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Analysis of variance and uncertainty analysis are analogous techniques 
for partitioning variability. In both analyses negative interaction terms 
due to negative covariance terms that appear when non-orthogonal predictor 
variables are allowed may occur. Uncertainties can be estimated directly 
from variances if the form of distribution is assumed. The decision as to 
which of the techniques to use depends partly on the properties of the cri- 
terion variable. Only uncertainty analysis may be used with a non-metric 
criterion. Since uncertainties are dimensionless (using no metric), however, 
uncertainty analysis has a generality which may make it useful even when 
variances can be computed. 

I. Introduction 

Shannon  (5) has  defined a m o u n t  of i n fo rma t ion  b y  the  fo rmula  

H(y) = -- ~ p(k) log2 p(k), (1) 
k = l  

where  y has  r d iscre te  values ,  and  p(k)  is a p r o b a b i l i t y  d i s t r i bu t ion  def ined 
over  y. I n  communica t i on  theory ,  y is considered a source of signals,  a n d  
the  measure  H represen t s  the  ave rage  n u m b e r  of b i n a r y  digi ts  requ i red  to  
code or  s tore  one of the  signals.  A b roade r  i n t e rp re t a t i on ,  however ,  m a k e s  
H a p a r a m e t e r  which  measures  the  non-met r i c  v a r i a b i l i t y  of a n y  p r o b a b i l i t y  
d i s t r ibu t ion .  H has  a va lue  of zero when  the  p r o b a b i l i t y  is concen t r a t ed  in a 
single ca tegory  and  is m a x i m u m  when  the  p r o b a b i l i t y  is un i fo rmly  d i s t r i b u t e d  
over  all  categories.  

Psycholog is t s  have  been a t t r a c t e d  b y  the  non-me t r i c  cha rac te r  of th is  
measure  and  the  obvious  app l i ca t i on  to  s i tua t ions  where  var iances  canno t  
be computed .  Since this  use of the  measure  is concerned only  wi th  i ts  s t a t i s t i -  
cal p rope r t i e s  and  no t  wi th  i t s  i n t e r p r e t a t i o n  in communica t i on  theory ,  we 
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~hall use the more general term uncertainty, U, to refer to the measure. We 
~hall show that uncertainty has many of the properties of variance and can 
be partitioned into components as variance can. 

II. The Analysis Problem 

The relations discussed apply when a criterion is predicted from one 
or more predictors. The development will be presented for the three-variable 
case, where the problem is to determine to what extent values of the criterion 
variable can be predicted from two predictor variables. 

Our notation is as follows: The criterion variable y can assume any 
value Yk • The two predictor variables w and x can assume values w~ or x~ . 
We assume that all three variables are categorized in order that the formulas 
for uncertainty and variance analysis may have equivalent notations. This 
assumption does not limit any of the principles demonstrated. 

In the three-dimensional matrix, ni;k refers to the number of cases in 
a single cell; n , .  refers to the total number of cases having the ith value 
of w and the j th  value of x; and n , .  refers to the total number of cases having 
the ith value of w. Similar subscripts indicate other combinations of the 
three variables; n with no subscript indicates the total number of cases in 
the matrix. In analysis of variance formulas, ~ indicates a mean value, and 
the subscript notation just illustrated is used for mean values of the sub- 
classifications. 

III.  The Nature of Unce:rtainty Analysis 

Analysis of variance can be considered as two separate processes. First, 
the variance of the criterion variable is partitioned into its several identifiable 
components--components which add up to the total variance. This process 
is a simple descriptive one; there are no probability assumptions involved 
in its use. One describes the components of a total variance, making no 
assumptions about the distributions from which the data are drawn. The 
second process, which is not a necessary consequence of the first, involves 
using these partitioned components to obtain estimates of population vari- 
ances and to make inferences about the parent population. For this process, 
the actual data provide sample estimates of population distributions; here 
assumptions about the population distributions become critical. 

