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It  is suggested that if Guttman's latent-root-one lower bound estimate 
for the rank of a correlation matrix is accepted as a psychometric upper 
bound, following the proofs and arguments of Kaiser and Dickman, then the 
rank for a sample matrix should be estimated by subtracting out the compo- 
nent in the latent roots which can be attributed to sampling error, and least- 
squares "capitalization" on this error, in the calculation of the correlations 
and the roots. A procedure based on the generation of random variables is 
given for estimating the component which needs to be subtracted. 

1. The Rationale 

I f  m sets of very large samples of size N are drawn independently from 
a normally distr ibuted populat ion of random numbers  and the resulting m 
"variables" are intercorrelated, i t  is to be expected tha t  the m by m matr ix  
of correlation coefficients, R, will approximate  an identi ty matrix.  (If  the 
distribution is not normal, the expectations outlined here need to be modified.) 
Sampling theory would argue t ha t  the closeness of the approximat ion is a 
direct function of both  N and m. Likewise, theory would predict  t ha t  the 
average correlation is zero and tha t  the  variance of the  correlation is in- 
versely related to N.  ( In  this development,  a l though the m sets t rea ted  as 
variables are drawn independently in a univar ia te  sense, the  bivar ia te  
samples upon which the correlations are based are not independent.  The  
s tandard error for the zero correlation is therefore not tha t  usually employed, 
but  ra ther  a much  more complex function (see Kendall  and Stuar t  [5]).) 

The  la tent  roots for a matr ix  of correlations m a y  be viewed as variances 
for variables tha t  are derived from m intercorrelated variables. The  first 
of these derived variables is the one "bes t "  given by  a weighted linear com- 
bination of the m original va r i ab l e s - - "bes t "  in the sense tha t  all nonzero 
correlation is assumed to furnish a basis for est imation of the weights in 
the linear composite.  The  first component  takes  up as much  of the to ta l  
matr ix  variance,  given in par t  by  the  intercorrelations, as is linearly possible. 
Successively determined roots have  like interpretat ions among residual 
matrices.  The  roots tha t  are first calculated on an  R m a y  thus  be said to 
t ake  advantage  of chance fluctuations in a part icular  sample, since they  
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are inflated by whatever chance correlation may occur among the set of 
variables. 

If R is determined on m random variables, it is expected to have rn 
nonzero, positive roots, all nearly equal to 1.0. But insofar as the sample is 
less than infinite, the curve showing values of roots for successively calcu- 
lated components is not a horizontal straight line at L = 1.0 (see Fig. 1) 
but  a curve with slope indicating the extent to which saznpling error and 
least-squares "bias" have combined to increase the value of the correlations 
and, thence, of the first m/2 roots. (In Fig. 1, curves R,  and Rb depict this 
expectation for large and small samples, respectively.) At the point m/2 
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(on the average for many matrices) the curve is expected to cross the point 
L = 1.0 and thereafter, since the trace must equal m, the curve must de- 
crease below 1.0, approaching but never reaching zero. 

Guttman [3] has shown that  the "weakest" of three lower bound esti- 
mates for the minimum rank of a Gramian R is given by the number of 
roots of R (with ones in the principal diagonal) which are greater than or 
equal to unity. This proof is based on an assumption that there is no error 
due to sampling in the population of subjects, that  sampling takes place 
only in the universe of measures (tests): "We assume throughout that popu- 
lation parameters are used, and not sample statistics" (p. 151). Kaiser [4] 
and Dickman [2] have argued that this lower bound for the number of factors 
is also a psychometric upper bound. Kaiser shows that for a "principal 
component to have positive KR-20 internal consistency, it is necessary and 
sufficient that the associated eigenvalue be greater than one" ([4], p. 6). 
Dickman argues that it is not psychometrically reasonable to allow a factor, 
which is supposed to be a broad, "fundamental" dimension, to have less 
variance than the unity which is accorded a variable in the standard score 
space. The widely used "latent-root-one" criterion for when to stop factoring 
is based on these psychometric considerations. 

If data are random, the latent-root-one criterion should (on the average) 
lead to the decision to estimate m/2 factors. But if the data are not random 
but are not infallible either, the variance of the component must be regarded 
as due in part to true correlation and in part to correlation resulting from 
sampling error and least-squares bias. Thus the plot showing the values of 
successive latent roots calculated in a sample (depicted in Fig. 1 by curves 
A and B for samples of different size) is expected to be above the curve for 
the population (curve C in Fig. 1). Therefore, if one accepts the argument 
that  the lower bound, by Guttman's proof, or the most reasonable psycho- 
metric upper bound, by Kaiser's and Dickman's arguments, for the number 
of factors in the population is given at  the point where curve C crosses 
L = 1.0, then it is apparent that  this bound is given at  some point where 
the latent root for a sample is larger than 1.0--how much larger depends 
upon the size of the sample. In particular, allowing the curve R~ to represent 
the extent to which sampling error and least-squares bias have increased 
the roots in the fallible sample A, the number of factors is given at the point 
where A -- E,  crosses L = 1.0. The curve A - E , ,  which is C, could theo- 
retically be obtained by subtracting R, - 1.0 from A at each point along 
the curve. The abscissa of the point at which C crosses L = 1.0 is the same 
as the abscissa of the point of intersection of R, and A. Hence, if R. were 
known, the number of factors could be determined. 

