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It  is shown that approaches other than the internal consistency 
method of estimating test reliability are either less satisfactory or 
lead to the same general results. The commonly attendant assump- 
tion of a single factor throughout the test items is challenged, how- 
ever. The consideration of a test made up of K sub-tests each com- 
posed of a different orthogonal factor disclosed that the assump- 
tion of a single factor produced an erroneous estimate of reliabil- 
ity with a ratio of ( n - - K ) / ( n - - 1 )  to the correct estimate. Special 
difficulties arising from this error in application of current tech- 
niques to short tests or to test batteries are discussed. Applica- 
tion of this same multi-factor concept to item-analysis discloses 
similar difficulties in that field. The item-test coefficient approaches 
~/1/K as an upper ]imit rather than 1.00 and approaches V 1/n as a 
lower limit rather than .00. This latter finding accounts for an 
over-estimation error in the Kuder-Richardson formula (8). A new 
method of isolating sub-tests based upon the item-test coefficient is 
proposed and tentatively outlined. Either this new method or a 
complete factor analysis is regarded as the only proper approach to 
the problem of test reliability, and the item-sub-test coefficient is 
similarly recommended as the proper approach for item analysis. 

The  t e r m  re l iabi l i ty  has  been used loosely to  apply  to the  resul-  
t a n t  of the appl ica t ion  of  m a n y  di f ferent  s ta t is t ical  operat ions .  As  
a genera l  rule these opera t ions  a t t e m p t  to de t e rmine  the ver i f iabi l i ty  
of  the or ig ina l  da ta  and  thus  to es tabl ish  the  degree  to which  non-  
chance  f ac to r s  en te red  into the  or ig ina l  measu remen t s .  

One g roup  of  techniques  app roaches  the  problem t h r o u g h  the  
d i rec t  compar i son  of  the observed d i s t r ibu t ion  of  m e a s u r e m e n t s  wi th  
t h a t  which  would have  ar i sen  by  chance  in accordance  wi th  ce r t a in  
theor ies  of  probabi l i ty .  These  techniques  paral lel  the use of  the  cr i t i -  
cal r a t io  in es tab l i sh ing  the  re l iabi l i ty  of means ,  s igmas,  differences,  
and  o the r  s ta t is t ica l  p a r a m e t e r s  by  d i sp rov ing  the null hypothes is .  
One such a p p r o a c h  is t h a t  of  J ackson  (7) ,  who measures  the sensi- 
t iv i ty  of  the test,  g a m m a  (~,), by  t a k i n g  the ra t io  of  the s t a n d a r d  
devia t ion  of the  capac i ty  to the  s t a n d a r d  devia t ion  of chance. An-  
o the r  wri ter ,  H o y t  (6) ,  us ing  the  analys is  of  va r iance  approach ,  sug- 
gests  us ing  the ra t io  of  the t rue  va r i ance  of the s tuden t  responses  to 
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the obtained variance among students. Edgerton and K. F. Thomson 
(3) suggest using the Lexis ratio to show that differences among stu- 
dents are greater than those among items. Hoyt shows that  his re- 
sults are comparable to those of Jackson, and both Hoyt and Edger- 
ton and Thomson show their results to be comparable to those 
achieved by the use of certain of the Kuder-Richardson series [ac- 
tually to formulas (14) and (20), which involve only the sigmas of 
the items and the sigma of the total test] which we will discuss later 
at  some length. Any restrictions demonstrated to hold for these par- 
ticular portions of the Kuder-Richardson series will thus apply to 
these probability methods as well. Allied techniques are (1) the 
Horst  (4) maximized criterion which holds that  the most reliable 
weighted composite is that  with the largest relative variance, and (2) 
the item selection techniques based on the variance (difficulty) of the 
item. The remaining techniques attack the measurement of reliabil- 
ity through the verifiability of the original ranks of the members of 
the population. These techniques form two natural groups as the em- 
phasis on stability is (1) regardless of time, or (2) regardless of the 
particular test or items used. 

