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Finite Markov processes are reviewed and considered for their usefulness 
in the description of behavioral data. The various alternative responses in 
an experimental situation define a vector space, and changes in the probabili- 
ties of these alternatives are represented by movements in this space. Meth- 
ods of fitting the theory to experimental data are considered. 

The simplest process, with a constant matrix of transitional probabilities 
that is applied repeatedly to represent the effect of successive trials, seems 
inadequate for most learning data. A matrix function that may be useful for 
learning theory is presented. 

In  the two general areas where psychology has been relatively successful 
as a quant i ta t ive  science, i.e., sensory psychology and test  construction, 
probabilistic considerations long ago proved their worth. I t  is characteristic 
of these two areas, however, t ha t  the observations are relatively invar iant  
in time. The basic parameters  can be explored a t  length because sequential 
effects of measurement  are secondary and can be ignored or randomized. 
This for tunate  si tuation makes  it possible to use familiar probabil i ty models 
based upon independent random variables. 

With the more dynamic problems of psychology, however, this familiar 
model has not often led to profitable results. For example, it is intrinsic in 
the very notion of learning tha t  successive measurements  are not inde- 
pendent;  a t t empts  to use a theory of independent variables must  either fail 
or misrepresent the basic process. Such failures m a y  lead to a rejection of 
statistical concepts as inadequate; a more proper a t t i tude  is to abandon the 
assumption of independence and ask what  help can be had from dependent  
probabilities. The  simplest mathemat ica l  models incorporating dependent  
probabilities are the finite Markov  processes. In this paper  such processes 
are examined for their usefulness and their l imitations for describing psycho- 
logical data.  

1. Simple Markov Chains with Two Alternatives. The data  from psycho- 
logical experiments usually come in the form of sequences of choices em- 
bedded in the t ime continuum. Often it is possible to ignore the temporal  
order in which al ternat ive choices occur. The purpose of this discussion, 

*This article was written at the Institute for Advanced Study in Princeton, New 
Jersey, while the author was on sabbatical leave from Harvard University. 
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however, is to examine situations in which the temporal sequence should 
not be ignored. We shall adopt  the Markovian model of dependent  prob- 
abilities to discuss such sequences. We begin, therefore, with the simplest 
possible example of a Markov chain. 

Consider an experiment in which only two alternative responses are 
possible. A trial consists of a choice of one of these two alternatives. If the 
letters A and B designate these choices, then a sequence of trials might  
produce the sequence of responses A B B A A A B A  . . .  , where the durations 
and latencies are ignored. We shall assume tha t  this sequence is produced 
by a Markov process; i.e., that  the distribution of probabilities at  trial n ~ 1 
depends upon the outcome of trial n. However, the knowledge of outcomes 
prior to n does not change our description of the system if we know the 
outcome of trial n. In other words, the present state of the system governs 
its future development. 

We adopt  the following notation: 

n number of the trial: 0, 1, 2, • • . .  
A and B the two alternative responses. 
p~(A)  probabili ty of alternative A at  trial n. 
p(A) asymptot ic  value of p(~(A) as n -o~o. 
dn the set of absolute probabilities a t  trial n, considered as 

a vector; [p~")(A), p '~(B)].  
pA (B) given A at  n, the conditional probabili ty of B at n -]- 1. 
p~'~ (B) given A at  n, the conditional probabili ty of B at  n -t- m, 

m = 2, 3, . . . .  
T matrix of transitional probabilities. 
M characteristic roots of the matrix T. 

Alternative A can occur at trial n + 1 in either of two ways. Ei ther  it 
follows an A on trial n, or it follows a B on trial n. Similarly, B can occur 
at  n + 1 in either of two ways. This obvious fact leads to the following 
equations: 

p("~(A)pA(A) + pC~(B)ps(A) = p(~+'~(A) 
(1) 

p("(A)pa(B) + p'~'(B)p,(B) = p(n+') (B). 

In matrix notation these equations can be written 

p.~(B) p,(B) ~p'' (B) ~pO,+,, (B) t 

The reader is assumed to be familiar with the elements of matrix theory. 
If the distribution of probabilities on trials n and n -k 1 is regarded as the 
vectors d~ and d~÷~ in a two-dimensional space, then the square matrix of 
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transit ional probabilities is a linear t ransformation or operator  mapping  d. 
into d.+l . Thus  we can write Eq. (2) as 

7'd~ = an+, . (3) 

Any sequence of distributions can be produced by  operating upon the 
successive d~ by  appropr ia te  transformations.  For the moment ,  however, we 
shall consider a special case. We shall assume tha t  repeated trials can be 
represented as repeated transformations by the same operator.  Thus we 
can write for the initial trial: 

A second trial carries dl into d2 : 

:/'do = d , .  

T d  I ~ d 2 ° 

In terms of do, therefore, we can write: 

Td, = T(Td0) = T2do = d2.  

Or more generally, 
T~do = d . .  (4) 

Since the probabilities of A and B on successive trials are given by  
T 'do ,  we proceed to examine the powers of T. The elements of T ~ are p~")(j),  
where i = A,B;  j = A , B .  We wish to find a general expression for T" in 
terms of p~(j) and n. From matr ix  theory we know tha t  every square matr ix  
with distinct roots is similar* to a diagonal matr ix  whose diagonal elements 
are the characteristic roots X~ of T. We designate this similar diagonal matr ix  
by A, and write 

A = S - I T S ,  

where S is a matr ix  whose columns are the characteristic vectors  of T. From 
this we obtain 

T = S A S  -1. 

