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Existing analytic oblique rotation schemes proceed by optimizing a 
simplicity function applied to the reference structure. This article suggests 
optimizing a simplicity function applied to primary loadings directly. The 
feasibility of the suggestion is demonstrated using the quartimin criterion. 
An algorithm to implement the optimization is derived and the existence of 
an admissible solution proved. Practical comparisons with the biquartimin 
method are made using Thurstone's Box Problem and Holzinger and Swine- 
ford's Twenty-Four Psychological Tests Problem. 

Analytic rotation schemes in factor analysis are based on a number of 
simplicity criteria. In the case of orthogonal rotations the primary factor 
loading matrix is identical to the primary factor structure and rotation for 
simple primary loadings is equivalent to rotation for simple primary structure. 
In the case of oblique "rotations," however, the matrices are not identical 
and it appears a choice would have to be made between rotation for simple 
primary loadings or simple primary structure. In fact, neither of these alterna- 
tives are used. Following Thurstone [5] rotations are made instead for simple 
reference factor structure. The reference factors are defined as the set of 
variables of unit variance which lie in the common factor space and are bi- 
orthogonal to the primary factors. Since the reference factors seem more like 
mathematical abstractions than variables of primary interest, an interest 
in simple reference structure seems a little strange. The reference structure, 
however, is quite similar to the primary loading matrix (the columns of one 
are scalar multiples of the columns of the other) and it is apparently this 
similarity which motivates the interest in simple reference structure. 

The purpose of this paper is to show that such an indirect method of 
obtaining simple loadings is not required. 

There are a number of popular oblique rotation schemes--oblimax, 
quartimin, covarimin, biquartimin, and Kaiser-Dickman to name a few. 
Most of the simplicity criteria used in these schemes are sufficiently complex 
that it is difficult, if not impossible, to tel1 in terms of the reference structure 
or the primary loading matrLx what"  simplicity" really means. I t  will be shown 
here that by applying the fairly simple quartimin criterion to the loadings 
directly, very satisfactory results are obtained while avoiding the problem of 
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rotating to singularity, which appears to plague some oblique rotation 
methods. 

I. Basic Concepts and Statement of the Problem 

Each of the n basic variables z, in a factor analysis model is a sum 

of two orthogonal variables c~ and u~ called the common and unique parts  of 
z~ . Each common part  is a linear combination 

c, = l , J ,  + " "  + l,,,I~, 

of m variables 11, " ' " ,  f~ called the primary factors. These factors are assumed 
to be a basis of the space spanned by  the common parts (called the common 
factor space) and to have unit  variance. The model is called orthogonal if it  
is assumed in addition tha t  the primary factors are uncorrelated. In  matr ix 
notation, the model may be writ ten 

z = L l + u ,  

where z = {z,} is an n X 1 vector of basic variables, L = {l,} is an n X m 
matrix of primary factor loadings, ] = {]~} is an m X 1 vector of pr imary 
factors and u = {u~} is an n X 1 vector of unique parts. 

The  selection of a primary factor basis for the common-factor space 
is called the rotation problem. The selection is made in such a way tha t  the 
corresponding loading matrix L will be as simple as possible. Formal conditions 
for simplicity have been stated by Thurstone ([5], p. 335). Roughly speaking, 
L is called simple if it  has many nearly zero elements and a few relatively 
large elements. The  goal is to represent each variable with relatively large 
loadings on one or at  most a few factors and nearly zero loadings on the re- 
maining. 

As mentioned earlier, the usual method for doing this is somewhat 
indirect. Let  g~, • .- , g~ be a set of variables of unit  variance in the common- 
factor space which are bi-orthogonal to the pr imary factors. These variables, 
which are called reference factors, uniquely determine the primary factors 
and are uniquely determined by them. The  covarianee matrix 

S = [coy (z,, g;)] 

of the basic variables with the reference factors is called the reference factor 
structure. I t  is easy to show ([3], p. 279) tha t  the reference structure is related 
to the primary loading matrix by  the equation 

S = LD,  

where D is a diagonal matrix with diagonal elements d ,  = coy (]~ , g~). 
In other words, the columns of the reference structure S are simply scalar 
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multiples of the columns of the primary loading matrix L. Roughly speaking, 
S will look simple if L does and conversely. The common analytic rotation 
schemes proceed by defining a function F(S) which measures the simplicity 
or complexity of the reference structure S. The rotation problem is then 
solved by selecting the reference factors which maximize or minimize F(S).  
In perhaps the simplest case (the quartimin method [1]) the function 