The first of these viewpoints--verifiability regardless of t ime-- 
is exemplified by the test-retest method of measuring reliability. 
While appearing best to meet the operations indicated in the usual 
definition of reliability, this method has been widely criticised from 
many different viewpoints. Typical criticisms refer  to the effects of 
differential practice, memory, inability to duplicate testing conditions, 
inability to sustain motivation, etc. Perhaps even more serious is the 
objection raised that this coefficient is affected not only by the un- 
reliability of the test but also by the unreliability (lack of stability) 
of the function being tested. Paulsen (12) suggested measuring this 
trai t  fluctuation by correcting the test-retest coefficient for attenua- 
tion, using the split-half method for obtaining the reliabilities of the 
initial and final testings. Woodrow (18) suggested measuring this 
"quotidian variability" by the ratio of the actual sigma of the means 
of various samples to the sigma of the means as predicted from the 
average standard deviation of the multiple samples. ThouIess (17) 
proposed the measurement of this "functional fluctuation" by what  
he called the double test-retest index, where he substituted alternate 
forms for the split-half approach of Paulsen. Thus in application we 
see that  the "regardless of time criterion" in addition to many other 
ills requires an appeal to the preceding view--as in Woodrow--or to 
the remaining criterion of stability "regardless of test or items used" 
criterion--as in the split-half or comparable form methods of Paulsen 
or Thouless. Indirectly associated techniques are: (1) the original 
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Brown (1) concept as to the proper  values for  substi tution in the 
Brown-Spearman formula ;  and (2) the concept of test ing item reli- 
abili ty by means of individual changes in response on fu ture  tes t  ad- 
minstrat ions.  

The remaining concept-- the verifiability of the measurements  re- 
gardless of the par t icular  tes t  used--is  exemplified by  the "compar-  
able tes t"  method of measur ing  reliability. Here  the procedure is 
complicated by two ma jo r  difficulties: (1) the t ime element, and (2) 
the determination of c o m p a r a b i l i t y .  With respect  to t ime the argu- 
ment  centers in the meri t  of separate  a l ternate  tests  (assuming "com- 
parabi l i ty"  for  the t ime being) ,  with the necessary time separat ion 
involved, as compared to some split-half (odds vs. evens, first half- 
last  half, etc.) technique (again assuming "comparabi l i ty")  which 
would eliminate the time element. All of the objections raised against  
the test-retest  method with the possible exception of the  memory  ele- 
ment  would also apply against  any t ime-separated al ternate form ap- 
proach. Most recent  wr i te rs  have assumed the desirabili ty of elimi- 
nat ing this time element by some method based on internal analysis. 

The second difficulty involved in this last  v iewpoint-- the  na- 
ture  and determination of "comparabi l i ty"- -has  usually been dealt 
with  inadequately. I t  is always assumed bu t  rare ly  demonstrated.  
The only really adequate definition of such comparabil i ty or equiva- 
lence known to the wr i te rs  is tha t  given by Kuder  and Richardson (9) 
as their  equation (1) which we hereby adopt. They say, 

"The correlation between two forms of a tes t  is given by  

.r(a+b+c÷...+n)(A+B+V+...+N ) ---" 

r a A  a a  aA -~ t a b  O'a (YB "~- " '"  ~- r n t l  a n  aM + r n N  •n aN 

, ( 1 )  
[~'a 2 -~ (Yb 2 "~- "'" "~- ~rn 2 + 2 (r~b O'a ~b -~ rac O'a ~c "~ "'" -~- rmn  (Tin ~n)  ] ~ 

[aa 2 + ~ + .-. + a~ ~ + 2 ( t A B  aa aB + rac ~A aC + "'" + r , N  ~ a~,) ] i 

in which a ,  b ,  . . . ,  n are  i tems of the  test, and A ,  B ,  .-- ,  N are  corre- 
sponding items in a second hypothetical  test. Equivalence is now de- 
fined as interchangeabil i ty of i tems ¢ and A ,  b and B ,  etc. ; the  mem- 
bers of each pai r  have the same difficulty and are correlated to the ex- 
tent  of their respective reliabilities. The inter-i tem correlations of 
one test  a re  the same as those in the other. These relationships con- 
s t i tu te  the operational definition of equivalence which is to be used." 

As Kuder  and Richardson point out, the above definition of com- 
parabi l i ty  makes the two terms in the bot tom of equation (1) identi- 
cal, which reduces the formula for  the true reliability of a tes t  or tes t  
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bat te ry  with unit  weights  to the form 

r ~  a J  + rbb ab 2 + "'" + r~n a~ ~ + 2 (r~b a~ ~b + "'" + r , ,~  a ~  ~ )  
r t t  = . (2) 

I f  such a test  as  the capital let ter  series above were available it would 
t ruly  be an al ternate  or comparable form. Actually such a tes t  is sel- 
dora i f  ever available. At tempts  at  construct ing a l ternate  forms sel- 
dom hold r igorously to the above definitions. Instead it  has been the 
custom to make ei ther  explicitly or  implicitly the  assumption of a 
single fac tor  running through all such possible i tems and to const ruct  
a l ternate  forms paying at tent ion only to the difficulty of the  i tems 
(equat ing means and sigmas, if  even these are  taken into account) .  

