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Abstract 

We describe a relaxation algorithm [ 1,2] for solving the classical minimum cost net- 
work flow problem. Our implementation is compared with mature state-of-the-art 
primal simplex and primal-dual codes and is found to be several times faster on all 
types of  randomly generated network flow problems. Furthermore, the speed-up 
factor increases with problem dimension. The codes, called RELAX-II and RELAXT-II, 
have a facility for efficient reoptimization and sensitivity analysis, and are in the 
public domain. 

1. In t roduc t ion  

Consider a directed graph with a set of nodes Y and a set of arcs ~.  Each arc 
(i, ]) has associated with it an integer air referred to as the cost of (i, j). We denote by 
f/j the flow of the arc (i, j )  and consider the classical minimum cost flow problem 

minimize ~ aqfq (MCF) 
( i,j) e,~  

subjectto ~ f m i -  ~. f ~ = 0 ,  Vi  E X  (conservation of flow) (1) 
m m 

(m,i) E~t (i,m)E~t 

4j< %, V(i,j) (capacity constraint) (2) 

where £q and cq are given integers. We assume throughout that there exists at least 
one feasible solution of (MCF). We formulate a dual problem to (MCF). 

We associate a Lagrange multiplier Pi (referred to as the price of node/ )wi th  
the ith conservation of flow constraint (1). By denoting by f and p the vectors with 
elements f/j, (i, j )  E N and Pi, i E •, respectively, we can write the corresponding 
Lagrangian function 
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L(f ,  p) = ~. (aii+ pi- pi)fq. 
( i , j)  ~ zll 

The dual problem is 

maximize q(p) 

subject to no constraints on p, 

where the dual functional q is given by 

q (p) = min L (f ,  p) 
~ij <<- f i]  <<- ci] 

= if'. rain {(aij + " i - P i ) f q  } ~- ~' 
( i , j) E,~ ~ij ~ f i j  <<. cq (LI) E.~I 

The form o f  the dual arc cost funct ions qq is shown in fig. 1. 

qi i (pi -  p/). 

(3) 

(4) 

Primal cost Dual cost 
for arc (i,j) for arc (i,j) 

~ ~  Slope = all 

l i i  oil 

Slol~. = - lij 

f~j p,- pj 

Slope = -cij f \ 
Fig. 1. Primal and dual costs for arc (i,/). 

v 

Given any price vector p, we consider the corresponding tension vector t 
having elements tq, (i, j)  E pl defined by 

%- = P i -  Pj, V ( i , / )  ~ :~. (5) 

Since the dual functional as well as subsequent definitions, optimality conditions and 
algorithms depend on the price vector p only through the corresponding tension 
vector t, we will often make no distinction between p and t in what follows. 
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For any price vector p, we say that an arc (i, j)is: 

Inactive if tij < ai] 

Balanced if t.. = a.. 

Active if t.. > a... 
t /  z/ 

For any flow vector f ,  the scalar 

d,= Z f,m- Z fro, 
m m 

(i, rn )Ed l  (m,i)  E.~A 

(6) 

(7) 

(8) 

(9) 

will be referred to as the deficit of node i. It represents the difference of total flow 
exported and total flow imported by the node. 

The optimality conditions in connection with (MCF) and its dual given by 
(3) and (4) state that ( f ,  p) is a primal and dual optimal solution pair if and only if 

fij = £ij for all inactive arcs (i, j)  (i0) 

£ij <~ fq <<" cij forallbalancedarcs(i,]) (11) 

fij = Cij for all active arcs (i, j )  (12) 

d i = 0 for all nodes i. (13) 

Relations (10) - (12)  are known as the complementary slackness conditions. 
Our approach is based on iterative ascent of  the dual functional. The price 

vector p is updated while simultaneously maintaining a flow vector f satisfying comple- 
mentary slackness with p. The algorithms proposed terminate when fsatisfies primal 
feasibility (deficit of  each node equals zero). The main feature of the algorithms, 
which distinguishes them from classical primal-dual methods, is that the choice of 
ascent directions is very simple. At a given price vector p, a node i with nonzero 
deficit is chosen, and an ascent is attempted along the coordinate Pi. If such an 
ascent is not possible and a reduction of the total absolute deficit ~ m l d r n l  c a n n o t  

be effected through flow augmentation, an adjacent node of i, say i l ,  is chosen and 
an ascent is attempted along the sum of  the coordinate vectors corresponding to i and 
i l .  If  such an ascent is not possible, and flow augmentation is not possible either, an 
adjacent node of  either i or il is chosen and the process is continued. In practice, 
most of  the ascent directions are single coordinate directions, leading to the inter- 
pretation of the algorithms as coordinate ascent or relaxation methods. This is an 
important characteristic, and a key factor in the algorithms' efficiency. We have 
found through experiment that, for ordinary networks, the ascent directions used 
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by our algorithms lead to comparable improvement per iteration as the direction 
of  maximal rate of  ascent (the one used by the classical primal-dual method), but 
are computed with considerably less overhead. 

In the next section, we characterize the ascent directions used in the algorithms. 
In sect. 3, we describe our relaxation methods. In sect. 4, we describe the codes and 
give results of  computational experimentation. 

2. Cha rac t e r i za t i on  o f  a scen t  d i r ec t ions  

Each ascent direction used by the algorithm is associated with a connected 
strict subset S of  A r, and has the form v = {vql(i, ] )  E s~ }, where 

1 if i ~ S , ] E S  

-1  if i E S ,  j q ~ S  

0 otherwise. 

(14) 

Changing any tension vector t in the direction v of  (14) corresponds to decreasing 
the prices of  all nodes in S by an equal amount while leaving the prices of  all other 
nodes unchanged. It is seen from (4) that the directional derivative at t of  the dual 
cost in the direction v is C(v, t), where 

C(v, t) = Z lim qii(tii + rvvij) - qq(tti) 
(i,])~s~ ~--+o + a 

= 2. eii(vq, tq) (lS) 

and 

eij (oq, tq) = 

-vqf~q if ( i ,]) is inactiveorif( i ,])  
is balanced and vii <<, 0 

- t~j cq if (i, ] )  is active or if (i, ] )  
is balanced and vq > /0 .  

(16) 

Note that C(o, t) is the difference of  outflow and inflow across S when the flows of 
inactive and active arcs are set at their lower and upper bounds, respectively, while 
the flow of each balanced arc incident to S is set to its lower or upper bound depend- 
ing on whether the arc is going out of  S or coming into S, respectively. We have the 
following proposition. 
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PROPOSITION 1 

For every non-empty strict subset S of N and every tension vector t, there 
holds 

w ( t  + 3'0) = w(t )  + 7C(o, t), V3' E [0,6),  (17) 

where w( .  ) is the dual cost as a function of  t 

w(t )  = ff~. qti(tii). 
(i,i) 

(18) 

Here, u is given by (14) and ~ is given by 

= inf {{ tim - aim i i E S, m ~ S, (i, m) : active }, 

{ a m i  -- tmil i  E S, m q~ S, (m, /):inactive}}. (19) 

(We use the convention 8 = + ~ if the set over which the infimum above is taken is 
empty.) 

/'roof 

It was seen [cf. (15)] that the rate of  change of the dual cost w at t along o is 
C(v, t). Since w is piecewise linear, the actual change of w along the direction v is 
linear in the stepwise 3' up to the point where 3' becomes large enough so that the 
pair [w(t  + 7 0 ,  t + 3'v] meets a new face of  the graph of w. This value of  7 is the 
one for which a new arc incident to S becomes balanced and it equals the scalar ti 
of  (19). Q.E.D. 

3. T h e  r e l axa t i on  m e t h o d  

The relaxation algorithm maintains complementary slackness at all times. At 
each iteration, it starts from a single node with nonzero deficit and checks whether 
changing its price can improve the value of  the dual cost. If not, it gradually builds 
up, via a labeling procedure, either a flow augmenting path or a cutset associated 
with a direction of  ascent. The main difference from the classical primal-dual method 
is that instead of  continuing the labeling process until a maximal set of  nodes is 
labeled, we stop at the first possible direction of  ascent - frequently the direction 
associated with just the starting node. 
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TYPICAL RELAXATION ITERATION FOR AN ORDINARY NETWORK 

At the beginning of each iteration, we have a pair (f ,  t) satisfying comple- 
mentary slackness. The iteration determines a new pair ( f ,  t) satisfying comple- 
mentary slackness by means of  the following process. 

Step 1: Choose a node s with d s > 0. (The iteration can be started also from a node s 
with d s < 0 - the steps are similar.) If no such node can be found, terminate the 
algorithm. Else give the label "0" to s, set S = 0, and go to step 2. Nodes in S are 
said to be scanned. 

Step 2: Choose a labeled but unscanned node k, set S = S U { k }, and go to step 3. 

Step 3: Scan the label of  the node k as follows: Give the label "k" to all unlabeled 
nodes m such that (m, k) is balanced and fmk < Cm~, and to all unlabeled rn such 
that (k, m) is balanced and £k,n < fkm" If v is the vector corresponding to S as in (14) 
and 

C(u, t) > 0, (20) 

go to step 5. Else if for any of  the nodes m labeled from k we have d m < 0, go to 
step 4. Else go to step 2. 

Step 4 (flow augmentation): A directed path P has been found that begins at the start- 
ing node s and ends at the node m with d m < 0 identified in step 3. The path is con- 
structed by tracing labels backwards starting from m, and consists of  balanced arcs 
such that we have £kn < fkn for all (k, n) E P* and fk,~ < ckn for all (k, n) E P- ,  
where 

P+ = {(k, n)E Pl(k, n) is oriented in the direction from s to m} (21) 

Let 

P- = { (k, n) E Pl(k, n) is oriented in the direction from m to s}. (22) 

e = min{d s, - d  m, {fkn - £kn I(k' n) E P+}, {C~n - fknl(k ,  n) E P-}}. (23) 

Decrease by e the flows of  all arcs (k, n) E P+, increase by e the flows of all arcs 
(k, n) E P- ,  and go to the next iteration. 
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Step 5 (price ad]ustment]: Let 

= min{ttkm - a k m l k e  S, m ¢~S, (k, m): activeJ, 

{amk - tmk lk ~ S, m ~ S, (m, k): inactive}}, 

where S is the set of scanned nodes constructed in step 2. Set 

(24) 

fkm "= ~km' V balanced arcs (k, m) with k E S, m E L, m ~ S 

fmk "= crnk' V balanced arcs (m, k) with k E S, m E L, m q~ S, 

where L is the set of labeled nodes. Set 

tkrn + 5 if k ~ S, m E S 

t k m - ~  if k E S ,  m ~ S  

tkm otherwise. 

Go to the next iteration. 

The relaxation iteration terminates with either a flow augmentation (via 
step 4) or with a dual cost improvement (via step 5). In order for the procedure to 
be well defined, however, we must show that whenever we return to step 2 from 
step 3, there is still some labeled node which is unscanned. Indeed, when all labeled 
nodes are scanned (i.e. the set S coincides with the labeled set), there is no balanced 
arc (m, k) such that m ~ S, k E S and fmk < Cmk or a balanced arc (k, m) such that 
k E S, m q~ S and ftcrn > I~krn" It follows from the definition (15), (16) [see also the 
following equation (25)] that 

c(o ,  t )  = a k 
k E S  

Under the above circumstances, all nodes in S have nonnegative deficit and at least 
one node in S (the starting node s) has strictly positive deficit. Therefore, C(o, t) > 0 
and it follows that the procedure switches from step 3 to step 5 rather than switch 
back to step 2. 

If aij, ~ij' and cij are integer for all (i,/ ') E zg and the starting t is integer, then 
8 as given by (24) will also be a positive integer and the dual cost is increased by an 
integer amount each time step 5 is executed. Each time a flow augmentation takes 
place via step 4, the dual cost remains unchanged. If  the starting f is integer, all 
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successive f will be integer, so the amount of flow augmentation e in step 4 will be 
a positive integer. Therefore, there can be only a finite number of flow augmentations 
between successive reductions of  the dual cost. It follows that the algorithm will 
finitely terminate at an integer optimal pair (f ,  t) if the starting pair (f ,  t) is integer. 

It can be seen that the relaxation iteration involves a comparable amount of 
computation per node scanned as the usual primal-dual method [3]. The only addi- 
tional computation involves maintaining the quantity C(v, t), but it can be seen that 
this can be computed incrementally in step 3 rather than recomputed each time the 
set S is enlarged in step 2. As a result, this additional computation is insignificant. To 
compute C(v, t) incrementally in the context of" the algorithm, it is helpful to use 
the identity 

c(,,, t) = Z d , -  T. (.f,,j- 9.,j) - T. (c,j- 
i E S (i,]) : balanced (i, j )  : balanced 

iEg, j~S i~8, jES 

(25) 

We note that a similar iteration can be constructed starting from a node with 
negative deficit. Here, the set S consists of  nodes with nonpositive deficit, and in 
step 5, the prices of  the nodes in S are increased rather than decreased. The straight- 
forward details are left to the reader. Computational experience suggests that termina- 
tion is typically accelerated when ascent iterations are initiated from nodes with 
negative as well as positive deficit. 

