 , - . - ) .  

Repeat Steps 3 and 4, obtaining successive odd-numbered 
and even-numbered points, until the convergence criterion 
is met. (The convergence criterion required the normal 
derivative to be less than half a unit in the fifth decimal place, 
with the computation stopped at 100 iterations.) 
Convert the arbitrary solution to canonical form by trans- 
formation (8), with T determined from (9). 

The minimum of the function ](A) is obtained, to the desired degree of ac- 
curacy, by proceeding along the nm-dimensional path A o A 2 A ~ A 4  . . . given 
by (14). This is illustrated schematically in Fig. 1, where the gradient and 
partan steps are indicated by G and P, respectively. 

The parallel tangents method was tried on many examples. The results 
were markedly superior to those obtained by Method I, as measured by the 
speed with which apparent convergence was obtained. Nonetheless, the actual 
time required to calculate a fair-sized problem (say, 36 variables and 12 
factors) still seemed excessively long. 

H i g h e r - o r d e r  c y c l e s .  In another attempt to hasten convergence of the 
gradient method, we followed the method of resultant descents proposed by 
Finkel [5] as improved by Jhreskog [12]. I t  is similar to partan in that it 
employs the gradient as well as points already reached in the process. However, 
it differs from partan by using two gradient steps and one resultant step. 
Furthermore, a single point is used severM times as a base point for resultant 
extrapolation. The number of times that the base point is employed in this 
way gives rise to the order of the cycles. This is illustrated in Fig. 2, where 
cycles of order 2 and of order 3 are indicated, and in which gradient and re- 
sultant steps are represented by G and R, respectively. 
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(b) Cycles of Order 3 

FIGURE 2 
Schematic Representation of Higher-order Cycles Procedure 

(15) 

The algorithm for cycles of order k may be outlined as follows. 

Step 1. Start with arbitrary Ao • 
Step 2. Calctflate three points (which constitute a composite step) 

as follows: 

AI = Ao -}- tGo , 

A~ = A l + t G 1 ,  

A3 = Ao + t(A2 -- Ao). 

Step 3. Calculate additional composite steps, from the same pivo~ 
point, as follows: 

A4 = A~ + tG~ , 

A5 = A4 + tG4 , 

A ,  = Ao + t(A~ - Ao). 

Step 4. After k composite steps (for cycles of order k), reset A3k 
to Ao as the new pivot point. 

Step 5. Repeat Steps 2-4 until the convergence criterion is met. (The 
convergence criterion was the same as that used in partan.) 

Step 6. Convert the arbitrary solution to canonical form by trans- 
formation (8), with T determined from (9). 
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The gradient method with higher-order cycles (1 through 5) was tried on 
many examples. From the viewpoint of time requirements, the best results 
were generally found with cycles of order 5, although cycles of orders 1, 2, and 
3 also were most effective for some of the examples. The relative efficacy of 
this method did not show any improvement over partan. Hence, an alterna- 
tive to the gradient methods was sought. 

Method I I I .  Successive Approximations to Factor Loadings (Gauss-Seidel) 

I t  will be recalled that the gradient methods require the solution of a 
fourth degree polynomial in the course of minimizing the objective function 
(7). Believing that this might account for a considerable fraction of the 
computing time, we were led to consider techniques that would involve lower- 
order polynomials. K classical iterative method for solving systems of linear 
equations--Gauss-Seidel (see [19], sec. 130)--seemed to be generalizable to 
our nonlinear problem. The Gauss-Seidel process is sometimes called a 
"method of successive displacements" because, as a change is made in a 
variable and the new corresponding variable is determined, it then replaces 
the original variable. We then looked for ways of varying the values of the 
factor loadings in the process of minimizing the function ] without giving 
rise to high powers of the variables. 

From the basic theorem of factor analysis (3) it is evident that if changes 
or displacements are introduced in only one row of A, the reproduced cor- 
relations will be linear functions of these displacements, and the objective 
function [ will be quadratic only. More explicitly, for any row j in A an 
increment x~ (p = 1, 2, . . .  , m) is added to each element: 

(16) aj, + x l  ,ai2 + x~, . . .  , a ~ + x ~ ,  . . -  , a~m+Xm.  

Then the reproduced correlation of variable j with any other variable k is 

ak~(ai~ + x~) (17) r;, = 
¢ 

and the sum of squares of residual correlations of variable j with all other 
variables k is given by 

~ ( r  ~ ) 2 ( i s )  I~ = ( m  - r~) 2 = * - a ~ , z ,  , ( i  fixed) 
k = l  k ~ l  p = l  
k~ai k ~  

where r*  is the residual correlation of variables i and k without the incre- 
mental change in the factor loadings of variable j, that  is, 

(19) r% = rik -- ~ ai,ak~ . 