The internal consistency hypothesis  is the  basis of  the two most  
common methods of measur ing  reliabili ty:  (1) the  split-half Spear-  
man-Brown (15) approach, and (2) the Kuder-Richardson series. 
Kuder  and Richardson f rankly  assume a single fac tor  among the tes t  
items, while the  Spearman-Brown assumption of equal intercorrela-  
tions amounts  to the same thing as is demonst ra ted  when Kuder  and 
Richardson derive the Spearman-Brown formula  a t  one s tage in thei r  
own series. Allied techniques are (1) the  Edgerton-Kolbe (2) con- 
ception of the most  reliable weighted cri terion based on minimal dif- 
ferences among the scores of each individual for  each of the cr i ter ia ;  
(2) the Hotelling (5) conception of the most  predictable cri terion 
with weights proport ional  to the loadings on the first unrota ted prin- 
ciple component;  (3) and the many methods of item analysis, too 
numerous even to list, based on the i tem-test  correlation coefficient 
or  var iants  of tha t  measure.  When the assumption of a single fac tor  
is satisfied such procedures are justified, but  f requent ly  that  assump- 
tion is not justified as is indicated by the many  studies which show 
the usual test  or test  ba t te ry  to contain many  factors.  Wha t  is the 
result  of using these formulas when, as is probably almost universally 
the case, the basic assumption is not justif ied? Have  we, perhaps  
been branding as unreliable tests  which were sa t i s fac tory  in tha t  re- 
spect? Have  we been discarding as unreliable i tems which were  per- 
fectly good? The remainder  of  this paper  considers these questions 
theoretically. Instead of the usual assumption of a single fac tor  wi th  
equal intercorrelat ions and equal s igmas throughout  the whole test,  
we shall instead assume a test  of K f a c t o r s - - a ,  b ,  v ,  - . . ,  k--each fac- 
tor  being represented by a number  of items n~ which may va ry  f rom 
factor  to factor.  Fo r  the sake of simplicity and to maximize the dif- 
ference between this case and the usual assumptions these factors  
shall be taken as orthogonal or uncorretated,  i.e., the intercorrelat ions 
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between items in different factor  groups are taken to be zero.* While 
the sigmas and inter-item correlations within a fac tor  group may 
differ f rom group to group (r(~ ¢ ~-//) and (a,, ¢ - I ) ,  we shall make the 
usual assumptions of equal sigmas and equal intercorrelat ions with-  
in each factor  group (r  .... ~ ra~a~ and a,, ~-- a ,  e tc . )  and shall 
fu r the r  assume the reliability of  each item to be equal to the inter- 
i tem correlation holding for  i tems in tha t  group. Subst i tu t ing these 
assumptions in equation (2) we see tha t  the  reliability of this mul- 
t iple-factor  tes t  would be 

= . (3) 

We want  to compare with this value, the value as est imated by the 
single factor  theory. The Kuder-Richardson formula (14) is taken 
as the best measure  of this type since it is this formula which the 
various direct probabil i ty approaches equalled and which Kuder  and 
Richardson have shown to be equal to the Brown-Spearman method 

w h i c h  is basic to split-half approaches to the measurement  of reli- 
ability. We shall also see later  on that  this is the most  general of 
thei r  formulas which is applicable, since formula  (8) of  their  series 
is erroneous. The Kuder-Richardson formula  (14) reads 

~-~ - E "  ~ 2  ( Z  ~ ~ )  ~ 
- -  ( 4 )  

~ , t ~ .  - -  ( Z  ~ ~ ) ~  _ Z "  ~ ~,~ 

Subst i tu t ing our present  assumptions for  our K-factored test  in this 
equation gives 

(5) 

Tt tKR14 

and to br ing out the difference between equation (3) and (5) more 
clearly we can rewr i te  (5) as 

