MUSIC ABILITY

J. E. KARLIN

UNIVERSITY OF CHICAGO

Two batteries of music tests were factored by the centroid method. From each battery three oblique factors were extracted and in each case were tentatively identified as tonal sensitivity, retentivity (memory for elements), and memory for form. The correlations of the music tests of one battery with subtests of Cattell's intelligence test and with tests of a literary nature are also reported.

It has been held that musical ability is some dominantly unitary feature of mental life incapable of analysis into simpler components by rational methods. This study is a preliminary investigation of the music field by Thurstone's method of multiple factor analysis.

An account is given of an analysis of two batteries of music tests typical of the music test literature. The first battery was assembled by the present writer,* the second by Drake.† The battery given by the writer to 120 undergraduate students in the University of Cape Town (South Africa) consisted of 19 tests, as follows:

Tests 1 to 6 were the six parts of R. B. Cattell's intelligence test, scale III; tests 7 to 9 inclusive were of a literary nature; tests 10 to 19 were chosen as music tests. The origin of each music test is indicated in Table 1, those without any specific indication having been devised either by the writer or by members of the faculty of music in the University of Cape Town after the pattern of the Seashore tests which were themselves deemed too difficult for the population to be tested. It was hoped that the inclusion of intelligence tests in the same battery as the music tests would throw light on the much debated question of cognition in music. Similarly, the literary tests could perhaps provide the first steps towards possible evidence of a general artistic factor. The table of intercorrelations, computed as Pearson product-moment coefficients, is reproduced in Table 1 and is immediately seen to be highly informative on both the foregoing points. While the literary and intelligence tests correlate highly with each other and among themselves, of the 90 intercorrelations between

^{*} Karlin, J. E. A multiple factor analysis of musicality. M. A. thesis, Uni-

versity of Cape Town, 1939. † Drake, R. M. A factorial analysis of music tests by the Spearman tetrad-difference technique. J. Musicology, 1939, 1, 1.

PSYCHOMETRIKA

the music tests and the rest of the battery, only 25 were as high as 10 and the mean correlation was only .05.

	TABLE I																	
1	2	8	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	210																	
.407	224	450																
346	269	411	412															
200	356	301	493	333														
301	264	285	336	437	265													
564	270	498	476	.502	451	.476												
396	.253	_400	.429	.430	.354	-432	.562											
056	069	.025	052	096	099	.171	005	084										
.072	.096	.018	017	.022	030	.059	.026	072	.060									
114	055	049	059	025	078	.020	025	.081	.343	.122								
110	.028	130	061	020	034	~.034	002	075	.061	.001	.095							
.138	.204	.095	.163	.094	.206	.044	.281	.095	.110	.072	.210	.110						
091	042	.069	.130	124	014	.034	064	.004	.359	.203	.439	.062	.228					
330.	.057	.067	.096	.023	036	060	.137	.049	.269	.250	.267	.191	.\$31	.592				
.161	.059	.016	.018	.124	.131	.141	084	.029	.227	.262	.389	011	.322	.342	.510			
.062	.235	079	.007	079	082	120	002	105	009	.093	.067	.059	.002	.056	025	056		
.066	.016	.127	.169	.152	.080	.168	-324	.285	.176	.032	.091	005	.218	.180	.326	.231	023	
	1. S	ynoby	ms				8.	Vocabu	lary				14.	Rhytł	m			
	2. C	2. Classification					9.	Poetics	al app	reciati	on		15.	Time				
	3. C	pposit	L06				10.	Pitch -	discrin	ninatio	n		16.	Music	al Me	mory	(Drak	e)
	4. <i>E</i>	nalog	ies				11.	Tonal	memo	ry			17.	.7. Retentivity (Drake)				
	5. C	Comple	tion o	of sen	tences		12.	Interval discrimination				18.	18. Intensity (Seashore)					
	6. I	nferer	ices				13.	Consor	ance				19.	Emot	ional	sensit	ivity	
	7 1	condin	7 00m	mehe	nsion													

It might appear, then, that musical ability pertains largely to a field of its own. Yet it may be unwise to conclude this too hastily. With the isolation of the primary mental abilities by Thurstone, the concept of general intelligence or g, as Spearman put it, is becoming less and less widely accepted as meaningful in any unitary sense. It may be, however, that there is over-lap between the more elemental components of intelligence and fundamental abilities peculiar to the music domain. Likewise the lack of correlation between the music tests and the literary tests indicates the closeness of identity of the verbal factor with some aspect of general intelligence.

The battery was accordingly split into the musical and non-musical halves, and the music battery of ten tests, that is, tests 10 to 19 inclusive, was factored by the centroid method. After three factors were extracted, the median residual coefficient was .034 and the median probable error corrected for attenuation .035, and the highest residual was .091. The residue was therefore deemed unsystematic. Table 2 shows the rotation of the three centroid vectors to the three primary vectors of the present system in accordance with the demands of simple structure. Table 3 gives the correlations of the pri-

62

maries. Figure 1 is a pictorial representation of the trait configuration in relation to the primary vectors as derived by the method of extended vectors^{*}.