L I N E  S E A R C H  

The stepsize ~ of  (24) corresponds to the first break point of the (piecewise 
linear) dual functional along the ascent direction. It is possible to instead use an 
optimal stepsize that maximizes the dual functional along the ascent direction. Such 
a stepsize can be calculated quite efficiently by testing the sign of the directional 
derivative of  the dual cost at successive break points along the ascent direction. Com- 
putational experimentation showed that this type of line search is beneficial, and was 
implemented in the relaxation codes. 

S I N G L E  N O D E  I T E R A T I O N S  

The case where the relaxation iteration scans a single node (the starting node s 
having positive deficit ds), finds the corresponding direction v s to be an ascent direction, 
i.e. 

C % , t )  = d s - ~ (fsm--~sm) -- Z (Cms--fms)> O, (26) 
(S, m ) : balanced (m, s)  : balanced 

reduces the price Ps (perhaps repeatedly via the line search mentioned earlier) and 
terminates is particularly important for the conceptual understanding of the algorithm. 
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Dual Functional 

/ 
Slope = - d s 

D i r e c t ~ r e c f c o n a ,  I ~  J 
derivative C(~vs .t ) I \ ' ~  

- I x \  

Pa Price of Node s 

Dual Functional 

/ 
Slope = -c(-~ ,t) = -d s = ~ ( v  ,t) 

Ps Price of Node s 

CASES WHERE A SINGLE NODE ITERATION IS POSSIBLE 

Dual Functional 

Slope = -C(v s ,t), 

/ 
Slope = - d 

v 

Price of Node s 

CASE WHERE A SINGLE NODE ITERATION IS NOT POSSIBLE 

Fig. 2. Illustration o f  dual funct ional  and its directional  
derivatives along the price coordinate  Ps" Break points  
correspond to values o f  Ps where one or more arcs inci- 
dent  to node s are balanced.  

We believe that much of  the success of  the algorithm is owed to the relatively large 
number of  single node iterations for many classes of  problems. 

When only the price of  a single node s is changed, the absolute value of  the 
deficit of  s is decreased at the expense of  possibly increasing the absolute value of  
the deficit of  its neighboring nodes. This is reminiscent of  relaxation methods where a 
change of  a single variable is effected with the purpose of  satisfying a single constraint 
at the expense of  violating others. 

A dual viewpoint, reminiscent of  coordinate ascent methods, is that a single 
(the sth) coordinate direction is chosen and a Iine search is performed along this 
direction. Figure 2 shows the form of  the dual function along the direction of the 
coordinate Ps for a node with 

d s >  O. 
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The left-hand slope at Ps is 

- C(v,  t), 

while the right-hand slope is 

-C(os ,  t) = - Z Csm - Z 
( s, m ) ~ .~l ( s, rn ) ~ Jt 

(s, rn)  : active ( s , m )  : inactive 
or balanced 

s m  

Z Cm + 
(re,s) ~ ~ (re,s) ~ ~ 

(m ,  3) : active (m,  s)  : inactive 
or balanced 

md~ 

We have 

- d  - C % , t ) ,  (27) 

so - d  s is a subgradient of  the dual functional at Ps in the sth coordinate direction• 

A single node iteration will be possible if and only if the right-hand slope is 
negative or equivalently 

c%, t) > o. 

This will always be true if we are not at a corner and hence equality holds throughout 
in (27). However, if the dual cost is nondifferentiable at Ps along the sth coordinate, 
it may happen that (see fig. 2) 

- C ( v  s, t)  < - d  < o <<. - c % , t ) ,  

in which case the single node iteration fails to make progress and we must resort to 
scanning more than one node. 

Figure 3 illustrates a single node iteration for the case where d s > 0. It is seen 
that the break points of  the dual functional along the coordinate Ps are the values of 
Ps for which one or more arcs incident to node s are balanced. The single node itera- 
tion shown starts with arcs (i ,  s) and (3, s) inactive, and arcs (s, 2) and (s, 4) active. 
To reduce Ps beyond the first break point P4 + as4.  the flow of  arc (s, 4) must be 
pulled back from fs4 = 30 to fs4 = 0. At thelevel Pa - aas,  the dual cost is maximized 
because if the flow of arc (3, s) is set to the lower bound of zero, the deficit d s 

switches from positive (+ 10) to negative ( -10) .  Figure 4 illustrates a single node 
iteration for the same node when d s < 0. The difference to the case d s > 0 is that 
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slope 

slope = 2 0 ~  

Pl "% P2 *asz P3 "a3s 

(a) 

Flow reduction from 30 to 0 
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" ~ ' / / r i ~ e  ~r~p ~,,~ p4 . as4 

,o, oy y, 
J ~ P 2  *as2 Pl-a~s ~ 

(b) 

10 

slope = -40 

\ 

P4 + as4 Ps Price of node s 
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(c) (d) 

Fig. 3. Illustration of an iteration involving a single node s with four adjacent arcs 
(1, s), (3, s), (s, 2), (s, 4) with feasible arc flow ranges [1, 20] ,  [0, 20] ,  [0, 10],  
[0,30], respectively. (a) Form of the dual functional along Ps for given values of 
P~, P2, P3, and P4. The break points correspond to the levels of  Ps for which the 
corresponding arcs become balanced. (b) Illustration of a price drop of Ps from a 
value higher than all break points to the break point at which arc (s, 4) becomes 
balanced. (c) Price drop of Ps to the break point at which arc (3, s) becomes balanced. 
When this is done, arc (s, 4) becomes inactive from balanced and its flow is reduced 
from 30 to 0 to maintain complementary slackness. (d) Ps is now at the break point 
P3 - aas that maximizes the dual cost. Any further price drop makes arc (3. s) 
active, increases its flow from 0 to 20, and changes the sign of the deficit d s from 
positive (+10) to negative ( - 10). 
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Dual functional 

= 

Pl "als Ps P2 +as2 

2nd price rise 

P3-% P. + a~4 

(a) 

Price of node s 

Price Level 

p4+ as4 

,,s/ '°? 
• ~ ~ P 2  +as2 

Pl-% ~ IO,lOl 
[0,201 Ps Flow increase from 0 to 10 

(b) (c) (d) 

Fig. 4. Il lustration of  a price rise involving the single node s for the example of 
fig. 3. Here, the initial price Ps lies between the two lef tmost  break points corre- 
sponding to the arcs (1, s) and (s, 2). Init ially,  arcs (1, s), (s, 2), and (s, 4) are in- 
active, and arc (3, s) is active. 
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the price Ps is increased, instead of decreased, and as Ps moves beyond a break point, 
the flow of  the corresponding balanced arc is pushed to the lower bound (for incoming 
arcs) and to the upper bound (for outgoing arcs), rather than pulled to the upper 
bound and lower bound, respectively. 

DEGENERATE ASCENT ITERATIONS 

If, for a given t, we can fred a connected subset S of  ~f such that the corre- 
sponding vector (u, o) satisfies 

c(o, t) = o, 

then from proposition 1 we see that the dual cost remains constant as we start moving 
along the vector o. i.e. 

w(t + -- w(t), V e [0, 8), 

where w, v, and 8 are given by (14), (18), (19). We refer to such incremental changes 
in t as degenerate ascent iterations. If the ascent condition C(o, t) > 0 [cf. (20)] is 
replaced by C(o, t) >1 O, then we obtain an algorithm that produces at each iteration 
either a flow augmentation, or a strict dual cost improvement,  or a degenerate ascent 
step. This algorithm has the same convergence properties as the one without degenerate 
steps under the following condition: 

(C) For each degenerate ascent iteration, the starting node s has positive 
deficit d s, and at the end of the iteration, all nodes in the scanned set S have non- 
negative deficit. 

We refer the reader to [1] for a proof  of this fact. It can be easily seen that 
condition (C) always holds when the set S consists of just the starting node s. For 
this reason, if the ascent iteration is modified so that a price adjustment at step 5 is 
made not only when C(v, t) > 0 but  also when d s > O, S = { s } and C(o s, t) = O, the 
algorithm maintains its termination properties. This modification was implemented 
in the relaxation codes and can have an important beneficial effect for special classes 
of problems such as assignment and transportation problems. We have no clear 
explanation for this phenomenon. For the assignment problem, condition (C) is 
guaranteed to hold even if S contains more than one node. The assignment algorithm 
of [4] makes extensive use of degenerate ascent steps. 

4.  C o d e  d e s c r i p t i o n  a n d  c o m p u t a t i o n a l  resu l t s  

The relaxation codes RELAX-II and RELAXT-II solve the problem 
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minimize Z 
(i,i) ~ a~ 

subject to Z fmi -- Z rim = b i, V i E X 
( m , i ) ~  (i, rn )E~  

O <<. fq <<- c~i, V(/ , j )ea .  

This form has become standard in network codes as it does not require storage and 
use of  the array of lower bounds {9.ij }. Instead, the smaller size array Ibi} is stored and 
used. The problem (MCF) of  sect. 1 can be reduced to the above form by making the 
transformation of variables f q : =  f/j - 9~ij. The method for representing the problem 
is the linked list structure suggested by Aashtiani and Magnanti [5] and used in their 
KILTER code (see also Magnanti [6]). Briefly, during solution of the problem, we 
store for each arc its start and end node, its capacity, its reduced cost (aq - tij), its 
flow f / i '  the next arc with the same start node, and the next arc with the same end 
node. An additional array of  length equal to half the number of  arcs is used forinternal 
calculations. This array could be eliminated at the expense of a modest increase in 
computation time. The total storage of  RELAX-II for arc length arrays is 7.5 IM 1. 
RELAXT-II is a code that is similar to RELAX-II but employs two additional grc 
length arrays that essentially store the set of  all balanced arcs. This code, written with 
the assistance of Jon Eckstein, is faster than RELAX-II, but requires 9.5 IMI total 
storage for arc length arrays. There is additional storage needed for node length 
arrays, but this is relatively insignificant for all but extremely sparse problems. This 
compares unfavorably with primal simplex codes, which can be implemented with 
four arc length arrays. 

The RELAX-II and RELAXT-II codes implement with minor variations the 
relaxation algorithm of sect. 3. Line search and degenerate ascent steps are imple- 
mented as discussed in sect. 3. 

The codes assume no prior knowledge about the structure of the problem or 
the nature of  the solution. Initial prices are set to zero and initial arc flows are set to 
zero or the upper bound, depending on whether the arc cost is nonnegative or negative, 
respectively. RELAX-II and RELAXT-II include a preprocessing phase (included 
in the CPU time reported) whereby arc capacities are reduced to as small a value as 
possible without changing optimal solutions of the problem. Thus, for transportation 
problems, the capacity of  each arc is set at the minimum of  the supply and demand 
at the start and end nodes of  the arc. We found experimentally that this preprocessing 
can markedly improve the performance of  relaxation methods, particularly for trans- 
portation problems. We do not fully understand the nature of  this phenomenon, but 
it is apparently related to the fact that tight arc capacities tend to make the shape of 
the isocost surfaces of  the dual functional more "round".  Generally speaking, tight 
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arc capacity bounds increase the frequency of single node iterations. This behavior 
is in sharp contrast with that of primal simplex, which benefits from loose arc capacity 
bounds (fewer extreme points to potentially search over), and appears to be one of 
the main reasons for the experimentally observed superiority of relaxation over 
primal simplex for heavily capacitated problems. 

It is possible to reduce the memory requirements of the codes by ordering the 
arc list of the network by head node, i.e. the outgoing arcs of the first node are listed 
first, followed by the outgoing arcs of the second node, etc. (forward star representa- 
tion). If this is done, one arc length array becomes unnecessary, thereby reducing the 
memory requirements of  RELAX-II to 6.5 arc length arrays, and of RELAXT-II to 
8.5 arc length arrays. The problem solution time remains essentially unaffected by 
this device, but the time needed to prepare (or alter) the problem data will be in- 
creased. The same technique can also be used to reduce the memory requirements 
of the primal simplex method to three arc length arrays. 

We have compared RELAX-II and RELAXT-II under identical test conditions 
with the primal-dual code KILTER (Aashtiani and Magnanti [5] ) and the primal 
simplex code RNET (Grigoriadis and Hsu [7]). It is generally recognized that the 
performance of RNET is representative of the best that can be achieved with presently 
available simplex network codes written in FORTRAN. For example, Kennington and 
Helgason in their 1980 book [8] (p. 255) compare RNET with their own primal 
simplex code NETFLO on the first 35 NETGEN benchmarks [9] and conclude that 
" R N E T . . .  produced the shortest times that we have seen on these 35 test problems". 
Our computational results with these benchmarks are given in table 1 and show 
substantially faster computation times for the relaxation codes over both KILTER and 
RNET. 

