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Second-order factors are defined and illustrated in terms of a 
literal notation, a physical example, a diagrammatic representation, 
a geometrical example, and the matrix equations relat ing the first- 
order and  second-ord_er domains. Both kinds of factors are discussed 
as parameters which may be not only descriptive of the individual 
objects in a statistical population but  also descriptive of the re- 
strictive conditions under  which the objects were generated or se- 
lected. Second-order factors may be of significance in reconciling 
the several theories of intelligence. This paper is concerned ~ i th  
test  configurations tha t  show simple structure. I f  such a s t ~ c t u r e  
is not revealed, then the second-order domain is indeterminate. 

1. First-Order and Second-Order Factors 
Most of the work that  has been done so fa r  in the development of 

factorial theory has been concerned with the factors obtained from 
test  correlations with or without rotation of axes for the selection of 
a suitable reference frame. Factors that are obtained from the test 
correlation will be called first-order favtors whether they are selected 
so as to be orthogonal or oblique. We shall now consider the factors 
that  may be determined from the correlations of the first-order fac- 
tors. Factors that are obtained from the co~,relations of the first-order 
factors will be called second-order factors. Factors of this type seem 
to be of fundamental significance in the interpretation of correlated 
variables.* 

Analysis of second-order factors and their relations to those of 
first-order can be presented in several different ways. We shall de- 
scribe these two factorial domains in terms of a literal notation, a 
physical example, a diagrammatic representation, a geometrical ex- 
ample, and the matr ix  equations relating the two domains. 

Consider first a reduced correlation matrix for the tests whose 
rank is, say, five. The factoring of this correlation matrix determines 
five arbi t rary  orthogonal unit reference vectors which may be denoted 
I, H, HI,  IV,  and V. This orthogonal reference f rame is arbi t rary in 

* This study of second-order factors is one of a series of investigations in the 
development of multiple factor analysis and applications to the study of pr imary  
mental abilities. This investigation has been supported by a research g ran t  from 
the Carnegie Corporation of New York. The Psychometric Laboratory has also 
had support from the Social Science Research Committee of The University of 
Chicago. 
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the sense that  it is defined by the method of factoring which happens 
to be used. This reference frame will be regarded as fixed and all 
other vectors will be defined in terms of this fixed orthogonal frame, 
which is designated by the subscript m. Let it be assumed that  a com- 
plete simple structure can be found in the test configuration and let 
the corresponding primary vectors be denoted A, B, C, D, and E. 
(These are ordinarily denoted TA, TB, etc.) We shall assume that  
these primary traits are correlated in the experimental population. 
Then the primary vectors in the test configuration will be separated 
by acute angles whose cosines axe the correlations between the pri- 
mary traits  in the particular group of subjects studied. Let these 
correlations be listed in a new correlation matrix of order 5 × 5 show- 
ing the correlations between primary factors. This correlation matrix 
defines the second-order domain just as the correlation matrix for the 
tests defines the first-order domain. 

The simplest case is that  in which the five pr imary factors are 
uncorrelated, in which case their  correlation matrix is a unit matrix 
so that an analysis of a second-order domain is not immediately in- 
dicated. Next would be the case in which the reduced correlation ma- 
trix for the primary factors A, B, C, D, and E is of unit rank. There  
are two types of interpretation for such a situation. The correlations 
between the primary factors in a particular experimental population 
may be due to conditions of selection of the subjects, and in this case 
the correlations would be of no more theoretical importance than the 
conditions of selection of the subjects. If, on the other hand, the five 
primary functions A, B, C, D, and E actually do have some parameter  
in common, then one would expect their intercorrelations to be of 
unit rank for different experimental groups of subjects that  are se- 
lected in different ways. In other words, the mere fact that  a set of 
variables, or a set of factors, are correlated does not imply any scien- 
tific obligation to find "the" factors that  account for the correlations 
because the factors, if found, might turn  out to be as incidental in 
significance as the conditions by which the subjects happened to be 
selected. On the other hand, the fact that correlations between vari- 
ables, or between factors, can be caused by scientifically trivial cir- 
cumstances does not guarantee that all correlations between variables 
are of trivial significance. If the correlations between the five pri- 
mary factors in the present example should turn out to be of uni t  
rank, then this circumstance merits a closer look because such a sim- 
plification would not often happen by chance. If  the correlations be- 
tween the pr imary factors should turn out to be of unit rank for sev- 
eral different experimental groups, then we should have an obligation 
to ascertain the cause which must transcend the selective conditions. 
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In order  to avoid misunderstanding,  perhaps it should be re- 
marked  that  in fac tor  analysis we are  using the term parameter in its 
universal  meaning in science. A parameter is one of the measure- 
ments that are used for describing or defining an object or event. In 
statist ical  theory the t e rm parameter is f requent ly  used in a more 
res t r ic ted sense as descript ive of the universe as contras ted wi th  a 
statistic which is the corresponding measurement  on a sample. We  
a re  not  using the  term in this restr icted sense. 

Let  it be assumed tha t  the five p r imary  factors  do have a para-  
meter  p in common. Then the five pr imar ies  could be expressed in 
the  fo rm 

A = f ( p  , a ) ,  
B z f ( p , b ) ,  
C - - f ( p , c ) ,  
D - -  I ( p ,  d ) ,  
E----f(p ,e ) ,  

where  each p r imary  function is defined in terms of a pa ramete r  such 
as  ~, b, c, d, or  e, which is unique to itself and also in te rms  of an- 
other  pa ramete r  p, which it shares  wi th  the  funct ions tha t  define the  
other  primaries .  I f  there  should happen to be  conspicuous correlat ion 
between the pa ramete r s  a, b, c, d, and e in the  par t icular  group of 
subjects , . then the uni t  r ank  of  the  second-order domain would be dis- 
turbed.  I f  the correlat ions of the pr imar ies  show unit  rank, then, in 
addi t ion to the parameters  a, b, c, d, and e, a second-order pa ramete r  
or fac tor  p can be postulated. 

I t  should be noted tha t  we  now have six parameters ,  namely, 
a, b, e, d, e, and p, and since the rank  of  the tes t  correlations is five, 
it follows tha t  these six parameters  a re  l inearly dependent.  In fact,  
the pa ramete r  p is now a l inear combination of the  other  five para-  
meters .  We can express  these  relations by a set  of  parameters  such 
as A, B, C, D, E,  and p, in which p is a l inear combinat ion of  the five 
p r ima ry  parameters .  The five pr imar ies  are  pa ramete r s  descript ive 
of  the first-order domain, and the pa ramete r  or fac tor  p is descrip- 
t ive of  the second-order domain, which is here  of  unit  rank. The sec- 
ond-order  pa ramete r  is a l inear combinat ion of  the  five pr imaries  tha t  
a re  defined by the original tes t  correlations. I f  some degree of  con- 
sistency can be found for  these pa ramete r s  fo r  different groups of  
subjects ,  then all of these  pa ramete r s  should represen t  some aspects 
of  the underlying physical and mental  functions.  