To obtain the powers of T we note tha t  

T 2 = S A S - I S A S  -* = SA2S -l,  

or more generally, 

T ' =  Sh'S-' .  (5) 

Powers of A are simply calculated, for since A is a diagonal matrix, its powers 
are given by  the powers of the diagonal elements ),~. 

To  find A for the matr ix  of Eq. (2) we first write the characteristic 
equation for the matr ix  T. I f  we use the fact tha t  p. , (A)  -t- pa(B)  = 1 (and 

*Two matrices are said to be similar when they have the same characteristic roots. 
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similarly for B subscripts), the determinantal  equation can be written in the 
convenient form 

det  (T -- ~/) = ~,~ - [p~(A) -4- pB(B)]~. -{- [pA(A) -- pa(A)] = O. 

The roots of this equation are the characteristic roots of the matrix: 

XI = 1 and X2 = pa(A) - pB(A). 

Since the sums of all the columns of T are unity, we note tha t  uni ty  is always 
a root of these matrices. Substituting these roots into Tv~ = X~v~ and solving 
for the characteristic vectors, v, , we obtain the vectors [1, pa(B)/p~(A)] 
and (1, - 1 ) .  These vectors comprise the columns of S, and so from Eq. 
(5) we obtain, after inverting S, 

(ps(A)P"(B) - - 1 ~ ( 0  [p,(A) -- ps(A)]" 

Eq. (6) can be written more conveniently 

1 I pB(A) PB(A) I 
T~ = pA(B) + pB(A) {pA(B) pA(B)] 

[pA(A) --pB(A)] ~ 1 
-4- pA(B) -4- pB(A) ! 

pA(B) "4- pB(A) 

t pB(A) p,(A) 1" (6) 
p.,(B) --pa(A) 

p~(B) --pB(A)I " (7) 

--pA(B) pB(A) 

Since [ pa(A) - pB(A) { < 1, the second term on the right of Eq. (7) goes 
to zero as n --* co, so the first term represents the asymptotic form of T ". 

With Eq. (7) we can calculate T~do , and so obtain the probabili ty of 
A on successive trials: 

_p,(A) 
p'"'(A) = "p~(B) "k pB(A) 

+ [p(A) - p(A)] ~ P¢°'(A)pA(B) - P(°'(B)pB(A) pA( ) (s) 

The value of 
--, pB(A) 

p(')(A) pA(B) ÷ p,(A) 

I t  is apparent  tha t  Eq. (8) can be written 

a s h  -----> ~ .  

p'"(A) = a(l  -- be-C"), (9) 
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where 

p/A) 
a = + p.( i ' 

b = -p(°)(A) ~ q- pC°~(B), 
pB(A) 

c ---- -- In [pA(A) -- pB(A)]. 

Eq. (9) is an exponential growth function--a form frequently used to de- 
scribe data  from learning experiments. I t  should be noted, however, tha t  
while the average subiect may follow such a learning function, the individual 
subjects are generating stationary time series tha t  do not  represent learning. 
The term "learning" probably should be reserved for those cases in which 
the matrix operator changes on successive trials. 

We shall illustrate the use of the Markov chain with a numerical ex- 
ample. Suppose tha t  two alternative responses are called right (R) and 
wrong (W), tha t  p(')(R) and pCn)(W) are measured by the percentage of 
subjects in a large sample tha t  choose R and W on trial n, and tha t  the 
transitional probabilities observed on successive pairs of trials are constant. 
Assume the following numerical values for T do = d~ : 

.03 .73 .73 

A right response is followed by another right response 97 per cent of the 
time; wrong follows wrong 73 per cent of the time. From Eq. (8) we calculate 
tha t  the sucecssive values of p(~)(R) are 0, .27, .46, .59, .68, etc., approaching 
the asymptote of .90. The equation is 

p(~(R) = .9(1 -- .7 ~) (n -- 0, 1, 2, . . . )  

If we know that  on a particular trial a W occurred, this equation gives the 
probability of R on the nth succeeding trial. 

2. Autocorrelation Function. A simple parameter of such Markov chains 
is the autocorrelation function. We will mention it now because for the more 
complex cases we wish to consider next the autocorrelation function is either 
not defined or is most tedious to compute from the matrix of transitional 
probabilities. 

The autocorrelation function is the correlation of a time series with itself 
displaced 0, 1, 2, . . .  steps. With zero displacement the correlation of the 
series with itself is, of course, +1 .  With a displacement of one step, the 
responses on trials 1, 2, 3, . . .  are correlated with the responses on trials 
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2, 3, 4, . . . .  If the series of binary choices is fairly long, the autoeorrelat ion 
after  a displacement of one step is given by  

r, = pA(A) -- ps(A) .  (10) 

We note tha t  rl is a characteristic root of the matr ix of transitional prob- 
abilities. More generally, 

r,~ = p~"'(A) - pi~)(A), ( l l )  

where p~")(A) and p ~ ( A )  are elements of T ~. From Eq. (7) we observe 
tha t  these elements of T ~ are 

pF) (A)  p , (A )  -~ pA(B)[pA(A) - p~(A)] ~ 
y . a \ a J , l  I p B \ ' ~ , ,  t 

and 
p~) (A)  = p , (A )  - p,(A)[pA(A) - p , (A)]  ~ 

pA(B) + pB(A) 

When these values are substi tuted in Eq. (11), we obtain 

r~ = [pA(A) -- p,(A)]  ~ = r~'. (12) 

In short, for a simple Markov chain, the autocorrelation between positions 
n and n 4- m is the mth power of the autocorrelation between n and n 4- 1. 
If I r~ I < 1, then [r~ I declines monotonically toward zero. 

