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The theoretically best estimate of the reliability coefficient is 
stated in terms of a precise definition of the equivalence of two forms 
of a test. Various approximations to this theoretical formula are 
derived, with reference to several degrees of completeness of infor- 
mation about the test and to special assumptions. The familiar  
Spearman-Brown Formula is shown to be a special case of the gen- 
eral formulation of the problem of reliability. Reliability coeffici- 
ents computed in various ways are presented for comparative pur- 
poses. 

The reliability coefficient is of  interest  because it gives, by the 
simple assumption tha t  a test  score has two components, viz., t rue 
score and variable error, an (indirect) estimate of the random error  
variance present in an obtained test  score variance. No mat ter  how 
computed, the reliability coefficient is only an estimate of the percent- 
age of the total variance tha t  may be described as t rue  variance, i.e., 
not due to error. 

The usual methods of est imating test  reliability are too well 
known to jus t i fy  description here. These methods differ in such a 
fashion that  no close est imate can be made of the results of one meth- 
od, knowing the estimate obtained by another  method. It  is always 
desirable, even necessary, for  the investigator to state how he made 
his estimate of the reliabili ty coefficient.* The retest  coefficient on the 
same form gives, in general, estimates tha t  are too high, because of 
material  remembered on the second application of the test. This mem- 
ory factor  cannot be eliminated by increasing the length of time be- 
tween the two applications, because of  variable growth in the function 
tested within the population of  individuals. These difficulties are so 
serious tha t  the method is rarely used. 

Although the authors  have made no actual count, it  seems safe 
to say tha t  most  test  technicians use the split-half method of estimat- 
ing reliability. This method involves an a rb i t ra ry  division of the test  

*The critical reader will reflect that,  in addition, the investigator must re- 
port the range, or better, the variance of the group tested. The present study is 
not concerned with that  matter.  
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into two parts,  and the computation of  the correlation-coefficient of  
the two sets of  scores thus derived. The correlation coefficient thus 
obtained is taken as an estimate of the reliability of either half, and 
the Spearman-Brown formula for  double length is then used to esti- 
mate  the reliability coefficient of the whole test. The split-half method 
is commonly supposed to give estimates tha t  are  too high; this is an 
uncertain generalization unless one has some definitely defensible 
s tandard.  A more per t inent  observation about  the split-half coeffici- 

n! 
ent  is that  it is not a unique value. There are - -  different ways  of  

2(2t)2 
dividing a test  of n i tems into two halves. Each one of these ways  of 
spli t t ing the tes t  gives its own est imate of the reliabil i ty coefficient.* 
True  enough, not  all these ways  of  spli t t ing are  equally defensible on 
a priori grounds. I t  remains  true, however,  tha t  there  are large fluc- 
tuat ions in the value of  the reliability coefficient as obtained f rom dif- 
d i ferent  ways  of  const i tut ing the two halves. t  

The supposedly best  method of est imating the reliabil i ty coeffici- 
ent  is to find the correlation between two equivalent forms,  given a t  
the same time. The crux of  the mat te r  here  is equivalence. Actually 
the difficulties discussed in connection with the split-half coefficient 
still apply, in perhaps smaller  degree. Again, there is no unique value 
of  the reliabili ty coefficient. In the quest  for  equivalence, the shif t  of 
i tems f rom one form to the other will affect the magni tude of the co- 

efficient. In this situation, there  are 2((2n!))2 different coefficients, again 

not  equally defensible. 
In view of  the  l imitations briefly described in the  foregoing, the  

authors  present  certain deductions f rom test  theory  which lead to 
unique values of the reliability coefficient.J: The least exact approxi- 
mation we shall describe involves assumptions no more  unreasonable 

*With certain assumptions as to the distribution of inter-itam correlations it  
would be possible to estimate, theoretically, the expected distribution of reliability 
coefficients thus to be computed. The most representative value (perhaps the 
mean) could then be taken as the best estimate and the problem thus solved. I t  
is likely, however, that the solution would be enormously complicated by the pos- 
sibilit.v that the matrix of inter-item coefficients would have a rank greater than 
one. See Mosier, Charles I., "A Note on Item Analysis and the Criterion of In- 
ternal Consistency," Psychometrika, 1936, 1 ,  pp. 275-282. 