Uncertainty analysis likewise has both processes. The first process is 
purely descriptive: it is intended to allow the partitioning of the uncertainty 
of the criterion variable U(y) into components. Since this process is entirely 
descriptive, there are no underlying probability assumptions. All that  is 
required for its use is that  a data matrix of the type described above is avail- 
:able. The primary purpose of this paper is to demonstrate the nature of 
uncertainty partitioning and to compare it to variance partitioning. This 
process is illustrated and explained in Table 1. The results of uncertainty 
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partitioning specify sources and magnitudes of variabilities as well as amount 
of categorical discrimination available. These uses are explained more fully 
by Garner and Hake (1) and by McGill (3). 

The n,~ can be considered as sample estimates of p(i, j, k); we can use 
these sample estimates to test various hypotheses about the parent dis- 
tribution. For example, suppose we wish to test the hypothesis that both 
predictors are independent of the criterion, i.e., 

p(i, j ,  k) = p(i, j)p(k). (2) 

It  can be shown (3, 4) by using the likelihood ratio, that when hypo- 
thesis (2) is true, [1.3863 nU(y: w, x)] is distributed approximately as chi 
square. Independent tests can be constructed in the same way for each of 
the predictors separately as well as for the interaction between predictors. 
The approximation to chi square is of the same order as the familiar chi- 
square contingency test so that, in effect, uncertainty analysis is analysis of 
contingency chi square. Miller and Madow (4) discuss this aspect of un- 
certainty analysis more thoroughly. 

IV. The Orthogonal Case 

Usually in analysis of variance and in uncertainty analysis, the ex- 
perimenter tries to set up orthogonal predictions. Orthogonality is defined 
as zero association between the predictors. This requirement is met when 
the cell frequencies in the matrix of the n , .  can be predicted correctly from 
the row and column marginal frequencies, i.e., when 

nl..n.i. 
n , .  = • (3) 

n 

Uncertainty Analysis 

The partitioning of U(y) in uncertainty analysis is illustrated by 

U(y) -- U(y: w, x) + U~(y),  (4) 

where the uncertainty measures have the definitions given in Table 1. The 
second term on the right-hand side of (4) is the error uncertainty, i.e., the 
amount of uncertainty in the criterion y remaining after the predictable 
uncertainty has been eliminated. The first term on the right-hand side of 
(4) is the predictable uncertainty; it in turn can be partitioned into com- 
ponents 

U(y: w, x) = U(y: w) + U(y: x) + U(y: ~v-2). (5) 

These terms are also defined in Table 1. A feature of uncertainty analysis 
is the interaction term U(y: ~2). This is the uncertainty in y predictable from 
unique combinations of w and x. 

Equation (5) describes a process that is identical in form with the 
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partitioning of variance in analysis of variance; in the orthogonal case the 
interaction uncertainty can be interpreted by analogy with interaction 
variance. This is true despite the fact that interaction uncertainties are 
sometimes negative (3). This problem will be discussed in detail in Section V. 

Analysis of Variance 

Uncertainty analysis is generally appropriate when the criterion variable 
y is a categorical variable, i.e., one allowing only nominal scale values (cf. 5). 
The predictor variables may be categorical, or they may be metric variables 
which are categorized for purposes of analysis. If the criterion is a true 
metric variable, i.e., one having at least the properties of an interval scale, 
we can compute variances and perform analysis of variance. The predictor 
variables must be categorized in" any simple form of the analysis of variance. 

Equations describing analysis of variance are essentially identical to 
those of uncertainty analysis. The defining equations are given in Table 2; 
except for the fact that variances are computed from squared deviations, 
whereas uncertainties are computed from log-probabilities, the equations 
are identical to those in Table 1. The partition of the variance of the criterion 
can be written: 

V(y) = V(y: w, x) + V~(y).  (6) 

Again the two parts on the right-hand side of the equation are the predictable 
and the error components of the total variance. The predictable variance 
can be broken down as before: 

V(y: w, x) = V(y: w) + V(y: x) + V(y: @-~). (7) 

The terms in (7) are explained in detail in Table 2. 
Normally the analysis of variance in (7) is called double classification; 

the variances are generally identified in terms of the two predictors. This 
shorthand procedure is convenient for most purposes. However, it obscures 
the fact that the data array is three-dimensional. The analysis is identical 
to the one treated in uncertainty analysis in every respect, except that in 
the analysis of variance the criterion variable has a metric, whereas it does 
not in uncertainty analysis. 