An important and intriguing property of RELAX-II and RELAXT-II is that 
their speedup factor over RNET apparently increas'es with the size of the problem. 
This can be seen by comparing the results for the small problems 1 -35  with the 
results for the larger problems 3 7 - 4 0  of table 1. The comparison shows an improve- 
ment in the speedup factor that is not spectacular, but is noticeable and consistent. 
TabIe 2 shows that for even larger problems, the speedup factor increases further 
with problem dimension, and reaches or exceeds an order of magnitude (see fig. 5). 
This is particularly true for assignment problems where, even for relatively small 
problems, the speedup factor is of the order of 20 or more. 

We note that there was some difficulty in generating the transportation prob- 
lems of this table with NETGEN. Many of the problems generated were infeasible 
because some node supplies and demands were coming out zero or negative. This 
was resolved by adding the same number (usually 10) to all source supplies and all 
sink demands, as noted in table 2. Note that the transportation problems of the 
table are divided into groups and each group has the same average degree per node 
(8 for problems 6 - 1 5 ,  and 20 for problems 16-20) .  
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Table 1 

Standard Benchmark Problems 1 - 4 0  of [9] obtained using NETGEN. All times are in secs on a 
VAX 11/750. All codes compiled by FORTRAN in OPTIMIZE mode under VMS version 3.7, 
and under VMS version 4.1, as indicated. All codes run on the same machine under identical 
conditions. Problem 36 could not be generated with our version of NETGEN 

RELAX-II RELAXT-II KILTER RNET 
Problem Problem No. of No. of (VMS 3.7/ (VMS 3.7/ VMS 3.7 VMS 3.7 

type no. nodes arcs VMS 4.1) VMS 4.1) 

0 

1 200 1300 2.07/1.75 1.47/1.22 8.81 3.15 
2 200 1500 2.12/1.76 1.61/1.31 9.04 3.72 
3 200 2000 1.92/1.61 1.80/1.50 9.22 4.42 
4 200 2200 2.52/2.12 2.38/1.98 10.45 4.98 
5 200 2900 2.97/2.43 2.53/2.05 16.48 7.18 
6 300 3150 4.37/3.66 3.57/3.00 25.08 9.43 
7 300 4500 5.46/4.53 3.83/3.17 35.55 12.60 
8 300 5155 5.39/4.46 4.30/3.57 46.30 15.31 
9 300 6075 6.38/5.29 5.15/4.30 43.12 18.99 

10 300 6300 4.12/3.50 3.78/3.07 47.80 16.44 

Total (problems 1 -10)  37.32/31.11 30.42/25.17 251.85 96.22 

-~ 11 400 1500 1.23/1.03 1.35/1.08 8.09 4.92 
E 12 400 2250 1.38/1.16 1.54/1.25 10.76 6.43 
" 13 400 3000 1.68/1.42 1.87/1.54 8.99 8.92 
"~ 14 400 3750 2.43/2.07 2.67/2.16 14.52 9.90 < 

15 400 4500 2.79/2.34 3.04/2.46 14.53 10.20 

Total (problems 11-15) 9.51/8.02 10.47/8.49 56.89 40.37 

16 400 1306 2.79/2.40 2.60/2.57 13.57 2.76 
• U 17 400 2443 2.67/2.29 2.80/2.42 16.89 3.42 

18 400 1306 2.56/2.20 2.74/2.39 13.05 2.56 t~ 

19 400 2443 2.73/2.32 2.83/2.41 17.21 3.61 
~ 20 400 1416 2.85/2.40 2.66/2.29 11.88 3.00 
-- 21 400 2836 3.80/3.23 3.77/3.23 19.06 4.48 
~ 22 400 1416 2.56/2.18 2.82/2.44 12.14 2.86 

23 400 2836 4.91/4.24 3.83/3.33 19.65 4.58 
24 400 1382 1.27/1.07 1.47/1.27 13.07 2.63 
25 400 2676 2.01/1.68 2.13/1.87 26.17 5.84 

~ 26 400 1382 1.79/1.57 1.60/1.41 11.31 2.48 
27 400 2676 2.15/1.84 1.97/1.75 18.88 3.62 

Total (problems 16 -27)  32.09/27.42 31.22/27.38 192.88 41.94 
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Table 1 (continued) 

RELAX-II RELAXT-II KILTER RNET 
Problem ProbIem No. of No. of (VMS 3.7/ (VMS 3.7/ VMS 3.7 VMS 3.7 

type no. nodes arcs VMS 4.1) VMS 4.1) 

"~ "~ 28 1000 2900 4.90/4.10 5.67/5.02 29.77 8.60 
"~ 29 1000 3400 5 .57•4 .76  5.13/4.43 32.36 12.01 

30 1000 4400 7.31/6.47 7.18/6.26 42.21 11.12 
• ~ ~ ~ 31 1000 4800 5.76/4.95 7.14/6.30 39.11 10.45 
e~ ~ E, 32 1500 4342 8.20/7.07 8.25/7.29 69.28 18.04 

• =~ 33 1500 4385 10.39/8.96 8.94/7.43 63.59 17.29 
;= 34 1500 5107 9.49/8.11 8.88/7.81 72.51 20.50 

35 1500 5730 10.95/9.74 10.52/9.26 67.49 17.81 

Total (problems 28-35)  62.57/54.16 61.71/53.80 356.32 115.82 

~"~ ~o,~ ~ 37 5000 23000 87.05/73.64 74.67/66.66 681.94 281.87 
~ ~" E 38 3000 35000 68.25[57.84 55.84/47.33 607.89 274.46 
~- ~ --~ 39 5000 15000 89.83/75.17 66.23/58.74 558,60 151.00 
= ~ 40 3000 23000 50.42/42.73 35.91/30.56 369.40 174.74 

Total (problems 37-40)  295.55/249.38 232.65/203.29 2 217.83 882.07 
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Table 2 

Large Assignment and Transportation Problems. Times in secs on VAX 11/750. All problems 
obtained using NETGEN, as described in the text. RELAX-II and RELAXT-II compiled under 
VMS 4.1; RNET compiled under VMS 3.7. Problems marked with ~ were obtained by NETGEN, 
and then, to make to problem feasible, an increment of 2 was added to the supply of each source 
node, and the demand of each sink node. Problems marked with + were similarly obtained, but the 
increment was 10 

Problem No. of No. of No. of Cost Total RELAX-II RELAXT-II RNET 
No. type sources sinks arcs range supply 

1 E 1 000 1 000 8 000 1 - 1 0  1 000 4.68 4.60 79.11 
2 E 1 500 1 500 12 000 1 - 1 0  1500 7.23 7.03 199.44 
3 ~ 2 000 2 000 16 000 1 - 1 0  2 000 12.65 9.95 313.64 
4 "~ 1 000 1 000 8 000 1 - 1  000 1 000 9.91 10.68 118.60 < 
5 1 500 1 500 12 000 1 - 1  000 1500 17.82 14.58 227.57 

6 o 1 000 1 000 8 000 1 - 1 0  100 000 31.43 27.83 129.95 
7* = 1 500 1 500 12 000 1 - 1 0  153 000 60.86 56.20 300.79 
8 ÷ o 2 000 2 000 16 000 1 - 1 0  220000 127.73 99.69 531.14 
9 + ~ 2 500 2 500 20000 1 - 1 0  275 000 144.66 115.65 790.57 

10 + ~ 3 000 3 000 24 000 1 - 1 0  330 000 221.81 167.49 1 246.45 

11 ~ 1 000 1 000 8 000 1 - i  000 100 000 32.60 31.99 152.17 
12" ~ 1 500 1 500 12 000 1 - 1  000 153 000 53.84 54.32 394.12 
13* ~ 2 000 2 000 16 000 1 - 1  000 220000 101.97 71.85 694.32 
14 ÷ ~ 2 500 2 500 20 000 1 - 1  000 275 000 107.93 96.71 1 030.35 
15 + ~ 3 000 3 000 24 000 1 - 1  000 330 000 133.85 102.93 1 533.50 

16 + ~ 500 500 10 000 1 - 1 0 0  15 000 16.44 11.43 84.04 
17 ÷ ~ 750 750 15 000 1 -  100 22 500 28.30 t8.12 176.55 
18 + o 1 000 1 000 20 000 1 - t 0 0  30 000 51.01 31.31 306.97 
19" ~ 1 250 1 250 25 000 1 - 1 0 0  37 500 71.61 38.96 476.57 
20 + ~ 1 500 1 500 30 000 1 - 1 0 0  45 000 68.09 41.03 727.38 
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Fig. 5. Speedup factor of RELAX-II and RELAXT-II over RNET for the trans- 
portation problems of table 2. The normalized dimension D gives the number of 
nodes JV and arcs .~/as follows: 

Ixl = 1000 * D, I~l = 4000 * D for problems 6 - 1 5  
IXl = 500 * D, I.~1 = 5000 * D for p roblems  1 6 - 2 0 .  

To corroborate the results of  table 2, the random seed number of  NETGEN 
was changed, and additional problems were solved using some of  the problem data 
of  the table. The results were qualitatively similar to those of  table 2. We also solved 
a set of  transhipment problems of increasing size generated by our random problem 
generator called RANET. The comparison between RELAX-II, RELAXT-II and 
RNET is given in fig. 6. More experimentation and/or analysis is needed to establish 
conclusively the computational complexity implications of  these experiments. 

8. Conclusions 

Relaxation methods adapt nonlinear programming ideas to solve linear network 
flow problems. They are much faster than classical methods on standard benchmark 
problems and a broad range of  randomly generated problems. They are also better 
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Fig. 6. Speedup factor of RELAX-II and RELAXT-II over RNET in lightly capaci- 
rated transhipment problems generated by our own random problem generator 
RANET. Each node is a transhipment node, and it is either a source or a sink. The 
normalized problem size D gives the number of nodes and arcs as follows 

Ixl -- 200 * D, I~1 = 3000 * D. 

The node supplies and demands were drawn from the interval [ -  1000, 1000] 
according to a uniform distribution. The arc costs were drawn from the interval 
[1,100] according to a uniform distribution. The arc capacities were drawn from 
the interval [500, 3000] according to a uniform distr~ution. 

suited for post optimization analysis than primal-simplex. For example, suppose a 
problem is solved, and then is modified by changing a few arc capacities and/or node 
supplies. To solve the modified problem by the relaxation method,  we use as starting 
node prices the prices obtained from the earlier solution, and we change the arc 
flows that violate the new capacity constraints to their new capacity bounds. Typically, 
this starting solution is close to optimal and solution of  the modified problem is 
extremely fast. By contrast, to solve the modified problem using primal-simplex, one 
must provide a starting basis. The basis obtained from the earlier solution will typically 
not be a basis for the modified problem. As a result, a new starting basis has to be 
constructed, and there are no simple ways to choose this basis to be nearly optimal. 

The main disadvantage of relaxation methods relative to primal-simplex is 
that they require more computer memory. However, technological trends are such 
that this disadvantage should become less significant in the future. 

Our computational results provided some indication that relaxation has a 
superior average computational complexity over primal-simplex. Additional experi- 
mentation with large problems and/or analysis are needed to provide an answer to 
this important question. 