1000004	т	A	в	L	E	2
---------	---	---	---	---	---	---

	F _c					F		
I	II	III				X	Y	Z
.448	281	.148				002	.431	.005
.311	.073	169				.048	.013	.290
.564	347	.190		Л		.004	.537	.005
.173	.021	156	X	Y	Z	024	.017	.214
.443	.241	.150	.287	.333	.406	.398	057	.082
.697	246	187	.768	933	.153	096	.437	.414
.732	.291	243	.573	.153	901	.294	060	.561
.625	.237	.236				.497	.018	.077
.059	110	177				.017	.099	.167
.314	.150	.197				.318	009	027
	I .448 .311 .564 .173 .443 .697 .732 .625 .059 .314	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

	TA	BLE 3							
	$\Lambda' \Lambda$								
	X	Y	\boldsymbol{Z}						
X	1.000								
Y	545	1.000							
Z		.112	1.000						

Two observations are called for:

- 1. Test 18 (Intensity) is omitted from consideration since it showed negligible correlation with the rest of the battery almost throughout, having a communality of .047.
- 2. The condition of a positive manifold is fulfilled.

* Thurstone, L. L. A new rotational method in factor analysis. Psychometrika, 1938, 3, 199-218.

PSYCHOMETRIKA

The only claim made regarding musical ability in this battery is that the variance present in the tests, from .10 to .68, is plausibly explained here in terms of three factors. It will be necessary to devise tests which will have much higher communalities before it becomes evident how many psychological factors are involved in any such battery. It is unlikely that musical ability in general can be reduced to only three functional unities. With such small batteries, the insufficiency of data allows only of a somewhat vague structure; although the general character of the three factors can be seen with reasonable assurance in that the trait configuration did functionally outline a three-dimensional simple structure, it is necessary to have many more tests in order that the positions of the planes may be determined. With further study, the number of planes will be more exactly defined so as to give a multi-dimensional system, which may or may not be orthogonal. The present system is oblique, but it may well be that as the parameters become overdetermined by test data the planes will define themselves as being orthogonal. In the present case, factor Yappears to be some sort of tonal sensitivity factor, having its greatest weight on tests 10 and 12; factor X seems to be a retentivity or memory for elements factor with highest load on test 17; factor Z is a memory for form factor with maximal saturation in test 16. The two memory factors are obscure in outline apart from their retentive nature. It is imperative that future work be directed towards devising many further tests which will serve to accentuate the planes in general and the corners of the structure in particular.

A very similar procedure was adopted for a reanalysis of music test data assembled by Drake. His table of raw coefficients is reproduced in Table 4.

			TABL	E 4					
		1	2	3	4	5	6	7	8
Musical memory	1.								
Pitch	2.	.466							
Retentivity	3.	.456	.311						
Rhythm	4.	.441	.296	.185					
Intensity	5.	.375	.521	.184	.176				
Time	6.	.312	.286	.300	.244	.389			
Tonal movement	7.	.247	.483	.378	.121	.211	.210		
Tonal memory	8.	.207	.314	.378	.341	.153	.289	.504	

Again three factors were all that could be extracted, with the median residual coefficient .036 and the median probable error corrected for attenuation .029. With only 8 tests, a fourth factor is not justified. The rotation of the axes is shown in Table 5 and the correlation of the primaries is given by Table 6.

		F,			Λ			F.	
	I	IĬ	111				X	Ý	\boldsymbol{Z}
1	.643	258	202				.510	.073	039
2	.692	138	.346	X	Y	Z	.043	.572	.136
3	.573	.220	198	.480	.323	.340	.427	043	.384
4	.486	—.169	323	096		.935	.531	108	028
5	.547	<u> </u>	.283		.926	.085	.051	.513	134
6	.523	100	075				.326	.120	.078
7	.575	.386	.274				.000	.361	.580
8	.582	.378	109				.338	.010	.542

т	A	R	L	E	5
*		~	-		•••

	T.	ABLE 6	
		Λ' Δ	
	X	Y	Z
X	1.000		
Y	634	1.000	
Z	001	154	1.000

From Figure 2 it would appear that here too a three-dimensional oblique simple structure prevails. Factor Y looks very much like the *tonal sensitivity* factor already identified with highest load on test 2; factor X is a *memory* factor with heavy loads on tests 1, 3, and 4; factor Z is probably the *retentivity* factor, it being most evident in tests 7, 8, and 3.

The same warnings must be given here as were appropriate in the previous analysis. The agreement between the results of the two analyses is promising for further and more extensive studies. Such studies are in progress at the present time. Their ultimate purpose is the isolation of the primary musical abilities.