~Brownell Wm. A., "On the Accuracy with which Reliability May Be Meas- 
ured by Correlating Test Halves," J. Exper. Educ., 1933, 1, pp. 204-215. 

Sit should .be mentioned that the main outlines of the simple argument in this 
article were derived independently by the two authors. In  a chance conversation 
it developed that  the two had reached similar conclusions by methods similar in 
principle. 
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than those basic to the Spearman-Brown formula.  Any one of the for- 
mulas will give a unique est imate of the coefficient in all si tuations to 
which it  is applicable. In certain cases, the commonly calculated para-  
meters  of  the test  score distr ibution will afford, in two minutes  of 
time, a fa i r ly  good est imate of  the  reliability coefficient. 

We shall consider a tes t  variable t made up of  n unit-weighted 
items applied to a population of N individuals. In the general case, 
we shall allow for  the possibility of the inter-item coefficients varying 
between their  possible limits, and also fo r  vary ing  proport ions of cor- 
rect  answers ;  items need not be equally difficult or  equally correlated 
with other  items. This enables us to state the formally complete and 
theoretically most  exact  method of  est imating the reliability of tes t  t. 

CASE I. 
Tke d~ta required are the number of items in the test, the diffi- 

culties of tire items, the inter-item correlations, and the standard devi- 
ation of the total test. In one of the possible solutions suggested it is 
assumed that the matrix of inter-item correlations has a rank of one. 

The correlation between two forms of  a test  is given by  

r(a-~- b ~- . . . - t -  n) (A ~- B- t - . . . - [ -  N) - -  (1) 

[ - 2 q -  -B ~ A- --- - ,  ~ + 2 (r~B,~ , , +  rAc-A -c + - - "  ÷ r , ( ~ - . ) ~ , . , - 1 )  ]~ 

in which a, b, .-. n a re  i tems of the test, and A, B, ... N are corre- 
sponding items in a second hypothetical  test. Equivalence is now de- 
fined as interchangeabil i ty of i tems a and A, b and B, etc. ; the  mere- 
bers  of  each pai r  have the same difficulty and are  correlated to the  
extent  of  their  respective reliabilities. The inter-i tem correlations of  
one tes t  a re  the  same as those in the other. These relationships consti- 
tu te  the operational definition of equivalence which is to be used.* 

By this definition of equivalence, the two expressions in the de- 
nominator  of  equation (1) are  identical. I t  may  then be seen that  the 
numera tor  and denominator  are the sums of the entries in square 
tables which are  the  same except for  the entries in the principal diag- 
onals. The  entries in the principal diagonal of  the numera tor  are  the 
reliabilities of  the  i tems multiplied by  their  variance, while the  en- 
t r ies  in the diagonal of  the  denominator  are  merely the variances of  
the  items. The formula  fo r  test  reliabili ty then becomes: 

*It should be noted that  this definition of equivalence is more rigid t h a n  t h e  
one  usually stated. 



154 PSYCHOMETRIKA 

r t t  

(2) 

The denominator  of equation (2) is simply the expression for  the  
variance of the sum of the items a to n, when each item is given a 
score of one. W e  can therefore  subst i tute  at', the obtained variance of  
test  scores, directly in the denominator,  and also in the numerator  by 
use of a suitable correction. 

In order  to wr i te  the numera tor  term, we must  ad jus t  the vari-  
ance for  the fac t  tha t  the entries in the diagonals of the numera tor  
and denominator  tables are  different. We therefore  subt rac t  f rom the 

obtained variance the sum of the variances of the items (Xpq) and 
1 

subst i tute  the sum of  the products  of the variance and reliability of 
n 

each item (Xr.pq).  The variance of any item i is p~q~. 
1 

The formula then becomes 

r , ,  ~ -  , ( 3 )  
(yt 2 

where  a?  is the obtained tes t  variance, Xpq is the sum of item vari-  
1 

n 

ances, and Xr.pq is the sum of the products  of i tem reliabilities and 
1 

their  variances. 
Equat ion (3 ) ,  while basic, is not  adapted to calculations, because 

r the ~ s are not  operat ionally determinable except  by  use of certain 
assumptions.  However ,  certain approximations are possible. I f  the  
inter-item correlations are available, two methods of est imating the 
n different values of  r~ suggest  themselves. One is to use the average 
correlation of item i with  the n J 1  other  i tems of the tes t  as an esti- 
m a t e  of the reliability of  i t e m / .  This method, or other  methods, of 
es t imat ing the reliability of  an item may be thought  to be  crude;  how- 
ever, i t  will be noted by reference to the square tables previously sug- 
gested that  the r . ' s  comprise for  a 100-item tes t  only one per  cent of  
the total number  of entries whose values enter  into the determinat ion 
of  the reliability coefficient of  the whole test. Reasonable guesses as 
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to the values of r .  would probaly not affect the final result very much, 
unless the tests were very short. 