Consider next  a set  of  correlated pr imar ies  A, B, C, D, and E in 
which the paramete r  p appears  in the  first order  as in the following 
example:  
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A - - / ( p ,  a), 
B - - f ( p ,  b), 
C - - f ( p , c ) ,  
D=?(p , • ) ,  
E---/(p). 

The rank of the reduced correlation matrix of the tests would now be 
five. The five primaries listed above would be correlated and of unit 
ranL The second-order factor p would be determined from the corre- 
lations of the primaries. In this case the eommunality for  the pri- 
mary factor E would be near  unity, thus showing that  its total vari- 
ance is common to the second-order factor p ,  hence the pr imary fac- 
tor E of the first order and the factor p of the second order would be 
identical. The presence, or absence, of the pr imary E could be deter- 
mined by including, or excluding, a few tests in the battery. We see, 
therefore, that  the appearance of a factor in the first order or in the 
second order may depend on the battery of measurements taken ; hence 
a factor should not be considered as intrinsically different because it 
appears in the second order. This circumstance can be determined by 
the selection of the test battery. 

On the other hand, a parameter which always appears in the 
measurements in association with some other function would not ap- 
pear as in the primary E and it would be discovered experimentally 
nearly always in the second order. Such a limitation could be intro- 
duced by the physical nature of the attribute which the  factor repre- 
sents, so that in such a case the second order would represent some- 
thing fundamentally different from that of the first order. A single fac- 
tor study is not likely to reveal whether a second order parameter is 
fundamentally different from the parameters of first order or whether 
the differentiation is caused merely by the selection of the test battery. 

In the following example we have another combination of pri- 
maries, 

A : f ( p  ,a), 
B~--f(p,b) ,  
C----f(p,c), 
D - - f ( p  ,d),  
E - - f ( e ) .  

In this example the reduced rank of the test correlativns would again 
be five. The correlations of the primaries would show unit rank for 
A, B, C, and D. The factor E would be orthogonal to the rest of the 
system so that  its row and column would have side correlations of 
zero. The correlations of primaries would not be of unit rank if we 
consider the whole table of order 5 × 5 but it would be of unit rank if 
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we consider only the 4 × 4 table for A, B, C, and D. Relations of this 
kind can be found by inspection of the correlations of the primaries 
and they may be indicative of the underlying order in the domain that  
is being investigated. 

The principles of a second-order domain have been discussed here 
in terms of the simple case in which that domain is of unit rank so 
that there is only one general second-order factor. I t  should be evi- 
dent that  the organization of the second-order parameters can be of 
any rank and complexity. For  example, the rank may be higher than 
one, and the second-order factors may extend to all of the primaries 
or only to some of them. The possibility of third-order and higher- 
order factors must be recognized but their experimental identification 
is of increasing difficulty the higher the order because of the insta- 
bility of such a superstructure on practically feasible experimental 
data. The number of second-order factors that  can be determined 
from a given number of Linearly independent pr imary factors follows 
the same restrictive relations that  govern the number of primary fac- 
tors that  can be determined from a given number of tests. Thus, for 
example, it is not to be expected that three second-order factors will 
be determinate from only five primary factors for  the same reason 
that three primary factors cannot be determined from five tests, Fur- 
thermore, it is entirely possible in the same data for the first-order 
domain to give clear interpretation of a set of primary factors and 
for the second-order domain to be indeterminate or ambiguous. 

2. The Box Example 
In order to illustrate the nature of first- and second-order factors, 

we shall make use of populations of simple objects or geometrical fig- 
ures and their measurable properties instead of dealing with these fac- 
tors merely as logical abstractions. We have used a population of 
rectangular boxes and their measurable attributes to illustrate the 
principles of correlated primary factors and we can use them also for 
the present discussion.* 

A random collection of rectangular boxes was represented by the 
three measurements length (x),  width (y) ,  and height (z). A list 
of measurements was prepared which could be made on each box, 
such as the diagonal of the front  face, the area of the top surface, the 
length of a vertical edge, and so on. Each of these measurements rep- 
resented a test score and each box represented an individual member 
of the statistical population. The correlations between the measure- 
ments were computed and analyzed factorially as if  we did not know 

* Thurstone, L. L. Current  issues in factor  analysis. Psychol. Bull., 1940, 37, 
p. 222. 
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anything about the exact nature of each measurement, which was 
treated as a test score of unknown factorial composition. As has been 
shown previously, the analysis revealed three factors in the correla- 
tions for  the particular set of measurements used. The configuration 
showed a complete simple structure and a set of primary vectors was 
determined by the configuration. These three primaries represented 
the three basic parameters in terms of which all the test measurements 
had been expressed. 

The three primary vectors were separated by acute angles whose 
cosines represented the correlations between the three basic paramet- 
ers that  were used in setting up the box example. These three correla- 
tions could be assembled into a small correlation matrix of order 
3 × 3. The physical interpretation of the positive correlations was 
that  large boxes tend to have all of their dimensions larger than small 
boxes. In other words, if  one of the dimensions of a box shape is, say, 
six feet, the other dimensions of t~e box are not likely to be of  the 
order of, say, two or three inches. The table of correlations of the 
three primary factors X, Y, Z, could be represented by a single com- 
mon factor. This factor would be a second-order factor. It  would, 
no doubt, be interpreted as a size factor in the box example. I f  this 
second-order size factor were denoted s, we should have four para- 
meters for  describing the box shapes, namely, the three dimensions, 
x, y, and z and the size factor s. These four  parameters or factors 
would be linearly dependent because the rank of the correlation ma- 
trix of the tests was three. 

In the case of the box example, a size factor or parameter could 
be determined in the first-order if desired. For  this purpose we could 
use the first centroid axis, the major  principal axis, or the volume 
vector, all of which can be easily defined in the first-order system of 
test vec~ors. The four parameters so chosen would also be linearly 
dependent. If  we wanted to use only three linearly independent para- 
meters including a size factor, that  could be done in the first order 
by choosing, say, the two ratios x / y  z rl and x / z  ~- r2 as well as the 
volume vector v. These three factors would be linearly independent 
but they would be correlated. The latitude with which we can choose 
simplifying parameters for  the box example is determined in par t  by 
the fact that  three factors can nearly always be represented by a com- 
mon factor whereas this is. not the case when the rank is higher than 
three. 

3. Diagrammatic  Representat ion 
The relations between the first-order and the second-order do- 

mains can be represented diagrammatically as shown in Figures  1, 
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2, and 3. In Figure 1 we have a set of eight tests whose correlations 
are accounted for by five primary factors, A, B, C, D, and E, which 
are uncorrelated. The factor A, for example, is present in the com- 
mon factor variar~ces of tests 1, 2, and 4. The primary factor E is 
present in the common factor variances of all the tests, and hence E 
would be called a general factor for the particuJar battery. Since it 
is orthogonal to all the other primary factors it may be called an 
orthogonal general factor of the first order. In order to determine the 
nature of the factor E it would be necessary to study it in different 
test batteries so that one could predict with certainty when the factor 
would be present and when it would be absent from a test. Since the 
primary factors are here represented as uncorrelated, the matrix of 
correlations of the primary factors would be an identity matrix and 
there would be no immediate provocation to investigate a second- 
order domain. 

