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E R R O R  OF M E A S U R E M E N T  A N D  T H E  S E N S I T I V I T Y  OF 

A T E S T  OF S I G N I F I C A N C E  
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Implications of random error of measurement for the sensitivity of 
the F test of differences between means are elaborated. By considering the 
mathematical models appropriate to design situations involving true and 
fallible measures, it is shown how measurement error decreases the sensitivity 
of a test of significance. A method of reducing such loss of sensitivity is 
described and recommended for general practice. 

In the statistical theory of sampling, explicit a t tent ion is given to 
sampling error, which refers to fluctuations in the composition of samples 
drawn at  random from a defined universe. A second form of error, largely 
ignored in this context, is measurement  error. This applies to the individual 
sampling units and is thus related to the definition of the universe rather  
than  sampling outcomes. Applications of sampling theory have proceeded 
on the implicit assumption tha t  the sampling units which make up the 
defined universe are error free, tha t  (in psychometric terms) the universe 
consists of true scores. This assumption is not justified in practice, where 
measurement  is seldom free f rom error. Parameters ,  such as the mean and 
the variance, of a universe of fallible scores will differ f rom those of a universe 
of t rue scores; tests of significance of a given effect will not necessarily be the 
same in the two cases. This paper  elaborates the implications of measurement  
error for the simple case of the F test  of difference between means. By setting 
up the mathemat ica l  models appropriate  to the relevant  design situations, 
it is shown how measurement  error (relative to the parallel true score case) 
decreases the sensitivity of the test  of significance. Sensitivity refers to the 
likelihood of detecting a nonzero population effect at  a given level of signifi- 
cance. Through its inverse, proneness to Type  I I  error, it is usually expressed 
quant i ta t ively  as power. A method of reducing such loss of sensitivity is 
described. 

Definition of Universes of Scores 

The scale or range of application of a measuring instrument  comprises 
a number  of units of measurement .  Let  w represent any  one unit or subrange 
of the scale and v any  one occasion of measurement .  Errors of measurement  
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constant for all units of the scale on all occasions of testing will be designated 
J; errors constant for all occasions of measurement with a particular unit,  
but  variable from unit  to unit  will be designated gw ; errors variable from 
occasion to occasion and from unit  to unit will be designated h,w. For  example, 
a carpenter 's  tape may  be incorrectly calibrated uniformly over the whole 
scale; then unevenly stretched over the first few feet which are most commonly 
used; and finally subject to random error on any given application. For  this 
case the total  error of measurement  E = J + g~ ~- h ~  . Analogous errors of 
measurement  occur with psychological tests [3], bu t  these will not  be dis- 
cussed here; while knowledge of the source of error can facilitate its control, 
it is rather  the mode of operation of error which is relevant to the statistical 
argument.  

Most  generally, an obtained fallible measure or score, X ,  , can be ex- 
pressed as the sum of the true score, T, , and its error of measurement,  
E ,  [3]. This holds whether measurement error is unitary,  or complex in the  
sense illustrated above. The additive relationship also holds whatever  other 
relationship may  be shown to obtain between true score and error for a 
universe of obtained scores. For  instance, while E~' ma y  enter as a multiplier 
in the relationship between obtained and true score, X ,  = E~T~ , X ,  ma y  
also be writ ten Xo = T, q- Eo ,  where Eo = (E~' -- 1)T, . Other assumptions 
about  the nature  of error and its relationship to true score are tenable, bu t  
the additive assumption is adopted here because it  simplifies the subsequent 
analysis. 

The  mean and variance of an infinite universe of fallible scores X,  = 
T. -[- Eo may  be obtained as follows: 

N N 

Mean = lim [ ~  X~/N] = lim [~_, (T, + E~)/N] = T -t- E.  
hr~oo N ~ : o  

Variance = lim [~--~ z~/N] = lim [ ~  (t, q- e,)2/N] 

2 2 
= o', "~ o', "~ 2 p , , , ~ t o ' , ,  • 

These outcomes are summarized in Table 1. Depending upon the mode of 
operation of error, cases may  arise where any or all of/~, ~ ~ , and p~, are zero, 

T A B L E  l 

P ~ r ~ e t e r s  of  U n i v e r s e s  ~f T r ~ e ,  Errar au~ O b t a i n e d  S c o r e s  

U n i v e r s e  Mean V~r ionce  

O b t a i n e d  s c o r e s  X v T ÷ E ~ t  2 ÷ fie 2 ÷ 2Ptea tO e 
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in which cases one or more of the parameters  will be common to the universes 
of t rue and obtained scores. 