Another  method is to estimate the unknown r~  as the average 
computed from all the second-order minors of the mat r ix  of  inter-item 
correlations in which r~  is the single unknown. By this method, 

rik 
r~  : 1/~ ( n - - l )  (n - -2)  ' (4) 

where i, ], and k are all different, and where the X means the sum of  
the separate determinations of v ,  f rom the I/~ (n---l)  (n--2)  minors.  
This method assumes tha t  the matr ix  is of rank one, or  tha t  the test  
measures one function. This method would be justified only where 
n is fa i r ly  small. 

CASE II. 
The data required are the numbers of items in ti~e test, the dif- 

ficulties of the items, the item-test correlations, and the standard devi- 
ation of the test. It  is assumed that the matrix of i~ter-item carrela~ 
tions has ~ ranI¢ of one. 

A more usable approximation is adapted to those situations in 
which an item analysis giving values of item-test correlations has 
been made. I f  we care to assume t h a t  i tem and test  measure the same 
thing (which, of course, we do when we put  the item into the tes t ) ,  
we may write 

r~t = 1 ,  ( 5 )  
~/q'ii Ttt 

where r~t is the correlation between the item and the test, r~  and ru  
are the reliabilities of item and test  respectively. 

Then 

P~i $2 
r .  ~---- • (6) 

Tit 

Substi tut ing r~,~ for  r~ in equation (3), we have 
rt t  

r t :  ~-- 

n 

~r i t~Pq  
n 

1 Ttt 

O't 2 
(7) 
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Solving for  r~t: 

r .  - -  2 ~  2 ~  ] . ( 8 )  

In practice, only the positive value of the radical in the r ight  member  
of  the equation is admissible. Equat ion (8) gives an est imate of  the 
reliabil i ty coefficient in those situations in which the techniques of  
i tem analysis have been applied. In each case, 27 denotes summat ion 
over the n items. 

CASE III.  
The  data  r equ i r ed  are  the  n u m b e r  of  i t e m s  in  the  test ,  the  dif f i-  

cul t ies  o f  the  i t ems ,  and  the  s t a n d a r d  dev ia t ion  o f  the  test .  I t  is  as- 
s u m e d  tha t  the m a t r i x  of  i n t e r - i t e m  corre la t ions  has  a r a n k  of  one and  
t h a t  aZl in tercorre la t ians  are  equal. 

In other  situations, we may be willing to assume that  the i tems 
are  equally intercorrelated,  bu t  allow their  difficulties to vary  over a 
wide  range.  We  shall proceed, therefore,  to invest igate this case. By 

assuming ru  to be constant  and equal to r-~ in equation (2) we have 

Vv,q,)" 
r .  ~ ,=1 , ( 9 )  

- -  ~rt2 

in which X/P~q~ is the  s tandard deviation of i tem i. Equat ion (9) 
gives an est imate of  the reliability coefficient. An approximation to 
equation (9) is g iven,by 

rt t  = (10) 
a t  

by  assuming r~, r~t~, where  r-~t is the average i tem-test  coefficient. 
rtt 

Since the tes t  t is the  sum of  i ts  i tems a, b, ... n, the variance of  
tes t  scores is given by  

~ t2 ~ ~a2 -Jf- rfb 2 . . . .  2V an2 ~-  2 ( r~b aa ab ~-  rae aa , c 2V . . . .  -~  r (n-l ~n an-l an , 

(11) 

in which a, b, ... n are  i tems of the test. 
I f  all intercorrelat ions are assumed equal ( ~ , ) ,  and ~/piq~ is used 

as  the ~ fo r  an item, 
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in which 

and 
X V ' P - - q - - ~  sum of the ~/pq---'s for items a to n, 

~rt2 ~ .Y, p q  
L ,  : (18) 