The relaxation approach applies to a broad range of problems beyond the 
class considered in this paper (see [ 10-- 13 ]), including general linear programming 
problems. It also lends itself to distributed or parallel computation (see [10 ,13-16]  ). 
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The relaxation codes RELAX-II and RELAXT-II together with other support 
programs, including a reoptimization and sensitivity analysis capacity, are in the 
public domain with no restrictions, and can be obtained from the authors at no cost 
on IBM-PC or Macintosh diskette. 
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THE BASIC A L G O R I T H M  

/* Read in p r o b l e m  data.  "/  

nn : = numbe r  o f  nodes in n e t w o r k  

na : = numbe r  o f  arcs in n e t w o r k  

/* The nodes are n u m b e r e d  f r om 1 to  nn and the arcs f r om 1 to  na.* l  

f o r  arc :=  l t o n a d o  

cost(arc) : = cost o f  arc 

upbd(arc) : = f l o w  upper  bound  of  arc 

head(arc) : = head node  o f  arc 

tail(arc) : = ta i l  node  o f  arc 

end do 

fo r  node : = 1 to  nn do  

dfc t (node)  : = ex t raneous  f l o w  supply  o u t  o f  node 

end do 

/* In i t ia l ize  dual  pr ices to  0 and then  assign f l o w  to  arcs to  sat isfy c o m p l e m e n t a r y  slackness. */ 

fo r  a r c : =  l t o n a d o  

rdcost(arc) : = cost(arc) 

i f  rdcost(arc) > 0 t hen  

f l o w ( a r c ) : =  0 

else 

f l o w ( a r c ) : =  upbd(arc)  

dfct (head(arc))  : = dfct (head(arc))  + upbd(arc)  

dfc t (  tai l (  arc)) : = d fc t (  tai l (  arc)) - upbd(  arc) 

e n d d o  

/ "  Star t  re laxa t ion  i te ra t ions .  */ 

w h i l e  dfct0~ ~ 0 fo r  some i do  

fo r  node  : = 1 to  nn do  

i f  dfc t (node)  > 0 t hen  

pred(node)  : = 0 

labelset  : = { n o d e }  

scanset : = { 0 }  

augnode  : = 0 

ascent : = false 
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whi le  augnode = 0 and not ascent do 

Choose a node I E labelset \ scanset 

scanset : = scanset U { n o d e l }  

/* Start scanning step. */ 

scanning(node t ,augnode) 

/* Check i f  scanset corresponds to a dual ascent direct ion. */ 

i f  

dfct (nodel )  :> ~ f low(arc) 

node1 E scanset rdcost(arc) = 0 

head(arc) E scanset 

tail(arc) g scanset 

~,, upbd(arc)-f tow(arc) 

rdcost(arc) = 0 

head(arc) ~ scanset 

tail(arc) E scanset 

end do 

end do 

then ascent : = true 

end do 

i f  ascent then 

doascent 

else 

augf low( augnode,node) 

proced u re scan n ing(node 1, augnode) 

/* This procedure performs a scanning step at node1. ~1 

for all arc such that  head(arc) = node I do 

i f  rdcost(arc) = 0 and f low(arc) > 0 then 

node2 : = tail(arc) 

i f  node2 g labelset then 

pred(node2) : = arc 

labelset : = labelset U {node2}  

i f  dfct(node2) < 0 then augnode : = node2 

end do 

for all arcsuch that  tail(arc) = node1 do 

i f  rdcost(arc) = 0 and f low(arc) < upbd(arc) then 
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end do 

end; 

node2 : = head(arc) 

i f  node2 q labelset then 

pred(node2) : = -arc 

labelset : = labelset U {node2 }  

i f  dfct(node2) < 0 then augnode  : = node2 

procedure doascent 

/* This procedure performs dual ascent by line-rn~imization and updates the f low accordingly to satisfy 

complementary slackness. */ 

while 

dfct (node l) 

node1 ( scanset 

do 

> ~ flow(arc) 

rdcost(arc) = 0 

head(arc) ~ scanset 

tail(arc) #, scanset 

upbd(arc) - f low(arc)  

rdcost(arc) = 0 

head(arc) q scanset 

tail(arc) E scanset 

/* Compute the stepsize to the next breakpoint in the dual cost and decrease the price of all nodes in 

scanset by the stepsize. Adjust the arc flow accordingly to maintain complementary slackness. "/ 

pr icechange : = very large positive number 

for all arc such that head(arc) E scanset and tail(arc) ~ scanset do 

i f  rdcost(arc) = 0 then 

dfct(head(arc)) : = dfct(head(arc)) - f low(arc) 

dfct(tai l(arc)) : = dfct(tai l(arc)) + f low(arc) 

f low(arc) : = 0 

i f  0 < -rdcost(arc) < pr icechange then pr icechange : = -rdcost(arc) 

end do 

for all arc such that head(arc) ~ scanset and tail(arc) ~ scanset do 

i f  rdcost(arc) = 0 then 

dfct(head(arc)) := dfct(head(arc)) + (upbd(arc) - f low(arc) )  

dfct(tai l(arc)) : = dfct(tai l(arc)) - (upbd(arc) -  f low(arc))  

f low(arc) := upbd(arc) 

i f  0 < rdcost(arc) < pr icechange then pr icechange : = rdcost(arc) 

end do 

for all arc such that head(arc) ( scanset and tail(arc) ~ scanset do 
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rdcost(arc) : =  rdcost(arc) + pr icechange 

end do 

for all arc such that head(arc) ~ scanset and tai l (arc) ~ scanset do 

rdcost(arc) : = rdcost(arc) - p r i c e c h a n g e  

end do 

end do 

end; 

proced u re aug f l ow(augnode ,node )  

/* This procedure adjusts the f low on arcs to decrease the total deficit, while maintaining complement 

slackness. "/ 

f l owchange  : = rain{ d fc t (node ) , -d f c t (augnode)  } 

node1 : = augnode  

wh i le  n o d e l  ~ n o d e d o  

a rc :  = p r e d ( n o d e l )  

i f  arc > 0 then 

f l owchange  : = rain( f lowchange,  f low(arc)  } 

n o d e l  : = head(arc) 

else 

f l owchange  : = rain{ f l owchange ,  upbd( -a rc ) - f l ow( -a rc )  } 

node I : = tai l(-arc) 

end do 

dfc t (node)  : = d fc t (node)  - f l owchange  

d fc t (augnode)  : = d fc t (augnode)  + f l owchange  

node l : = augnode  

while node1 ~ node do 

arc : = p r e d ( n o d e l )  

i farc > Othen 

f low(arc)  : = f low(arc)  - f l owchange  

node 1 : = head(arc) 

else 

f low(-arc)  : = f low(-arc)  + f l owchange  

node I : = tai l(-arc) 

end do 

end; 
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Appendix 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

* * * * * * *  SAMPLE CALLING PROGRAM FOR SUBROUTINE RELAXT * g * * * * t  
* * *  (MINIMUM COST NETWORK FLOW PROBLEM) * g t  

*** THE PROGRAM IS BASED ON THE PAPER *** 
*** D.P. BERTSEKAS~ P.TSENG "THE RELAX CODES FOR *** 
*** LINEAR MINIMUM COST NETWORK FLOW PROBLEMS", ~** 

* * *  ANNALS O F  OPERATIONS RESEARCH,  THIS VOLUME * * *  

* * *  ALL THE SUBROUTINES ARE WRITTEN IN STANDARD * * *  
* * *  FORTRAN77. * * *  

* * *  QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO * * *  
* * *  DIMITRI BERTSEKAS AND PAUL TSENG * * *  
* * *  DEPARTMENT OF ELECTRICAL ENGINEERING & * * *  
* * *  COMPUTER SCIENCE * * *  
* * *  LABORATORY FOR INFORMATION AND DECISION SYSTEMS * * *  
*** M.I.T. CAMBRIDGE~ MASSACHUSETTS~ 02139~ U.S.A. *** 

THIS PROGRAM WILL READ AND SOLVE A PROBLEM FILE CREATED VIA 
THE RANDOM PROBLEM GENERATOR NETGEN OR ANY GENERATOR THAT 
USES THE NETGEN FORMAT. 

DOUBLE PRECISION TCOST 
INTEGER C(7C30CJCI),X(7C;CIC~O)~U(7OCJOO),RC(7C~OOCJ),B(60CIO) 
INTEGER CAP(7OOOO),STARTN(7OOOO),ENDN(70000) 
INTEGER II(6CJC~O),I2(6CK)O),I3(6C~C~CJ)~I4(7C:OC:CO,I5(600C)) 
INTEGER 16(70000), I7(70000)  
LOGICAL LI(6OOO),L2(6OOO),TEST~REPEAT 
COMMON /ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X 

*/ARRAY9/RC/ARRAYB/B/BLK1/I1/BLK2/I2/BLK3/I3/BLK4/14/BLK5/I5/BLK6 
*/I6/BLK7/I71BLKG/L1/BLK9/L2/L/N~NA~LARGE 
COMMON/BLKR/REPEAT/ARRAYC/C/BLKCAP/CAP 
COMMON /BLK10/TFSTOU/BLK11/TNXTOU/BLK12/TFSTIN/BLK13/TNXTIN 
DIMENSION TFSTOU(6OOO),TNXTOU(7OOOO),TFSTIN(6OOO)~TNXTIN(70000) 

1 0  

READ (5, *) N, IA 
READ (5, t )  (STARTN ( I )  , I = l ,  IA) 
READ (5, g) (ENDN (1),  I=1 ~ IA) 
READ (5, *) ( C ( I ) ,  I = I ,  IA) 
READ (5, *) (U( I )  ~ I = I ,  IA) 
DO 10 I = I , N  
B(1)=O 
M=O 
DO 20 I = I . I A  

IF (STARTN(I).EQ.N+I) THEN 
B (ENDN(I ) )=-U( I )  

ELSE IF (ENDN(I).EQ.N+2) THEN 
B (STARTN ( I )  )=U(I )  

ELSE 
M=M+I 
C(M)=C(I) 
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C 

U(M)=U(1) 
STARTN(M)=STARTN(1) 
ENDN(M)=ENDN(II 

END IF 
20 CONTINUE 

NA=M 
LARGE=20000000 
REPEAT=.FALSE. 
DO 30 I=I,NA 

30 CAP(I)=U(I) 
CALL INIDAT 
~ Set initial dual prices to zero ~i~ 
DO 40 I=I,NA 

40 RC(1)=C(1) 
CALL RELAXT 
~ Display previous optimal cost ~i~ 
IF (REPEAT) WRITE(6,50)TCOST 

50 FORMAT< ~ ~,'PREVIOUS OPTIMAL COST=',FI4.2) 
TCOST=DFLOAT(O) 
DO 60 I=I,NA 

60 TCOST=TCOST+DFLOAT(X(I)~C(I>) 
WRITE(6,70) TCOST 

70 FORMAT(' ','OPTIMAL COST =~,F14.2) 
END 

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE INIDAT 
i ~  This subroutine uses the data arrays STARTN and ENDN 
to construct auxiliary data arrays FOU, NXTOU, FIN, and 
NXTIN that are required by RELAXT. In this subroutine we 
arbitrarily order the arcs leaving each node and store 
this information in FOU and NXTOU. Similarly, we arbitra- 
filly order the arcs entering each node and store this 
information in FIN and NXTIN. At the completion of the 
cons t ruc t i on ,  we have t ha t  

FOU(1) 
NXTOU (J) 
FIN(1) 
NXTIN(J) 

= First arc leaving node I. 
= Next arc leaving the head node of arc 3. 
= First arc entering node I. 
= Next arc entering the tail node of arc J. 

10 

COMMON /ARRAYS/STARTN/ARRAYE/ENDN/BLKI/TEMPIN/BLK2/TEMPOU 
~/BLK3/FOU/BLK4/NXTOU/BLK5/FIN/BLK6/NXTIN 
~/L/N,NA 
INTEGER STARTN(1),ENDN(1),TEMPIN(1),TEMPOU(1),FOU(1) 
INTEGER NXTOU(1),FIN(1),NXTIN(1) 
LOGICAL L 
~ construct data structure required by RELAXT ~ ~  
DO 10 I=I,N 

FIN(I)=O 
FOU(I)=O 
TEMPIN(1)=O 
TEMPOU(I)=O 

DO 20 I=I,NA 
NXTIN(I)=O 
NXTOU(1)=O 
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20 

II=STARTN(1) 
12=ENDN(1) 
IF (FOU(I1).NE.O> THEN 

NXTOU(TEMPOU(II))=I 
ELSE 

FOU(I1)=I 
END IF 
TEMPOU(I1)=I 
IF (FIN(12).NE.O) THEN 

NXTIN(TEMPIN(12))=I 
ELSE 

FIN(12)=I 
END IF 
TEMPIN(I2)=I 

RETURN 
END 

SUBROUTINE RELAXT 
C ~$~$$$$$~$~$~$$$$~$~$$$~$$~$$$$$~$$$~$~$$~$~$~$~$~ 
C 
C SUBROUTINE RELAXT 
C RELEASE APR. 1988 
C 
C ~$~$$~$$~$~$$~$~$$$$~$~$~$~$$~$~$~$~~$$$$$~$~$~ 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

This subroutine solves the minimum (linear) cost ordinary 
network flow problem. 
The routine implements the relaxation method of 
Bertsekas, D. P.~ "A Unified Framework for Primal-Dual Methods .." 

Math. Programming~ Vol. 32~ 1985~ pp. 125-145 
Bertsekas~ D. P.~ & Tseng~ P.~ "Relaxation Methods for Minimum .." 

Operations Research O., 1987 (to appear) 
Bertsekas~ D. P.~ & Tseng~ P.~ "The RELAX Codes for Linear Minimum 

Cost Network Flow Problems", ANNALS OF OPERATIONS 
RESEARCH~THIS VOLUME 

The routine was written by Dimitri Bertsekas and Paul Tseng with 
contributions by Jonathan Eckstein. 

This code i s  in the pub l i c  domain and can be used fo r  any 
purpose. I t  can be d i s t r i b u t e d  f r e e l y .  
Users are requested to acknowledge the authorship 
of the code~ and the relaxation algorithm. No modifications 
should be made to this code other than the minimal necessary 
to make it compatible with the FORTRAN compilers of specific 
machines. When reporting computational results please be sure 
to describe the memory limitations of your machine. Generally 
RELAXT requires more memory than primal simplex codes and may 
penalized severely by limited machine memory. 