V. The Non-Orthogonal Case 

In Section IV it was mentioned that the interaction term in uncertainty 
analysis can assume negative values under certain conditions. It  is equally 
true that the interaction term in analysis of variance can be negative, if 
it is defined as in Table 2. The negative interaction term is due to non- 
orthogonality and can be thought of as due to a negative covariance term 
that may attenuate or exceed the positive interaction effect. 
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Uncertainty Analysis 

I t  is not difficult to show that the interaction uncertainty in (5) can be 
written 

U(y: ~-~) = U~(w: x) -- U(w: x). (8) 

This form of the interaction term shows at once that interaction cannot 
be negative with orthogonal predictors since orthogonality requires that 
U(w: z )  = O. 

In the non-orthogonal case, however, U(w: x) will be greater than zero. 
With certain combinations of cell frequencies, the contingent uncertainty 
between x and w can be larger than the partial contingent uncertainty-- 
resulting in negative interaction. A simple illustration of this principle is 
provided when each value of w is paired uniquely with each value of x. Now 
U(w: x) is as large as it can be. Furthermore, U~(w: x) cannot be greater 
than U(w: x) since U(w: x) is the maximum contingent uncertainty that can 
be obtained from a contingency table involving w and x. Equation (8) shows 
that the interaction will never be greater than zero. An identical result is 
obtained in the variance analysis when the predictors are completely con- 
founded. 

Analysis of Variance 

It  is usually assumed that the components o f  the total variance in 
analysis of variance must be positive. This is true only in the orthogonal 
case; if an analysis of variance is carried out with a non-orthogonal ex- 
perimental design, using the equations given in Table 2, negative interaction 
terms can occur. 

To show how this happens, we now analyze the components of the 
interaction variance for the general case. The equation is 

! 
V(y: "@~) = "-- ~ n, . (~, i .  -- ~,.. -- Y.i. + f])2 

7~ i , i  (9) 
2 ( ni. n ;.~,_ 

-- n ~ n , .  ~ '  ",)tY,. .  - -  Y)(~7. , .  - -  77). 

It  can be seen that the interaction variance is composed of two parts: 
the first part is essentially the interaction variance in the orthogonal case; 
the second part is a negative covariance term. This term must be zero in the 
orthogonal case [see equation (3)], but in the non-orthogonal case it cannot 
be ignored. The redundancy introduced by non-orthogonality is illustrated 
clearly in multiple regression. No interaction term is permitted, but a correc- 
tion for non-orthogonality must be introduced whenever the predictor 
variables are correlated (cf. 2). 
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VI. Effects of Non-Orthogonality 

Our discussion of non-orthogonality shows that it is best to design ex- 
periments with orthogonal predictor variables. The analysis is simplified, 
and the uninterpretable interaction components are eliminated. 

Clearly the covariance in (9) is not just part of the interaction variance. 
In fact, when predictors are non-orthogonal, the concept of interaction is 
almost meaningless. For example, consider an analysis of variance in which 
the predictors w and x are completely confounded. The two main-effect 
variances and the interaction will all be identical. The covariance term in 
(9) must be large enough to cancel out two of these variances, but we do 
not know which two of the variances should be cancelled out. In a sense, the 
covariance term is a correction factor which must be applied to the entire 
set of variances. Thus, a covariance term (whether or not it is large enough 
to produce a negative interaction) renders an exact interpretation of the 
component variances impossible. 

The multiple contingent uncertainty or the total predictable variance 
can be computed directly as shown in the defining equations in Tables 1 and 
2. The negative covariance term is included; there is no over-estimation 
of the total predictable variance or uncertainty. However, the interpretation 
of results should be made only in terms of combinations of the two predictors 
--no valid statements can be made about them independently. 

