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. Existing analytic oblique rotation schemes proceed by optimizing a
simplicity function applied to the reference structure. This article suggests
optimizing a simplicity function applied to primary loadings directly. The
feasibility of the suggestion is demonstrated using the quartimin criterion.
An algornithm to implement the optimization is derived and the existence of
an admissible solution proved. Practical comparisons with the biquartimin

method are made using Thurstone’s Box Problem and Holzinger and Swine-
ford’s Twenty-Four Psychological Tests Problem,

Analytic rotation schemes in factor analysis are based on a number of
simplicity criteria. In the case of orthogonal rotations the primary factor
loading matrix is identical to the primary factor structure and rotation for
simple primary loadings is equivalent to rotation for simple primary structure.
In the case of oblique “‘rotations,” however, the matrices are not identical
and it appears a choice would have to be made between rotation for simple
primary loadings or simple primary structure. In fact, neither of these alterna-
tives are used. Following Thurstone {5] rotations are made instead for simple
reference factor structure. The reference factors are defined as the set of
variables of unit variance which lie in the common factor space and are bi-
orthogonal to the primary factors, Since the reference factors seem more like
mathematical abstractions than variables of primary interest, an interest
in simple reference structure seems a little strange. The reference structure,
however, is quite similar to the primary loading matrix (the columns of one
are scalar multiples of the columns of the other) and it is apparently this
similarity which motivates the interest in simple reference structure.

The purpose of this paper is to show that such an indirect method of
obtaining simple loadings is not required.

There are a number of popular oblique rotation schemes—oblimax,
quartimin, covarimin, biquartimin, and Xaiser-Dickman to name a few.
Most of the simplicity criteria used in these schemes are sufficiently complex
that it is difficult, if not impossible, to tell in terms of the reference structure
or the primary loading matrix what “simplicity” really means. It will be shown
here that by applying the fairly simple quartimin criterion to the loadings
directly, very satisfactory results are obtained while avoiding the problem of
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rotating to singularity, which appears to plague some oblique rotation
methods.

1. Basic Concepts and Statement of the Problem
Each of the n basic variables z; in a factor analysis model is a sum

z, =¢; +u

of two orthogonal variables ¢; and u; called the common and unique parts of
2; . Each common part is a linear combination

e =lufi + <+ + Liafn

of m variablesf,, - - - , f.. called the primary factors. These factors are assumed
to be a basis of the space spanned by the common parts (called the common
factor space) and to bave unit variance. The model is called orthogonal if it
18 assumed in addition that the primary factors are uncorrelated. In matrix
notation, the model may be written

z = Lf 4 u,

where z = {z;} is an n X 1 vector of basic variables, L = {l;;} isann X m
matrix of primary factor loadings, f = {f.} is an m X 1 vector of primary
factors and w = {u;} is ann X 1 vector of unique parts.

The selection of a primary factor basis for the common-factor space
is called the rotation problem. The selection is made in such a way that the
corresponding loading matrix L will be as simple as possible. Formal conditions
for simplicity have been stated by Thurstone ([5], p. 335). Roughly speaking,
L is called simple if it has many nearly zero elements and a few relatively
large elements. The goal is to represent each variable with relatively large
loadings on one or at most a few factors and nearly zero loadings on the re-
maining.

As mentioned earlier, the usual method for doing this is somewhat
indirect. Let g, , -+ -, g.. be a set of variables of unit variance in the common-
factor space which are bi-orthogonal to the primary factors. These variables,
which are called reference factors, uniquely determine the primary factors
and are uniquely determined by them. The covariance matrix

S = [eov (2 , g.)]

of the basic variables with the reference factors is called the reference factor
structure. It is easy to show ({3], p. 279) that the reference structure is related
to the primary loading matrix by the equation

S = LD,

where D is a diagonal matrix with diagonal elements d,; = cov (f; , g.).
In other words, the columns of the reference structure S are simply scalar
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multiples of the columns of the primary loading matrix L. Roughly speaking,
S will look simple if L does and conversely. The common analytic rotation
schemes proceed by defining a function F(S) which measures the simplicity
or complexity of the reference structure S. The rotation problem is then
solved by selecting the reference factors which maximize or minimize F(S).
In perhaps the simplest case (the quartimin method [1]) the function

¢)) F(S) = 2. 2 shs%

p<a i
is minimized.