To determine the values of the z, which minimize the objective function 1, 
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take the partial derivatives of (18) with respect to each of these x's, set 
them equal to zero, and solve for the x's, getting the result 

(2o) ~ ( ~  ) ~ *a ak~akq x~ ---- r ~  kq , 

This may be put in matrix form, 

(21) 

(q = 1,2, . ' .  , m ) .  

X i A ~ A ) i c  = R~A ,  

where X~ is the row vector of incremental changes of the factor loadings for 
variable j, A);~ is the factor matrix with the elements in row j replaced by 
zeros, and R~ is tile row vector of residual correlations of variable j with all 
other variables (and 0 for the self-residual). Then the solution for the dis- 
placements to the factor loadings (for a given variable) that will minimize the 
objective function, is 

0 ! - 1  (22) X; = R ~ A ( A ) i ( A , O  . 

The foregoing process is carried out systematically for all variables, in 
turn. Thus successive approximations of rows of factor loadings are obtained 
which will yield a minimum value for the function f to any desired degree of 
accuracy. The computing algorithm for Method III  can be summarized by 
the following. 

Step 1. Start with arbitrary Ao • 
Step 2. Calculate X~ from (22) in which each A is the arbitrary 

Ao and R~ is the row vector of observed correlations to start 
the process. Designate the factor matrix with the first row 
replaced by the computed values (16) as AI (the subscript 
on the A represents the result of iteration 1, not the pivot 
variable). 

Step 3. Compute a major iteration cycle by pivoting on each varia- 
(23) ble, in turn. Thus, A~, A2, - .-  , A. will be determined from 

X 1 , X 2 ,  . . .  , X , , .  
Step 4. Apply the convergence test after computing A,, , where 

c = 1, 2, 3, --- is the number of major iteration cycles. 
Step 5. Repeat Steps 3 and 4 until the convergence criterion is met. 

(The criterion used was the rate of change in J, namely, 
A]/I  -I- 10 -1° >_ 0, which is actually the limit of accuracy 
of the 48-bit computer in single precision floating point, and 
the process was stopped arbitrarily if convergence did not 
take place by 800 iterations.) 

Step 6. Convert the arbitrary solution to canonical form by trans- 
formation (8), with T determined from (9). 
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The method of successive approximations to factor loadings seemed to 
provide the answer to the problem. It produced a factor matrix satisfying the 
condition (7) more effectively than any of the other methods tried; and, in 
absolute terms, obtained such a solution in very reasonable time. For small 
problems (5, 8, and 9 variables with 2 or 3 factors) the calculations were 
accomplished in 12 to 68 seconds when pressed to the limit of accuracy of the 
computer, and in 3 to 18 seconds with resonable and practical standards. For 
larger problems (24 variables, 4 factors; and 36 variables, 12 factors) minres 
solutions were still obtained in reasonable time (40 seconds and 8.4 minutes, 
respectively). While eleven different problems were employed for the empirical 
study of the different methods, the results for the example (see [7]) of 24 psy- 
chological tests and 4 factors is typical of all the others. Method I did not 
converge for this example, and after I00 iterations and 48 minutes the ob- 
jective function was reduced to .46006 from an initial value of .92777 (based 
on the first 4 principal components). The several solutions covered by Methods 
II  and I I I  all converged, taking from about 7 minutes to less than 2 minutes, 
with ] = .45989. After relaxing the standard of convergence, the same level 
for the objective function (to six decimal places) was reached in 39 seconds. 

5. Minres Solution 

Having experimented with the several mathematical approaches to a 
minres solution, and tested them empirically on many problen~% we concluded 
that Method I I I  offered the most efficacious solution. This method is then 
implied when we simply use the term "minres solution." In the study of the 
effect of different computing procedures, the calculations were carried far 
beyond any practical needs--with very rigorous standards for convergence. 
After the choice of the preferred method was made, consideration had to be 
given to practical requirements for a minres solution. 

Of course, it is apparent that  the "best" fit of a model to empirical data, 
in the sense of the objective function f being a minimum, may not appear 
very convincing. If the model specifies two factors for a set of 20 variables, 
it is to be expected that the residuals may be of sizable magnitude, although 
the sum of squares of off-diagonal residuals has been minimized. All that can 
be said is that for the given hypothesis, the resulting minres solution best 
satisfies the least-squares criterion. Unfortunately, a good statistical resolu- 
tion of the question of the number of factors m is not yet available. (There 
is a good chance that under certain conditions a statistic that is asymptotically 
distributed as x 2 may be available as a large sample test of the hypothesis 
of the number of factors.) 