When error is absent, the mean = T and variance = ~ (Case 1). When 
error is cons t an t /~  = J > 0, ~,~ = 0, p ,  = 0; hence the mean of fallible 
scores = T + J, and variance = 2 (Case 2). Where error is variable its 
distr ibution m a y  be either random or nonrandom. (In either case, the 
variances of error about  different true score values m a y  be homogeneous 
or heterogeneous. Heterogenei ty  of variance permits  nonzero correlation 
between true scores and the variance of errors about  them, but,  as in random 
sampling, this correlation is independent of m°. Heterogenei ty  of error variance 
should, of course, be taken into account in any  analysis of variance [2].) 
I f  errors occur a t  random about  T~, then E = 0, ~2 > 0, and p~ = 0; hence 
mean = "f, and variance = ~ + ~ (Case 3). I f  errors are randomly dis- 
t r ibuted about  T, + J, E = f + 0, ~ > 0, pt, = 0; hence mean = T + J, 
and variance = ~ + 2 (Case 4). Where errors are distr ibuted randomly 
about  T, + gw, t h e n E  = # + 0, ~2 > 0, p,, > 0, and hence mean = T + #, 
and variance = ~2 + ~2 + 2pronto, (Case 5). With nonrandom distribution 
of errors, generally one would find 3~ > 0, ~ > 0, and p,, > 0. Whether  
errors are distr ibuted about  To , T, + J, or T, + g~ , mean = T + error, 
and variance = a2 + ~ + 2p,,~,~, . All cases of nonrandom distribution 
of error ar~ here referred to as Case 6. 

The six cases are summarized in Table  2 to enable comparison of the 

T A q L E 2 

P a r a m e t e r s  o f  U n i v e r s e s  o f  T r u e  a n l  F a l l i b l e  S c o r e s  

C a s e  Mean  V n r i a n c e  

T 

T * f 

T 

T ¢ f 

T * q 

÷ e r r o r  

o t 2  

a t 2  

o t 2  * a ~  2 

o t 2  * ~ e  2 

g t  2 ¢ o e  2 * 2 p t e g t g  e 

o t  2 * a e 2  * 2 p t e g t O  e 

parameters  of fallible score universes with those of the t rue score universe. 
In  no case are both  parameters  the same as those in Case 1; however, Case 2 
has  the same variance, and Case 3 the same mean. Cases 1 and 2 are unlikely 
to occur in practice. Most  experiments aim to achieve the conditions of Case 
3, but  the intrusion of constant  errors, scale biases, and other nonrandom 
errors makes  Cases 4, 5, and 6 quite common. The following discussion will 
center on Cases 1 and 3, with incidental comment  on the others. 
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Comparison of the Design Models 

With the universes of t rue and fallible scores defined, it  becomes possible 
to compare the sensitivity of tests of significance applied in given cases. For  
comparative purposes the analysis of variance for Case 1 will be described. 
Then two analyses for Case 3 will be considered--the first reflecting common 
practice, the second involving random replication Of measurement to increase 
reliability and hence sensitivity. 

Notation and plan for Case 1 

Consider the comparison of means of independent random samples of 
true scores obtained at  different levels of a single-treatment classification. 
Let  i = 1, 2, - . .  , a represent any one of the t rea tment  levels within the 
t rea tment  classification A. Let  j = 1, 2, . . .  , b represent any one subject 
in a sample of subjects B. Then X~i is the true score of the subject j in the 
t rea tment  level or group i. As subjects are randomly sampled, j represents 
number only, not  rank within a group. Let  a dot  in place of a subscript 
represent summation across the class indicated by the subscript replaced, e.g., 

X ,  = X~. ,  X ,  = X . . .  
i=I i=l 1=1 

The sample values of X~ and the sums are represented in Table 3. 

TA8LE 3 

Pl~n of Obtolned S~ores of Subjects Within l~andvm 
S=mples Allocated tO Independent Treatment Groups 

A B Subjects 
Treatzents ~ 2 j b Sum 

1 XII XI2 

2 X21 X22 

i X~I Xi2 

Xlj Xlb XI. 

X2j X2b X2. 

Xi} Xih Xi. 

Xal Xa2 X=j Xab X=. 

X.. 

Analysis of variance for Case 1 

The  total variance of the ab sample values of X ,  can be expressed in 
terms of two sources of variation: between treatments,  A, and between sub- 
jects within t reatment  levels, BA • A given deviation score may  be writ ten as 

x ,  = (X,~ - 2 . )  = ( 2 , .  - 2 . 3  + ( X , i  - 2 , ) .  



J. P. SUTCLIFFE 13 

The tota l  sum of squares is 

i = 1  ~ '=1 / = 1  i = 1  i = 1  

The degrees of freedom pertaining to these components  are Total  = (ab - 1), 
A = (a - 1), BA = a(b -- 1). From the SS and df, the mean squares, S ~, 
may  be obtained as unbiased estimates (on the null hypothesis) of a common 
population variance. 