In Figure 2 we have represented a set of tests and five pr imary 
factors A, B, C, D, and E. (We are not here concerned as to whether 
the particular number of tests represented in this diagram is ade- 
quate for  the determination of five primary factors. The purpose of 
these diagrams is merely to show the nature of the relations between 
the two domains.) The rank of the correlation matrix of the tests 
would here be five, which corresponds to the number of linearly in- 
dependent primary factors. In the present case we should find that  
the primary factors are themselves correlated. The matrix of corre- 
lations of these primaries would be of order 5 × 5 and it would be 
of unit rank. The correlations between the pr imary factors could 
therefore be accounted for by a single general second-order factor 
that  is denoted G. If  both the first-order and second-order factors 
were to be used for the description of the tests and the relations, we 
should have six parameters which would be linearly dependent be- 
cause the rank of the correlations of the tests is only five. In fact, 
the saturation of each ~ s t  with the second-order factor G would be 
a linear combination of the saturations of the test with the five pri- 
maries of the first order. None of the primary factors are general 
factors in this figure. 

In Figure 3 we have a more complex relation in that  the correla- 
tion matrix for the primary factors would be of rank two. One of the 
second-order factors is here shown to be common to all but one of the 
primary factors, one of the second-order factors is a factorial doub- 
let in that  it represents additional correlation between the primaries 
B and D, and the primary factor A is orthogonal to the rest  of the 
primaries so that  it does not participate in the second-order domain. 
This diagram is drawn merely to illustrate the variations in complex- 
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ity that may be found in factorial studies. 
The two types of general factor here shown in Figures 1 and 2 

have some interesting differences. The general factor E of Figure 1 
is independent of the other primary factors while the general factor 
G in Figure 2 is present in all of the other factors. Hence we must 
conclude that  a second-order general factor is a part  of, and must  
participate in, the definition of the other factors while the orthogonal 
general factor E of Figure I is, by definition, independent of the other 
primary factors. I t  is evident, therefore, that  a general second-order 
factor is likely to be of more fundamental significance for the domain 
in question than a general orthogonal first-order factor. An orthogo- 
nal general factor of the first order might operate in a test without 
any group factor whereas a second-order general factor would oper- 
ate, ordinarily, through the mechanism of some function that  could 
be identified as a group factor, a primary factor, or a specIaI ability. 

The factor patterns corresponding to the relations shown dia- 
grammatically in these figures are given in Tables i ,  2 and 3. Table 
I shows the factor pattern for Figure 1. Here the orthogonal general 
factor E is identified by the fact that  all entries of its column are 
filled. Table 2 shows the factor pattern for Figure 2. Here it is seen 
by the factor pattern that  a group such as tests 1, 4, 5, and 7 have 
no primary factor in common and that hence their  correlations would 
be determined only by the second-order general factor G. The deter- 
minant of the correlations for these four tests (the tetrad difference) 
would therefore vanish. The second-order factor matr ix is also shown 
in this table with only one factor G to correspond to this example. 

The question might be raised whether both types of general fac- 
tor could be present in the same battery. That  seems possible. In that  
case a simple structure could define the pr imary factors A, B, C, and 
D but not E in the particular battery of Figure 1. This factor could 
be assumed arbitrarily to be orthogonal to the other factors, but then 
the line GE of Figure 2 would be erased to correspond to the fact  that  
E is orthogonal to the other factors. One or more second-order gen- 
eral factors could be found in the correlated primaries. If the corre- 
lations of A, B, C, and D were of unit rank, another alternative would 
be to set E in such a relation to the other pr imary vectors as to main- 
rain the unit rank with the second-order general factor. It  might 
then be found that  the vector E has non-vanishing projections on all 
the test vectors, in which case both types of general factor would be 
assumed to be a possible set of explanatory parameters for  the bat- 
tery in question. It must be remembered that  these various locations 
of the reference f rame for the explanatory parameters in both the 
first-order and the second-order domains have validity only in so fa r  
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as they are suggestive of fruitful scientific interpretation. If  this is 
not the purpose, then the factorial resolution might as well remain in 
the arbi trary orthogonal factors produced by factoring the given test 
correlations--or, better still, by not doing the factoring at all. 

I t  might be asked how the correlations of a test battery can be 
resolved into a second-order domain of unit rank which is lower than 
the rank of the test correlations. The transitions can be regarded 
geometrieally. The unit test vectors usually define a space of as many 
dimensions as there are tests. When the reduced correlation matrix 
is considered, its rank is frequently lower than its order. Hence the 
reduction from the number of tests n to the number of primary 
factors r represents a reduction from the total variance of the tests 
to the common factor variance. The complete correlation matrix for 
the primary factors represents a set of r unit vectors in as many di- 
mensions, the dimensionality of the common factor space. The re- 
duced form of this matrix for  the example of Figure 2 would 
have u n i t  rank because the side correlations are determined only by 
that which the primaries have in common, namely, the second-order 
general factor. 

4. Group Factors and Primary Factors 
In Figure $ we have a diagrammatic representation of a differ- 

ent kind of resolution of factors in the second-order domain and their 
relation to the primary factors. In this example the rank of  the cor- 
relation matrix of tests is assumed to be five as represented by as 
many primary factors A, B, C, D, and E. Let it be assumed that the 
correlation matrix for these five primaries is of unit rank. The gen- 
eral second-order factor G then accounts for the observed correlations 
of the primary factors. If  the five linearly independent primary unit 
vectors and the second-order unit vector G are to be represented in 
the same space, the dimensionality of this space must  be six. It  is 
possible to locate in this augmented space another set of unit vectors 
a, b, c, d, and e which are mutually orthogonal and which are also 
orthogonal to the unit vector G. Then we have the orthogonal refer- 
ence frame G, a, b, c, d, and e which defines the six dimensions of the 
first- and second-order factors but  not the test space. The five linear- 
ly independent pr.imary factors define a five-dimensional space corre- 
sponding to the rank of the test  correlations, and this space is a part  
of the total six-dimensional space of this representation. 

The unit vector a is a linear combination of  the unit vector G 
and the primary vector A. The relation is similar for the other pri- 
mary vectors. The primary vectors A, B, C, D, and E are correlated 
and of unit rank whereas the vectors, a, b, c, d, and e are arbitrarily 
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set orthogonal to each other. In general, if the rank of the test corre- 
lations is r, and if the correlations of the primaries are of unit rank, 
then the primaries define a unit vector G for a general second-order 
factor in an augmented space of dimensionality ( r  + 1) and also a 
set of r mutually orthogonal unit vectors each of which is in the plane 
of the second-order general factor and one of the primaries. These 
vectors are arbitrarily set orthogonal to the general second-order fac- 
tor  and they are  called group factors. In Figure 4 the pr imary fac- 
tors are denoted A, B, C, D, and E and the group factors are denoted 
a, b, c, d, and e. With this resolution we have (r  + 1) linearly depen- 
dent factors which represent the test correlations of rank r. This 
type of resolution is preferred by some students who use the refer- 
ence frame G, a, b, c, d, and e because it is orthogonal ra ther  than the 
frame G, A, B, C, D, and E which is oblique. 