A simple example is provided by  the Samoan language. E. B. Newman 
has noted that  the sequence of consonants (C) and vowels (V) in Samoan 
writing is adequately described as a Markov chain with the following matrix 
of transitional probabilities: 

pc(V) pv(V)  .51 

Consonants never follow consonants in writ ten Samoan. The  autocorretation 
function is easily computed from this matrix. For successive displacements 
of one letter the value of the correlation coefficient is 1, - . 4 9 ,  .24, - . 1 2 ,  
.06, - . 0 3 ,  etc. 

The  autocorrelation function for this simple process can also be de- 
scribed as the determinant  of T' .  Thus ro is the determinant  of T o = I, rl 
is the determinant  of T, r2 is the determinant  of T 2, etc. 

When the distribution of probabilities at n 4- 1 depends upon events 
prior to n as well as upon n itself, Eq. (10) still holds as a definition of the 
autocorrelation function, but  Eq. (11) does not hold. When more than two 
unsealed alternatives are used, the autocorrelation function is not defined. 

3. Extension to More than Two Alternatives. The extension of the matrix 
equations to experiments involving more than two alternative responses is 
straightforward. Designate the alternatives A, B, C, . . .  , N. Then we have 
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p~(A) n , (A)  

pA(B) pB(B) 

p~(N) p , (N)  

• .. p~(A)' 

• . .  p~(B) 

• . .  p ~ ( N )  

p(n)(A)] 

p(") (B) I 

. I  
I 

• I 
. p " ) ( N ) )  

'p(n+l)(A )' 

p [iv, 

(13) 

General solutions are known for certain types of operators. These are of 
considerable interest in physics and genetics, where the elements of T are 
given by theory. The present use of such operators is almost purely de- 
scriptive, however, for we do not know what special types of matrices will 
be of the greatest psychological interest. 

I t  is not always necessary to find a general solution. A qualitative un- 
derstanding of an experimental situation is often provided by simply trans- 
forming the initial distribution five or ten steps by direct matrix multi- 
plication. For example, a learning situation might be analyzed into three 
kinds of responses: correct (C), slightly wrong (S), and grossly wrong (G). 
During the course of learning a subject begins by making gross mistakes, 
then slight mistakes, and finally manages to make correct responses. Such a 
situation could produce a matrix equation like the following: 

I 0 0 

Tdo = ~pc(S) p~(Z) p o ( S ) ~ p ' ° ~ ( S ) ' =  . 3 o 
~,pc(G) p s ( G ) p , ~ ( G ) ) ~ ' ° ' ( G ) I  1 0 : 6 1 : 7 ~ 1 ~ "  

It  is tedious to find the general solution of T ~, and it is easy to see by direct 
multiplication what happens. The proportion of grossly wrong responses 
declines steadily: 1, .7, .52, .40, .32, .26, . . .  , .08. The proportion of small 
errors on successive trials at first increases, then decreases: 0, .3, .39, .40, 
.38, .35, . . .  , .23. The proportion of correct responses gives a roughly S- 
shaped function: 0, 0, .09, .20, .30, .38, .45, . . .  , .69. This situation is analogous 
to pouring water from one vessel into a second, which in turn pours the water 
into a third. The asymptotic distribution can always be found by solving 
the equation T d n  = dn • 

The form of a general solution can be indicated, for finite matrices with 
distinct roots, as follows. Let k~ represent the N characteristic roots of the 
polynomial det (T - ),I). We define a set of matrices f , ( T )  by 

f , ( T )  

( T  - -  ) ~ I ) ( T  - -  )~2I) . . .  ( T  - -  ) , , _ 1 I ) ( T  - ) , , . i I )  . . -  (T - ),~/) (14) 
=---- ( x , - - - = - K ~ , - = - ~  . . . - - ( x ,  - ~ , -1) (~ ,  - - - x - 7 : T Y - . . - ~ ,  - x.v) 
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In terms of these matrices, T can be expressed 

T -- k,f~(T) + )~.~f2(T) + . . .  + X,f•(T). (15) 

If g(k) is a rational scalar polynomial, then 

g(T) = ~(~,~)f,(T) + g(~)f~(T) + . . .  + g(),~)f~.(T). (16) 

In particular, if g(X) = h~, we have 

T" = h;'f,(T) ~- h~f2(T) -b " "  ~- h~f~(T). (17) 

The 2 X 2 transformation is expressed in this form in Eq. (7). Concerning 
the roots M , we know tha t  ~ can be assigned the value i, and tha t  all the 
other roots fall between --1 and -~1. Thus the asymptotic value of T ~ is 
given by f~(T). 