The authors believe that the reference structure method is unnecessarily
complicated and indirect. They suggest that a simplicity function F(L) be
applied directly to the loadings and that the rotation problem be solved
by maximizing or minimizing F(L). It is always possible (and customary)
to begin with an initial set of primary factors which are orthogonal. If A
denotes an initial primary loading matrix then L is an admissible primary
loading matrix if and only if it can be written in the form L = AT, where
T is a nonsingular normalized matrix (i.e., the rows of T have length one).
Similarly 8 is an admissible reference structure if and only if it can be written
in the form S = A7’, where again T is a nonsingular normalized matrix. The
simple loadings solution amounts to finding a nonsingular matrix T' to

(2) minimize F(AT™") under the condition diag (TT") = I,

while the simple reference structure solution amounts to finding a non-
singular matrix T to

3) minimize F(AT’) under the condition diag (T'T") = I.

Formally the only difference between the methods is that in the simple
loadings method T™* replaces T" in the argument of 7.

The T’s defined by (2) and (3) are in general different and give rise to
different loading and primary factor correlation matrices. In the case of the
simple loadings solution, the rotated loadings L and the covariance matrix
C of the rotated primary factors are given by

L= AT and C = TT'.
In the case of the simple structure solution, these formulas are a little more
complicated
L= AT'D™ and C = D(TT)"'D
where
D = [diag (TT")']"".

It is difficult to understand why the simple loadings method has not
been used. One explanation may be Thurstone’s leadership in simple structure
techniques. Other explanations may include a fear of the complexity of the
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mathematical details, a fear that the solution methods would behave poorly
numerically or that the final solutions would be unsatisfactory. The next
three sections will attempt to demonstrate that these fears are unfounded.

I1. Mathematical Details of Method

The quartimin simplicity function F defined by (1) will be used. The
reason for this choice is that both algebraically and conceptually it is about
the simplest criterion available and it seems to give very satisfactory results.

The method proceeds by means of a sequence of elementary rotations,
Let f,, - -+, {. denote the factors (i.e., primary factors) at an intermediate
step, L the corresponding loading matrix, and C = [¢;;] the corresponding
factor correlation matrix. Choosing two factors, say f, and f, , a simple rotation
consists of rotating f; in the plane of f, and f, in such a way that the resulting
loading matrix  minimizes F(I). The rotated factor

@ f: = by + bfs,

where ¢, and 1, are chosen so that f, has unit length. This amounts to requiring
that

) B+ 24ten + 8 =1

Letl,, - ,l,and {,, ---, I, denote the columns of L and L. By equating
common parts it is easy to see that

® L=74, L=-2140 ad L=t for ix1,2
1 1

Letting xy denote the element-wise product of two arbitrary vectors z and

y and letting

(x,y) = Ex«'?/i y

i=1

the function F(L) can be written in the form

FD =X @ED=G0+(E+8, 38 +k,

¢=3

where K is constant with respect to ¢, and ¢, . Letting w = Z’q"_a I3, the
problem reduces to minimizing

1 2 t 2 2 2

o = (0. -+ (@) + (i)
1 1 1 1

over all ¢, and ¢, satisfying restriction (5). Using the change of variable

® y==, 5=t
(5) and (7) become
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© vP =1+ 2.5 + &,

and

(10) f=a- b8+ cd + do® + ed,
where

a=0,w)+ @&, w) + @&, 0,

b= 2,8, w) — 28, LL) — 2Lk , w) + 2c,,(8 , ),
e=(,0) — 4@, LL) + @, B+ 20, w,

d = 28, B) — 2(I , L),

e=(L,0).