5. A General Second-Order Factor 
The algebraic and computational relations between the first-order 

and the second-order domains will be shown for the case of a single 
general second-order factor because of the interest of this case for 
the psychological controversies of the past for ty  year~ about Spear- 
man's general intellective factor. The algebraic and computational re- 
lations to be shown can be generalized to second-order domains of 
higher than unit rank. It must be remembered, however, that  the 
restriction of our discussion to unit rank for  the second-order domain 
does not in any way imply that  such low rank is always to be expected. 
The methods of analysis can be readily extended to a second order of 
higher rank when the data indicate a determinate second-order con- 
figuration. In any case, the second-order rank should be considerably 
lower than the rank r of the first-order factors in order to just ify in- 
terpretation. 

The primary vectors constitute a set of r linearly independent 
unit vectors that define a space of dimensionality equal to the rank 
of the test correlations. In order to represent a general second-order 
factor as a unit vector in the same configuration it is necessary to 
augment the dimensionality to ( r  + 1) dimensions. A second-order 
domain of rank two would thus require an augmented space of di- 
mensionaLity (r  + 2). The projections of the test vectors on these 
additional vectors in the augmented space can, however, be expressed 
as linear combinations of the test projections on the primary vectors 
or on any set of r linearly independent vectors in the common factor 
space. The procedures for determining these saturations will be shown 
without writ ing explicitly the (r + 1) co-ordinates of the second-or- 
der unit vectors in the augmented space. 
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The present discussion is confined to factorial data that satisfy 
two conditions, namely 1) that a complete simple structure is revealed 
in the test configuration and 2) that the second-order correlation ma- 
trix is of unit rank. These methods can be adapted to the analysis of 
less than r primary factors and the methods can be adapted to higher 
second-order rank. 

One of two objectives will be assumed, namely (1) to determine 
~he projections (saturations) of the tests on the second-order factor 
in addition to the projections on the primary reference vectors or (2) 
to determine the projections on the second-order factor and also on 
the orthogonal group factors. It will be convenient to discuss the alge- 
braic relations under four cases because of the different computational 
routes that may be chosen. These four cases are: 

Case 1. Trans/ormatwn /rom F to V including the column vector G 

This transformation is shown in rectangular notation in Table $ 
for the equation 

Fs., ~ p - -  Vjp, (1) 

in which the matrix Vip has an extra column for the second-order fac- 
tor G with elements vjg, which may also be denoted rj~ because these 
are the correlations between the tests j and the general factor G. The 
transformation matrix P~p is identical with AMp except for the added 
column G with elements V.,9 which are to be determined. Consider the 
matr ix T as an extension of the factor matrix F. The rows of T give 
the direction cosines of the primary vectors Tt with elements G . .  The 
same transformation gives 

Tt~ ~ p  ~ Vtp, ( 2 )  

which is the diagonal matrix D except for the first column. Applying 
the transformation ~,~g we have 

Tt,n ~ - -  rtg , (3 )  

where rtg is the first column of Vt and its elements are the correla- 
tions of the primary factors with the general factor G. These are  
known from the factoring of the unit-rank correlation matrix for the 
primaries. Then 

~ g  - -  T-Itm rtg,  (4 )  

and, since T ---- D A -1, we have 

~m~ - -  A D -1 rt~,  (5 )  



82 PSYCHOMETRIKA 

from which the first column of P,g can be computed. Hence the col- 
umn G of the augmented oblique factor matrix V becomes known. 

Case 2. Trams formation from F to U including group factors and gen- 
eral factor G 

Here the computation starts again with the orthogonal factor 
matr ix F and the objective is to determine the saturations of the tests 
j with the r group factors and the second-order general factor G. This 
transformation is also shown in Table 4 in rectangular notation by 
the equation 

F ~  ~ = Uj~, (6) 

where U is the factor matrix showing the projections of tests j on 
group factors and general factor G. These (r  + 1) mutually orthog- 
onal factors will be designated by the subscript w. The first column 
of this matr ix is again the column of correlations rjg. If  the same 
transformation is applied to the matr ix T for  the pr imary vectors, 
we have 

T,~ ~ : Ut~, (7) 

which is also a diagonal matr ix except for the first column which con- 
rains the correlations r~g between the pr imary factors and the second- 
order general factor G. These saturations can be determined from the 
unit-rank correlation matrix TT" = Rt for  the pr imary factors.* Con- 
sider the first row of Ut .  The two entries in this row show the direc- 
tion cosines of T~ in terms of the orthogonal f rame G, a, b, and c. The 
primary vector T~ is a linear combination of the two orthogonal unit 
vectors G and a. Hence, when r~ a is known, we have 

r ~ .  + u2~2 - -  1 ,  ( 8 )  

o r  

r2Ag + u2A~ = 1, (9) 

so that  the element uA~ is known. The other diagonal elements of Ut 
are determined in the same way so that, for  example, 

r2Bg + U~Bb - -  I .  (10) 

When the matrix Us is known, we have, by (7), 

W~ --  T -1 Ut ,  (11) 

* Elsewhere we have denoted this matr ix  R~, l but we are here using the sub- 
script  t for  the pr imary  vectors T t and reserving the subscripts p and q for  the 
pr imary reference vectors A, B, and C. Hence the correlations of the pr imary  
factors are here denoted R t instead of Rpq. 
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o r  

~ --  A D -~ Ut (12) 

so that  the transformation ~ is known. The saturations of tests j 
on the second-order general factor G and the group factors w can then 
be computed. 

The transformation matrix ~ represents ~ rigid rotation from 
one orthogonal frame to another orthogonal frame, and hence this 
transformation matrix must be orthogonal by rows. A fourth row 
could be added to ~ for  a fourth orthogonal unit vector IV  wi th  
cell entries which normalize each column. Then we should have an 
orthogonal matrix of order 4 × 4. 

Case 3. Transformation from V to U including the group factors and 
valumn vector G. 

Here it is assumed that the computations are to be made from 
the oblique factor matrix V. In Table 5 we have the transformation 
equation in rectangular notation, namely, 

V~p ~ =  U ~ ,  (13) 

which gives the saturations of the tests j on the group factors and 
on the general factor. If  the factor matrix V is extended to include 
the primary vectors Tt we have the diagonal matrix D. Applying the 
same transformation to D we have 

Dt~ ~ = Ut (14) 
so that  

~ = D -1 Ut .  (15) 

When the elements of Ut/have been determined as for Case 2, the 
transformation ~p~ can be writ ten by merely adjusting the rows of 
Ut by the multipliers of D - ~ .  The transformation ~ is then known. 