2. A Test Based on Generated Random Variables 

As far as the writer knows, the statistical theory needed to handle the 
above problem at a purely analytical level does not exist. Anderson, in 
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his survey of advanced multivariate statistical procedures ([1], p. 307 ft.), 
gives the joint and marginal distributions for the set of roots of the random 
vector having a given covariance matrix, but these developments do not 
lead directly to the equations needed to estimate the expected values of 
the ordered roots for the model of the rationale outlined above. Other texts 
(e.g., Rao [6]) and the journals likewise appear to lack an adequate solution 
for this problem. Several persons are now looking into this problem more 
fully. Meanwhile, since the values needed to construct the curve R, cannot 
yet be obtained directly from formulas, the method below is suggested as a 
temporary expediency designed to furnish a large-sample solution which 
may serve until such thne as the general statistical problem is solved. 

Suppose that an investigator has obtained m measurements on N sub- 
jects. Call these measurements "real data." Now generate K matrices of 
random variables, each matrix of order m by N; intercorrelate the rows of 
these matrices; find the latent roots for the resulting R matrices; average 
(over K) the first root values, the second root values, etc. Insofar as K is 
reasonably large, these averages give the curve R° in Fig. 1. For a given 
sample size and a given number of variables, the extent to which the real 
data latent roots are inflated by sampling error can now be estimated as the 
value Eo,  the amount by which the "empirically obtained" R~ differs from 
1.0. The number of factors can then be estimated as the abscissa of the point 
where Ra intersects A, i.e., by inference, the abscissa of the point where the 
population curve h::ts the ordinate L = 1.0. 

3. An Example 

For purposes of illustration, the above test was tried out on an actual 
sample of "real data," using one matrix of random variables and comparing 
the results with those based on another rationale. 

Sixty-five ability and nonability behavioral measures were obtained on 
a sample of 297 adults. These variables were converted to normal distribu- 
tion form insofar as the ranges and distributions of raw scores permitted. 
In most cases there were more than 10 different scores in the raw score 
distributions and the transformed distributions were at least clearly sym- 
metrical and bell-shaped, if not truly normal in form. 

A 65 by 297 matrix of numbers from a normally distributed universe 
of random numbers was generated row by row using a 7090 program written 
for this purpose. The 65 distributions for rows were again clearly symmetrical 
and bell-shaped. The approximation to normality for these "variables" 
appeared to be slightly better than that for the real variables, but tests 
were not run to establish this as fact. The 65 by 65 matrices of product- 
moment correlations were determined for both sets of data. Unit values 
were inserted in the principal diagonals of these R matrices, and all latent 
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roots  were  calculated.  T h e  roots  are  l is ted in Tab l e  1 and  p o r t r a y e d  

graphica l ly  in Fig.  2. 

I n  t he  real  da ta ,  16 of t he  roots  are  g rea te r  t h a n  1.0. I f  the  resul ts  

g iv ing  the  curve  Ro are  accep ted  a t  face value ,  however ,  and  the  ra t iona le  

ou t l ined  above  is used, on ly  nine fac tors  would  be indica ted .  In te res t ing ly ,  

t he re  is someth ing  of  an  inf lect ion in  t h e  real  d a t a  cu rve  a t  th is  po in t .  T h e  

ra t io  of t h e  t e n t h  roo t  to  the  n in th  is small .  Some  rules  for  when  to  s top 

fac tor ing  are, in effect, based on t h e  a s sumpt ion  t h a t  t he re  should be  a r a t h e r  

TABLE 1 

Latent Roots for Random and Real Data 

Root Real Data Random Data Root Real Data Random Data 
Number Root Root Number Root Root 

1 

2 
3 
4 
5 
6 
7 
8 

9 

10 
t t  
t2 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

12.29 2.10 
4.86 1.95 
3.75 1.9i 
2.83 i.83 
2.i4 1.76 
i.84 1.72 
1.78 1.67 
1.69 i.64 
i.62 1.61 
1.39 i.56 
1.33 i.54 
1.25 i.52 
1.21 i.50 
1.15 1.42 
1.09 i.40 
1.03 t.38 
.98 1.34 
.96 t .3t  
.92 1.28 
.88 i.25 
.85 1,23 
.80 1.18 
.79 i . t7  
.77 i . i l  
.76 1.t0 
.73 1.07 
.70 1.07 
.68 1.03 
.66 i.Ol 
.64 1.00 
.63 .99 
.62 .92 
.59 ,91 

34 
35 
36 
37 
38 
39 
40 
4i 
42 
43 
44 
45 
46 
47 
48 
49 
50 
5i 
52 
53 
54 
55 
56 
57 
58 
59 
60 
6t 
62 
63 
64 
65 

.55 .90 

.53 .87 

.52 .85 

.5i .83 

.49 .8i 

.48 .80 

.47 .79 

.45 .75 

.44 .75 

.42 .73 

.4O .71 

.39 .67 

.38 .66 

.38 .65 

.36 .63 

.34 ~ .62 

.32 .60 
,31 .59 
.30 .58 
.30 .56 
.27 .54 
.27 .5t 
.24 .50 
• 22 .49 
.21 .47 
.i9 .46 
.19 .42 
.18 .40 
.18 .40 
.16 .36 
. i4 .32 
.13 .31 
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sudden drop in the variance accounted for by a factor after the last true 

factor has been calculated. In the present case, application of this kind of 
rule leads to the estimation of the same number of factors as is suggested 
by the method developed in this paper. While this is an interesting outcome 
and suggests a hypothesis to be examined, the results here are not presented 
as a test of the hypothesis of congruency of the two approaches. Such a 
test would require variation over several samples of real data as well as 
variation over several samples of random variables. 

I t  is to be hoped, of course, that the sampling theory required by the 
rationale given here will soon be developed to the point where the genera- 
tion of samples of random variables will not be needed. Meanwhile, how- 
ever, the procedures illustrated above can be rather easily adopted at  any 
institution where fast computer facilities are available. The test based on 
random variables can be included in standard programs and used routinely. 
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