* One of  the  ed i to rs  objected to the  s t r i n g e n c y  of  th i s  case, on the  bas i s  t h a t  
i t  would  seldom i f  ever  occur  in prac t ice .  We  de l ibe ra t e ly  chose to m a g n i f y  t h e  
d i s c r epancy  be tween  our  r e s u l t s  a n d  those  based  upon the  a s s u m p t i o n  of  a s ingle  
f ac to r ,  due to our  fee l ing  t h a t  the  ac tua l  usua l  case would lie somewhere  in be-  
tween  the  two ex t remes .  The  special  case formula~: der ived in th i s  p a p e r  were  
no t  m e a n t  to be used com pu t a t i ona l l y  bu t  only to disclose the  effects of  va r ious  
possible  t r e n d s  which  m i g h t  ex i s t  in p rac t i ca l  s i tua t ions .  We do believe t h a t  the  
possible sub- tes t s  and  t h e i r  i n t e r - r e l a t i ons  fo rm the  only sound a p p r o a c h  to  
e i t h e r  the  problem of t e s t  re l i ab i l i ty  or the  p rob lem of i t em-ana lys i s .  
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r z,< <,=: r:: 
Vi*K""-- (ZK n: a~:) ~ -- Z "  n: a /  [ Z "  n: q:: ÷ ZK n:('n,~ - 1) a,2 r~ 

(5a) 
~K n~ a,, ~ r ~  ] 

Egn~o-x 2 + Z K n ~ ( n x -  1) a~:rxx 

Now the first term in this bracket is the true value as given by equa- 
tion (3), which we see is reduced by an error  factor (the second 
term in the bracket) and then increased again by a multiplier greater  
than one (the term preceding the bracket).  We can see that the ex- 
tent of this error  will depend upon the actual values of the n's, q's, 
and r's. To evaluate the extent of this error  under certain special 
conditions we can simplify the formulas by assuming various ones of 
these determiners, n~, ~, and r ,  to be equal from group to group. 
The following table gives the reduced form for rtt and rttKm4 for each 
such possible set of assumptions. 

Several conclusions of interest and importance can be drawn on the 
basis of the equations in set (6). We note that:  

(a) The Kuder-Richardson formula equals the true formula 
only when K,  the number of factors, equals one (Case g, since for 
the remaining single set the •'s, q's and r's would all be equal, with 
K equal to one). With K equal to one, both formulas take the usual 
Brown-Spearman form, indicating that  that  formula is also correct 
for the usual assumption of a single factor. 

(b) The Kuder-l~ichardson formula tends to underestimate the 
true reliability by the ratio ( n - K ) / ( n - l )  when the number of fac- 
tors, K ,  is greater than one. (Cases d, g, and k.) 

(c) If every item in a test is perfectly reliable the test is per- 
fectly reliable even though all intercorrelations are equal to zero (n 
equals K and all nx's equal one) and regardless of the size of the sig- 
mas (cases h, i, j, and k for the true rt t)  although the Kuder-Richard- 
son would not indicate this fact, giving values all of the way down to 
zero for extreme cases. 

(d) The size or uniformity of the sigmas is not important if the 
n's and r's are equal (Case e) since they then drop out of the formula. 
This indicates that  they are the least important of the three deter- 
miners. 

(e) The Brown-Spearman formula underestimates the true re- 
liability by the ratio of ( n - K ) / ( n - 1 ) .  (Case g.) The derivation 
of this formula is simple and easily understood. The usual Brown- 
Spearman formula reads 
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rt*Bs 1 + ( n -  1 ) r ~  (7)  

where r,~ equals the average intercorrelation for all the items, but  for  
any given item under the condition of equal n's, ~'s, and r 's for  each 
factor group the average intercorrelation would be 

( n .  - 1 ) r ~  + ( n  - ~ . ) 0  
~-,~= , (8 )  

~ - - 1  

and since m would equal n/K we would have 

~ - K  ra~ 

r~  ~ K n -  1 ' 
(9)  

and substitution of this value in equation (7) yields 

n - - K  ~ raa  
r , ~  - -  - -  . (6, g) 

n - - 1  K +  ( n - K ) r a ~  

While this limiting error  of n--K/n-1 for  the two internal consis- 
tency methods of estimating reliability [see conclusions (b) and (e) ] 
becomes negligible when n becomes very large, i t  is nevertheless true 
that  in short tests or when the formulas axe used to estimate the re- 
liability of test batteries where the number of tests is Usually small, 
the equations based on internal consistency (assumption of one fac- 
tor) would lead to gross underestimation and serious theoretical dif- 
ficulty. 