The difference between this routine and the similar code RELAX is 
that it maintains a data structure that gives all the balanced 
arcs in the network. This structure is called the "tree" for 
historical reasons, even though it describes a subnetwork that 
will generally be neither acyclic nor connected. Also~ the tree 
may contain some arcs that are not balanced: it turns out to be 
cheaper to purge arcs that have become unbalanced only when their 
end nodes are being scanned~ as opposed to always maintaining an 
exact set of balanced arcs. 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

The user must supply the following inputs to the subroutine: 
All data should be in INTEGER*4. To run in limited memory systems 
the arrays STARTN, ENDN, NXTIN~ NXTOU r SAVEr FINr FOUr LABEL, 
PRDCSR may be declared as INTEGERg2. 

N (the number of nodes) 
NA (the number of arcs) 
LARGE (a very large positive integer to represent infinity. 
All problem data should be less than LARGE in magnitude~ 
and LARGE should be less than,say, I/4 the largest INTEGER*4 
of the machine used. This will guard primarily against 
overflow in uncapacitated problems where the arc capacities 
are taken finite but very large.) 

STARTN(NA) (the head node array) 
ENDN(NA) (the tail node array) 
RC(NA) (the reduced cost array) 
X(NA) ( the arc f l o w  a r ray )  
U(NA) ( the arc f l ow  c a p a c i t y  a r ray )  
DFCT(N) ( the d e f i c i t  a r ray )  
FOU(N) ( the f i r s t  arc out  a r ray )  
FIN(N) ( the f i r s t  arc in  a r ray )  
NXTOU(NA) ( the nex t  arc out  a r ray )  
NXTIN(NA) ( the next  arc in  a r ray )  

This subroutine places the optimal flow in the array X 
and the corresponding reduced cost vector in the aCray RC. 

IMPLICIT INTEGER (A-Z) 
LOGICAL REPEAT,FEASBL~QUIT, SCAN,SWITCH~MARK,POSIT~PCHANG 
COMMON/ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X/ARRAY9/RC 

~/ARRAYB/DFCT/BLK1/LABEL/BLK2/PRDCSR/BLK3/FOU/BLK4/NXTOU/BLK5/FIN 
*/BLK6/NXTIN/BLK7/SAVE/BLKS/SCAN/BLK9/MARK/L/N,NArLARGE 
g/BLKR/REPEAT 
COMMON /BLKIO/TFSTOU/BLKII/TNXTOU/BLKI2/TFSTIN/BLKI3/TNXTIN 

Each common block contains just one array~ so the arrays in RELAXT 
can be dimensioned to 1 element and take their dimension from the 
main calling routine. With this trick RELAXT need not be recompiled 
if the problem dimension changes. If your FORTRAN does not support 
this feature change the dimensions below to be the same as the 
ones declared in your main calling program. 

DIMENSION TFSTOU(1)~TNXTOU(1),TFSTIN<I),TNXTIN(1) 
DIMENSION STARTN(1),ENDN(1),U(1)~X(1),RC(1)~DFCT(1) 
DIMENSION LABEL(1),PRDCSR(1)rSCAN(1)~FOU(1),NXTOU(1) 
DIMENSION FIN(1),NXTIN(1),SAVE(1),MARK(1) 

DDPOS and DDNEG are arrays that give the directional derivatives 
for all positive and negative single-node price changes. These 
are used only in the initial phase of the algorithm, before the 
"tree" datastructure comes into play. Therefore, they are 
equivalenced to TFSTOU and TFSTIN~ which are the same size (number 
of nodes) and are only used after the tree comes into use. 

DIMENSION DDPOS(1)~DDNEG(1) 
EQUIVALENCE (DDPOS(1),TFSTOU(1)), (DDNEG(1)~TFSTIN(1)) 
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C 
C 
C $ reduce arc capacity as much as possible w/out changing the problem 
C ~ If this is a sensitivity run via routine SENSTV skip the 
C initialization 
C 

IF (REPEAT) GO TO 190 
DO 50 NODE=I,N 

C 
C Note that we also set up the initial DDPOS and DDNEG for each node 
C (this is not necessary in RELAX). 
C 

DDPOS(NODE)=DFCT(NODE) 
DDNEG(NODE)=-DFCT(NODE) 
SCAPOU=O 
ARC=FOU(NODE) 

10 I F  (ARC.GT.O)  THEN 
SCAPOU=MINO(LARGE,SCAPOU+U(ARC)) 
ARC=NXTOU(ARC) 
GO TO I0 

END IF 
CAPOUT=MINO(LARGE,SCAPOU+DFCT(NODE)) 
IF (CAPOUT.LT.O) THEN 

C 
C $$ PROBLEM IS INFEASIBLE - EXIT 
C 

WRITE(6,$)'EXIT DURING INITIALIZATION' 
WRITE(6,~)'EXOGENOUS FLOW INTO NODE',NODE,' EXCEEDS OUT CAPACITY' 
CALL PRFLOW(NODE) 
GO TO 640 
END IF 

C 
SCAPIN=O 
ARC=FIN(NODE) 

20 IF (ARC.GT.O) THEN 
U(ARC)=MINO(U(ARC),CAPOUT) 
SCAPIN=MINO(LARGE~SCAPIN+U(ARC)) 
ARC=NXTIN(ARC) 
GO TO 20 

END IF 
30 CAPIN=MINO(LARGE,SCAPIN-DFCT(NODE)) 

IF (CAPIN.LT.O) THEN 
C 
C ~ PROBLEM IS INFEASIBLE - EXIT 
C 

WRITE(&,~)~EXIT DURING INITIALIZATION ~ 
WRITE(6~$)'EXOGENOUS FLOW OUT OF NODE~NODE~ 

" EXCEEDS IN CAPACITY" 
CALL PRFLOW(NODE) 
GO TO 640 
END IF 

C 
ARC=FOU(NODE) 

40 IF (ARC.GT.O) THEN 
U(ARC)=MINO(U(ARCI,CAPIN) 
ARC=NXTOU(ARC) 
GO TO 40 

END I F  
50  CONTINUE 
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C ~ initialize the arc flows and the nodal deficits ~ ~  
C ~ note that U(ARC) is redefined as the residual capacity of ARC 
C 
C Now compute the directional derivatives for each coordinate 
C exactly. 
C As well as computing the actual defecits. U(ARC) is the residual 
C capacity on ARC~ and X(ARC) is the flow. These always add up to the 
C total capacity. 
C 

DO 60 ARC=I,NA 
X(ARC) = 0 
IF (RC(ARC) .LE. 0) THEN 

T = U(ARC) 
T1 = STARTN(ARC) 
T2 = ENDN(ARC) 
DDPOS(TI) = DDPOS(TI) + T 
DDNEG(T2) = DDNEG(T2) + T 
IF (RC(ARC) .LT. 0) THEN 

X(ARC) = T 
U(ARC) = 0 
DFCT(TI) = DFCT(T1) + T 
DFCT(T2) = DFCT(T2) - T 
DDNEG(TI) = DDNEG(TI) - T 
DDPOS(T2) = DDPOS(T2) - T 

END IF 
END IF 

60 CONTINUE 
C 

C Adaptive strategy: the number of strictly single-node iteration 
C passes attempted is a function of the average density of the 
C network. 
C 

IF (NA. GT.N~IO) THEN 
NPASS=2 

ELSE 
NPASS=3 

END IF 
C 

C We now do 2 or 3 passes through all the nodes. This is the initial 
C phase:if a single node iteration is not possible, we just go on to 
C the next node. 
C 

DO 180 PASSES = I,NPASS 
DO 170 NODE=I,N 
IF (DFCT(NODE) .NE. 0) THEN 

C Price rise or price drop? (Note: it is impossible to have both.) 
C 

IF (DDPOS(NODE) .LE. 0) THEN 

C Price rise. Loop over breakpoints in +Price(NODE) direction. 
C On outgoing arcs, tension will rise and reduced cost will fall 

C -- so, next break comes at smallest positive reduced cost. 
C On incoming arcs, tension will fall and reduced cost will rise 
C -- so~ next break comes at smallest negative reduced cost. 
C 

DELPRC = LARGE 

ARC = FOU(NODE) 
70 IF (ARC .GT. O) THEN 

TRC = RC(ARC) 

IF ((TRC .GT. O) .AND. (TRC .LT. DELPRC)) THEN 
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80 

90 

100 

DELPRC = TRC 
END IF 

ARC = NXTOU(ARC) 
GOTO 7(3 

END IF 

ARC = FIN(NODE) 

IF (ARC .GT. 0) THEN 
TRC = RC(ARC) 
IF ((TRC .LT. 0) .AND. (-TRC .LT. DELPRC)) THEN 

DELPRC = -TRC 
END IF 

ARC = NXTIN(ARC) 
GOTO 80 

END IF 

If no breakpoints left and ascent still possible, the problem 

is infeasible. 

IF (DELPRC .GE. LARGE) THEN 
IF (DDPOS(NODE> .EQ. O) GOTO 170 
GOTO 640 

ENDIF 
We have an ac tua l  b r e a k p o i n t . l n c r e a s e  p r i c e  by t h a t  q u a n t i t y .  
F i r s t  check the eq fec t  on a l l  outbound arcs ,  which w i l l  have a 
t e n s i o n  i nc rease  and reduced cos t  drop.  

NXTBRK = LARGE 

ARC = FOU(NODE) 

IF (ARC .GT. 0) THEN 

TRC = RC(ARC) 
IF (TRC .EQ. (3) THEN 

T1 = ENDN(ARC) 
T = U(ARC) 

IF (T .GT. 0) THEN 
DFCT(NODE) = DFCT(NODE) + T 
DFCT(TI) = DFCT(TI) - T 

X(ARC) = T 

U(ARC) = 0 
ELSE 

T = X(ARC) 

END IF 
DDNEG(NODE) = D D N E G ( N O D E )  - T 
DDPOS(TI) = DDPOS(TI) - T 

END IF 

For all outgoing arcs tension rises~and reduced cost drops 

TRC = TRC - DELPRC 

IF ((TRC .GT. 0) .AND. (TRC .LT. NXTBRK)) THEN 
NXTBRK = TRC 

ELSE IF (TRC .EQ. 0) THEN 

Arc goes from i n a c t i v e  t o  ba lanced.  Just  change t e n s i o n  
inc rease  d e r i v a t i v e s ~  and check f o r  s t a t u s  change a t  
o the r  end. 

DDPOS(NODE) = DDPOS(NODE> + U(ARC) 
DDNEG(ENDN(ARC)) = DDNEG(ENDN(ARC)) + U(ARC) 

END IF 

RC(ARC) = TRC 

ARC = NXTOU(ARC) 

GOTO i00 

END iF 

Time to check the incoming arcs into the node. 
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C These a r c s  w i l l  have an t e n s i o n  d e c r e a s e  and a reduced c o s t  
C r i s e .  
C 

ARC = FIN(NODE) 
110 IF  (ARC .GT. O) THEN 

TRC = RC(ARC) 
IF  (TRC .EQ. O) THEN 

T1 = STARTN(ARC) 
T = X(ARC) 
IF  (T .GT. O) THEN 

DFCT(NODE) = DFCT(NODE) + T 
DFCT(T1) = DFCT(T1) - T 
U(ARC) = T 
X(ARC) = 0 

ELSE 
T = U(ARC) 

END IF  
DDPOS(T1) = DDPOS(TI) - T 
DDNEG(NODE) = DDNEG(NODE)  - T 

END IF 
C Note  t h e  reduced  c o s t  r i s e  f o r  e v e r y  a r c .  

TRC = TRC + DELPRC 
IF  ((TRC .LT .  O) .AND. (-TRC .LT .  NXTBRK)) THEN 

NXTBRK = -TRC 
ELSE IF  (TRC .EQ. O) THEN 

C Now check f o r  movement f r o m  a c t i v e  t o  b a l a n c e d .  
C I f  so~ t e n s i o n  dec rease  d e r i v a t i v e s  i n c r e a s e .  

DDNEG(STARTN(ARC)) = DDNEG(STARTN(ARC)) + X(ARC) 
DDPOS(NODE) = DDPOS(NODE) + X(ARC) 

END IF  
RC(ARC) = TRC 
ARC = NXTIN(ARC) 
GOTO 110 

END IF  
C We are now done with the iteration. If the current direction 
C is still a (degenerate) descent direction~ push onward. 
C 

IF ((DDPOS(NODE) .LE. O) .AND. (NXTBRK .LT. LARGE)) THEN 
DELPRC = NXTBRK 
GOTO 90 

END IF 
C Now comes the code for a price decrease at NODE. 
C On outgoing arcs, tension will drop and reduced cost will increase 
C -- so~ next break comes at smallest negative reduced cost. 
C On incoming arcs~ tension will increase and reduced cost will fall 
C -- so, next break comes at smallest positive reduced cost. 
C 

ELSE IF (DDNEG(NODE) .LE.  O) THEN 
DELPRC = LARGE 
ARC = FOU(NODE) 

120 IF  (ARC .GT. O) THEN 
TRC = RC(ARC) 
IF  ((TRC .LT .  O) .AND. (-TRC .LT .  DELPRC)) THEN 

DELPRC = -TRC 
ENDIF 
ARC = NXTOU(ARC) 
GOTO 120 

ENDIF 
ARC = FIN(NODE) 

130 IF  (ARC .GT. O) THEN 
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C 
C 
C 

C 

140 

150 

160 

TRC = RC(ARC) 
IF ((TRC .GT. O) .AND. (TRC .LT. DELPRC>) THEN 

DELPRC = TRC 
END IF 
ARC = NXTIN(ARC) 
GOTO 130 

END IF 
I f  t h e r e  i s  no breakpoin t~  the  problem i s  i n f e a s i b l e ~  
un less  we are making a degenerate s tep .  