The solution for a particular matrix can always be obtained by (a) finding 
the roots of the characteristic polynomial, det(T - ~,I); (b) determining the 
f~(T) according to Eq. (14); (c) substituting into Eq. (17); and (d) solving 
T'd0 for the given boundary conditions of do . This procedure has the ad- 
vantage of avoiding the problem of inverting a large matrix, but  if two or 
more roots are nearly the same, the computations may  be quite difficult. 

The autocorrelation function is not defined for more than two unordered 
alternatives, because the value of the correlation coefficient varies according 
to the various possible assignments of numerical values to the different 
alternatives. However, the determinant of the matrix of transitional prob- 
abilities has many of the characteristics of a correlation coefficient, and in 
the 2 × 2 case the determinant and the autocorrelation coefficient are 
identical. The determinant of T ~, as a function of n, lies between -~1 and - 1 ,  
declines toward 0 for the Markov processes, and can reveal periodicities in 
much the same way as an autocorrelation function. The possible usefulness 
of this extension to N × N transformations needs to be explored. 

4. Extension to Compound Responses. For psychological purposes i t  is 
an inconvenience tha t  Markov processes have no memory. We must  now 
remove the restriction that, if the outcome of the trial n is known, events 
prior to n are irrelevant for predicting the outcome at  n ~- i. We must con- 
sider the non-Markovian case. What  we must do is to expand the definition 
of a state of the system in order to make such systems Markovian in a 
larger space. 

If the probabilities at  trial n -~ 1 depend upon the outcomes of trials n 
and n -- 1, but  knowledge of events prior to n - 1 does not change our pre- 
diction for n W 1, we have a non-Markovian system. This system is made 
to be Markovian by changing the definition of an event. Instead of char- 
acterizing the state of the system by the occurrence of a single response, 
we characterize it  by pairs of responses. If there are two atomic alternatives, 
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A and B, in the original system, then there are four compound alternatives, 
AA, AB, BA, and BB, in the new system. Thus we must  define a distribution 
d. over four alternatives, and T is a square matrix of fourth order: 

! 
p. .  (BB)J (p'")(BB) J 

paa(AA) 0 p.a(AA) 

Td. = paa(AB) 0 pBa(AB) 

0 paa(BA) 0 

0 pAR(BB) 0 

p("+~'(AA)) 

= " "~p'"+')(AB)~ = d . + l .  (18) 
|p'"+"(BA)l 

l p  ̀ "+" (Bt~)J 

Note tha t  many of the transitional probabilities are zero; it  is not possible 
for the system to move from some state to others in a single step. For  ex- 
ample, the system cannot move from AA to BB in less than two steps: 
AA --~ AB --) BB as in the sequence AAB, B. 

Tabulations of sequences of vowels and consonants in written Hebrew 
have been made by  E. B. Newman. The sequence of consonants (A) a n d  
vowels (B) can be adequately represented b r a matrix of the form of Eq. (18): 

o I 
.19 o .lo l .os5 j  

As before, the transformation T can be applied iteratively to carry any 
initial distribution into a final, unique, stable distribution. 

This extension of the Markov process can be carried as far as the data  
seem to merit. For  example, fixed-ratio reinforcement in operant conditioning 
requires an animal to respond m times in one way, then approach the food 
tray. In order to keep track of the sequential aspects of this behavior we 
could define a state of the system to include all the possible sequences of 
responses and approaches of length m -k- 1. Thus there would be 2 ~÷1 alter- 
native states, and the transformation would be of order 2 m*l. More complex 
sequential dependencies arise in human verbal behavior and can be treated 
in a similar manner. The verbal ease is so complex, however, that  it cannot 
be adequately discussed in this paper. 

In principle it is possible to extend the Markov definition indefinitely 
to  take into account as much of the past history of the system as one desires 
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Cases are known, however, in which the extension would need to be carried 
infinitely far into the past in order for the Markov model to summarize all 
the information. Such cases are better handled in other ways. At present, it 
seems likely that most learning situations will need to be described by these 
other methods, and that Markov processes using a single matrix of transitional 
probabilities are most valuable when the behavior has settled into a relatively 
stable pattern. 

5. Least-Squares Fi t  to Data. Under the assumption that a single trans- 
formation describes the behavior, every trial can be considered a measurement 
of the single transformation T. We wish to find a least-squares solution that 
will give the best estimate for T from the available data. The following pro- 
cedures may not be the most efficient for Markov processes, but they represent 
one fairly natural extension of the procedures used with more familiar statis- 
tical problems. 

We introduce a matrix M to represent the observed data. This matrix 
is formed by placing in successive columns the distributions observed on 
successive trials, from trial 1 through trial n - 1. If each distribution con- 
tains a alternative quantities, and n such distributions are known for suc- 
cessive trials, then M is an a × (n - 1) matrix. A matrix N is formed 
analogously by placing in successive columns the distributions observed on 
the successive trials from 2 through n. Thus N is also an a X (n - 1) matrix. 
The matrix N represents the best estimate of the successive distributions: 

N = N + C, (19) 

where the elements of the matrix C are the corrections that must be added 
to the observed Values in N to give the best estimate N. 