As to the gross underestimation, we present two cases of 12-item 
tests or batteries with assumed intercorrelations within the factor 
groups (the reliability of each item) equal to .95 for  one test and to 
.60 in the other. For  each test we shall assume anywhere f rom one 
to twelve factors with from twelve to one items, respectively. The 
true and estimated values follow: 

r~  ---- .95 r ~  - -  .60 

12 1 .950 .000 .600 .000 
6 2 .974 .531 .750 .409 
4 3 .983 .715 .818 .595 
3 4 .987 .808 .857 .701 
2 6 .991 .901 .900 .818 
1 12 .996 .996 .947 .947 
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An example of a t tendant  theoretical difficulty due to the erroneous 
use of the internal consistency theory of reliability is the supposed 
dilemma cited by Royer (14) for  the problem of multiple correlation. 
Low intercorrelations are a prerequisite to achieving high validity, 
whereas the consistency hypothesis holds that  low intercorrelations 
mean low reliability. This of course does not follow at all if we make 
the probably nearer  correct assumption of multiple orthogonal fac- 
tors in both the criterion and the test items. I t  is of course true, as 
Thompson (16) has shown, using the correct reliability formula, tha t  
maximum validity and maximum reliability are not identical goals. 
I f  the criterion happens to have its variance detelznined in large par t  
by factors predominating among the less reliable portions of the pos- 
sible predictor items, then maximum validity will mean greatly low- 
ered reliability as compared with the prediction of a different cri- 
terion whose factor  composition is proportional to the reliabilities of 
the selected items, i.e., with a comparable test. We cannot follow 
Thompson's idea of compromising the weights in this case, however, 
since getting a better measure of something a person does not want  
to measure--a more comparable test--is no advantage if one thereby 
secures a poorer measure of what  he is t ry ing  to measure-- the cri- 
terion. The proper mode of approach in the Thompson situation 
would be to improve the reliability, by lengthening or other means, 
of those portions of the test  bat tery with high regression weights, 
thereby increasing validity as well as reliability, ra ther  than the 
Thompson suggestion of shif t ing the weights so as to secure higher 
reliability at  the expense of decreased validity. 

One other serious consequence of the erroneous adoption of the 
single factor  assumption is a widespread misuse of the item-test corre- 
lation coefficient as a method of item selection and elimination. I t  
is t rue tha t  this measure, as Richardson (13) has clearly demonstrat-  
ed, is the appropriate measure to use when there is a single factor  
among the items, but  let us examine the values of this coefficient for 
various items under  the condition of multiple orthogonal factors as- 
sumed above. In general this coefficient for any given item will equal 

r,~-a~[1-- (n~- 1 ) r , ] / ~ / ~  n~ a~ 2 + ~ n x ( n x -  1) a,~ r ~ ,  (10) 

where the subscript i stands for the part icular  group of items having 
the same factor  as the item in question. We see then that  the item- 
test coefficient depends not on reliability (r~) alone but also upon ~ 
(item difficulty) and upon the number of items in the test measuring 
the same factor  (ni) .  Assuming these various determiners to be 
equal f rom group: to  group gives a series of values paralleling the 
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various conditions in set  (6) above: 

Equal  Unequal  

"f o. ~, n 

T i t  

~ i [ K  + (n  - K ) r ~ ]  

1 + (n~ - 1)ris 

\ / n  + ~ n ~ ( n ~ -  1 ) r ~  

~ [ 1  + (n~ - 1 ) ~ . ]  

~ / ~ ,  n zO ' z  2 -{-~'ii  ~, n :~ (n~-  1)a,? 

Case 

a 

C 

(11) 

K +  ( n - K ) r ~  
d .~ O" ~F 

~ K" + (n - K ) r .  e 
9'/- • T tr cri n ~ or~ 2 

1 +  ( n i - - 1 ) ~ .  f 

k / ( 1  - -  ~ ) n  + ~ n~ ~ 

~ K +  ( n - K ) # .  
- -  g 

n , ~ ' ~ o "  K ~ t  

n i  a i  r - -  1.00 n , a  h 

~/.___~ ~tx 2 tyx 2 

r = 1.00, n a a~ ~ / 1 / ~  .~: i 

r - -  1.00,  a n n , / V E  n~ .2 j 

r - -  1.00, a ,  n - -  X / 1 / K  k 

F r o m  these equations in set (11) we can d raw the following conclu- 
sions: 

(a) The i tem-test  coefficient is not  a measure  of i tem reliabil i ty 
alone, but  depends upon the share  of the  total var iance of the 
ba t t e ry  determined by the sub-bat te ry  of which it is a part .  
(b) Perfec t ly  reliable items with low n's and a's would be dis- 
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carded as worthless by the usual method of applying this cri- 
terion, while less reliable items with  large n 's  and a's would be 
retained. I tems with  the highest  r~t  value are not necessarily the 
best items. 
(c) The value of r~t does not  approach 1.00 as an upper l imit  as 
the items become more reliable, but instead, (n's and a's being 

equal) approaches the value of V1/K'. Of course if K - -  1 ,  r~t 
does approach 1.00, but  if  K is grea ter  than  one the possible 
upper  limits are 