IF  (DELPRC .EQ. LARGE) THEN 
IF (DDNEG(NODE) .EQ. O) GOTO 170 
GOTO 640 

END IF 
Now we make the step to the next breakpoint. We start with the 
outbound arcs. These have a tension decrease and reduced cost 
rise. Therefore~ the possible transitions are from balanced to 
inactive or active to balanced. 

NXTBRK = LARGE 
ARC = FOU(NODE) 
IF (ARC .GT. 0) THEN 

TRC = RC(ARC) 
IF (TRC .EQ. O) THEN 

T1 = ENDN(ARC) 
T = X(ARC) 

IF (T .GT. 0) THEN 
DFCT(NODE) = DFCT(NODE) - T 
DFCT(TI) = DFCT(TI) + T 
U(ARC) = T 
X(ARC) = 0 

ELSE 

T = U(ARC) 
END IF 
DDPOS(NODE) = D D P O S ( N O D E )  - T 
DDNEG(TI) = DDNEG(TI) - T 

END IF 
Log the  reduced cos t  r i s e  f o r  a l l  a r cs .  
TRC = TRC + DELPRC 
IF ((TRC .LT. 0) .AND. (rTRC .LT. NXTBRK)) THEN 

NXTBRK = -TRC 
ELSE IF (TRC .EQ. O) THEN 

A c t i v e  t o  balanced. Tension decrease d e r i v s  go up. 
DDNEG(NODE) = DDNEG(NODE) + X(ARC) 
DDPOS(ENDN(ARC)) = DDPOS(ENDN(ARC)> + X(ARC) 

END IF 
RC(ARC) = TRC 
ARC = NXTOU(ARC) 
GOTO 150 

END IF 

Now do the incoming arcs. These have a tension increase and 
therefore a reduced cost drop. The possible transitions are 
from inactive to balanced and from balanced to active. 

ARC = FIN(NODE) 

IF (ARC .GT. O) THEN 

TRC = RC(ARC) 
IF (TRC .EQ. O) THEN 

T1 = STARTN(ARC) 
T = U(ARC) 
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IF (T .GT. O) THEN 
DFCT(NODE) = D F C T ( N O D E >  - T 
DFCT(TI) = DFCT(TI) + T 

X(ARC) = T 
U(ARC) = 0 

ELSE 
T = X(ARC) 

END IF 
DDNEG(TI) = DDNEG(TI) - T 
DDPOS(NODE) = D D P O S ( N O D E )  - T 

END IF 
TRC = TRC - DELPRC 
IF ((TRC .ST. 0) .AND. (TRC .LT. NXTBRK)) THEN 

NXTBRK = TRC 

ELSE IF (TRC .EQ. O) THEN 
DDPOS(STARTN(ARC)) = DDPOS(STARTN(ARC)) + U(ARC) 
DDNEG(NODE) = DDNEG(NODE) + U(ARC) 

END IF 
RC(ARC) = TRC 
ARC = NXTIN(ARC) 
GOTO 160 

END IF 
OK. Movement is done. Is this direction still a (degenerate) 
descent direction. If so, keep going. 

IF ((DDNEG(NODE) .LE. 0) .AND. (NXTBRK .LT. LARGE)) THEN 
DELPRC = NXTBRK 
GOTO 140 

END IF 
END IF 

END IF 
170 CONTINUE 
180 CONTINUE 

******* initialize the tree ************************************ 
190 DO 200 I=I,N 

TFSTOU(1)=O 
200 TFSTIN(1)=O 

DO 210 I=I,NA 
TNXTIN(1)=-I 

TNXTOU(I)=-I 
IF (RC(I).EQ.O) THEN 

TNXTOU(I)=TFSTOU(STARTN(I)) 

TFSTOU(STARTN(I))=I 
TNXTIN(I)=TFSTIN(ENDN(I)) 

TFSTIN(ENDN(I))=I 
END IF 

210 CONTINUE 

*********** Initialize other variables *********** 

FEASBL=.TRUE. 

NDFCT=N 
NNONZ=O 
SWITCH=.FALSE. 
DO 220 I=I,N 

MARK(I)=.FALSE. 
SCAN(I)=.FALSE. 

220 CONTINUE 
NLABEL=O 
******* Set threshold f o r  SWITCH ******************************* 
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C RELAXT uses an adaptive strategy for deciding whether to 
C continue the scanning process after a price change. 
C The threshold parameters tp and ts that control 
C this strategy are set in the next few lines. 
C 

TP=IO 
TS=INT(N/15) 

C 
C ~ start relaxation algorithm ~ ~  

C 
230 CONTINUE 

C 
DO 630 NODE=I~N 

DEFCIT=DFCT(NODE) 
IF (DEFCIT.EQ.O) THEN 

GO TO 630 
ELSE 

POSIT = <DEFCIT .GT. O) 
NNONZ=NNONZ+I 

END IF 
C 
C li~ ATTEMPT A SINGLE NODE ITERATION FROM NODE ~i~ 
C 

IF <POSIT) THEN 
C 
C ~$$$~$$~$$ CASE OF NODE W/ POSITIVE DEFICIT ~ ~  
C 

PCHANG = .FALSE. 
INDEF=DEFCIT 
DEL X =0 
NB=O 

C 
C Check outgoing <probably) balanced arcs from NODE. 
C 

ARC=TFSTOU(NODE) 
240 IF (ARC .GT. 0) THEN 

IF ((RC(ARC) .EQ. 0) .AND. (X(ARC) .GT. 0)) THEN 
DELX = DELX + X(ARC) 
NB = NB + 1 

SAVE(NB) = ARC 
ENDIF 
ARC = TNXTOU(ARC) 
GOTO 240 

END IF 
C 
C Check incoming arcs now. 
C 

ARC = TFSTIN(NODE) 
250 IF (ARC .GT. 0) THEN 

IF ((RC(ARC) .EQ. O) .AND. (U(ARC) .GT. 0)) THEN 
DELX = DELX + U(ARC) 
NB = NB + i 

SAVE(NB) = -ARC 
ENDIF 
ARC = TNXTIN(ARC) 
GOTO 250 

END IF 
C 

C ~i~ end of initial node scan ! ~  
C 
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260 CONTINUE 
C 
C ~ ~  IF no p r i c e  change i s  p o s s i b l e  e x i t  ~ ~  
C 

IF (DELX.GT.DEFCIT) THEN 
QUIT = (DEFCIT'.LT. INDEF) 
GO TO 33O 

END IF 
C 
C Now compute d i s t a n c e  t o  next  b r e a k p o i n t .  
C 

DELPRC = LARGE 
ARC = FOU(NODE) 

270 IF (ARC .GT. O) THEN 
RDCOST = RC(ARC) 
IF ((RDCOST .LT. 07 .AND. (-RDCOST .LT. DELPRC)) THEN 

DELPRC = -RDCOST 
ENDIF 
ARC = NXTOU(ARC) 
GOTO 270 

END IF 
ARC = FIN(NODE> 

280 IF (ARC .GT. O) THEN 
RDCOST = RC(ARC) 
IF  ((RDCOST .ST. O) .AND. (RDCOST .LT. DELPRC>) THEN 

DELPRC = RDCOST 
ENDIF 
ARC = NXTIN(ARC) 
GOTO 280 

END IF 
C 
C ~ i ~  check i f  the problem is infeasible i ~ i  
C 

IF ((DELX.LT.DEFCIT).AND. (DELPRC.EQ.LARGE)) THEN 
C ~ The dual cost can be decreased without bound ~ 

GO TO 640 
END IF 

C 
C ~ SKIP FLOW ADJUSTEMT IF THERE IS NO FLOW TO MODIFY i~ 
C 

IF (DELX.EQ.O) GO TO 300 
C 
C ~ i ~  Ad jus t  t he  f l o w  on balanced arcs i n c i d e n t  o f  NODE t o  
C maintain complementary slackness after the price change ~ 
C 

DO 290 J=I~NB 
ARC=SAVE(J) 
IF (ARC.GT.O) THEN 

NODE2=ENDN(ARC) 
TI=X(ARC) 
DFCT(NODE2)=DFCT(NODE2)+TI 
U(ARC)=U(ARC)+TI 
X(ARC)=O 

ELSE 
NARC=-ARC 
NODE2=STARTN(NARC) 
TI=U(NARC) 
DFCT(NODE2)=DFCT(NODE2)+T1 
×(NARC)=X(NARC)+TI 
U(NARC)=O 
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END IF 
290 CONTINUE 

DEFCIT=DEFCIT-DELX 
300 IF (DELPRC.EQ.LARGE) THEN 

QUIT=.TRUE. 
GO TO 350 

END IF 
C 
C i ~ i ~  NODE corresponds t o  a dual ascent d i r e c t i o n .  Decrease 
C the p r i c e  of NODE by DELPRC and compute the s teps ize  t o  the 
C next breakpoin t  in the dual cost ~ 
C 

NB=O 
PCHANG = .TRUE. 
DP=DELPRC 
DELPRC=LARGE 
DEL×=O 
ARC=FOU(NODE) 

310 IF (ARC.GT.O) THEN 
RDCOST=RC(ARC)+DP 
RC(ARC)=RDCOST 
IF (RDCOST.EQ.O> THEN 

NB=NB+I 
SAVE(NB)=ARC 
DELX=DELX+X(ARC) 

END IF 
IF ((RDCOST.LT.O).AND.(-RDCOST.LT.DELPRC)) DELPRC=-RDCOST 
ARC=NXTOU(ARC> 
GOTO 310 

END IF 
ARC=FIN(NODE) 

320 IF (ARC.GT.O> THEN 
RDCOST=RC(ARC)-DP 
RC(ARC)=RDCOST 
IF (RDCOST.EQ.O) THEN 

NB=NB+I 
SAVE(NB)=-ARC 
DELX=DELX+U(ARC) 

END IF 
IF ((RDCOST.GT.O).AND. (RDCOST.LT.DELPRC)) DELPRC=RDCOST 
ARC=NXTIN(ARC) 
GOTO 320 

END IF 
C 
C ~ re tu rn  to  check i f  another p r i ce  change i s  poss ib l e  ~ 
C 

GO TO 260 
C 
C ~ i ~  perform flow augmentation at NODE ~ 
C 

330 DO 340 J=I,NB 
ARC=SAVE(J> 
IF (ARC.GT.O) THEN 

C ~ ARC is an outgoing arc from NODE ~ ~ ~  
NODE2=ENDN(ARC> 
TI=DFCT(NODE2) 
IF (TI.LT.O) THEN 

C ~ Decrease the total deficit by decreasing flow of ARC 
QUIT=.TRUE. 
T2=X(ARC) 
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C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

340 
350 

360 

370 

DX=MINO(DEFCIT,-TI,T2) 
DEFCIT=DEFCIT-DX 
DFCT(NODE2)=TI+DX 
X(ARC)=T2-DX 
U(ARC)=U(ARC)+DX 
IF (DEFCIT.EQ.O) GO TO 350 

END IF 
ELSE 

*** -ARC is an incoming arc to NODE ********************* 
NARC=-ARC 
NODE2=STARTN(NARC) 
TI=DFCT(NODE2) 
IF (TI.LT.O> THEN 

* * * * *  Decrease t h e  t o t a l  d e f i c i t  by i n c r e a s i n g  f l o w  o f  -ARC 
QUIT=.TRUE. 
T2=U(NARC) 
DX=MINO(DEFCIT,-TI,T2) 
DEFCIE=DEFCIT-DX 
DFCT(NODE2)=TI+DX 
X(NARC)=X(NARC)+DX 
U(NARC)=T2-DX 
IF (DEFCIT.EQ.O) GO TO 350 

END IF 
END IF 

CONTINUE 
DFCT(NODE)=DEFCIT 

R e c o n s t r u c t  t h e  l i s t  o f  ba lanced  a r c s  a d j a c e n t  t o  t h i s  node. 
F i r s t ,  t h e  l i s t  a t  t h i s  node i s  now t o t a l l y  d i f f e r e n t .  Eat 
t h e  o l d  l i s t s  o f  incoming and o u t g o i n g  ba lanced  a r c s ,  and c r e a t e  
a whole new one. Th is  way we ge t  t h e  i n  and ou t  l i s t s  o f  ba lanced  
a r c s  f o r  NODE t o  be e x a c t l y  c o r r e c t .  For t h e  a d j a c e n t  nodes, we 
add in  a l l  t he  newly ba lanced a r c s ,  but  do no t  b o t h e r  g e t t i n g  r i d  
o f  f o r m e r l y  ba lanced ones ( t h e y  w i l l  be purged t he  n e x t  t ime  t h e  
a d j a c e n t  node i s  scanned) .  

