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Analysis of variance and uncertainty analysis are analogous techniques
for partitioning variability. In both analyses negative interaction terms
due to negative covariance terms that appear when non-orthogonal predictor
variables are allowed may occur. Uncertainties can be estimated directly
from variances if the form of distribution is assumed. The decision as to
which of the techniques to use depends partly on the properties of the cri-
terion variable. Only uncertainty analysis may be used with a non-metric
criterion. Since uncertainties are dimensionless (using no metric), however,
uncertainty analysis has a generality which may make it useful even when
variances can be computed.

I. Introduction

Shannon (5) has defined amount of information by the formula

H@) = = 3 p®) log, 0009, 0

where y has r discrete values, and p(k) is a probability distribution defined
over y. In communication theory, y is considered a source of signals, and
the measure H represents the average number of binary digits required to
code or store one of the signals. A broader interpretation, however, makes
H a parameter which measures the non-metric variability of any probability
distribution. H has a value of zero when the probability is concentrated in a
single category and is maximum when the probability is uniformly distributed
over all categories.

Psychologists have been attracted by the non-metric character of this
measure and the obvious application to situations where variances cannot
be computed. Since this use of the measure is concerned only with its statisti-
cal properties and not with its interpretation in communication theory, we
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shall use the more general term uncertainty, U, to refer to the measure. We
shall show that uncertainty has many of the properties of variance and can
be partitioned into. components as variance can.

II. The Analysis Problem

The relations discussed apply when a criterion is predicted from one
or more predictors. The development will be presented for the three-variable
case, where the problem is to determine to what extent values of the criterion
variable can be predicted from two predictor variables.

Our notation is as follows: The eriterion variable y can assume any
value ¥, . The two predictor variables w and = can assume values w; or z; .
We assume that all three variables are categorized in order that the formulas
for uncertainty and variance analysis may have equivalent notations. This
assumption does not limit any of the principles demonstrated.

In the three-dimensional matrix, n,;, refers to the number of cases in
a single cell; n,;. refers to the total number of cases having the ¢th value
of w and the jth value of z; and n,. . refers to the total number of cases having
the <th value of w. Similar subscripts indicate other combinations of the
three variables; » with no subscript indicates the total number of cases in
the matrix. In analysis of variance formulas, § indicates a mean value, and
the subscript notation just illustrated is used for mean values of the sub-
classifications.

II1. The Nature of Uncerfainty Analysis

Analysis of variance can be considered as two separate processes. First,
the variance of the criterion variable is partitioned into its several identifiable
components—components which add up to the total variance. This process
is a simple descriptive one; there are no probability assumptions involved
in its use. One describes the components of a total variance, making no
assumptions about the distributions from which the data are drawn. The
second process, which is not a necessary consequence of the first, involves
using these partitioned components to obtain estimates of population vari-
ances and to make inferences about the parent population. For this process,
the actual data provide sample estimates of population distributions; here
assumptions about the population distributions become critical.

Uncertainty analysis likewise has both processes. The first process is
purely descriptive: it is intended to allow the partitioning of the uncertainty
of the criterion variable U(y) into components. Since this process is entirely
descriptive, there are no underlying probability assumptions. All that is
required for its use is that a data matrix of the type described above is avail-
able. The primary purpose of this paper is to demonstrate the nature of
uncertainty partitioning and to compare it to variance partitioning. This
process is illustrated and explained in Table 1. The results of uncertainty



W. R. GARNER AND WILLIAM J. MCGILL 221

partitioning specify sources and magnitudes of variabilities as well as amount
of categorical discrimination available. These uses are explained more fully
by Garner and Hake (1) and by McGill (3).

The n;;; can be considered as sample estimates of p(7, j, k); we can use
these sample estimates to test various hypotheses about the parent dis-
tribution. For example, suppose we wish to test the hypothesis that both
predictors are independent of the criterion, i.e.,

p(, 3, k) = p@, Hpk). 2

It can be shown (3, 4) by using the likelihood ratio, that when hypo-
thesis (2) is true, [1.3863 nU(y: w, z)] is distributed approximately as chi
square. Independent tests can be constructed in the same way for each of
the predictors separately as well as for the interaction between predictors.
The approximation to chi square is of the same order as the familiar chi-
square contingency test so that, in effect, uncertainty analysis is analysis of
contingency chi square. Miller and Madow (4) discuss this aspect of un-
certainty analysis more thoroughly.

IV. The Orthogonal Case

Usually in analysis of variance and in uncertainty analysis, the ex-
perimenter tries to set up orthogonal predictions. Orthogonality is defined
as zero association between the predictors. This requirement is met when
the cell frequencies in the matrix of the n,;, can be predicted correctly from
the row and column marginal frequencies, i.e., when

_n,.n,;.