(1) F(S) = ~_, ~_, s ~ ,  

is minimized. 
The authors believe that the reference structure method is unnecessarily 

complicated and indirect. They suggest that a simplicity function F(L) be 
applied directly to the loadings and that the rotation problem be solved 
by maximizing or minimizing F(L). It  is always possible (and customary) 
to begin with an initial set of primary factors which are orthogonal. If A 
denotes an initial primary loading matrix then L is an admissible primary 
loading matrix if and only if it can be written in the form L = A T  -1, where 
T is a nonsingular normalized matrix (i.e., the rows of T have length one). 
Similarly S is an admissible reference structure if and only if it can be written 
in the form S = A T', where again T is a nonsingular normalized matrix. The 
simple loadings solution amounts to finding a nonsingular matrix T to 

(2) minimize F ( A T  -I) under the condition diag (TT')  = I, 

while the simple reference structure solution amounts to finding a non- 
singular matrix T to 

(3) minimize F(A T') under the condition diag (TT')  = I. 

Formally the only difference between the methods is that in the simple 
loadings method T -1 replaces T ~ in the argument of F. 

The T's defined by (2) and (3) are in general different and give rise to 
different loading and primary factor correlation matrices. In the case of the 
simple loadings solution, the rotated loadings L and the covariance matrix 
C of the rotated primary factors are given by 

L = A T  -~ and C = TT p. 

In the case of the simple structure solution, these formulas are a little more 
complicated 

L = A T ' D  -1 and C = D(TT')-ID 
where 

D = [diag (TTP)-I] -~/'. 

I t  is difficult to understand why the simple loadings method has not 
been used. One explanation may be Thurstone's leadership in simple structure 
techniques. Other explanations may include a fear of the complexity of the 
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mathematicaI details, a fear that  the solution methods would behave poorly 
numerically or tha t  the final solutions would be unsatisfactory. The next 
three sections will a t tempt  to demonstrate tha t  these fears are unfounded. 

II .  Mathematical Details o/Method 

The quartimin simplicity function F defined by (1) will be used. The 
reason for this choice is tha t  both algebraically and conceptually it is about 
the simplest criterion available and it seems to give very satisfactory results. 

The method proceeds by means of a sequence of elementary rotations. 
Let /1  , " ' "  , ]~ denote the factors (i.e., primary factors) at an intermediate 
step, L the corresponding loading matrix, and C = [c,] the corresponding 
factor correlation matrix. Choosing two factors, say f, and ]2, a simple rotation 
consists of rotating ]~ in the plane of f~ and f~ in such a way that  the resulting 
loading matrix L minimizes F(L). The rotated factor 

(4) ], = t,f~ + t~f2, 

where t~ and t2 are chosen so that  ]1 has unit length. This amounts to requiring 
tha t  

(5) t~ + 2t, t~c~ + ? 2 ~ 1 °  

Let ll , • .- , l~ and ~l , " '"  , ~ denote the columns of L and L. By equating 
common parts it is easy to see that  

1 t2 
(6) Z, = ~l~ , ~2 = - - ~ l l  + 12 and i, = t, for i #  1 ,2 .  

Letting xy denote the element-wise product of two arbitrary vectors x and 
y and letting 

(x, y) = ~ x,y, , 
i = l  

the function F(L) can be written in the form 

F(L) 
/ 

where K is constant with respect to t~ and t2 . Letting w = ~ a  l~, the 
problem reduces to minimizing 

over all t~ and t~ satisfying restriction (5). Using the change of variable 

1 t2 
(8) v t, ' ~ = ~ '  

(5) and (7) become 
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(9) 
and 

(lO) 
where 

2 
3' = 1 A- 2c~2~ + ~2, 

] = a - k  b~-kc~ 2-t-d~ a -ke~  4, 

a = ( l~ ,w)  + ( l~ ,w)  q- (l~,l~),  

b = 2c~(l~, ~) -- 2(Z~, t~Z~) - 2 ( U , ,  w) + 2 c ~ ( ~ ,  ~'~), 

c = (Z~, t~) -- 4c~(Z~, U~) + (t~, Z~) + 2(1~, w), 

4 = 2c,,(l~, ~) --  2(/~, l,l~), 

e = (z~, z~). 

Hence the problem reduces to minimizing, without restrictions, the fourth 
degree polynomial given in (10). The minimum may be found by choosing 
the root ~ of the cubic equation 

(11) b + 2c~ + 3d~ 2 + 4e~ ~ = 0 

which minimizes 1. Then, ~, and 5 are found from (9) and (11) (the sign of ~, 
is arbitrary) and t~ and 6 are obtained from (8). The new loadings matrix L 
is obtained from (6) and the new correlation matrix C = {~i;} of the rotated 
factors from the equations 

(12) ~ i  = ticl~ q- t2c2~ , j ~ 1; 

~,  = c . ,  i , j #  1. 