IF (PCHANG) THEN 
ARC = TFSTOU(NODE) 
TFSTOU(NODE) = 0 
IF (ARC .GT. O) THEN 

NXTARC = TNXTOU(ARC) 
TNXTOU(ARC) = - I  
ARC = NXTARC 
GOTO 360 

END IF 
ARC = TFSTIN(NODE) 
TFSTIN(NODE) = 0 
IF (ARC .GT. O) THEN 

NXTARC = TNXTIN(ARC) 
TNXTIN(ARC) = -I 
ARC = NXTARC 
GOTO 370 

END IF  

* * *  Now add t he  c u r r e n t l y  ba lanced  a r c s  t o  t h e  l i s t  f o r  t h i s  
* * *  node(which i s  now empty)~and t h e  a p p r o p r i a t e  a d j a c e n t  ones 

DO 380 J=I,NB 
ARC = SAVE(J) 
IF (ARC.LE.O) ARC=-ARC 
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I F  (TNXTOU(ARC) .LT.  O) THEN 
TNXTOU(ARC) = TFSTOU(STARTN(ARC)) 
TFSTOU(STARTN(ARC)) = ARC 

END IF  
IF  (TNXTIN(ARC) .LT .  0) THEN 

TNXTIN(ARC) = TFSTIN(ENDN(ARC)) 
TFSTIN(ENDN(ARC)) = ARC 

END IF  
380 CONTINUE 

END IF 
C 
C ~ end of single node iteration for a positive deficit node ~ 

C 
ELSE 

C 
C ~ single node iteration for a negative deficit node ~ 

C 
PCHANG = .FALSE. 
DEFCIT=-DEFCIT 
INDEF=DEFCIT 

DELX=O 
NB=O 

C 
ARC = TFSTIN(NODE) 

390 IF (ARC .GT. @) THEN 
IF ((RC(ARC) .EQ. 0) .AND. (X(ARC) .GT. 0)) THEN 

DELX = DELX + X(ARC) 
NB = NB + 1 

SAVE(NB) = ARC 
ENDIF 
ARC = TNXTIN(ARC) 
GOTO 390 

END IF 
ARC=TFSTOU(NODE) 

400 IF (ARC .GT. 0) THEN 
IF ((RC(ARC) .EQ. 0) .AND. (U(ARC) .GT. 0)) THEN 

DELX = DELX + U(ARC) 
NB = NB + 1 

SAVE(NB) = -ARC 

ENDIF 
ARC = TNXTOU(ARC) 
GOTO 400 

END IF 
C 

410 CONTINUE 

IF (DELX.GT.DEFCIT) THEN 
QUIT = (DEFCIT .LT. INDEF) 
GO TO 480 

END IF 
C 

C Now compute distance to next breakpoint. 
C 

DELPRC = LARGE 
ARC = FIN(NODE) 

420 IF (ARC .GT. O) THEN 
RDCOST = RC(ARC) 

IF ((RDCOST .LT. 0) .AND. (-RDCOST .LT. DELPRC)) THEN 
DELPRC = -RDCOST 

ENDIF 
ARC = NXTIN(ARC) 
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C 

C 
C 

GOTO 420 
END IF  
ARC = FOU(NODE) 

430 IF (ARC .GT. O) THEN 
RDCOST = RC(ARC) 
IF  ((RDCOST .GT. O) .AND. (RDCOST .LT.  DELPRC)) THEN 

DELPRC = RDCOST 
ENDIF 
ARC = NXTOU(ARC) 
GOTO 430 

END IF  
******* check if problem is infeasible ************************ 
IF ((DEL×.LT. DEFCIT).AND. (DELPRC.EQ.LARGE)) THEN 

GO TO 640 
END IF 
IF (DELX.EQ.O) GO TO 450 

440 

450 

460 

**~**** flow augmentation is possible 
DO 440 J=I~NB 

ARC=SAVE(J) 
IF (ARC.GT.O) THEN 

NODE2=STARTN(ARC) 
TI=X(ARC) 
DFCT(NODE2)=DFCT(NODE2)-TI 
U(ARC)=U(ARC)+TI 
X(ARC)=O 

ELSE 
NARC=-ARC 
NODE2=ENDN(NARC> 
TI=U(NARC) 
DFCT(NODE2)=DFCT(NODE2)-TI 
X(NARC)=X(NARC)+TI 
U(NARC)=O 

END IF 
CONTINUE 

DEFCIT=DEFCIT-DELX 
IF (DELPRC.EQ.LARGE) THEN 

QUIT=.TRUE. 
GO TO 500 

END IF 
****~** price increase at NODE is possible 
NB=O 
PCHANG = .TRUE. 
DP=DELPRC 
DELPRC=LARGE 
DELX=O 
ARC=FIN(NODE) 
IF (ARC.GT.O) THEN 

RDCOST=RC(ARC)+DP 
RC(ARC)=RDCOST 
IF (RDCOST.EQ.O) THEN 

NB=NB+I 
SAVE(NB)=ARC 
DELX=DELX+X(ARC) 

END IF 
IF ((RDCOST.LT.O).AND. (-RDCOST.LT. DELPRC)) 
ARC=NXTIN(ARC) 
GOTO 460 

END IF 
ARC=FOU(NODE) 

DELPRC=-RDCOST 
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470 IF (ARC.GT.O) THEN 
RDCOST=RC(ARC)-DP 
RC(ARC)=RDCOST 
IF (RDCOST. EQ.O) THEN 

NB=NB+I 
SAVE(NB)=-ARC 
DELX=DELX+U(ARC) 

END IF 
IF ((RDCOST.GT.O).AND. (RDCOST.LT.DELPRC)) DELPRC=RDCOST 
ARC=NXTOU(ARC) 
GOTO 470 

END IF 
GO TO 410 

~ i ~  perform flow augmentation at NODE i~ 

480 DO 490 J=I,NB 
ARC=SAVE(J) 
IF (ARC.GT.O) THEN 

~ ARC i s  an incoming a rc  t o  NODE ~ ~ ~ * ~  
NODE2=STARTN(ARC) 
TI=DFCT(NODE2) 
IF (TI.GT.O) THEN 

QUIT=.TRUE. 
T2=X(ARC) 
DX=MINO(DEFCIT~TI~T2) 
DEFCIT=DEFCIT-DX 
DFCT(NODE2)=TI-DX 
X(ARC)=T2-DX 
U(ARC)=U(ARC)+DX 
IF (DEFCIT.EQ.O) GO TO 500 

END IF 
ELSE 

~ -ARC is an outgoing arc from NODE ~ $ ~ ~ ~  
NARC=-ARC 
NODE2=ENDN(NARC) 
TI=DFCT(NODE2) 
IF (TI.GT.O) THEN 

QUIT=.TRUE. 
T2=U(NARC) 
DX=MINO(DEFCIT~TI,T2) 
DEFCIT=DEFCIT-DX 
DFCT(NODE2)=TI-DX 
X(NARC)=X(NARC)+DX 
U(NARC)=T2-DX 
IF (DEFCIT.EQ.O) GO TO 500 

END IF 
END IF 

490 CONTINUE 
500 DFCT(NODE)=-DEFCIT 

Reconstruct the list of balanced arcs adjacent to this node. 
First~ the list at this node is now totally different. Eat 
the old lists of incoming and outgoing balanced arcs. 

510 

IF (PCHANG) THEN 
ARC = TFSTOU(NODE) 
TFSTOU(NODE) = 0 
IF (ARC .GT. 0) THEN 

NXTARC = TNXTOU(ARC) 
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TNXTOU(ARC) = - I  
ARC = NXTARC 
GOTO 510 

END IF 
ARC = TFSTIN(NODE) 
TFSTIN(NODE) = 0 

520 IF (ARC .GT. O) THEN 
NXTARC = TNXTIN(ARC) 
TNXTIN(ARC) = -I 
ARC = NXTARC 
GOTO 520 

END IF 
C 
C ~ Now add the currently balanced arcs to the list for this 
C ~ node(which is now empty),and the appropriate adjacent ones 
C 

DO 530 O=I~NB 
ARC = SAVE(O> 
IF (ARC.LE.O) ARC=-ARC 
IF (TNXTOU(ARC) .LT. 0) THEN 

TNXTOU(ARC) = TFSTOU(STARTN(ARC)) 
TFSTOU(STARTN(ARC)) = ARC 

END IF 
IF (TNXTIN(ARC) .LT. 0) THEN 

TNXTIN(ARC) = TFSTIN(ENDN(ARC)> 
TFSTIN(ENDN(ARC)) = ARC 

END IF 
530 CONTINUE 

END IF 
C 
C ~i~ end of single node iteration for a negative deficit node ~i~ 
C 

END IF 

C 
IF (QUIT) GO TO 630 

C 
C ~ do a multi-node operation from NODE ~ i ~ ~  
C 

SWITCH = (NDFCT .LT. TP) 
C 
C ~ UNMARK NODES LABELED EARLIER ~ 
C 

DO 540 O=I,NLABEL 
NODE2=LABEL(3) 
MARK(NODE2)=.FALSE. 
SCAN(NODE2)=.FALSE. 

540 CONTINUE 
C 
C ~ i ~  INITIALIZE LABELING ~ 
C 

NLABEL=I 
LABEL(1)=NODE 
MARK(NODE)=.TRUE. 
PRDCSR(NODE)=O 

C 
C ~ ~  SCAN STARTING NODE ~ ~  
C 

SCAN(NODE)=.TRUE. 
NSCAN=I 
DM=DFCT(NODE) 
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550 

56r~ 

DELX=O 
DO 550 J=I~NB 

ARC=SAVE(J) 
IF (ARC.GT.O) THEN 

IF (POSIT) THEN 
NODE2=ENDN(ARC) 

ELSE 
NODE2=STARTN(ARC) 

END IF 
IF (.NOT.MARK(NODE2)) THEN 

NLABEL=NLABEL+I 
LABEL(NLABEL)=NODE2 
PRDCSR(NODE2)=ARC 
MARK(NODE2)=.TRUE. 
DELX=DELX+X(ARC) 

END IF 
ELSE 

NARC=-ARC 
IF (POSIT> THEN 

NODE2=STARTN(NARC) 
ELSE 

NODE2=ENDN(NARC) 
END IF 
IF (.NOT.MARK(NODE2)) THEN 

NLABEL=NLABEL+I 
LABEL(NLABEL)=NODE2 
PRDCSR(NODE2)=ARC 
MARK(NODE2)=.TRUE. 
DELX=DELX+U(NARC) 

END IF 
END IF 

CONTINUE 

~*g start scanning labeled nodes *g*~ 

NSCAN=NSCAN+I 

~ g ~ g *  check t o  see i f  SWITCH needs t o  be se t  * ~ $ ~ *  
SWITCH i n d i c a t e s  i t  may now be bee t  t o  change o v e r  t o  a more 
c o n v e n t i o n a l  p r i m a l - d u a l  a l g o r i t h m  (one which can r e u s e  o l d  
labels to some e>:tent). 

SWITCH = SWITCH .OR. ( (NSCAN .GT. TS) .AND. (NBFCT .LT. TS) ) 

~*~* scan next node on the list of labeled nodes g*~ 
scanning will continue until either an OVERESTIMATE of the residual 
capacity across the cut corresponding to the scanned set of nodes 
(called DELX) exceeds the absolute value of the total deficit of the 
scanned nodes (called DM)~ or else an augmenting path is found. Arcs 
that are in the tree but are not balanced are purged as part of the 
scanning process. 