Case 4. Transformation from V to column vector G 

This is the simplest case and perhaps the most useful as regards 
the second-order domain. The matrix V is known in determining the 
simple structure and the primaries. The saturations of the tests j on 
the second-order general factor G are of interest and these can be de- 
termined as Hnear combinations of the columns of V. Here we have 
the transformation shown in Table 5, namely, 

Vjp ~pg = rig. (16) 

Applying the same transformation to Dtp, we have 

Dtp ~/'~ ----- rto. (17) 



84 PSYCHOMETRIKA 

The elements of the column vector rt~ are known from the correlation 
matrix TT' ~ Rt of the primaries. Then 

~p9 --  D-lt~ rtg, (18) 

and hence the column vector P~ is known. In coraputing, it is only 
necessary to multiply the elements rt~ by the corresponding diagonal 
elements of D-~tp to determine P ~ .  The desired column vector rj~ can 
then be determined. 

6. A Trapezoid Popu:ation 
In previous studies of factorial theory it has been found useful 

to illustrate the principles by means of a population of simple physi- 
cal objects or geometrical figures. The box population was used to 
illustrate three correlated factors and their  physical interpretation. 
In the present case we want four factors in the first-order domain 
which by their correlations of unit rank determine a general second- 
order factor. The correlations of three variables can nearly always 
be accounted for by a single factor and hence it seems better to choose 
a four-dimensional system in which the existence of a second-order 
general factor is more clearly indicated by the unit rank of the corre- 
lations of four pr imary factors. For the present physical illustration 
we have chosen a population of trapezoids whose shapes are deter- 
mined by four pr imary parameters or factors. 

The measurements on the trapezoids are indicated in Figure 5. 
The base line is bisected and the length of each half is denoted by the 
parameter o. An ordinate is erected at this midpoint and its length 
is h. This ordinate divides the top section into two parts which are 
denoted e~ and b as shown. These four parameters, a, b, c, and h, com- 
pletely determine the figure. The test bat tery  was represented by 
sixteen measurements which are drawn in the figure. The parameters 
a, b, c, and h are given code numbers 1, 2, 3, and 4, respectively. Vari- 
ables (12) and (13) are the two areas as shown. The sum of (12) 
and (13) equals the total area of the trapezoid. In general, each of 
these measurements is a function of two or three of the parameters 
but not of all four of them and hence we should expect a simple struc- 
ture in this set of measurements. There is a ra ther  general impres- 
sion that  a simple structure is necessarily confined to the positive mani- 
fold. In order to offset this impression we included here three addi- 
tional measures which extend the simple structure beyond the posi- 
tive manifold. The three additional measures are as follows: 

14--  (1) / (2) -----a/b 
15 = (2) / (3) - - b / c  

16--  (1) / (3) - - a / c  
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These three  measures  will necessari ly introduce negat ive sa tura t ions  
on some of  the  basic factors .  

In Table 6 we have a list of  dimensions for  a set  of th i r ty- two 
trapezoids.  These will const i tute  the trapzeoid population. Each  fig- 
ure was d rawn  to scale on cross-section paper  and then the sixteen 
measurements  were  made on each figure. These const i tuted the tes t  
scores fo r  the  present  example. In set t ing up the  dimensions of  Table 
6 the  numbers  were  not  dis tr ibuted entirely a t  random. To do so 
would tend to make the correlations between the four  basic para-  
meters  a, b, c, and h approach zero and this would lead to an orthog- 
onal simple s t ruc ture  in which there would be no provocation to in- 
vest igate  a second-order domain. The manner  in which the generat-  
ing conditions of  the objects  determine the factorial  results will be 
discussed in a la ter  section. Table 6 was so constructed that ,  in addi- 
tion to the four  basic parameters ,  there  was also a size factor  which 
functioned as a second-order pa ramete r  in determining correlation 
be tween  the four  p r imary  fac tors  in generat ing the figures. 

The product-moment  correlations between the sixteen measure-  
ments  for  the th i r ty- two objects  were  computed and these a re  listed 
in Table 7. This correlat ion mat r ix  was factored by the group cen- 
troid method and the result ing fac tor  matr ix  F is shown in Table 8. 
The four th- fac tor  residuals a re  listed in Table 9, which indicates 
tha t  the residuals a re  vanishingly small. Applying the rotat ional  
methods to the configuration, we found the t rans format ion  mat r ix  A 
of Table 10, which produced the  oblique fac tor  mat r ix  V of  Table 11. 
In this ma t r ix  we  a re  now concerned with all bu t  the  last  column. 
When pai rs  of  columns of  the  fac tor  ma t r ix  V a r e  plotted we have 
the configuration shown in the d iagrams of  Figure 6, in which a sim- 
ple s t ruc tu re  is clearly indicated. The cosine of  the angle be tween  
t h e  reference  vectors  is indicated on each d iagram of Figure 6. These 
cosines were  obtained f rom the relation C - -  A'A as shown in Table 12. 

So f a r  in the  analys is  we  have found tha t  four  p r imary  factors  
account fo r  the correlat ions and this corresponds to the fac t  tha t  we 
used four  pa ramete r s  in se t t ing up the trapezoid figures. The four  pri- 
m a r y  fac tors  a re  correlated as  indicated by  the obliqueness of  the  ref-  
erence axes in the  d iagrams of  Figure 6. The next  s tep  is to deter-  
mine the correlations between the p r imary  factors  tha t  correspond to 
the p r imary  reference axes. Fo r  this purpose the inverse of  the ma- 
t r ix  C is computed as shown in Table 12. From the diagonal values of  
this mat r ix  are  found the numerical  values of the diagonal mat r ix  D, 
which is also shown in Table 12. The inverse of this diagonal mat r ix  
is also listed. These numerical  values are  merely the reciprocals of 
the  entries in D. 
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In Table 13 we have the  correlation matr ix  Rt showing the corre- 
lations between the pr imary  factors. These are  the  cosines of  the  
a~gles between the pr imary  vectors. I t  can be seen by inspection tha t  
t h i s m a t r i x  is close to uni t  rank, which indicates tha t  a single general 
second-order factor can  be postulated to account for the correlations 
between t h e  p r imary  factors, The saturation of each pr imary factor 
wi th  this second-order general factor wa~ determined by one of  spe- 
cial formulas for unit  r a n k  and .the sa tura t ions  are listed in the  col- 
u m n  vector rta. The interpretat ion is, for  example, that  the pr imary  
factor A has a correlation o f  .71 with the  second-order general fac tor  
G. The  closeness of the correlation matr ix  to unit  rank is shown by 
the small s ide correlations in the residual ~matrix of Tc~ble 13. The 
diagonal values of  the residual matr ix  show tha t  pa r t  of the  total 
variance of each primsxy factor which it does not  share with the gen- 
eral second-order factor. I f  the  diagonals of this matr ix  vanished 
completely, then the primaries would have their  total variance Jn com- 
m o n  and the original reduced correlation matr ix  for  the tests would 
have been of uni t  r a n ~  

The saturation of each test  wi th  the: second-order general factor  
was determined as a linear combination of the  columns of the  oblique 
factor  matr ix  V of Table 11. The t ransformat ion o f  equation (18) 
wa~ used and the  numerical values of  W~ were listed in Tab/~ 13. Col- 
umn G of Table 11 was then computed by equation (16). 