Sometimes it is impossible to obtain orthogonal predictor variables, 
particularly when there are more than two. In time series successive events 
are usually not orthogonally related because no independent control of these 
events is possible. If the time series has serial dependencies, preceding events 
cannot be orthogonaL Consequently, the total predictability of events in 
a time series cannot in general be computed by adding up the separate 
predictabilities obtained from preceding events displayed by one or more 
units in the time series. 

VII. Estimation of Uncertainties from Variances 

It is clear that uncertainty analysis and analysis of variance are analogous 
analytic techniques. In fact, variances may be used to estimate uncertainties 
if we assume that y is normally distributed. 

Shannon (5) has shown that the uncertainty of a normal distribution 
can be specified as 

est U(y) = ½ log2 2~eV(y) - log~ m, (10) 

where est U(y) is the estimated total uncertainty of the criterion variable 
on the assumption of a normal distribution of values of y~ , and where m is 
the width of the category interval on the y continuum. 

We can write similar equations for any of the variances obtained in 
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analysis of variance. For example, 

est U~(y) = ½ log~ 2~-eV~(y) - log2 m (11) 

is the error uncertainty estimated from error variance. From definition 
(6) in Table 1, and from equations (10) and (11), we can write 

est U(y: w, x) = ½ log2 [V(y)/Vw~(y)]. (12) 

Thus, it is relatively simple to estimate the multiple contingent un- 
certainty from the appropriate variances. The expression on the right-hand 
side of this equation is reminiscent of the multiple correlation ratio (7). 
We can, in fact, write 

est U(y: w, x) = -½ log2 [1 - ~(y: w, x)]. (12-A) 

Estimated uncertainties have the properties of additivity observed in 
computed uncertainties. Consequently, the expressioh on the right-hand 
side of (12) can be partitioned into three components, each of which is based 
on its equivalent variances as follows: 

est U(y: w) -- ½ log~ [V(y)/V~(y)], (13) 

est V(y: x) -- ½ log~ [Y(y)/V~(y)], (14) 

est V(y: Yv~) = ½ log21 IVy(y)- V,(y) l / iV(y) .  V~.~(y)I}. (15) 

These estimating equations point out some of the differences between 
uncertainty and variance. If (15) is used to estimate the interaction un- 
certainty when the interaction variance is zero, cases can be found in which 
the estimated interaction uncertainty (and the computed interaction un- 
certainty) will not be zero. Converse cases (i.e., zero uncertainty interactions 
with finite variance" interactions) can also be found. These apparent con- 
tradictions are due to the fact that variances and uncertainties, while anal- 
ogous, do not measure exactly the same characteristics of probability 
distributions. Uncertainty analysis depends on the number of categories 
occupied by a distribution. Variance analysis depends on the weights or values 
attached to these categories. 

VIII. Application of the Measures 

We have now shown that uncertainty analysis and analysis of variance 
are equivalent in many respects; the question naturally arises as to  when 
one should be used in preference to the other. This decision depends on the 
properties of the data and the assumptions the experimenter is willing to 
make. If the criterion variable y has only the properties of a nominal or 
ordinal scale, then only uncertainty analysis is permissible. Uncertainty 
analysis has the greater generality and requires no assumptions about metric 
properties of the criterion. 
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On the other hand, uncer ta inty analysis does not give any  information 
about  the metric if it exists. I f  the criterion variable is metric with a t  least 
the properties of an interval  scale, then analysis of variance must  be used 
to retain information about  the metric. The  variance measure in retaining 
the metric sacrifices generality since the variances obtained from one ex- 
per iment  are not  directly comparable to those obtained f rom another.  Thus,  
the fact  tha t  the uncer ta inty  measure is dimensionless gives it  a generali ty 
which allows direct comparison of experimental results which differ in their 
metric. 

To  summarize, the measures are similar in m a n y  respects, but  they are 
not  identical. The uncer ta inty measure has greater  generali ty and the ad- 
vantages  of generality. The  variance measure is more specific bu t  retains 
information about  the metric. The decision as to which to use depends not 
only upon the properties of the criterion variable but  also upon the gain 
expected from being more sensitive instead of more general. In  m a n y  applica- 
tions it is reasonable to use both measures and compare them. 
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