(zVV ) - -  

Substituting fo r '~ ,  in formula (9) 

a t  ~ - -  Z p q  ( Z V p q )  2 
q f t t  ~ ~ • ( 1 4 )  

- -  ( Z V p q ) 2 _ _ Z p q  (Yt 2 

Again, all summations axe over the items. 
This formula is recommended for use when there is reason to be- 

lieve that  the inter-item correlations are approximately equal. 
We shall digress slightly to illustrate the degree of approxima- 

tion involved in the various steps. Let us suppose that, with reference 
to equation (9), we are in addition willing to assume equal standard 
deviations of items. With such an assumption, we have 

r~2pq 
rtt : -  (15) 

~¢t 2 

in which p-q is the average item variance. 

But 

a t  ~ : n p - q  [1 -~- ( n - -  1) r . ] .  from (12) (16) 

by similar assumptions. Substituting (16) in (15), we have 

r .  ~-- (17) 
1 -~- ( n - -  1)•, 

Equation (17) is, of course, the familiar Spearman-Brown for- 
mula, which is predicated upon test length as the only variable affect- 
ing reliability, given a constant value of the reliability of the element. 

It  is now convenient to introduce another variant of equation (3), 
with assumptions similar to those involved in the Spearman-Brown 
formula. 

From equation (12), 
, r t  2 - -  n p q  

'r,. ~--- __., (18) 
( n  - -  1 )  n p q  
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since X p q  -~- np-q. 
Subst i tut ing this value of r ,  in equation (15) we have 

which simplifies to 

~,2 - -  n_n_~q n2pq 
r t t = :  _ _  - - ,  (19) 

( n  ~ 1 ) n p q  at 2 

n at ~ ~ n p q  
r t t  ==- - -  (20) 

n -  1 at ~- 

Equat ion (20) gives an est imate of  the  reliability of  a test, know- 
ing the number  of  items, the s tandard  deviation, and the a v e r a g e  vari- 
ance of  the  items. This would not seem to be ordinar i ly  a useful for- 
mula since it requires essentially the same basic da ta  as formula  (14),  
but  involves one more approximation.  Empirical  evidence presented 
a t  the end of this paper, however,  shows that  reliabilities obtained by 
formula  (20) do not  for  the  tests used, va ry  more than .001 f rom 
those obtained f rom formula  (14).  Since formula (20) eliminates the 

necessi ty for  computing x /Pq  for  each item, it accomplishes a material  
saving in labor. I t  serves, too, as a basis for  the formula recommended 
for  use in Case IV. 

CASE IV. 
T h e  d a t a  r e q u i r e d  a r e  t h e  n u m b e r  o f  i t e m s  i n  t h e  t e s t  a n d  t h e  

s t a n d a r d  d e v i a t i o n  a n d  m e a n  o f  t h e  t o t a l  s c ore s .  I t  is  a s s u m e d  i n  t h i s  

case  t h a t  t h e  m a t r i x  o f  i n t e r - i t e m  c o r r e l a t i o n s  has  a r a n k  o f  one ,  t h a t  

t h e s e  c o r r e l a t i o n s  a r e  equal ,  a n d  t h a t  al l  i t e m s  h a v e  t h e  s a m e  d i f f i c u l t y .  

Solution of formula  (20) becomes great ly simplified if  we make 
the rigid assumption tha t  all i tems have the same difficulty. As the 
formula  now stands it is necessary to obtain the average variance. 

The  average var iance (p-q) is equal to the product  of average p and 

average q, (p q) ,  i f  the i tems all have the same difficulty. In this case, 

n o t 2 - - n p q  
r t t  ~ -  - -  (21) 

n -  1 qt ~ 

The average value of p m a y b e  easily obtained from the formula 

- X X t  M,  (22) 
P ~ --n-N . . . .  n '  

when X X t  is the sum of the scores of N subjects  on a test  of n items, 
and Mt is the mean of the tes t  scores. 