This completes a simple rotation. Rotations are performed stepping uniformly 
through all possible pairs of factors until F(L)  converges. The final values of 
L and C are the loading matrix and correlation matrix of the rotated factor 
solution. 

Harry Harman has suggested that the method described in this section 
be called the direct quartimin method and that simple loading methods in 
general be called direct rotation methods. For example, methods based on 
minimizing the oblimin criterion applied directly to the loadings rather 
than to the reference structure would be called direct oblimin methods. 
A FORTRAN IV subroutine which implements the direct quartimin method 
described here and the direct oblimin methods in general has been written 
by the authors and may be obtained by writing to the program librarian of 
the Health Sciences Computing Facility, UCLA, Los Angeles, California 
90024. The subroutine also exists as part of a factor analysis program 
BMDX72 which is available at the same address. 
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III .  Existence and Nonsingularity o] Solution 

In  this section we will prove tha t  as the common factors approach linear 
dependence, the simplicity criterion F(L) approaches infinity and a~so that  
there exists a loading matrix L which minimizes F(L). While it may  be argued 
tha t  these are merely mathematical  niceties, it is not  clear tha t  other rotation 
schemes enjoy them. This will be discussed in the next  section. 

LEM~A 1. For any l ,  , 
(;'- 

- \ m - - 1  
PROOF. 

cov (c, , f~) = l,, coy (f~ , f;) + ..- + l,~ coy (f., f;). 

Thus, ll,[ _< 1 q- [l~] q- - . .  q- If,,;_,] + ll~.;+,[ q- . "  q- [l,m[ and thus 
for some 

k ~ i ,  tl,ki > il,;I - -  1 
= m - - t  

The required result follows from formula (1). 
THEOaE~ 1. I] L is a ]actor loading matrix and C is the corresponding 

]actor correlation matrix, then F(L) --> ~ as det (C) -+ 0. 
PROOF. Since L = A T  -~ and C -- TT',  

det  (L'L) det  (A 'A)  
- de t (C)  - ~  as d e t ( C ) - + 0 .  

The required result follows from Lemma 1. 
THEOnEM 2. There exists a loading matrix L which minimizes F(L).  
PnOOF. Let  K be the greatest lower bound of F(L) over all admissible 

loading matrices L. Since L = A T  -~ and C -- TT '  it follows from Theorem 
I tha t  F ( A T  -~) ---> =, as det  (T) --+ 0. Since the set of all (not necessarily non- 
singular) normalized matrices T is closed and bounded i t  follows by  con- 
t inui ty tha t  there exists a non-singular normalized matrix T such tha t  
F ( A T  -~) = K and hence an admissible loading matrix L = A T  -~ which 
minimizes F(L). 

In  all fairness it should be pointed out  tha t  it has not  been proved tha t  
the algorithm presented in the previous section converges to a loading matrix 
L which minimizes F(L) or even tha t  it converges at  all. No such proofs exist 
for any of the common analytic rotation schemes. For  all methods the fact 
tha t  they converge to a loading or structure matrix is a mat ter  of experience 
and tha t  the matrix optimizes the required criterion a mat ter  of faith. 

IV. Some Comparisons with Other Methods 

The  oblimin methods minimize the function 

z(z" = s,~s,o - n ( s L ) (  ,~) , o <= ~ ~_ 1 
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of the reference structure S. When ~, = O, 1/2, 1 these methods are called the 
quartimin [1], biquartimin [2], and covarimin methods [4]. In this section, a 
simple example will be used to raise some objections to these methods while 
in the next section more practical comparisons will be made. 

For the example, we will begin with orthogonal factors and the loading 
matrix 

.960 .1401 

.480 .070 I 

- .560 .3O0_J 

The loading matrices of the simple loading and several oblimin solutions are 

.970 .O001 

.485 .000|; 

.000 .635J 

Simple loading 

.470 --.026J; 

-- .217 .486J 

= 1/2 

.970 .00O 1 

.485 .000 t; 

.000 .635] 

T----0 

.933 -- .0841 

.467 -- .042|; 
! 

-- .294  .456J 

~, = 3/4 

.951 - .0281 

.475 - . 014 | ;  

- .117 .547] 

= 1/4 

.928 -.1441 

.464 --.072 i .  