Expectation of mean squares for Case 1 

To determine what  is est imated by a given S 2, one takes the expectation 
according to the model involved. As Case 1 involves a universe of true scores, 
Model 1 can be writ ten as 

X ,  = A~ + B i i  • 

A~ is the class of t r ea tment  parameters  of which the sampled t rea tment  
means are estimators.  The distribution of A~ will va ry  according as t reat -  
ments  are fixed constants or randomly sampled. For convenience the case 
of random A, with variance ~ will be considered. B ,  is the class of true score 
deviations from A~ , which are normally distr ibuted with zero mean and 
variance ~ . To find the expected values of SS and then S 2, one substi tutes 
model values in the analysis of sample variance and thereby determines the 
limiting value of a given component.  

(i) Expectation o / S ~  

(2 , .  - X .) = (A, - A.) + (B,. - B..) ;  

= b ( a  - 1)~ + b ( a  - 1 ) , ~ / b .  

Thus $2 = b ~ (f(, .  - f ( . . ) 2 / ( a -  1 ) - - * b a . ~ +  a~.  
4 = 1  

(ii) Expectation of S ~  

and 

SL 

( x , ,  - 2 , . )  = ( B ,  - B , . ) ,  
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T A B L E  4 

A n a l y s i s  o f  V a r i a n c e  f o r  Model  1: 

Single Treatment Classification Design with 

5 Randomly Sampled S~hjects for Each of  u Levels (True Scores) 

,- ,,,,,, . . . . .  ,,,,,,,,,,, ,, , .... 

~4umher Source Sum of Squares df  5 2 

a 2 
i A b z (x i ,  - x~.}2 (~-i) s A 

b _ 2 
2 B within A ~ ~ (Xij - Xi.)2 u(5-1) SBA 

b 
3 Total Z ~ (Xi] ~ X.. )2 (&b-l) 

Expectation of  S 2 

bOA2 ~ a t  2 

2 
G t 

These outcomes for the analysis of variance are summarized in Table 4. 
On the null hypothesis z~ = 0. One rejects the null hypothesis if the ratio 
F1 2 2 = S f f S ~  with dfl = (a - 1) and df2 = a(b - 1) exceeds F~ , the tabled 
value for the chosen level of significance. 

Case 3 

I t  is common practice in psychological experimentation to use a design 
superficially similar to the one just  described. Th a t  is, one has a series of 
random samples of subjects allocated to t rea tment  levels and for each subject 
one has a single score. If, as is usually the case, the scores are fallible, then 
Model i is inapplicable and instead one must  write the model to include 
error of measurement.  Assuming that  the scores have been drawn from a Case 
3 universe, there will be two designs according as one has or has not  random 
replication of measurement on a given subject. For  common practice, which 
provides no measurement replication, Model 3a is 

X .  = A t  + B .  + F .  . 

At and B..  have been defined above; 1~. is the random error of measurement 
component,  normally distributed with zero mean and variance z~ . The  
summary of the analysis of variance for Model 3a is given in Table  5. For  
the test  of significance, the null hypothesis is ~ = 0. One rejects the null 
hypothesis if the ratio F3o 2 ~ = = SA/SB~ with dr1 = (a - 1) and dr2 a(b - 1) 
exceeds the tabled value of F for the chosen level of significance.. 

One may  note tha t - the  terms za 2 and z~ are common to the expectations 
of S~ for Models 1 and 3a. In  addition, the df~ and df2 are the same for F1 
and F3o . This enables comparison of the sensitivity of the two tests. The  
power of the F1 test  is Prob {F~ > 2 2 F,,z~/(bou + a,)}; and the power of F3~ 
i s P r o b  {F~ > F , ( ~  + 2 2 2 . c r . ) / ( b z  A ~-  (r t -~- ~ )  } The  smaller the value to the 
right of > ,  the greater the power of the test. As cr~/(bo'a2 ~ + ~r~)~ < (~2 + ,7])/ 
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T A B L E $ 

Analys i s  of Variance for  Model 3a: 

Sinqle Treatment Classification Design with 

b Randomly Sampled Subjects for Each of a Levels (Fallible Scores) 

15 

Number Source Sum of Squares df S 2 Expectation of S 2 

a - 
t A b ~ (X i ~ X )2 (a-l} S 2 b~A2 * ~t 2 * ae 2 

a b 2 
2 B within A ~ ~ (Xij * Xi.} 2 a(b-l) S~A ot 2 * Oe 2 

ab 
3 Tota l  ~ E (Xij - X , .  ]2  (ab- l )  

(ba] + a~ + a~), the power of Fl is greater than the power of Fao. That  is, 
analysis in accordance with Model 3a provides a less sensitive test of the 
hypothesis a] > 0 than does Model 1; the loss of sensitivity is due to the 
intrusion of random error of measurement. 