The second-order general fac tor  G can be interpreted in this ex- 
ample as a size factor and it  also indicates tha t  i n  generat ing the 
thir ty-two figures t h e  four  parameters  a, b, c, and k were not  allowed 
to take entirely independent  values. In  other  words, the extreme 
forms of figures either did not  occur or else they were used only occa- 
sionally. I f  the f o u r  parameters  h a d  been allowed to take entirely in- 
dependent values, then there  would have been an appreciable number  
of figures in which one  of these parameters  had an unusually small 
value whi le  s o m e  other  parameter  had some unusually large value. 
This interpretat ion of the second-order general factor leads to a con- 
sideration of what  we shall call generating parsmetefs. The present  
geometrical example illustrates the type of factorial organization tha t  
is represented diagrammatically in Figure ~. The problem of inter- 
pret ing the  four  pr imary factors can be solved in this case without  
investigating the  second-order domain. But  if the correlations be- 
tween the primary factors show unexpectedly low rank, then this fact 
can be utilized~factorially in gaining further insight into the condi- 
tions under which the objects were generated. The four primary fac- 
tors here iderrtified by the simple structure were the four parameters 
that were used in setting up the problem. 
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7. Generating Parameters 
In addition to the principle of simple structure for the descrip- 

tion of each individual object, we may consider an extension of this 
principle to the problem of describing the manner  in which the mea- 
sured objects were generated. Other things being equal, we should 
prefer  a set of descriptive parameters that  give. some indication of 
the conditions that  were operative in producing the objects. To the 
extent that  a factor analysis can throw some light on the conditions 
that  were responsible for producing the objects and their measurable 
characteristics in addition to the description of each individual ob- 
ject, both by some simplifying set of parameters representing causa- 
tive factors, the factorial methods become even more useful as tools 
in scientific work. 

The numerical values of the trapezoid parameters in Table 6 de- 
fined thirty-two figures of various shapes. The method of construct- 
ing the table of four  measures for each figure determined whether  
one or more second-order factors would be present and also whether  
each of the primaries would be equally or differently represented in 
the second-order factor. The factorial result could be altered in- 
definitely by the manner  in which the objects were generated in con- 
structing Table 6. Since it is the object of factor analysis to reveal 
the underlying order in the domain, it is an essential par t  of the nu- 
merical example to show that  there is a relation between the generat- 
ing principles and the factorial results. 

The first column of the table contains the three linear measure- 
merits 1, 2, and 3. Suppose that  these were inserted in the column en- 
tirely at random. Assume that  each column was similarly constructed 
by distributing a set of measurements entirely at  random. Then we 
should expect zero correlations between the four primaries TA, TB, 
Tc, and TH. The correlation matrix for the four pr imary factors 
would be an identity matr ix and it would not be factored because the 
pr imary factors would be statistically independent. There would be 
no second-order factor present. 

If, for  each one of these thirty-two figures with uncorrelated pri- 
maries, we should draw another one similar in proportions but with 
twice the area and another one with similar proportions but three 
t imes the area, then we should have a set of ninety-six figures con- 
sisting of three sets that have similar shapes but different sizes. If  
this new set of ninety-six figures were analyzed factorially with the 
same bat tery of sixteen measurements, we should find the same pri- 
m a r y  factors but they would be correlated. Furthermore,  the corre- 
la¢ions of the pr imary factors would a l lbe  the same, so that  we should 
have a correlation matrix for  the primary factors with uniform side 
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correlations. The reduced correlation matr ix  would have uni t  rank 
and all of the four  primaries would have the same saturat ion on the 
second-order general factor.  This would be a si tuation with a second- 
order  general factor  which has a uniform effect on all of the pri- 
maries.  Here  again, the factorial  result  would be determined by the 
manner  in which the objects were generated. 

Suppose tha t  a group of persons were asked to d raw some trape- 
zoids of a rb i t ra ry  shapes and that  these trapezoids were assembled 
as a population of figures to be measured and analyzed factorially.  
Then we should almost certainly introduce a second-order size fac tor  
because our subjects  would probably unwit t ingly d raw the figures so 
that  the several dimensions of each figure would be at  least roughly 
of the same general order of magnitude.  Some of the subjects  might  
draw trapezoids of the  general size of, say, five or six inches while 
other  subjects  might  draw figures only one or  two inches across. Very  
few would produce trapezoids that  are one or two inches wide and ten 
inches tall. In other  words,  since some subjects  would draw big fig- 
ures and others small ones and since they would probably produce 
very  few extreme figures, there  would be s t rong correlation between 
the pr imary  factors  and these in tu rn  could be analyzed factorial ly 
into secondary factors.  In this si tuation the rank of the correlations 
of the pr imary  factors  would probably not be exactly one bu t  the in- 
ference could certainly be drawn from the factorial  result  tha t  sec- 
ondary factors  were  operat ive to produce some big figures and some 
small ones in addition to t h e  p r imary  parameters  that  define the in- 
dividual figures. 

The interpretat ion of the second-order factor  as  a size fac tor  in 
the trapezoid example should be dist inguished from the size fac tor  
tha t  could be chosen as a pa ramete r  in the  first-order domain. I f  one 
of the measurements  had been the total a rea  of the trapezoid, i t  would 
have been represented by a tes t  vector  in the middle of the configura- 
tion since i t  would be affected by all four  of the  generat ing pa ramete r s  
tha t  were  used and which appeared in the  simple structure.  The to- 
tal a rea  tes t  vector  could be normalized to a uni t  vector and it  could 
be used as one of  the parameters  for  describing the trapezoids.  I t  
would not  be identical with the  second=order size fac tor  but  they would 
be closely related. Whether  a size fac tor  appears  as a first-order fac-  
tor  or  as a second-order fac tor  depends on the restr ict ive condit ions 
under  which the figures or  objects  are  produced or  selected and also 
on the selection of measurements  for  the tes t  bat tery.  I t  is interest-  
ing to note tha t  here the  results  would indicate ei ther  tha t  the th i r ty-  
two trapezoids had been systematically selected by some res t r ic t ive  
conditions or else tha t  the objects  themselves had been generated un- 
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der some restrictive conditions. 
When the factorial results are clear in both the first-order and 

second-order domains, inferences can sometimes be drawn concern- 
ing the generating conditions that  produced the individual parts of the 
objects. Such inferences can be the basis for formulating hypotheses 
that  can be investigated fur ther  either by factor.ial methods or by 
more directly controlled experiments. 