--.350 .459J 

~ = 1  

A perfect cluster solution exists and the simple loading and quartimin methods 
produce it. The remaining oblimin methods fail to obtain the "perfect" 
solution. This observation suggests the use of the simple loadings or quartimin 
method but the latter method, and to an extent all the oblimin methods with 
small - /are plagued by a problem which is called the problem of rotating to 
singularity. More precisely stated, the problem is that in some cases, as the 
iterations employed in the solution proceed, the reference factor correlation 
matrix becomes singular. To the authors' knowledge it has never been shown 
for the oblimin methods that there exists a set of linearly independent ref- 
erence factors whose structure S minimizes the criterion G(S).  I t  is not clear 
whether the problem of rotating to singularity is due to the non-existence of 
a solution S or simply to problems in numerical analysis. 

Carroll has suggested two solutions to the problem. One is to use a high 
value of ~, which tends to make the reference factor correlations smaller 
([3], p. 324). The other is to put an arbitrary upper bound on the correlations. 
Either of these alternatives can make it impossible to rotate to a perfect cluster 
solution when one exists. They also introduce added complexity into the alge- 
braic formulation of the criterion G and into its interpretation. 

On the other hand, the simple loadings method uses an algebraically 
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simple criterion, can produce perfect cluster solutions when they exist and, 
thanks to Theorem 1, will not rotate to singularity. 

V. Practical Comparisons with the Biquartimin Method 

I t  remains to be demonstrated that the simple loadings method given 
in Section II works for practical problems--that for real data the method in 
fact gives loadings that look simple, or at least loadings which look as simple 
as those of other analytic ob]ique rotation methods. To do this the simple 
loadings and biquartimin methods will be compared using two well-known 
problems from the literature--Thurstone's Box Problem ([5], p. 140) and 
Holzinger and Swineford's Twenty-Four Psychological Tests Problem ([3], p. 
135). 

For the purpose of making comparisons with the results in the literature, 
Kaiser communality normalizations ([3], p. 325) have been used for both the 
simple loadings and oblimin methods. In both examples the initial factors 
are orthogonal. 

Table 1 contains the simple loadings and biquartimin solutions to the 

TABLE I 

Thurs%one~s Box Problem 

I n i t i a l L o a d i n g s  Simple  Loadings  B i q u a r t i m i n L o a d i n g s  

.659 - .736 .138 - .035 1.020 - .056  - .002  1.003 - .036  

.725 .180 - .656  1.011 -o032 -°022 .980 .020 .029 

.665 .537  .500 -.046 -.066 1.018 -.016 -.047 1.001 

.869 -.209 -.443 .765 .456 -.045 .756 .488  .003 

.834 .182  .508 -.073 .344  .879 -.032 .353  .870 

.836 .519  .152 .364 - .071 .834 .377 - .035 .840 

.856 -.452 -.269 .525 °727 -.079 .531 .742 -.037 

.848 - .426 .320 -,045 .866  .363 -.004 .859  .373 

.861 .416 -.299 .787 - .092 .452 .775 - .041  .484 

.880 -.341 -.354 .648 .610 -.059 .648 .633 -.013 

.889 - .147 .436 -.066 . 656  .644 -.022 .656  .645 

.875 .485 -.093 .611 - .092  .653 .611 - .046 .673 

.667 - .725 .109 .000 1.006 -.066 .031 .990 -.045 

.717 .246 -.619 .989 - .087 .044 .959 - .034  .091 

.634 .501  .522 -.091 - .039 .997 -.059 - .023 .978 

.936 .257  .165 .327 .222  .725 .347 .250  .736 

.966 -.239 -.083 .450 . 6 2 9  .244 .465 .648  .276 

.625 - .720 .166 -.073 .998 -.041 -.039 .980 -.024 

.702 .112 -.650 .977 .023 -.071 .947 .072 -.020 

.664 .536  .488 -.036 -.068 1.009 -.005 - .049 .992 

Pr imary ,  Fac to r  Cor re l a t ions  

1.000 1.000 1.000 
.000 1.000 .334 1.000 .242 1.000 
.000 .000 1.000 .337 .249 1.000 .248 .196 1.000 
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Box Problem. Included are the initial loadings, the rotated loadings, and the 
primary factor correlations. The rotated loadings look fairly similar. This 
similarity along with their common similarity to Thurstone's graphical solu- 
tion ([5], p. 228) can be seen in Fig. 1 which is an extended vector representa- 
tion on the second and third original factors. The primary factor correlations 
for the simple loadings method are a little higher than those for the biquarti- 
re_in method. 