Model 3a allows for the acknowledgement of the presence of error 
variance, but  there is no provision for its isolation. To achieve this, one has 
to add random replication of measurement for each subject. That  is, instead 
of a single score for each subject one has a number of scores. This introduces 
a source of variation in addition to those already accounted for; accordingly 
the notation and plan presented above have to be expanded. Let lc = 1, 2, 

• • • , c represent any one measure or score in a sample of scores C. Then 
X , k  is the kth score of subject j a t  t reatment  level i. As measures on subjects 
are randomly sampled, k represents number only, not  rank. Now Model 
3b may  be written as 

X .~  = A ~ + B . +  F . ~ .  

Ai and B .  have been defined above; and P,~ is defined as was F,~ . Tha t  
is, Model 3a is the special case of Model 3b in which k = 1. The summary of 
the analysis of variance for Model 3b is given in Table 6. This analysis 
provides two tests of significance. 

For the first, the null hypothesis is a2 = 0. One rejects the null hypothesis 
if the ratio Fab ~ 2 = S o ~ / S o ~  with dr, = a ( b  - 1) and dr2 = ab(c  1) exceeds 
the tabled value of F for the chosen level of significance. If  the null hypo- 
thesis is not  rejected, the outcome is consistent with the homogeneity of 
experimental subjects, and in tha t  sense one has zero reliability of measure- 
ment. If  the null hypothesis is rejected, an estimate of the reliability of 
measurement may  be obtained. With the Case 3 universe, the population 

2 2 2 value of the reliability coefficient [1] is p,~ = ~ / ( ~ ,  + or,), which may be 
estimated by 
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TABLE 6 

Analysis of Variaace for Model 3b: 

Single T r e a t m e n t  Classification Design with 

c Random Measurvs on each of 

b Randomty Sampled  S u b j e c t s  f o r  e ach  o f  

a Levels ~Fallible Scares) 

Number S o u r c e  Sum of S q u a r e s  df  
1 

a _ - 2 

1 A bc  ~ (X i ,  " - X . . . ) 2  ( a - l )  S~ 

a b " - 2 
2 B within h c E E (Xij " - Xi..)2 a(b-l) SBA 

abc . 2 
3 C w i t h i n  B ~ E E (X i j  k - Xi j  ) 2  o h ( c - l )  SC8 

a b c 

4 Total E ~ E (Xi~ k~ - X... )2 (abc-l) 

S 2 Expectation of  S 2 

bcoA 2 * c~t2 ¢ Oe2 

c a t 2  * ~e 2 

ae2  

r~  (S~A 2 2 S 2 = - Sc . ) / [SB~  - cB(1 - c)]. 

For  the second, the null hypothesis is a)  = 0. One rejects the null 
= S A / S . . ,  with dfl = ( a -  1 ) a n d  df2 = a(b - 1) hypothesis if the ratio Fib 2 2 

exceeds the tabled value of F for the chosen level of significance. 
Comparison of the power of the Fib test  

F !  2 2 2 2 2 Prob { 3~ > F,(c~, 4- a~)/(bcaA 4 - c ~  4- ~)} 

with the powers of F1 and F3o shows tha t  as 
2 2 2 2 2 

at cat -1- a; a~ -{- a~ 
2 baA2 + at2 < bca~ -{- ca~ + a~ < ha2 -{- a~ + a, 

then power F~ > power F~b > power F.~o. 

While analysis by  the Model 3b allows for isolation of an estimate 
of a~,  it  is impor tant  to note tha t  one may  not convert  F~b to F~ by  sub- 
tracting S ~ -*  a~ from the numerator  and denominator  of F~b and making CB 

appropriate adjustments for the weights b and c. F is the ratio of two in- 
dependent x 2 var ia tes- - the  independence is negated by such a procedure. 
The  only way to  achieve the standard of sensitivity of the F1 test  with the 
given number  of subjects is to use error-free measurement.  As this is an ideal 
towards which one can do no more than strive, one has to be satisfied with a 
less sensitive test. Of the two remaining experimental designs, assuming 
that  one can achieve measurement replication, tha t  which provides the 3b 
form of analysis is to be recommended for general practice. I t  yields estimates 
of measurement error variance and reliability, for the la t ter  a test  of sig- 
nificance, as well as providing a more sensitive test  of t rea tment  effects than 
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the 3a design using the same number of subjects. These contentions 
apply with equal force to the design situations where the t test is ordinarily 
applied. Finally, while the argument has been in terms of the single t reat-  
ment  classification design, it  may  be generalized to multiple classification 
designs. 
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