In any event, for a given hypothesis regarding the number of factors, it 
is desirable to obtain a stable factor solution. The objective, then, is to set 
a convergence criterion so as to guarantee the accuracy of the factor toadings. 
After considering convergence criteria that  employed actual changes in the 
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function 1, relative changes in I, changes in the normal  derivat ive (although 
this does not  otherwise have  to  be computed in Method  I I I ) ,  and changes in 
the communatit ies of the variables, we finally came back to consideration 
of changes in the factor  loadings themselves. To  be sure tha t  the resulting 
minres solution had stabilized, we required tha t  the maximum change from 
one iteration to the next of all factor loadings be bounded by  some pre- 
assigned small number.  I n  other words, the convergence criterion was set as 
follows: 

(24) max [c,)ai~ - -  ( , -1 )a i~[  < , 0 = 1 ,  . . .  , n ; p  = 1 ,  . . .  , m )  
i , P  

where i is the iteration number.  For  most  problems e = .001 is satisfactory, 
and as a precaut ionary measure it might  be wise to terminate  the process if 
the number  of i terations exceeds 1000. 

For purposes of illustrating the minres solution, the familiar example 
[7] of eight physical variables is employed. The  correlations among the var ia-  
bles appear  in the upper  triangle of Table 1. In  the experimentation these da ta  
were analyzed for the hypothesis of 2 factors and 3 factors b y  each of the 
methods discussed above. The  details of a minres solution will be shown only 
f o r m =  2. 

The star t ing point for the minres calculations is an arbi t rary  factor 
matrix, and for this purpose the first two principal components were selected 
(i.e., calculated f rom the correlation matr ix  with unities in the  diagonal). 
Of course, the first two principal components account for more variance 
(6.444) than  any  other two factors, but  the sum of squares of off-diagonal 
residuals produced from this initial matrix is not a min imum (] = .07663). 
For  the minres solution of Table 2 the objective function was improved con- 
siderably (I = .01205). The two factors which provide the " b e s t "  fit to the 

Variable 

TABLE i 

Correlations and Residuals for Eight Physical. Variables * 

1 2 3 4 5 6 

1. Height 
2. Arm span 
3. Length of forearm 
4. Length of lower leg 
5. Weight 
6. Bitroehanteric diameter 
7. Chest girth 
8. Chest width 

7 8 

846 805 859 473 398 301 382 
-014 881 826 376 326 277 415 
-020 027 801 380 319 237 345 

037 -020 -011 436 329 327 365 
016 -025 007 008 762 730 629 
018 -006 011 -027 008 583 577 

-02t 004 -014 029 012 -026 539 
-024 044 -002 -020 -027 021 015 

* Correlations in upper triangle, residuals in lower triangle; decimal points omitted. 



HARRY H. HARMAN AND WAYNE H. JONES 365 

TABLE 2 

Minres  Solution with Two Fac tors  

Variable 
J 

Variance 

F I F 2 ~} ] 

,856 - .324 .838 
.848 - .412 .889 
.808 -.409 .821 
.831 -°342 .808 
.750 .571 .889 
.631 .492 .640 
,569 .510 .583 
.607 .351 .492 

4.449 1.510 5.959 

off-diagonal correlations account for almost 75% of the total variance, as 
can be seen from the last line of Table 2. 

In meeting the criterion for the minres solution, no factor loading in 
Table 2 changed by as much as .001 in going from major iteration cycle 5 
(ending with iteration 40) to m~jor iteration cycle 6 (ending with iteration 
48). While this clearly indicates that for the model of two common factors 
the solution is stable, the related question of the adequacy of this hypothesis 
still remains. If the model were to fit the data precisely, all residuals would 
vanish--but, of course, this is not to be expected of empiricM data. The 
actual residuals (shown in the lower half of Table 1) range from --.027 to 
.044 with a mean of zero to more than four decimal places and a standard 
deviation of .021. A crude cmterion for "when to stop factoring" is the re- 
quirement that the standard deviation of residuals be less than the standard 
error of a zero correlation for the given size sample. For a sample of 305 
cases, this statistic is .057, and supports the hypothesis of o~y  two factors. 
This does not prove that  there are only two significant common factors; on the 
contrary, there is much evidence ([7], p. 377) that more than three common 
factors axe required for adequate (statisticM) explanation of the observed 
data. However, from a practical point of view, the magnitude of the residuals 
in Table I may be considered too small to provide another meaningful factor. 

Before leaving the numerical example, some simple comparisons of the 
different computing methods may be of interest. For practical purposes, all 
methods produced the same results--even though Method I did not converge 
(according to the strict experimental criterion)--with the individuM factor 
loadings and communalities agreeing to within a couple of units in the third 
decimal place. Moreover, tile objective function came down to .01205390 for 
Methods II and III  and was only one unit larger in the eighth decimal place 
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for the operational program with the somewhat relaxed convergence standard. 
While the objective function was .012146 for Method I when the computations 
were terminated at 100 iterations, it was actually lower (.012063) after 99 
iterations. The vacillation around the apparent point of convergence was 
another disturbing factor about Method I. The important difference, of course, 
was the time required to reach a solution. From over a minute for Method I, 
the time was reduced to 22 seconds by Method II  (actually, 21 seconds by 
cycle of order 5), 12 seconds by Method III, and only 4 seconds by the opers~ 
tional version of the last method. 