Hence the problem reduces to minimizing, without restrictions, the fourth
degree polynomial given in (10). The minimum may be found by choosing
the root & of the cubic equation

11 b4 28 4 3ds® 4 4e8° =0

which minimizes f. Then, v and & are found from (9) and (11) (the sign of ¥
is arbitrary) and ¢, and ¢, are obtained from (8). The new loadings matrix I,
is obtained from (6) and the new correlation matrix ¢ = {&;]} of the rotated
factors from the equations

(12) 512' = chh- + thg,‘ ' j;ﬁ 1;
8;5=C;;, i,j#l.

This completes a simple rotation. Rotations are performed stepping uniformly
through all possible pairs of factors until (L) converges. The final values of
L and C are the loading matrix and correlation matrix of the rotated factor
solution.

Harry Harman has suggested that the method described in this section
be called the direet quartimin method and that simple loading methods in
general be called direct rotation methods. For example, methods based on
minimizing the oblimin criterion applied directly to the loadings rather
than to the reference structure would be called direct oblimin methods.
A FORTRAN 1V subroutine which implements the direct quartimin method
described here and the direct oblimin methods in general has been written
by the authors and may be obtained by writing to the program librarian of
the Health Sciences Computing Facility, UCLA, Los Angeles, California
90024. The subroutine also exists as part of a factor analysis program
BMDX72 which is available at the same address.
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III. Existence and Nonsingularity of Solution

In this section we will prove that as the common factors approach linear
dependence, the simplicity criterion F(L) approaches infinity and also that
there exists a loading matrix L which minimizes F(L). While it may be argued
that these are merely mathematical niceties, it is not clear that other rotation
schemes enjoy them. This will be discussed in the next section.

Lemma 1. For any l;; ,

Zfi - le:’ )2
rI) = ( m-—-117"
Proor.

cov (c; , f;) = Lacov(fi,f) + - + Limcov (fm , ).

Thus Il,il 1 + II”I + + ]l,‘v,‘_‘l + ll'-','+1| + e + |l,',,,| a;nd thu&!
for some
kg, )z =L
’ HE om -1

The required result follows from formula (1).

TuroreM 1. If L is a factor loading matriz and C ts the corresponding
factor correlation matriz, then F(L) — « as det (C) — 0.

Proor. Since L = AT 'and C = TT",

, det (4’4)
det (/L) = Jet (©)
The required result follows from Lemma 1.

ToEOREM 2. There exists a loading matriz L which minimizes F(L).

Proor. Let K be the greatest lower bound of F(L) over all admissible
loading matrices L. Since L = AT and C = TT" it follows from Theorem
1 that F(AT™") — o as det (T) — 0. Since the set of all (not necessarily non-
singular) normalized matrices T is closed and bounded it follows by con-
tinujty that there exists a non-singular normalized matrix 7' such that
F(AT™) = K and hence an admissible loading matrix I, = AT~ which
minimizes F(L).

In all fairness it should be pointed out that it has not been proved that
the algorithm presented in the previous section converges to a loading matrix
L which minimizes F(L) or even that it converges at all. No such proofs exist
for any of the common analytic rotation schemes. For all methods the fact
that they converge to a loading or structure matrix is a matter of experience
and that the matrix optimizes the required criterion a matter of faith.

— « as det (C) — 0.

IV. Some Comparisons with Other Methods
The oblimin methods minimize the function

G(S) = Z(Zs.psw ~<Zs?,)<zs%q>), 0

pEa T

lIA
<

A
[y
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of the reference structure S. Wheny = 0, 1/2, 1 these methods are called the
quartimin {1], biquartimin [2], and covarimin methods [4]. In this section, a
simple example will be used to raise some objections to these methods while
in the next section more practical comparisons will be made.

For the example, we will begin with orthogonal factors and the loading
matrix

960 140
480 070
— 560 .300
The loading matrices of the simple loading and several oblimin solutions are
970 000]  [.970 000] [ 951 —.028]
485 000); |.485 .000 |; 475 — 014 |;
000 635)  L.000 635]  L—.117 547
Simple loading v=0 v=1/4
940 —.051] [ 933 —.084] [ 928 —.144]
470 —.026 |; 467 —.042 |; 464 — 0721
| — 217 48] | —.294  456] | —.350  .459]
vy =1/2 vy = 3/4 v =1