;. n

@)

Uncertainty Analysis
The partitioning of U(y) in uncertainty analysis is illustrated by
Uly) = Uly:w, 2) + Uw(y), 4)

where the uncertainty measures have the definitions given in Table 1. The
second term on the right-hand side of (4) is the error uncertainty, i.e., the
amount of uncertainty in the criterion y remaining after the predictable
uncertainty has been eliminated. The first term on the right-hand side of
(4) is the predictable uncertainty; it in turn can be partitioned into com-
ponents

Uly:w,2) = Uly:w) + Uly:2) + Uly: w7). (5)

These terms are also defined in Table 1. A feature of uncertainty analysis
is the interaction term U(y: &w&). This is the uncertainty in y predictable from
unique combinations of w and z.

Equation (5) describes a process that is identical in form with the
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partitioning of variance in analysis of variance; in the orthogonal case the
interaction uncertainty can be interpreted by analogy with interaction
variance. This is true despite the fact that interaction uncertainties are
sometimes negative (3). This problem will be discussed in detail in Section V.

Analysis of Variance

Uncertainty analysis is generally appropriate when the eriterion variable
y is a categorical variable, i.e., one allowing only nominal scale values (cf. 6).
The predictor variables may be categorical, or they may be metric variables
which are categorized for purposes of analysis. If the criterion is a true
metric variable, i.e., one having at least the properties of an interval scale,
we can compute variances and perform analysis of variance. The predictor
variables must be categorized in"any simple form of the analysis of variance.

Equations describing analysis of variance are essentially identical to
those of uncertainty analysis. The defining equations are given in Table 2;
except for the fact that variances are computed from squared deviations,
whereas uncertainties are computed from log-probabilities, the equations
are identical to those in Table 1. The partition of the variance of the criterion
can be written:

Viy) = Viy:w, 2) + V(). (6)

Again the two parts on the right-hand side of the equation are the predictable
and the error components of the total variance. The predictable variance
can be broken down as before:

Viy:w,z) = Vy:w) + V(y: 2) + V(y: wa). )

The terms in (7) are explained in detail in Table 2.

Normally the analysis of variance in (7) is called double classification;
the variances aré generally identified in terms of the two predictors. This
shorthand procedure is convenient for most purposes. However, it obscures
the fact that the data array is three-dimensional. The analysis is identical
to the one treated in uncertainty analysis in every respect, except that in
the analysis of variance the criterion variable has a metric, whereas it does
not in uncertainty analysis.

V. The Non-Orthogonal Case

In Section IV it was mentioned that the interaction term in uncertainty
analysis can assume negative values under certain conditions. It is equally
true that the interaction term in analysis of variance can be negative, if
it is defined as in Table 2. The negative interaction term is due to non-
orthogonality and can be thought of as due to a negative covariance term
that may attenuate or exceed the positive interaction effect.
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Uncertainty Analysis

It is not difficult to show that the interaction uncertainty in (5) can be
written

Uly:wz) = Uyfw:z) — Ulw: z). (8)

This form of the interaction term shows at once that interaction cannot
be negative with orthogonal predictors since orthogonality requires that
Uw:z) = 0.

In the non-orthogonal case, however, U(w: x} will be greater than zero.
With certain combinations of cell frequencies, the contingent uncertainty
between = and w can be larger than the partial contingent uncertainty—
resulting in negative interaction. A simple illustration of this principle is
provided when each value of w is paired uniquely with each value of z. Now
U(w: z) is as large as it can be. Furthermore, U,(w: x) cannot be greater
than U(w: z) since U(w: z) is the maximum contingent uncertainty that can
be obtained from a contingency table involving w and z. Equation (8) shows
that the interaction will never be greater than zero. An identical result is
obtained in the variance analysis when the predictors are completely con-
founded.

Analysis of Variance

It is usually assumed that the components of the total variance in
analysis of variance must be positive. This is true only in the orthogonal
case; if an analysis of variance is carried out with a non-orthogonal ex-
perimental design, using the equations given in Table 2, negative interaction
terms can occur.

To show how this happens, we now analyze the components of the
interaction variance for the general case. The equation is

V{y: wx) =§?’ Z?’?’u‘.(??ei. ~Gi.. — .. +9)° ©
+,3 9

-2 2 ””)(y — D@ — D

It can be seen that the interaction variance is composed of two parts:
the first part is essentially the interaction variance in the orthogonal case;
the second part is a negative covariance term. This term must be zero in the
orthogonal case [see equation (3)], but in the non-orthogonal case it cannot
be ignored. The redundancy introduced by non-orthogonality is illustrated
clearly in multiple regression. No interaction term is permitted, but a correc-
tion for non-orthogonality must be introduced whenever the predictor
variables are correlated (cf. 2).
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V1. Effects of Non-Orthogonality

Our discussion of non-orthogonality shows that it is best to design ex-
periments with orthogonal predictor variables. The andlysis is simplified,
and the uninterpretable interaction components are eliminated.