The difference between equations (20) and (21) should be noted. 
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Equation (20) calls for the average of the item variances (pq) ; equa- 
tion (21) calls for the average of the item difficulties (p) and this 

value subtracted from 1.00, (q). When all items have the same diffi- 

culty, p--q is equal to p q, but if there is variation in difficulty among 

the items, ~ ~ becomes larger thart ~-q, and this discrepancy increases 
as the variation increases. This means that  the estimate of reliability 
obtained by formula (21) is equal to or less than that  obtained by 

formula (20). If  Equation (22) is used to get an estimate of p, the 
reliability coefficient can be quickly estimated from the mean, stand- 
ard deviation, and the number of items. This formula may be regard- 
ed as a sort of foot-rule method of estimating test reliability without 
the necessity of splitting halves, rescoring twice, and calculating a 
correlation coefficient. According to theory and to the applications al- 
ready made, the formula may be expected to give an underestimate of 
the reliability coefficient in situations not favorable for its application. 
If  Equation (21) should give a higher value than the split-half, one 
would suspect the latter of being abnormally low because of some un- 
favorable way of splitting. The split-half Spearman-Brown coefficient 
cannot be regarded as the standard from which to judge other esti- 
mates. The split-half method involving use of the Spearman-Brown 
formula may produce estimates of reliability which are either too high 
or too low. Reliabilities obtained from the formulas presented here 
are never overestimates. When the assumptions are rigidly fulfilled, 
the figures obtained are the exact values of test reliability as herein 
defined; if the assumptions are not met, the figures obtained are un- 
derestimates. 

It may be useful to suggest an interpretation of Equation (21) 
which has some bearing on the general problem of reliability. For 
rtt to be positive, ~t 2 must exceed n ~ .  Now np~ is the variance of n 
equally difficult items when they are uncorrelated, by the familiar bi- 
nomial theory.* Hence rtt is positive for any average inter-item 
correlation that  is positive. But negative reliability is inadmissible; 
hence only to the extent to which test items are positively intercorre- 
lated will a test have reliability. It  is implicit in all formulations of 
the reliability problem that  reliability is the characteristic of a test 
possessed by virtue of the positive intercorrelations of  the items com- 
posing it. 

Table I presents a comparison of reliability coefficients computed 

*Dunlap, J.  W. and Kurtz, A. K., Handbook of Statis$ical Namag~.aphs, 
Tables and Formulas, World Book Company, New York. Formula No. 46. 
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by equation (21) wi~h a split half  coefficient fo r  various tests. The  
t ime of computat ion was eDproximately two minutes fo r  each test,  ap- 
plying Equat ion {21). 

T~BLE I 

Test 
No. 

Nature 

College 
Achievement 

~c 

Range of 
values of 

P 

.05-.22 

.23-.40 

.41-.59 
.60-.77 
.78-.95 

.156 

.318 

.522 

.672 

.852 

n ~ t  

50 6.56 
50 9.24 

10.96 50 
50 8.69 
50 6.57 

Reliability Coefficient 
Split-half, 

By equa- Spearman- 
tion (21) Brown 

.864 

.891 

.914 

.872 

.871 

.880 

.906 

.923 

.896 

.888 

Table II presents  resul ts  f rom several formulas.  As in Table I, 
th ree  decimal figures are retained,  mere ly  to i l lustrate  the differences 
obtained by the various formulas.  

TABLE II 

Test Nature 
No. 

multiple 
choice 

6 vocabulary 
7 do 

general 
8 information 

Mean 
Seor______ee 

24.39 
24.13 

65 7.62 
65 7.92 

25 ...... 

Reliability Coefficient, as estimated by 
Case II ' Case III CaseIII CaseIV 

Equation Equation Equation Equation 
(8) (14) (20) (21) 

.823 

.839 

.729 

.308 

.826 

.716 

.808 

.825 

.716 

.733 

.758 

.714 

The  foregoing results a re  not  intended to confirm the t h e o r y d e -  
veloped, but  they  may  serve  to i l lustrate  the degree of  divergences o f  
resul ts  t ha t  may  be expected in actual application. In compar ing these 
est imates,  it should be noted tha t  all the  tests  a re  shor t ;  longer  tes ts  
may  be expected to give less var iable  estima.%s. Several a lgebraic  
var ian t s  are  not  here  presented;  they  may be easily derived when the i r  
use is indicated. The choice of  formula  to be used in any actual sit- 
uation will depend upon the amount  of in format ion  about  the compo- 
nents of  the test, and upon the degree of accuracy desired. I t  is the 
belief of the authors  tha t  in many  cases the quick est imate afforded 
by Formula  (21) may  be good enough fo r  all practical  purposes;  if  
the i tems vary  grea t ly  in difficulty, Formula  (20) appears  to be ade- 
quate  in any case. 