We wish to determine T, the best estimate of the transformation. From 
the definition of M and N and the assumption of a single operator throughout 
learning, we have the equation: 

TM = N  = N +  C. (20) 

From Eq. (20) we obtain an expression for C: 

C = - N  + T M .  (21) 

For a least-squares solution, CC' must be a minimum. This is obtained by 
putting the partial derivative with respect to T to zero: 

0_= CC' = M C '  = O. (22) 
OT 

We now substitute for C' from Eq. (21) into Eq. (22) and obtain 

M ( - N  + ~'M)'  = - M N '  --}- M M ' T '  = O. 
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Rearranging terms gives 

T" = ( M M ' ) - I M N  ", 
o r  

T = N M ' ( M M ' )  -1. (23) 

Eq. 23 provides a best estimate of T on the basis of the data matrices M 
and N. 

As an example, consider an experiment in a T-maze. We decide from 
an examination of the data that the learning process can be described by a 
Markov process with a single transformation. Suppose that 10 rats were run 
for 20 trials, and that on successive trials the following numbers of rats 
made the correct choice: 5, 7, 6, 6, 8, 8, 8, 7, 8, 9, 8, 7, 8, 9, 10, 10, 8, 8, 9, 9. 
From these data we construct the matrices: 

~.5 .7 .6 .6 .8 .8 .8 .7 .8 .9 .8 
M 

.5 .3 .4 .4 .2 .2 .2 .3 .2 .1 .2 

.7 .8 .9 

.3 .2 .1 

1.0 1.0 .8 .8 .9 t 

0 .0 .2 .2 .1 

N = ~.7 .6 .6 .8 .8 .8 .7 .8 .9 .8 .7 .8 

.4 .4 .2 .2 .2 .3 .2 .1 .2 .3 .2 

Next we multiply these matrices to obtain 

N M "  = , M M '  = 
[ 2.74 .96} 

The matrix M M '  is easily inverted, and we have 

T =  N M ' ( M M ' ) - ' =  112"16 3"1411 
[ 2.74 .96} 

I = . 9 2  . 

.08 .61 

.9 1 .0  

.1 0 

1.0 .8 .8 .9 .9(. 

11 0 .2 .2 .1 

11.99 2.91l. 
[ 

2.91 1.t9] 

1.19 -2.91 f ! 
-2.91 11.99] 5.8' 

The initial distribution do is (.5, .5), and from Eq. (8) we obtain 

p~"~(R) = .83 - .33(.63)". 

The values calculated from this equation are .500, .665, .738, .785, . 8 0 4 , . . . ,  
approaching .83 as the asymptote. Note that we do not have a least-squares 
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fit of this flmction, p(")(R), to the observed data; we have a least-squares 
fit for the transformation T. 

From Eq. (21) we can calculate the corrections that are added to N: 

TM = 1.655 .761 .708 .708 .814 .814 .814 .761  .814 .867 

.345 .239 .292 .292 .186 .186 .186 .239 .186 .133 

.814 .761 .814 .867 .920 .920 .814 .814 .867t, 
| 

• 186 .239 .186 .133 .080 .080 .186 .186 .133} 

C = 1 - ' 0 4 5  .161 .108 - . 0 9 2  

t • 045 --.161 --.108 .092 

- - . 0 8 6  .067 .114 --.039 

• 086 --.067 --.114 .039 

• 014 .014 .114 --.039 

--.014 --.014 --.114 .039 

- - . 0 8 6  --.133 --.080 

• 086 .133 .080 

• 120 .014 --.086 --.033~. 
t 

- - . 1 2 0  --.014 .086 .033} 

The squared deviations are given by 

C C ' =  { .144 - .1441 .  

- .144 .144} 

The best estimate of the dispersion of the calculated from the observed 
values is 

.092. (24) 
~ =  _ a _  1 = . ~ - ~  = 

The variance-covariance matrix V is given by 

V = ~ 2 ( M M ' ) - ' - " 0 0 8 4 7  1 5 . 8  -2.911"19 -2.91111.99]. (25) 

From Eq. (25) we compute the standard deviations of the estimates of 
pa(A) and p~(B): 

a[p.~(A)] = .092 - ] 1-~:19 = .04 
5.8 

a[p,(B)] = .092 -/11.99 .132. 
 7.s- 

The same procedure can be applied to the data from a single animal. 
The data matrices M and N then have either 0 or 1 on successive trials; e.g., 
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M _  t l  0 1 1 1 0 0 1 0 1 1 . . .  0 110f  
0 1 0 0 0 1 1 0 1 0 0 . . . 1 0  

N - - l ~  1 1 1 0 0 1 0 1 1 0 - . .  1 1 101 . 

0 0 0 1 1 0 1 0 0 1 . . -  0 0 

In order to solve for T we determine 

! re(l,0) m(O,O) } ra(O) 

The symbol m(i,j) represents the number of occurrences of the ordered pair 
i,j; re(i) represents the number of occurrences of i; and m(0) ~ m(1) = 
n -- 1, where n is the number of trials. Next we invert MM" and solve for T: 

t m(l' 1) m(0'l)~ I ~ 1  ) 0 

T = NM'(MM')-' = tm(1,0) m(O,O)~ ~ 0 m-~t 
(26) 

(re(l,1) m(0,1)~ 

1 1,o) re<o,0){ 
Eq. (26) is the result that would be expected from the definition of the 
transitional probabilities. 

In order to estimate the dispersion we calculate 

i 
m(!,l) re(O,1) re(l,1) m(],l)'~ 

TM = m(1) re(O) re(l) re(l) ( .  