6. Discussion 

There are certain features of a miures solution that deserve emphasis. 
Some of these may be considered highly desirable; others present puzzling 
problems, as yet unresolved. 

While a principal-factor solution, in general, is not a mimes solution, 
the converse is always true--a miures solution is a principal-factor solution 
with appropriate diagonal entries. A principal-factor solution for a corre- 
lation matrix with minres communal(ties cannot be different from the minres 
solution that produced those communalities; if it were, both the off-diagonal 
and the diagonal sums of squares of residuals would be increased--in the 
former case because the off-diagonal sum is minimized by miures, and in the 
latter case because the diagonal sum is zero for minres. This means that  the 
principal-factor and minres solutions are equivalent, and if put in canonical 
form are identical. In schematic form, 

(25) (R - I + Hmin) P_rA> A ~ i . ,  

the theorem states that  a principal-factor analysis of a correlation matrix 
with minxes communal(ties produces a minxes factor solution. A corollary 
property is that a principal-factor solution of a correlation matrix with m- 
factor minxes communal(ties will have a sum of the m largest eigenvalues 
equM to the sum of the communal(ties, while the remaining n - m eigenvalues 
will be positive and negative and add to zero. 

Just as a minres solution reproduces itself through PFA, so does a maxi- 
mum-likelihood solution, viz., 

(26) (R -- I + HML) rFA> A~L • 

Of course, the principal-factor analysis of the correlation matrix with maxi- 
mum-likelihood communalities is in canonical form, while the original 
maximum-likelihood solution (from which the communal(ties were taken) 
probably is not, and must first be put in that form in order to verify the equi- 
valence. Now, the factor matrix obtained by (26) is a least-squares fit to 
(R - I + HML) with perfect fit of the diagonal, and must therefore be a 
minres solution. Does this mean that miures (with its computational ad- 
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vantages) may be used in place of the highly desirable maximum-likelihood 
solution (for which an efficient computing algorithm has not yet been found)? 

According to the conditions for minres (7) and for maximum-likelihood 
([7], p. 369), the two solutions should be identical only if the communalities 
are equal. How much the actual communalities for a set of n variables may 
differ and still produce practically equivalent results is a matter for em- 
pirical investigation (so long as it is understood that it is not mathematical 
equality that is sought). Such an investigation was made for the example of 
8 physical variables, but postulating 3 factors instead of 2 as in the pre- 
ceding section. Specifically, the following solutions were computed. 

1. ML (arbitrary initial matrix), 
2. PFA (ML communalities), 
3. Minres (ML initial matrix), 
4. ML (minres initial matrix). 

After the maximum-likelihood solutions were put in canonical form, all four 
solutions were practically identical. Communalities and contributions of 
factors differed only in the third decimal place, and individual factor loadings, 
with only a few exceptions, agreed to within a few units in the third place. 
The equivalence of these solutions was found in spite of the fact that the 
8 communalities ranged from .5 to 1.0. 

It  should be noted, however, that the minres solution found to be equiva- 
lent to a maximum-likelihood solution was for a particular local maximum, 
while another maximum-likelihood solution differed from it. This problem-- 
local versus global maximum or minimum--is unresolved for either the maxi- 
mum-likelihood or the minres method. Even when a computing procedure 
converges there is no assurance that the optimal point (maximum or minimum) 
is for the entire surface in the multidimensional space or only for a local area. 
In practical usage, this question may be immaterial as long as a reasonably 
good solution is obtained, but from a theoretical viewpoint it is necessary to 
know whether the ultimate solutiou has been reached for the given conditions. 

Still another problem requiring resolution may be called the"  generalized 
Heywood case" ([7], pp. 125-6). Occasionally, a minres solution is obtained for 
which one of the communalities exceeds unity. While this happens only in- 
frequently, nonetheless it is a situation that should be eliminated if the factor 
analysis is to be acceptable. In its present form, the minres solution satisfies 
(7) but  no side condition restricting the communalities to numbers less than 
one. If a Heywood case arises in a minres solution, then the computing pro- 
gram merely adjusts the loadings for the unruly variable so that its communal- 
ity is one, without disturbing any of the other factor loadings. Of course, the 
objective function must become larger than the minimum reached with the 
unacceptable communality, and the residuals involving that variable also 
increase. Forcing any excessive communality back to unity was a solution of 
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expediency. In the near future, we hope to explore a minres procedure with 
built-in restrictions on the communalities. 
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