K 

r~ ---- 1.00 ~ ~- .50 
Case k Case g 

upper l imit  of rtt 
2 .707 .505 
4 .500 .361 
6 .408 .297 
8 .354 .260 

10 .316 .234 
20 .224 .173 

The automatic  rejection of items with  low r~t values is not jus- 
tified. 

(d) I f  r~ is equal to zero, the lower l imit  of the value of t i t  ap- 

proaches V1/n r a the r  than  zero, which makes the value of the 
Kuder-Richardson formula  (8) ( their  article) fictitiously high. 
According to their  concept of the single fac tor  the i r  formula  (8) 
should, as their  formula  (14) does, become equal to zero when 
all of the intercorrelat ions are equal to zero, but  this  is not  the 
case. Their  formula  (8) is 

--'~t2-- ~'~2 + /~r~t2'~ ('~t2-- ~"TJi~ (12) r t t~8 2 ~t 2 ~ /  ~t ~ 2 ~" 

which if we assume one factor  with all a's equal becomes 

/ ( / O.t 2 - -  ~ O*i ~ O ' i  2 ~ ~' i t  2 f i t  2 - -  n f f i  2 2 

+ + ---- (13) 
ruKR8 2 ~t 2 ~ /  ~t 2 2 ~t ~ " 

I f  we let all r~  values be 1.00, we have 

(,t ~ = n 2 ~ and r~t - -  1.00, 

whence 
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whence 

- -  + ~ + . . . . . .  ~ 1.00 r t tKRs  2 n 2 a~ ~ n ~ (~ 2 \ 2 n ~ a J  ' 

which is the correct answer.  But if we let all r~  values equal .00 
we have 

at ~- - -nz2  and r ~ t : l / V n  

(15) 

+ ~ + = V 1 / n  > .00 ,  
¢'ttKRs 2 n a i  2 ~] n a i  2 2 n a i  2 

which is incorrect. While this is the upper limit of error  in this 
formula, it does remain spuriously large for  all values of r~  less 
than  1.00. The source of this spurious increment  is the incorrect 
assumption of a self-correlation of 1.00 for  r~ in the i tem-test  
coefficient. While this is correct for  the actual correlation with 
the test  of which it is a part ,  the substi tut ion of this  value in the 
Kuder-Richardson series assumes it to hold as well for  the "com- 
parable" test  series, the capital letter test, whereas the correct 
value here is not 1.00 but the actual reliability of the item. Thus 
when all r~  values are uni ty  the reliability is 1.00 and formula 
(8) is correct, but  for  all other values of r~  the reliability will 
be less than  uni ty  and formula  (8) will be in error, this  er ror  
reaching a maximum as r~ .  approaches zero. 

Some numerical examples of typical solutions for  3-factor prob- 
lems are presented here as an indication of the points made under  
conclusions (a) ,  (b),  and (c) above: 

Case n a r r~t Case n a r r~t 

50 .3 .90 .308 50 .5 .20 .105 
a 50 .4 .70 .326 d 50 .5 .70 .303 

50 .5 .20 .141 50 .5 .90 .383 

100 .4 .20 .362 50 .5 .60 .559 
b 40 .4 .70 .492 e 50 .4 .60 .447 

10 .4 .90 .158 50 .3 .60 .335 

100 .5 .60 .362 100 .5 .60 .534 
c 40 .4 .60 .492 f 40 .5 .60 .216 

10 .3 .60 .158 10 .5 .60 .057 
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Case n a r 

100 .5 1.00 
h 40 .4 1.00 

10 .3 1.00 

r~t Case n a r r,t 

.940 100 .4 1.00 .887 

.304 j 40 .4 1.00 .355 

.057 10 .4 1.00 .089 

50 .5 1.00 .421 
50 .4 1.00 .337 
50 .3 1.00 .253 

In view of the general possible unsatisfactory condition result- 
ing from the application of the present methods of estimating reli- 
ability of the total test and of item validation by the blind assump- 
tion of a single factor, it seems advisable to suggest a marked revi- 
sion in the present methods of test analysis. The obvious solution 
would be the factorial analysis of each test, but  while ideal this would 
be very laborious and often impracticable, especially if the number of 
items were at all large. The calculation of the intercorrelations would 
alone be a tremendous undertaking to say nothing of securing the 
residual matrices and the final rotation of the obtained loadings. Let 
us consider simpler possibilities. 