/~(1,o) m(o,o) m(1,o) m(1,o){ 
\ m(1) ~ re(l) re(l) ] 

Then from Eq. (21) we find 

t m(1,1) --m(0,0) --m(1,0) 
C ~- TM -- N -~ m(1) m(0) m(1) 

-- m(1,1) m(0,0) m(1,0) 
m-~ re(o) m(:) 

The squared deviations are given by 

-m(1,O)] 
re(i) ( 
m(:,o){ 

re(l) : 
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where 

. . . .  I-m(~,O)-I = _ , ,  . , I - , n (~ , l )?  _ ,o . ,Fm(o,o)-P 
= mt~ , ' L -Z ( iTJ  + " "~ ' " -m-aT ' [ .  m.~ ~ .~ + " ~ " " L - ~ - O T J  

_,..,Fm(O,1)] = 

+ ,,,~o,V~L--m-~j 

. . . .  /~ ( ] , ] )~(1 ,0) /  _,,, 1~1F m(0l l )m(0,0)]  = [m(1,O) + m( , , ,%  ~-(5 ~ j + [m(O,O) + 
m--(~J 

_,,,Fm(1,~) m(l,O)-] ._,,,,Fm(O,1) m(O,O)-] 
= " ' ~ ' L - ~ ( 1 )  " m - - ~ J  + "~"JL ~ " m(O) J" 

The dispersion is, therefore, 

a . . . . . . . . . . . . .  1 - a  = " r e ( l )  " m - ~ J  

E2(o)  m(O,1)m(O,O)]~ '/2 (27) 
+ " m(O) " m(O) dJ " 

The variance~covariance matrix is 

t- i1) l i O ) f m  
V = ~r~(MM')  -1 - c 

n - - 3  

and from this matrix we compute 

cr[p.~(A)] --- o" re(l) and ~[p,(B)I = cr re(O)" 

Although these examples are worked out for the Markov ease with two 
alternatives, the same procedures can be used with more than two alternatives 
or with Markov processes defined for compound responses. It should be 
stressed, however, that the statistical properties of Markov chains are neither 
simple nor well understood. Better techniques will undoubtedly develop as 
the Markov process becomes more widely applied. 

6. V a r i a b l e  T r a n s f o r m a t i o n s .  Up to this point we have made the ex- 
plicit assumption that a single transformation could describe the successive 
changes in the probabilities of the alternative responses or alternative se- 
quences of responses. This assumption greatly simplifies the theoretical 
landscape and should be made whenever the data hint that it might be true. 
Simplicity is not, however, an intrinsic property of the behavior of living 
organisms, and so we must be prepared to deal with situations that obviously 
violate the assumption. 



GEORGE A. MILLER 163 

The assumption that  a single transformation is adequate means that  the 
transitional probabilities are fixed from the first through the last trial. Since 
the transitional probabilities determine the sequences of responses tha t  are 
probable or improbable, we are assuming that  the animal's course of action 
or strategy is fixed throughout  the experiment. In a certain sense, therefore, 
such an assumption means tha t  there is no learning at all; as soon as the 
experimental situation is encountered for the first time, the subject adopts 
the set of ~ransitional probabili t ies tha t  will later describe the statistical 
properties of his behavior after he has had long experience in the situation. 

The assumption of a single transformation would be justified, for ex- 
ample, after a long series of alternate conditioning and extinction. In this 
experiment the subject is able to evolve a single transformation for the re- 
inforcement conditions and another for the extinction conditions. Or if an 
animal has adopted a stable mode of behavior in a situation and then is 
temporari ly distracted in some way, his return to normal when the im- 
pediment is removed might be expected to follow a single transformation. 
But  in most of the situations that  are studied experimentally there is no a 
priori reason to expect tha t  a single transformation will be adequate, and 
there are several reasons to expect tha t  it will not be. 

In  order to illustrate what is involved in the assumption of a single 
transformation, Table I has been prepared to show one case where the 
assumption is correct and another where the assumption is wrong. Once more 
we consider the data  from 10 rats on 20 consecutive choices in a T-maze. 
The symbol 1 represents a correct choice, and 0 represents an incorrect choice. 
In  Tables IA and IB the numbers of rats making the correct choice are the 
same, and both are the same as the example fitted in the preceding section. 

Rat 1 

TABLE 1 

Hypothetical Data for Ten Rats on Twenty Trials in a T-Maze 

IA. Constant Transformation 
Trial 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1 1 0 0 0  0 0 0 1 1  1 1 1 1 1  1 1 1 1 1  
2 0 0 0 0 0  1 1 1 1 1  1 1 1 1 1  1 0 1 1 1  
3 1 1 1 1 1  1 1 1 1 1  1 1 1 1 1  1 1 0 0 0  
4 0 1 1 1 1  1 1 1 1 1  0 0 0 0 1  1 1 1 1 1  
5 1 1 1 1 1  1 1 1 1 1  1 1 1 1 1  1 0 0 1 1  
6 0 1 1 1 1  1 1 1 1 1  1 1 1 1 1  1 1 1 1 1  
7 0 0 0 0 1  1 1 1 1 1  1 1 1 1 1  1 1 1 1 1  
8 1 1 1 1 1  0 0 0 0 0  0 0 1 1 1  1 1 1 1 1  
9 0 0 0 0 1  1 1 1 1 1  1 0 0 1 1  1 1 1 1 1  