The simple loadings and biquartimin solutions to the Twenty-Four 
Psychological Tests Problem are very similar as can be seen from Table 2. 
The maximum absolute difference in the loadings is .071 and the average 
absolute difference is .016. All of the loadings except one nearly zero loading 
have the same sign. Again, the correlations for the simple loadings method 
are a little higher than those for the biquartimin method. 

Simple L o a d l n g s _  
BiCluerl-imin 
Graphic 

Trr 

/ j  " 

• //tllll 

/ l ;  

FIGURE 1 

Comparison of Oblique Rotations, Extended Vector Representation 
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TABLE 2 

. . . . . . .  Twenty-Four PsycholoGical Tests  Pr0blem 

Tmitiat Loadings Simple Loadings BiquartimiJ } l~adin~s 

.608 -.116 .300 -.250 .665 .116 -.004 .054 .666 .103 .015 .058 

.372 -.119 .207 -.135 .435 .015 .019 .032 .436 .008 .031 .033 

.427 -.220 .262 -.155 .554 -.049 .061 .000 .555 -.057 .074 .000 

.477 -.211 .206 -.184 .540 .022 .107 -.030 .545 .012 .117 -.025 

.668 -.306 -.344 .108 .024 .113 .779 -.033 .083 .120 .748 -.009 

.661 -.337 -.258 .216 .039 -.031 .771 .079 .099 -.018 .742 .095 

.652 -.396 -.384 .124 .013 .062 .872 -.096 .076 .069 .836 -.069 

.662 -.225 -.153 -.060 .245 .176 .512 -.042 .285 .174 .497 -.021 

.664 -.394 -.240 .308 .023 *.140 .831 .134 .087 -.122 .800 .146 

.462 .455 -.365 -.136 -.238 .717 .097 .123 -.208 .711 .089 .149 

.569 .397 -.208 -.063 -.091 .576 .085 .260 -.060 .574 .082 .276 

.484 .360 -.149 -.388 .138 o721 -.087 -.039 .146 .701 -.080 -.012 

.608 .130 -.099 -.402 .328 .594 .078 -.121 .341 .573 .082 -.092 

.442 .199 -.013 .293 -.110 .059 .152 .501 -.076 .077 .149 .492 

.407 .170 .146 .266 .035 -.037 .025 .525 .058 -.021 .032 .508 

.523 .077 .300 .076 .357 -.013 -.053 .418 .368 -.008 -.035 .404 

.492 .317 .082 .338 -.091 .066 .032 .668 -.059 .086 .037 .652 

.547 .307 .248 .072 .229 .171 -.165 .531 .242 .176 -.144 .518 

.452 .125 .129 .111 .150 .065 .03t .372 .t68 .072 .039 .365 

.612 -.174 .128 .004 .397 -.003 .263 .158 .421 -.002 .265 .161 

.601 .114 .080 -.171 .339 .324 .032 .149 .353 .316 .042 .159 

.608 -.144 ,145 .136 .317 -.086 .276 .295 .246 -.070 .277 .291 

.691 -.164 .129 -.116 .494 .109 .243 .087 .516 .104 .247 .095 

.654 .151 -.150 -.003 .054 .371 .266 .223 .091 .372 .260 .237 

Pr imary  Factor Correlations 

1.000 1.000 1.000 
.000 1.0O0 .313 1.000 .295 1.000 
.000 .000 1.000 .434 .313 1.000 .341 .261 1.000 
.000 .000 .000 1.000 .376 .412 .405 1.000 .329 .338 .337 1.000 

Conclusion 

I t  has been shown both from a mathematical and practical point of view 
that it is possible to solve the oblique rotation problem by applying a sim- 
plicity criterion directly to the primary factor loadings rather than to the 
reference factor structure. While it is not the intent of the authors to promote 
any particular criterion it turns out that the quartimin criterion in addition 
to being algebraically and conceptually simple, works quite well. The criterion 
produces perfect cluster loadings when they exist and cannot rotate to singu- 
larity, a problem which appears to plague the criterion when applied to the 
reference structure. 

I t  would be interesting to investigate the behavior of other existing 
criteria applied to the primary loadings rather than the reference structure. 
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The authors, for example, have used other oblimin criteria with apparent  
success. Since some of the elements of the primary factor loading matrix 
become infinite as the factors become dependent (Lemma 1), while the 
elements of the reference factor structure matrix are always bounded by one, 
the problem of rotating to singularity seems less likely to plague a criterion 
applied to primary loadings than one using reference structure. 
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