A start  toward such a method is found in the concept of "item 
synonymization" advanced by Lentz and Whitmer (10). In their 
method item intercorrelations have to be computed and there are no 
clear-cut standards for inclusion of an item in any given synonymy. 
However, they have demonstrated that  

(a) test items do tend to fall into groups, 

(b) an item correlates more highly With its synonymy 
than with other synonymies, and 

(c) synonymies tend to correlate lowly with each other. 

If  these synonymies were at all numerous in a test a much better esti- 
mate of its over-all reliability could be obtained by considering the 
synonymies as sub-tests, computing their reliabilities by the Kuder- 
Richardson formula ( justified for such a consistent group),  and then 
computing the total test reliability by using these coefficients to- 
gether with the inter-synonymy correlations in their general formu- 
la (2). Item validity would be evaluated not in terms of the corre- 
lation with the total test put in terms of the item correlation with 
a~rty of the synonymies. 

The present writers suggest tentatively an approach based on 
item-test rather than inter-item correlation coefficients. The follow- 
ing steps constitute a job-analysis of the proposed method: 
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(1) Compute the total test  score (T) using unit  weights. 

(2) Compute all item-test correlations (r~r). 

(3) Skim off the items with  the highest  such coeffmients. 

(4) Rescore the papers on the basis of the selected items 
(S,). 

(5) Compute all item correlations with the new score 
(ri~,). 

(6) Add new items where r~s t > r~r and drop items where 
r~s I < t i t  to form S / .  

(7) Rescore the papers oa the basis of the amended list 
(&'). 

(8) Repeat steps (5) and (6) ,  computing r % ' ,  adding 
items where rtsl' > r% and dropping them when 
7" ' is, < ris 1 • 

(9) Compute S / '  and repeat steps (7), (8), and (9) until 
no fu r the r  changes are indicated, computing S~"', S / ' " ,  

• • .  • S J  9)b, 

(10) Record the final r~s, ~ values and compute a new resi- 
dual score T' - -  T - SP. 

(11) Repeat steps (2) through (9) using T' in place of T 
and S ,  x in place of S,  x. 

(12) Record the final r~s ,  m values and compute a new resi- 
dual test  score T" --  T' - S ,  "~ and continue as before. 

(13) Repeat the entire process through T ~ until  the test  
items are exhausted or until all fir'* values approxi- 
mate zero. 

The selected sub-tests &% S,% Sin% etc., will correspond to the 
item synonymies of Lentz, will tend to lie along pre-rotated orthogon- 
al axes (if the i items possessed simple s t ructure  to begin wi th) ,  and 
the r~s, ~ values will be the fac tor  loadings of the individual items on 
those axes. 

We can illustrate this method of taking the three-factor  numeri- 
cal examples given for  case (f) in the discussion of r~t, above. Here 
the correlations of the items with the total test  would be 

100 values of .534, 
40 values of .216, 

and 10 values of .057• 
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We would select the 100 highest  i tems as S x ,  rescore the tests, and 
compute the r~s 1 values,  obtaining: 

100 values of .602 ,* 
and 50 values of .000, 

completing tha t  phase. We would next  compute T - $1 z T' and com- 
pute r~r,, obtaining 

100 values of .000, 
40 values of .589, 

and 10 values of .155. 

We would then form S.. f rom the 40 items with correlations of .589, 
rescore the papers ,  and then compute r~s~, obtaining 

110 values of .000, 
and 40 values of .607,* 

completing the second phase. We would next  compute T "  ---- T '  - $2 

and compute r~,r, ,, obtaining 

140 values of .000, 
10 values of .627 .* 

Using these 10 values to form $3, since rescoring would result  
in identical values, would complete the analysis  of the test  

The Lentz technique would have arr ived a t  identical sub-tests 
but  a t  a cost of 150 × 149/2 ~ 11,175 correlation coefficients ra the r  
than  the present 6 × 150 ~-900  sub-calculations. Of course all tests 
would not possess simple s t ructure  nor  would they all contain an hier- 
archical a r rangement  such tha t  n , i  > n ~  > n, 3 , etc. In case the sev- 
eral n 's  or the larger  of these approached equality or in case the con- 
t r ibut ion to the variance approached equality the separation of the 
factors would become more laborious and perhaps impossible. 