10 1 1 1 1 1  1 1 0 0 1  1 1 1 1 1  1 1 1 1 1  

5 7 6 6 8  8 8 7 8 9  8 7 8 9 1 0  1 0 8 8 9 9  
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T A B L E  1 (Continued) 

IB. Variable Transformation 
Trial 

Ra t  1 2 3 4 5 6 7 8 9 I0 11 12 13 14 15 16 17 18 19 20 

11 1 0 1 1 1  1 1 1 0 1  1 1 1 1 1  1 1 1 1 1  
12 0 0 0 0 1  1 1 1 1 1  0 1 1 1 1  1 0 1 1 1  
13 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 
14 1 1 0 1 1 1 1 1 1 1  ' 1 0 0 1 1 1 1 1 1 1 
15 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1  1 0 0 1 1 
16 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1  1 1 1 1 1 
17 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 
18 0 1 1 0 0  1 1 0 1 1  1 1 1 1 1  1 1 1 1 1  
19 1 0 0 0 1 0 1 0 1 1 1 1  1 1 1 1 1 1 1 1 
20 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 

5 7 6 6 8  8 8 7 8 9  8 7 8 9 1 0  1 0 8 8 9 9  

F r o m  t h e  d a t a  i n  T a b l e  I w e  c a n  e s t i m a t e  t h e  v a l u e s  of  p l ( 1 )  a n d  po(0)  

o n  s u c c e s s i v e  p a i r s  of  t r i a l s  b y  [m(i,j)]/m(i): 
IA Trial p,(1) p0(0) IB  Trial  p,(1) po(0) 

1-2 1.00 0.60 1-2 0 .60 0.20 
2-3 0 .86 1.00 2-3 0 .72 0 .67 
3-4 1.00 1.00 3-4 0.60 0.50 
4-5 1.00 0.25 4-5 0.83 0.25 
5-6 O. 88 O. 50 5-6 O. 75 O. O0 
6-7 1.00 1.00 6-7 0 .88 0.50 
7-8 0 .88 I .  00 7-8 0.75 0.50 
8-9 1.00 0.67 8-9 0 .72 0.00 
9-10 1.00 0.50 9-10 0 .88 0.50 

10-11 0.89 1.00 10-11 0.78 0.00 
11-12 0.88 1.00 11-12 0.75 0.50 
12-13 1.00 0 .67 12-13 0.86 0.33 
13-14 1.00 0 .50 13-14 1.00 0 .50 
14-15 1.00 0.00 14-15 1.00 0 .00 
15-16 1.00 . . . .  15-16 1.00 . . . .  
16-17 0.80 . . . .  16-17 0.80 . . . .  
17-18 0.88 0.50 17-18 0 .88 0 .50 
18-19 1.0O 0.50 18-19 1.00 0 .50  
19-20 1.00 1.00 19-20 1.00 1.00 

T h e r e  s e e m s  t o  b e  a c l e a r  t r e n d  in  I B  f o r  p , ( 1 )  t o  i n c r e a s e  o n  s u c c e s s i v e  

t r i a l s ,  w h e r e a s  n o  t r e n d  f o r  p,  (1) i s  o b s e r v a b l e  i n  I A .  I f  w e  g r o u p  t h e  t r i a l s  

b y  f ives  t o  s e c u r e  m o r e  r e l i a b l e  e s t i m a t e s ,  we  g e t  

IA Trials pl(1) p0(0) I B  Trials p~(1) p0(0) 

1-6 0 .94 0 .67 1-6 0 .72 0 .33 
6-11 0 .95 0 .89 6-11 0 .85 0 .30 

11-16 0 .98 0 .63 11-16 0 .93 0 .38 
16-20 0 .92 0 .60 16-20 0 .92  0 .60 



G E O R G E  A .  M I L L E R  165 

Comparisons such as these show tha t  the assumption of a constant 
transformation cannot be checked by the successive distributions alone, for 
IA and IB are identical in this respect. The assumption is justified if the 
analysis of short sequences of trials shows relatively constant transitional 
frequencies, as in IA. If the transitional frequencies show a definite trend, 
as in IB, the assumption is not justified. 

The question is what to do when we face variable transformations. 
Whatever we do, the situation will not be simple. If . . .  P Q R S T  do cannot 
be translated into . . .  T T T T T  do,  the matrix products may get quite com- 
plex. If we could choose P, Q, R, S, T as commutative matrices, it would be 
possible to find a simultaneous solution for all of them; all matrices would 
have the same characteristic vectors but different characteristic roots. Un- 
fortunately, however, it does not seem possible in general to choose com- 
mutative matrices with the properties demanded by the data. 

If the complexity of the problem is admitted as inevitable, we can still 
look for a matrix function of n, T(n) ,  that  changes in some reasonable way 
on successive trials. The following argument illustrates one possible approach. 
We assume that  at the beginning of the experiment the subjects are equipped 
with transitional preferences given by the matrix U. After long experience 
in the situation the subjects develop transitional preferences given by the 
matrix V. As the experiment progresses the tendencies represented by U are 
slowly extinguished and those represented by V are slowly strengthened. 
Consider the following sequence of equations: 

T(0) = U 

T(1) = wT(O) q-- (1 -- w ) V  

T(2) ----- wT(1) + (1 -- w)V (29) 
. . . . . . . . . . .  , °  . . . . . . . . . . .  