8. Incidental Parameters 
So far  we have considered the primary factors determined by a 

simple structure as representing parameters that  can be given some 
scientific interpretation in terms of concepts that  are fundamental 
for the domain in question. In using the simple structure solution 
which leads sometimes to the second-order domain, we have tried to 
avoid using arbi t rary parameters whose only merit  is that  they serve 
in the condensation of numerical data. We have tried to find in the 
pr imary factors a set of parameters that  not only describe the indi- 
vidual measurements but which also reveal something about the un- 
derlying order in the domain. In looking for meaningful parameters 
of this kind it would be an error  to assume that  all of the factors have 
significance that  transcends the particular experiment or the par- 
ticular group of subjects. It would be strange indeed if factor analy- 
sis were immune from the distracting circumstances of the particular 
occasion. The experimenter must t ry  to distinguish that which is in- 
variant and which transcends the particular experimental arrange- 
ment or the particular experimental group of subjects from that  which 
is local and incidental to the  particular occasion. In factor analysis 
we are not relieved of this difficult task any more than in other forms 
of scientific experimentation. In order to focalize attention to this 
circumstance it  might be well to distinguish the primary factors 
which represent the invariants for which we are really looking from 
those primary factors which, though genuine as regards the explana- 
tion of the test variances, are local and of significance only for the 
experimental group or the particular occasion. Primary factors which 
characterize only a particulax experimental group or a pazticular sit- 
uation may be called incidental factors to distinguish them from the 
invaria~ts which are normally the object of soientific experimenta- 
tion. Incidental factors may appear in the first-order or in the sec- 
ond-order domain. 

A few examples will serve to illustrate the manner in which inci- 
dental factors may appear as primaries in factorial analysis. In addi- 
tion to the pr imary factors that  would be found in different groups of 
subjects, we ~ igh t  find primary factors that  are unique for the par- 
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ticular occasion. Suppose that an exceptionally good examiner who 
is skilled in obtaining good rapport with the subjects should give 
a part of the test battery to a part of the experimental group. A 
primary factor might appear for this group of tests and the investi- 
gator might be at a loss to explain it because he would be thinking 
about the nature of the tests and he would try to find something com- 
mon in the psychological nature of these tests. It might not occur to 
him that this is the very group of tests that were administered by 
the experienced examiner. Such a factor would probably be left with- 
out interpretation in the final results or the interpretation might be 
one that would not be sustained in a subsequent experiment with dif- 
ferent subjects and different examiners. Incidental factors are al- 
most certainly present in every  study. Hence the investigator should 
feel free to leave without interpretation those primary factors which 
do not lend themselves to ra ther  clear scientific interpretation. Even 
then the interpretation should be at first in the  nature of a hypothe- 
sis to be sustained if possible by subsequent factorial studies. The 
fact that  all of t h e  variances are not adequately accounted for in the 
interpretation has led some students to conclude that  the whole result  
should be discarded, but such is not the case. It  is quite possible to 
make an important discovery concerning the pr imary factors that  a re  
operative in an experiment even though the major  part  of the com- 
mon factor variances remains unexplained. I t  is assumed, of course, 
that  such a finding could be sustained by the construction of new 
tests with prediction as to how they should behave factorially in new 
groups of differently selected subjects. 

In one factorial study it was found that  a pr imary factor was 
common t o a  set of tests that  were given by the projector method 
with individual timing for each response. The interpretation of such 
a factor was uncertain. Some psychological function might be in° 
volved in the projector tests which was absent from the other tests, 
but the explanation might also be that  some motivational condition 
was common to the projector tests that  was absent from the other 
tests and which would be of only incidental significance as far  as the 
major  purposes were concerned. 

Suppose that  one of the examiners misunderstands the time limits 
for a set of tests and that  he gives the shorter time limits to a par t  
of the group of subjects for some of the tests. A factor might  ap- 
pear under certain circumstances that  would be incidental and of no 
fundamental significance, but the pr£mary factors that are signifi- 
cant might still be revealed. An unexpected interruption in a school 
examination such as fire drill, a street parade, or the expectancy of 
an important school event may act to introduce incidental factors. 
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One of the most important sources of incidental factors is to be 
found .in the selective conditions. If  a group of subjects is selected 
because of qualification in a composite of two or more tests, the 
unique variances of such selective tests combine to form one or more 
incidental common factors which would have remained a part  of the 
unique variance if the selective conditions had not been imposed. The 
correlations between the factors are determined in large part  by the 
selective conditions. If  a group of subjects is selected because of cer- 
tain test qualifications, it is to be expected that  the primary factors 
will show correlations between factors that  are different from the 
correlations between the same factors in an unselected, population. 
I t  must not be assumed tha t  the factors a re  different just  because 
they correlate differently in different populations. This effect is well 
known with physical measurements, height and weight with intelli- 
gence, for example, whose intercorrelations axe determined in large 
par t  by the selective conditions~ These changes do not affect the iden- 
tity of the factors. An incidental factor which is introduced by con- 
ditions of selection may be trivial or it may be of significance, de- 
pending on the nature of the unique variances which are introduced 
into the common factors by the selective conditions. 

It  should be remarked that  in a well planned factorial experi- 
ment  the incidental factors are usually of secondary importance in 
comparison with the variance that  is assignable to the principal pri- 
mary  factors for which an experiment was planned. When one or 
more pr imary factors have relatively small variance and do not seem 
to lend themselves to clear interpretation, they should be reported 
without interpretation. Some reader of such a report  may find a fruit- 
ful hypothesis for it, or the factor may be of only incidental signifi- 
e~21ce. 

These few examples will serve to call attention to the fact that  
not all the primary factors can be expected to have meaning in the 
fundamental  sense of representing functional unities whose identity 
transcends the particular group of subjects and the experimental 
conditions of any particular occasion. It  does not follow that  inci- 
dental factors axe in any sense artifacts. They may represent gen- 
uine factors that  were operating to produce the observed individual 
differences but their  significance may not extend beyond the particu- 
lar  occasion. In that  sense they are irrelevant to the purposes of the 
experimenter even though they are valid as factors which can some- 
times be identified. 

An interesting application of second-order factors is an attempt 
to reconcile three theories of intelligence, namely, Spearman's theory 
of a general intellective factor, Godfrey Thomson's sampling theory 
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w,ith w h a t  h e  ca l l s  " s u b - p o o l s , "  a n d  o u r  o w n  t h e o r y  o f  c o r r e l a t e d  m u l -  

t i p l e  f a c t o r s  w h i c h  a r e  i n t e r p r e t e d  a s  d i s t i n g u i s h a b l e  c o g n i t i v e  f u n c -  

t i ons .  T h e  t e t r a d  d i f f e r e n c e s  v a n i s h  w h e n  t h e r e  a r e  no  p r i m a r y  f a c -  

t o r s  c o m m o n  to  t h e  f o u r  t e s t s  o f  e a c h  t e t r a d ,  t h e  c o r r e l a t i o n s  b e i n g  

d e t e r m i n e d  o n l y  b y  t h e  g e n e r a l  s e c o n d - o r d e r  f a c t o r s .  T h i s  a p p l i c a -  

t i o n  o f  s e c o n d - o r d e r  f a c t o r  t h e o r y  w i l l  b e  t h e  s u b j e c t  o f  a s u b s e q u e n t  

p a p e r .  