Mosier (11) has warned agains t  the use of r~  in a two-factor  
test  when (1) the factors  are numerical ly equal, and (2) the items 
do not possess simple structure,  i.e., have loadings on both factors.  His 
general thesis is in line with the main a rgument  of this paper, which 
extends the consideration to more than  two factors  and applies the 
idea to the whole problem of reliability as well as to item analysis. 
That  his warn ing  is per t inent  as a criticism or possible l imitat ion to 
the method of test  analysis proposed above is also recognized. 

* Computing the correlation of the item with the total not counting the item 
in question would produce the true value 'of .60 here and in later synonymies, but 
such error will not obscure the major relationships. 
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In two a t tempts  to use this method empirically the wr i te rs  found 
one test  which worked out quite smoothly due to unequally represent-  
ed factors,  whereas  in a second test  the two main factors  were  equi- 
potent  and came out as a single sub-test  until S~ was broken up into 
S~A and $I~ by visual inspection, a f te r  which the method proceeded to 
work  satisfactorily.  

The present  wr i te rs  intend to examine fur ther  the application of 
the suggested method of analysis to both theoretical  and empirical 
tests. I f  it can be made to overcome the difficulties involved in equi- 
potent  factors it may  well provide a practicable means of approximate  
factorial  analysis for  tes t  si tuations where  the usual methods would 
be prohibitive. The results of  such research will be published in a 
la ter  paper.  

A n a r t i c l e  by Kelley (8) ,  published a f t e r  the  beginning of the 
present  article, mus t  be given special mention since it foreshadowed 
empirically a number  of the rational conclusions presented above. His 
finding that  formulas (14),  (20),  and (21) of the Kuder-Richardson 
series yielded, for  a three-i tem test  with  inter-correlations of  zero, 
values of .00 for  the reliability coefficient, while their  formula  (8) 
yielded a value of .58, is a perfect  example of our  equation (15) show- 
ing the erroneous nature  of their  formula (8) and of the incorrect- 
ness of their  general approach when the number  of  factors,  K ,  is 
large in comparison with the number  of items, n .  Since the Kelley 
article did not point  out  the incorrectness of thei r  formula (8) and 
especially since he repeated their  claim that  it was  their  most  reli- 
able equation, i t  was feared that  his repor t ing of the  value .58 might  
be taken as  lending suppor t  to tha t  spurious equation. 

While we agree that  the Kuder-Richardson series is a measure  
of coherence ra ther  than of reliability, we cannot accept Kelley's co- 
efficient of coherence, VC/SVC, since it gave a value of .33 for  a 
test  whose coherence is obviously zero. The reason for  this errone- 
ous result  is the  same as tha t  responsible for  the er ror  in the Kuder-  
Richardson formula (8).  They used unity for  the item reliabilities 
while the Kelley method of factor  analysis is equivalent to put t ing 
these same fictitious unities in the diagonals of the fac tor  matrix.  Had 
Kelley used the correct  communatit ies of zero, i.e., had he used the 
Thurs tone  approach, he would have at ta ined the correct  coefficient of 
coherence of .00 as yielded by  the Kuder-Richardson equations (14),  
(20) ,  and (21).  The fact  tha t  he obtained .33 while the Kuder-Rich- 

ardson formula (8) yielded ~/.33 or .58 is empirical evidence of the 
similari ty of error.  

We also cannot agree to Kelley's appeal to an "act  of judgznent" 
on the par t  of the experimenter,  as in spli t t ing a test  in half or other 
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s m a l l e r  f r a c t i o n s ,  a s  a v a l i d  o r  d e p e n d a b l e  m e t h o d  o f  c o m p u t i n g  r e l i -  
a b i l i t y .  T h e  s u g g e s t i o n  o f  a c o m p l e t e  f a c t o r  a n a l y s i s  a s  a b a s i s  f o r  
s e t t i n g  u p  s u b - t e s t s  o r  t h e  s h o r t  s u b - t e s t  s e l e c t i o n  m e t h o d  s c h e m a -  
t i z e d  a b o v e  ( i f  i t  p r o v e s  p r a c t i c a b l e )  w i t h  t h e  t h e n  p r o p e r  u s e  o f  t h e  
b a s i c  K u d e r - R i c h a r d s o n  e q u a t i o n  a p p e a r s  t o  b e  a s o u n d e r  a n d  m u c h  
m o r e  s c i e n t i f i c  a p p r o a c h .  
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