T(n) = wT(n  - 1) + (1 - w) V, 

where 0 ~ w < 1. The rationale for this set of equations is that  w represents 
the perseveration of the tendencies on the preceding trial, and (1 - w) 
represents the ability to adopt the new mode of response symbolized by V. 
If the extinction of the old pattern of responses is slow, w is near unity; if 
the old pattern extinguishes rapidly, w is near zero. 

Eq. (29) can be written in terms of U and V: 

T(O) = U = w ° ( U -  V) + V 

T(t) = w U  q- (1 -- w) V = w ' ( U  - V) --k V.  

T(2) = w~U + (1 - w 2) V = w~(U - V)  q- Y .  (30) 

o , ,  . . . . . . . . . . . . . . .  ° ,  , . . . . . . . . . . . . . . . . . . . . .  

T(n) = w ' U  + (1 - w')V = w' (U - V) + V.  
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In  this form it is clear that ,  since 0 _< w < 1, T ( n )  approaches V as n in- 
creases. The  importance of U becomes progressively smaller as the subject 
has more and more experience in the experimental situation. This formulation 
has the advantage  tha t  it is relatively easy to compute the successive values 
of T(n ) ,  given U and V. The initial and final matrices, U and V, can be given 
theoretically or can be determined from data  obtained prior to the first trial 
and after the learned behavior has stabilized again in the new course of action. 

For  illustrative purposes, assume tha t  U and V are known to be 

1: :t l ° :t .1 

and tha t  the weight w is calculated to be 0.8. Then Eq. (30) gives 

T(n) = .8 ~ n u • 
.4 - .6 

Then on successive learning trials we have:  

n: 0 1 2 3 4 5 6 7 8 9 10 . . .  

p~(A): .5 .58 .644 .695 .736 .768 .796 .816 .832 .846 .857 • • • 

pB(B): .5 .52 .536 .549 .559 .567 .574 .579 .583 .587 .589 . . .  

Next  we calculate the proportions of right and wrong responses on successive 
trials. This is given by  the equation: 

T(O)do = dl 

T(1)dl = d~ = T(1)T(O)do 

T(2)d2 = d3 = T(2)T(1)T(O)do (31) 

, , , o o ,  . . . . .  , , ° ° , o , ° ° .  . . . .  ° ° °  

0 

T(n)d .  = d.÷~ = l - I  T(i)do. 
n 

I t  is assumed tha t  T(0) = U and do are known from prel iminary experi- 
mentation.  Assume the boundary  condition d~ = (.5, .5). Then direct com- 
putat ion gives the values: 

n: 1 2 3 4 5 6 7 8 9 10 - . .  

p(R) :  .5 .53 .559 .587 .614 .639 .662 .683 .700 .716 . . .  .800 

Considerable care must  be taken with such i terated computat ion,  for the 
errors are cumulative. 

I t  should be noted tha t  if w = 0, the variable case reduces to the constant  
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case, for then T(n)  = V and HT(i) = T". Similarly, if w = 1, then T(n)  = U 
and we again have a single transformation. 

A special case arises if U and V commute, U V  = V U ,  for then T(n)  
and T ( n  + k) also commute. If two matrices with distinct roots commute, 
then one can be written as a polynomial in terms of the other, with scalar 
coefficients. Thus if the matrices A and B commute, we can write, according 
to Eq. (15) and (16), 

B = ~ , f l (B)  + ~2f2(B) + . . .  + ~ f j v ( B )  (32) 

A = g(B) = g(k,)f~(B) + g(k2)f2(B) + . . .  + g(hu)fN(B), 

where ~,1 is the characteristic root of B; g(hl) is the characteristic root of A; 
and for matrices of transitional probabilities k~ = g(h~) = 1. Thus A and 
B have different roots, but f~(A) = f~(B).  Another way of saying the same 
thing is to note that commutative matrices are transformed into their diagonal 
form by the same operator. Thus if S transforms A into the diagonal form 
Aa , S also transforms B into its diagonal form An. The product of A and 
B is (since the diagonal matrices ha and AB obviously commute) 

A B  = ( S A a S - ~ ) ( S A n S  - ')  = SAaA~S -1 = S A , A a S  -~ 

= ( S h n S - a ) ( S h a S  -~) = B A .  

If the matrices T(i)  commute, then 

where the A(i) are the diagonal matrices similar to T(i) .  The product of the 
T(i)  reduces to the product of diagonal matrices. If all of the h(i)'s are 
equal, then Eq. (33) reduces to the constant case given by Eq. (5). 

Commutative matrices occur when the distribution over the several 
alternative responses does not change, although the transitional probabilities 
do change. If U has been applied repeatedly, U" approaches f~(U) as a limit; 
after V has been applied repeatedly, V" approaches f i ( V ) .  When U and V 
commute, f~(U) = f~(V) ,  and so both transformations lead to the same 
stable distribution. Such a situation might arise in learning a simple alterna- 
tion between left and right. The learning might leave p(L)  = p(R)  = .5, 
although the transitional probabilities were altered. 

This discussion of learning should suggest some of the descriptive possi- 
bilities of systems of dependent probabilities. By this general development 
we arrived at a mathematical description of complex behavioral changes-- 
a description that enables us to talk about the gradual replacement of one 
pattern of responses by another. 
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