Clearly the covariance in (9) is not just part of the interaction variance.
In fact, when predictors are non-orthogonal, the concept of interaction is
almost meaningless. For example, consider an analysis of variance in which
the predictors w and = are completely confounded. The two main-effect
variances and the interaction will all be identical. The covariance term in
(9) must be large enough to cancel out two of these variances, but we do
not know which two of the variances should be cancelled out. In a sense, the
covariance term is a correction factor which must be applied to the entire
set of variances. Thus, a covariance term (whether or not it is large enough
to produce s negative interaction) renders an exact interpretation of the
component variances impossible.

The multiple contingent uncertainty or the total predictable variance
can be computed directly as shown in the defining equations in Tables 1 and
2. The negative covariance term is included; there is no over-estimation
of the total predictable variance or uncertainty. However, the interpretation
of results should be made only in terms of combinations of the two predictors
—no valid statements can be made about them independently.

Sometimes it is impossible to obtain orthogonal predictor variables,
particularly when there are more than two. In time series successive events
are usually not orthogonally related because no independent control of these
events is possible. If the time series has serial dependencies, preceding events
cannot. be orthogonal. Consequently, the total predictability of events in
a time series cannot in general be computed by adding up the separate
predictabilities obtained from preceding events displayed by one or more
units in the time series.

VII. Estimation of Uncertainties from Variances

It is clear that uncertainty analysis and analysis of variance are analogous
analytic techniques. In fact, variances may be used to estimate uncertainties
if we assume that y is normally distributed.

Shannon (5) has shown that the uncertainty of a normal distribution
can be specified as

est U(y) = % log, 2meV(y) — log, m, (10)

where est U(y) is the estimated total uncertainty of the criterion variable
on the assumption of a normal distribution of values of y, , and where m is
the width of the category interval on the y continuum.

We can write similar equations for any of the variances obtained in
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analysis of variance. For example,
est U,.(y) = % logs 2meV ,.(y) — log: m (11)

is the error uncertainty estimated from error variance. From definition
(6) in Table 1, and from equations (10) and (11), we can write

est Uly: w, @) = 3 log, [V(@)/V..(9)]. (12)

Thus, it is relatively simple to estimate the multiple contingent un-
certainty from the appropriate variances. The expression on the right-hand
side of this equation is reminiscent of the multiple correlation ratio ().
We can, in fact, write

est Uly:w, z) = —3log, [1 — n"(y:w, 2)]. (12-A)

Estimated uncertainties have the properties of additivity observed in
computed uncertainties. Consequently, the expression on the right-hand
side of (12) can be partitioned into three components, each of which is based
on its equivalent variances as follows:

est Uy: w) = § log. {V()/V.(®)], (13)
est U(y: x) = § log: [V(n)/V.(0)], (14)
est U(y: wz) = § log:{[V.() - V.)V/ V() V.. 0]} (15)

These estimating equations point out some of ‘the differences between
uncertainty and variance. If (15) is used to estimate the interaction un-
certainty when the interaction variance is zero, cases can be found in which
the estimated interaction uncertainty (and the computed interaction un-
certainty) will not be zero. Converse cases (i.e., zero uncertainty interactions
with finite variance interactions) can also be found. These apparent con-
tradictions are due to the fact that variances and uncertainties, while anal-
ogous, do not measure exactly the same characteristics of probability
distributions. Uncertainty analysis depends on the number of categories
oceupied by a distribution. Variance analysis depends on the weights or values
attached to these categories.

VIII. Application of the Measures

We have now shown that uncertainty analysis and analysis of variance
are equivalent in many respects; the question naturally arises as to when
one should be used in preference to the other. This decision depends on the
properties of the data and the assumptions the experimenter is willing to
make. If the criterion variable y has only the properties of a nominal or
ordinal scale, then only uncertainty analysis is permissible. Uncertainty
analysis has the greater generality and requires no assumptions about metric
properties of the criterion.
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On the other hand, uncertainty analysis does not give any information
about the metric if it exists. If the criterion variable is metric with at least
the properties of an interval scale, then analysis of variance must be used
to retain information about the metric. The variance measure in retaining
the metric sacrifices generality since the variances obtained from one ex-
periment are not directly comparable to those obtained from another. Thus,
the fact that the uncertainty measure is dimensionless gives it a generality
which allows direct comparison of experimental results which differ in their
metric.

To summarize, the measures are similar in many respects, but they are
not identical. The uncertainty measure has greater generality and the ad-
vantages of generality. The variance measure is more specific but retains
information about the metric. The decision as to which to use depends not
only upon the properties of the criterion variable but also upon the gain
expected from being more sensitive instead of more general. In many applica-
tions it is reasonable to use both measures and compare them.
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