A perfect cluster solution exists and the simple loading and quartimin methods
produce it. The remaining oblimin methods fail to obtain the ‘perfect”
solution. This observation suggests the use of the simple loadings or quartimin
method but the latter method, and to an extent all the oblimin methods with
small v are plagued by a problem which is called the problem of rotating to
gingularity. More precisely stated, the problem is that in some cases, as the
iterations employed in the solution proceed, the reference factor correlation
matrix becomes singular. To the authors’ knowledge it has never been shown
for the oblimin methods that there exists a set of linearly independent ref-
erence factors whose structure S minimizes the criterion G{S). It is not clear
whether the problem of rotating to singularity is due to the non-existence of
8 solution S or simply to problems in numerical analysis.

Carroll has suggested two solutions to the problem. One is to use a high
value of ¥ which tends to make the reference factor correlations smaller
([3], p. 324). The other is to put an arbitrary upper bound on the correlations.
Either of these alternatives can make it impossible to rotate to a perfect cluster
solution when one exists, They also introduce added complexity into the alge-
braic formulation of the criterion G and into its interpretation.

On the other hand, the simple loadings method uses an algebraically
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simple criterion, can produce perfect cluster solutions when they exist and,
thanks to Theorem 1, will not rotate to singularity.

V. Practical Comparisons with the Biguartimin Method

It remains to be demonstrated that the simple loadings method given
in Section IT works for practical problems—that for real data the method in
fact gives loadings that look simple, or at least loadings which look as simple
as those of other analytic oblique rotation methods. To do this the simple
loadings and biquartimin methods will be compared using two well-known
problems from the literature—Thurstone’s Box Problem ([5], p. 140) and
Holzinger and Swineford’s Twenty-Four Psychological Tests Problem ([3], p.
135).

For the purpose of making comparisons with the results in the literature,
Kaiser communality normalizations ([3], p. 325) have been used for both the
simple loadings and oblimin methods. In both examples the initial factors
are orthogonal.

Table 1 contains the simple loadings and biquartimin solutions to the

TABLE 1

Thurstone’s Box Problem

Initial Loadings Simple Loadings Biquartimin Loadings
.659 -.736 .138 ~.035 1,020 -,056 ~-,002 1,003 -,036
725 .180 -.656 1,011 -,032 -,022 .980 .020 .029
.665 537 500 -.046 -,066 1,018 ~.016 -.047 1,001
.869 -.209 -,443 765 .456 -,045 .756  .488  ,003
.834 .182 508 -,073 ,344 .879 ~.032 .353 .870
.836  .519 152 364 -.071 .834 377 ~.035 .840
856 -.,452 -,269 525,727 -~,079 531,742 -,037
.848 -.426 .320 -.045 .866 .363 ~-.004 .89 373
.861 .416 -.299 787 -,092 452 75 -.041 0 484
.880 -.341 -.354 .648 ,610 -.059 .648 .633 -.013
.889 -.147 436 -.066  .656 644 ~.022  .656 .645
.875 .485 -,093 611 -,092 ,.653 611 -~,046 673
667 -.725 .109 .000 1,006 -.066 031 .990 -,045
17 246 -,619 989 -,087 .044 959 -,034 ,091
634 501 522 -.091 -,039 997 -.059 -,023 ,978
936 .257 165 .327 222 725 347  ,250 736
966 -.239 -,083 450,629 244 465 .648 .276
.625 ~-.720 ,166 -.073  ,998 -,041 ~.039 ,980 -.024
J702 112 -,650 977,023 -,071 947 072 -,020
664 .536 .488 -.036 -.068 1,009 ~-,005 -,049 ,992

Primary Factor Correlations

1.000 1,000 1,000
.000 1.000 .334 1.000 242 1,000
.000 .000 1,000 337,249 1,000 .248  ,196 1.000
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Box Problem. Included are the initial loadings, the rotated loadings, and the
primary factor correlations. The rotated loadings look fairly similar. This
similarity along with their common similarity to Thurstone’s graphical solu-
tion ([5], p. 228) can be seen in Fig. 1 which is an extended vector representa~
tion on the second and third original factors. The primary factor correlations
for the simple loadings method are a little higher than those for the biquarti-
min method.