TABLE 1 

Orthogonal Factors 

TABLE 2 

Correlated Factors  

A B C D E A B C D E 

1 x x 1 x 
2 x x x 2 x x x 
3 x x 3 x 
4 x x x 4 x 
5 x x 5 x 
6 x x x 6 x x x 
7 x x 7 x 
8 x x 8 x 

9 
X 

X 

G 
TABLE 3 

A x 
Second-Order Domain B x 

of Figure  3 C x 

p Q D x 
E x 

A 
B x x 
C x 
D x x 

E x 
F x 
G x 
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TABLE 5 

Case 3. Transformation from V to U including the group factor and the 
column vector G 

A B c G o' h c G a b 
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TABLE 7 

Correlation Matr ix 

1 2 3 4 5 6 7 8 9 l0  11 12 13 14 15 16 

1 1~0 .50 .50 .32 .29 .58 .72 .49 .58 .45 .31 .66 .53 .76 -.35 .11 
2 .50 1.04) .50 .32 .36 .42 .57 .49 .74 .67 .33 .54 .64- .16  -.14 -.23 
3 .50 .50 1.00 .32 .52 .42 .88 .82 .90 .45 .30 .78 .75 .19 -.84 -.72 
4 32  32  3 2  1.00 .95 .96 .65 .80 .61 .91 .96 .78 .82 .12 -.22 -.15 
5 .29 .36 .52 .95 1.00 .90 .75 .90 .75 .90 .94 .84 .89 ~ 5 - . 3 7  -.31 
6 .58 .42 .42 .96 .90 1.00 .78 .83 .70 .92 .94 .86 .86 . 34 - .29  -.09 
7 .72 .57 .88 .65 .75 .78 1.00 .95 .95 .74 ~4 .95 .91 .39 -.69 -.46 
8 .49 .49 .82 .80 .90 .83 .95 1.00 .93 .83 .78 .94 .95 .19 -.64 -.52 
9 .58 .74 .90 .61 ~5 .70 .95 .93 1.00 .79 .60 .90 .93 . U  -.64 -.57 

10 .45 .67 .45 .91 .90 .92 .74 .83 .79 1.00 .90 .83 .90 .01 -.22 -.21 
11 .31 33  .30 .98 .94 .94 .64 .78 .60 .90 1.00 .77 .80 .11 -.12 -.09 
12 .66 .54 .78 .78 .84 .86 ~5 .94 .90 .83 .77 1.00 .97 . 34 - .59  -.39 
13 .53 .64 .75 .82 .89 .86 .91 .95 .93 .90 .80 .97 1.00 .12 -.52 --.44 
14 .76--.16 .19 .12 .05 .34 .39 .19 . U  .01 . U  3 4  .12 1 .00- .28  -.34 
15 -.35 ~ 1 4 - . 8 4 - ~ 2  -.37 - . 2 9 - . 6 9 - . 6 4  ~ 6 4 - . 2 2  ~12 - . 5 9 - . 5 2  -.28 1.00 -.76 
16 .11 - . 2 3 - . 7 2  -.15 -.31 -.09 -.46 -.52 - . 5 7 - . 2 1  ~09 -.39--.44 34  .76 1.00 

T A B L E  g 

Orthogonal Factor  Matr ix  F 

I I I  I I I  IV 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 .78 
12 .97 
13 .98 
14 .21 
15 - - .60 
16 -- .46 

.57 .44 .63 .16 

.59 - - ~  m.01 .59 

.79 -- .46 .38 .03 

.81 35  -- .~2 -- .25 

.88 .13 m.38 -- .24 

.87 .46 -- .14 -- .12 

.96 -- .02 30  .00 

.98 ~ . 0 7  -- .02 -- .10 

.95 -- .19 .10 .27 

.88 .25 ~ . 3 6  .17 
.39 -- .44 -- .14 
.09 .10 -- .05 
.01 -- .09 .06 
.47 .65 -- .38 
.50 -- .44 .37 
.77 .02 .08 

T A B L E  9 

Distribution of  
Residuals 

Dev. f 
.04) 50 
J)l  94 
.02 46 
.03 30 
.04 8 
.05 2 
.06 2 
.07 0 
.08 4 
.09 2 
.10 2 

N - -  240. 
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T A B L E  10 

T r a n s f o r m a t i o n  M a t r i x  A 

A B C H 

I .07 .12 .39 .53 
I I  .70 - - . 01  - - . 81  .35 

III  .71 - - . 3 2  .28 --.64 
IV  - - . 01  .94 - - . 3 4  - - . 4 4  

T A B L E  11 

Oblique F a c t o r  M a t r i x  V 

A B C H G 

1 .79 .01 - - . 0 1  - - ~ 2  .68 
2 .01 .6~ .05 .05 .63 
3 5 0  .01 .78 .00 .73 
4 .01 - - .01  .00 .93 .46 
5 - - . 11  .00 .21 .86 .52 
6 .28 .03 - - .03  .76 .62 
7 .27 .02 .47 .31 .84 
8 .01 .03 .47 .55 .74 
9 .04) .34 .46 .25 .85 

10 - - . 02  .38 - - . 0 2  .71 .64 
11 .02 .10 - - . 0 9  .91 .47 
12 .20 .04 .35 .50 .78 
13 .01 .20 .33 .55 .76 
14 .81 - - . 5 4  .01 .03 .27 
15 - - . 01  .41 - - . 8 9  - - . 0 2  - - . 4 9  
16 .52 .01 --.82 --.02 --.31 

T A B L E  12 

M a t r i x  C = A'A 

A B C H 

A 1.00 - - . 2 4  - - . 3 4  - - . 1 7  
B - - . 2 4  1.00 - - . 3 5  - - . 1 5  
C - - . 8 4  - - . 3 5  1.00 - - . 1 1  
H - - . 1 7  - - . 1 5  - - . 1 1  1.00 

M a t r i x  C -~ 

A B C H 

A 1.53 .73 .83 .46 
B .73 1.53 .84 .44 
C .83 .84 1.62 .45 
H .46 .44 .45 1.19 

M a t r i x  D t p  

A B C H 

T~ .8O8 
T~ .808 
T~ ns6 
T H .912 

M a t r i x  D-~,~ 

TA TB Tc Tx 
A 1.237 
B 1.237 
C 1.273 
H 1.091 
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T A B L E  13 

Correlat ion Mat r ix  R t  - -  Dcp C-1~  D~t 

T A 1.04) .48 .53 .34 
T n .48 1.00 .SS .33 
T o .53 .53 1.00 .32 
T s .34 .33 .32 1,00 

Residuals ---  R t  - -  rr¢ r'~g 

~A T~ To T .  
T ~ .50 --.0~ .01 .02 
ra  --.0,2 .51 .o2 .ol 
To .01 .o~ .47 - - .o l  
T ,  .o,2 .Ol --.01 .so 

Col .m~ 
Vector ~'to 

T A .71 
~r~ .70 
T c .TS 
r .  .45 

Column 
Vector 

• I, --- Z}-l..~p ,r¢o 

(7 

A .878 
B .866 
C .929 
H .491 

Fmums 1 

Pnmory fac~s d~up 

Ftoum~ 2 
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® 

.~ris~order Correloled 7~sla b~on~-o/i~ ~,..~i,.~i~ 
tit~ors focfors f~lor~ IcAorJ 

Fiovm~ 3 Fiotmz 4 

r <' - r  ~ - i  

I ",, ......... / i..:~-,,/ \ I / " ;'~'" ~" "~ \ / 
f "~<" /-"<"-L i ,, \ / 

,'..-- ",,, : i ........ L",,X 
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