The simple loadings and biquartimin solutions to the Twenty-Four
Psychological Tests Problem are very similar as can be seen from Table 2.
The maximum absolute difference in the loadings is .071 and the average
absolute difference is .016. All of the loadings except one nearly zero loading
have the same sign. Again, the correlations for the simple loadings method
are a little higher than those for the biquartimin method.

Simple Loadings
Biquartimin
Graphic

Ficure 1

Comparison of Oblique Rotations, Extended Vector Representation
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TABLE 2
Twenty-Four Psychological Tests Problem

Initial Toadings Simple Loadings Biguartimin loadings
608 ~,116 .300 -,250 665 ,1i6 -,004 .054 666 103 ,015 .058
2372 -, 119 207 -,135 435 ,015 ,019 ,032 436 .,008 ,031 ,033
A27 -,220 262 -,155 554 -,049 ,061 ,000 555 -.0567 074 ,000
477 ~-.211 206 ~,184 540,022,107 ~,030 545 012 117 -,025
668 -,306 -.344 ,108 024 ,1183 779 -,033 083 120 748 ~,009
661 337 -.258 216 038 -,031 771 079 099 -.018 742 ,085
602 -,396 -.384 124 013,062 872 -.096 076 ,06% ,836 -.069
662 -,225 -,153 ~,060 245 ,176 512 ~,042 .285 174 497 -,021
664 -394 -.240 ,308 023 ~,140 831 134 087 -,122  ,800 ,146
462 455 -.365 -.136 -~,238 717 .097 123 ~-.208 711 ,089 ,149
569 397 -,208 -,063 -.091 ,576 .,085 .260 -.060 574 ,082 276
484 ,360 -,149 -.388 138 721 -,087 ~.039 JA46 701 -,080 ~,012
£08 130 -.099 -.402 328 ,5%4 078 ~.121 341 573 082 -,092
L4420 199 -,013  ,298 -,110 ,059 ,152 501 -.076 077 ,149 ,492
407,170 146 266 .035 -,037 ,025 525 .058 -.021 ,032 ,508
523,077 300 ,076 .357 ~,013 -,053 418 .368 -.008 -,035 ,404
492 317 ,082 ,338 -.091 ,066 .032 ,668 -.069 .086 ,037 ,652
547 307 248,072 229 171 -,165 531 242 176 -.144 518
452,125,128 111 150 065 031 372 .168 072 ,039 .365
,612 ~,174 ,128 ,004 397 ~.003  ,263 158 421 -,002 ,265 .16l
601 ,114 080 -,171 .339 .,324 ,032 149 353 316 ,042 ,159
608 ~,144 145 136 S817 -,086 276 295 .246 -,070 277 ,291
691 -, 164 129 -~,116 494,109 ,243 .087 516 ,104 ,247 ,095
.664 ,151 -,150 -,003 054 371 266 223 091,372,260 ,237

Primary Factor Correlations

1.000 1.000 1.000

000 1,000 313 1,000 .295 1.000

000 ,000 1,000 434,313 1,000 341 .261 1,000

000,000 000 1,000 376 .,412 405 1,000 .329  .338 ,337 1,000
Conclusion

It has been shown both from a mathematical and practical point of view
that it is possible to solve the oblique rotation problem by applying a sim-
plicity criterion directly to the primary factor loadings rather than to the
reference factor structure. While it is not the intent of the authors to promote
any particular criterion it turns out that the quartimin criterion in addition
to being algebraically and conceptually simple, works quite well. The criterion
produces perfect cluster loadings when they exist and cannot rotate to singu-
larity, a problem which appears to plague the criterion when applied to the
reference structure,

It would be interesting to investigate the behavior of other existing
criteria, applied to the primary loadings rather than the reference structure.
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The authors, for example, have used other oblimin criteria with apparent

success. Since some of the elements of the primary factor loading matrix

become infinite as the factors become dependent (Lemma 1), while the

elements of the reference factor structure matrix are always bounded by one,

the problem of rotating to singularity seems less likely to plague a criterion

applied to primary loadings than one using reference structure,
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