I=LABEL(NSCAN) 
SCAN(I)=.TRUE. 
IF (POSIT) THEN 

* * ~ * * ~  scann ing  node I f o r  case o f  p o s i t i v e  d e f i c i t  * *~g*g  

NAUGND=O 
PRVARC=O 
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C 

C 
C 

C 
C 
C 
C 

ARC = TFSTOU(I) 
570 IF (ARC.GT.O) THEN 

~ ARC is an outgoing arc from NODE ~ 

IF (RC(ARC) .EQ. 0) THEN 
IF (X(ARC) .GT. 0) THEN 

NODE2=ENDN(ARC) 
IF (.NOT. MARK(NODE2)) THEN 

~ NODE2 is not in the labeled set. Add NODE2 to the 
labeled set. ~ 

PRDCSR(NODE2)=ARC 
IF (DFCT(NODE2>.LT.O) THEN 

NAUGND=NAUGND+I 
SAVE(NAUGND)=NODE2 

END IF 
NLABEL=NLABEL+I 
LABEL(NLABEL)=NODE2 
MARK(NODE2)=.TRUE. 
DELX=DELX+X(ARC) 

END IF 
END IF 
PRVARC = ARC 
ARC = TNXTOU(ARC) 

ELSE 
TMPARC = ARC 
ARC = TNXTOU(ARC) 
TNXTOU(TMPARC) = -I 
IF (PRVARC .EQ. 0) THEN 

TFSTOU(I) = ARC 
ELSE 

TNXTOU(PRVARC) = ARC 
END IF 

END IF 
GOTO 570 

END IF 

PRVARC : 0 
ARC=TFSTIN(I) 

580 IF (ARC.GT.O) THEN 

~!~ ARC is an incoming arc into NODE ~ 

IF (RC(ARC) .EQ. O) THEN 
IF (U(ARC) .GT. 0) THEN 

NODE2=STARTN(ARC) 
IF (.NOT. MARK(NODE2)> THEN 

~ NODE2 is not in the labeled set. Add NODE2 to the 
labeled set. ~ *  

PRDCSR(NODE2)=-ARC 
IF (DFCT(NODE2).LT.O> THEN 

NAUGND=NAUGND+I 
SAVE(NAUGND)=NODE2 

END IF 
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C 
C 
C 

C 
C 

C 

C 

C 
C 

NLABEL=NLABEL+I 

LABEL(NLABEL)=NODE2 

MARK(NODE2)=.TRUE. 

DELX=DELX+U(ARC) 
END IF 

END IF 

PRVARC = ARC 
ARC = TNXTIN(ARC) 

ELSE 
TMPARC = ARC 

ARC = TNXTIN(ARC) 

TNXTIN(TMPARC) = -I 
IF (PRVARC .EQ. 0) THEN 

TFSTIN(I) = ARC 
ELSE 

TNXTIN(PRVARC) = ARC 
END IF 

END IF 
GOTO 580 

END IF 

* correct the residual capacity of the scanned nodes cut 

ARC=PRDCSR(I) 
IF (ARC. GT.O) THEN 

DELX=DELX-X(ARC) 
ELSE 

DELX=DELX-U(-ARC) 
END IF 

* * * * * * * ~ * ~  end o f  scann ing o f  I f o r  p o s i t i v e  d e f i c i t  case * * * *  

ELSE 

* * * * * * *  scann ing  node I f o r  case o f  n e g a t i v e  d e f i c i t  * * * *  

NAUGND=O 
PRVARC = 0 
ARC=TFSTIN(I) 

590 IF (ARC.GT.O) THEN 
IF (RC(ARC) .EQ. O) THEN 

IF (X(ARC) .GT. O) THEN 
NODE2=STARTN(ARC) 
IF (.NOT. MARK(NODE2)) THEN 

PRDCSR(NODE2)=ARC 
IF (DFCT(NODE2).GT.O) THEN 

NAUGND=NAUGND+I 
SAVE(NAUGND)=NODE2 

END IF 
NLABEL=NLABEL+I 
LABEL(NLABEL)=NODE2 
MARK(NODE2)=.TRUE. 
DELX=DELX+X(ARC) 

END IF 
END IF 
PRV~RC = ARC 

ARC = TNXTIN(ARC) 

ELSE 

TMPARC = ARC 

ARC = TNXTIN(ARC) 
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C 
C 
C 

C 

TNXTIN(TMPARC) = -1 
IF (PRVARC .EQ. 0) THEN 

TFSTIN(1) = ARC 

ELSE 
TNXTIN(PRVARC) = ARC 

END IF 
END IF 
GOTO 590 

END IF 

PRVARC = 0 
ARC = TFSTOU(I) 

600 IF (ARC.GT.O) THEN 
IF (RC(ARC) .EQ. 0) THEN 

IF (U(ARC) .GT. 0) THEN 
NODE2=ENDN(ARC) 
IF (.NOT. MARK(NODE2)) THEN 

PRDCSR(NODE2)=-ARC 
IF (DFCT(NODE2).GT.O} THEN 

NAUGND=NAUGND+I 
SAVE(NAUGND)=NODE2 

END IF 
NLABEL=NLABEL+I 
LABEL(NLABEL)=NODE2 
MARK(NODE2)=.TRUE. 
DELX=DELX+U(ARC) 

END IF 
END IF 
PRVARC = ARC 
ARC = TNXTOU(ARC) 

ELSE 
TMPARC = ARC 
ARC = TNXTOU(ARC) 
TNXTOU(TMPARC) = -I 
IF (PRVARC .EQ. 0) THEN 

TFSTOU(I) = ARC 
ELSE 

TNXTOU(PRVARC) = ARC 

END IF 
END IF 
GOTO 600 

END IF 

ARC=PRDCSR(1) 
IF (ARC.GT.O) THEN 

DELX=DELX-X(ARC) 
ELSE 

DELX=DELX-U(-ARC) 

END IF 

END IF 

~ i ~  ADD DEFICIT OF NODE SCANNED TO DM ~ 

DM=DM+DFCT(1) 

~ check i,f the set of scanned nodes correspond 
t o  a dual ascent d i r e c t i o n ;  i f  yes, per form a 
p r i c e  adjustment step~ o the rw ise  con t i nue  l a b e l i n g  
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C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

C 

C 
C 
C 

C 
C 
C 

C 
C 
C 
C 
C 

IF (NSCAN.LT.NLABEL) THEN 
IF <SWITCH) GO TO 610 
IF <(DELX.GE.DM).AND. (DELX.GE.-DM)) GO TO 610 

END IF 

~ i ~ i ~ i ~  TRY A PRICE CHANGE ~ i ~ ~  
Note that since DELX-ABS(DM) is an OVERESTIMATE of ascent slope~ we 
may occasionally try a direction that is not really an ascent. 
this case the ANCNTx routines return with QUIT set to .FALSE. 
main code, it turn, then tries to label some more node. 

IF (POSIT) THEN 
CALL ASCNTI(DM,DELX,NLABEL, AUGNOD~FEASBL~ 
SWITCH,NSCAN) 

ELSE 
CALL ASCNT2(DM,DELX,NLABEL~AUGNOD,FEASBL~ 
SWITCH~NSCAN) 

END IF 
IF (.NOT.FEASBL) GO TO 640 
IF (.NOT.SWITCH) GO TO 630 
IF ((SWITCH).AND. (AUGNOD.GT.O)) THEN 

NAUSND=I 
SAVE(1)=AUGNOD 

END IF 

610 

620 

630 

In 

~ CHECK IF AUGMENTATION IS POSSIBLE. 
IF NOT RETURN TO SCAN ANOTHER NODE. ~ 

CONTINUE 

IF (NAUGND. EQ.O) GO TO 560 

Do the augmentation. 

DO 620 J=I~NAUGND 
AUGNOD=SAVE(O) 
IF <POSIT) THEN 

CALL AUGFLI(AUGNOD) 
ELSE 

CALL AUGFL2(AUGNOD) 
END IF 
CONTINUE 

~ RETURN TO TAKE UP ANOTHER NODE W/ NONZERO DEFICIT ~ 

CONTINUE 

~ ~  TEST FOR TERMINATION ~ ~  

We have just done a sweep throught all the nodes. 
had zero defecit, we must be done. 

NDFCT=NNONZ 
NNONZ=O 

IF (NDFCT.EQ.O) THEN 
RETURN 

ELSE 
GO TO 230 

T h e  

If they all 
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END IF 

******* problem i s  found to  be i n f e a s i b l e  ********************* 
640 WRITE(6,*) ~ PROBLEM IS FOUND TO BE INFEASIBLE. ~ 

FEASBL = .FALSE. 
RETURN 
END 

C 

C 
C 
C 

SUBROUTINE PRFLOW(NODE) 

***** This subroutine prints the deficit and the flows of 
arcs incident to NODE. It is used for diagnostic purposes 
in case of an infeasible problem here. It can be used also 
for more general diagnostic purposes. **~** 

IMPLICIT INTEGER (A-Z) 

COMMON/ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X 
*/ARRAYB/DFCT/BLK3/FOU/BLK4/NXTOU/BLK5/FIN/BLK6/NXTIN 

DIMENSION STARTN(1),ENDN(1)~U(1),X(1)~DFCT(1) 
DIMENSION FOU(1),NXTOU(1) 
DIMENSION FIN(1),NXTIN(1) 

10 

WRITE(6,*)'DEFICIT ( I . E . ,  NET FLOW OUT) OF NODE =',DFCT(NODE) 
WRITE(6,*)'FLOWS AND CAPACITIES OF INCIDENT ARCS OF NODE',NODE 
IF (FOU(NODE).EQ.O) THEN 

WRITE(6,*)'NO OUTGOING ARCS' 
ELSE 

ARC=FOU(NODE) 
IF (ARC.GT.O) THEN 

WRITE(6,*)'ARC',ARC, ~ BETWEEN NODES',NODE,ENDN(ARC) 
WRITE(6,*)'FLOW =',X(ARC) 
WRITE(6,~)'RESIDUAL CAPACITY =',U(ARC) 
ARC=NXTOU(ARC) 
GO TO I0 

END IF 
END IF 

20 

IF (FIN(NODE).EQ.O) THEN 
WRITE(6~)'NO INCOMING ARCS ~ 

ELSE 
ARC=FIN(NODE) 
IF (ARC.GT.O) THEN 

WRITE(6,~)~ARC',ARC, ~ BETWEEN NODES'~STARTN(ARC),NODE 
WRITE(6,*)'FLOW =',X(ARC) 
WRITE(6,*)~RESIDUAL CAPACITY ='~U(ARC) 
ARC=NXTIN(ARC) 
GO TO 2(]) 

END IF 
END IF 
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C 
RETURN 
END 

C 
C 
C 
C 
C 

SUBROUTINE AUGFLI(AUGNOD> 

~ i  This subroutine performs the flow augmentation step. 
A flow augmenting path has been identified in the scanning 
step and here the flow of all arcs positively (negatively) 
oriented in the flow augmenting path is decreased (increased) 
to decrease the total deficit, i ~  

IMPLICIT INTEGER (A-Z) 
COMMON/ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X 

~/ARRAYB/DFCT/BLK2/PRDCSR 
DIMENSION STARTN(1)~ENDN(1)~U(1)~X(1),DFCT(1)~PRDCSR(1) 

~i~ A flow augmenting path ending at AUGNOD is found. 
Determine DX, the amount of flow change. ~ 

DX=-DFCT(AUGNOD) 
IB=AUGNOD 

10 IF (PRDCSR(IB).NE.O) THEN 
ARC=PRDCSR(IB) 
IF (ARC. GT.O) THEN 

DX=MINO(DX~X(ARC)> 
IB=STARTN(ARC) 

ELSE 
DX=MINO(DX,U(-ARC)) 
IB=ENDN(-ARC) 

END IF 
GOTO 10 

END IF 
ROOT=IB 
DX=MINO(DX~DFCT(ROOT)) 
IF (DX .LE. 0) RETURN 

~i~ Update the flow by decreasing (increasing) the flow of 
all arcs positively (negatively) oriented in the flow 
augmenting path. Adjust the deficits accordingly. ~ 

20 

DFCT(AUGNOD)=DFCT(AUGNOD)+DX 
DFCT(ROOT)=DFCT(ROOT)-DX 
IB=AUGNOD 
IF (IB.NE.ROOT> THEN 

ARC=PRDCSR(IB) 
IF (ARC.GT.O) THEN 

X(ARC)=X(ARC)-DX 
U(ARC)=U(ARC)+DX 
IB=STARTN(ARC) 

ELSE 
NARC=-ARC 
X(NARC>=X(NARC>+DX 
U(NARC)=U(NARC)-DX 
IB=ENDN(NARC) 

END IF 
GOTO 20 

END IF 
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RETURN 
END 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE ASCNTI(DM,DELX,NLABEL~AUGNOD~FEASBL,SWITCH, 
~NSCAN) 

This subroutine essentially performs the multi-node 
price adjustment step. It first checks if the set 
of scanned nodes correspond to a dual ascent direction. 
If yes~ then decrease the price of all scanned nodes. 
There are two possibilities for price adjustment: 
If SWITCH=.TRUE. then the set of scanned nodes 
corresponds to an elementary direction of maximal 
rate of ascent~ in which case the price of all scanned 
nodes are decreased until the next breakpoint in the 
dual cost is encountered. At this point some arc 
becomes balanced and more node(s) are added to the 
labeled set. 
If SWITCH=.FALSE. then the prices of all scanned nodes 
are decreased until the rate of ascent becomes 
negative (this corresponds to the price adjustment 
step in which both the line search and the degenerate 
ascent iteration are implemented). 

IMPLICIT INTEGER (A-Z) 

The two "tree"-based ascent routines have a common temporary 
storage area whose dimension is set below. The maximum conceivable 
amount needed equals the number of arcs, but this should never 
actually occur. 

LOGICAL SCAN~MARK~SWITCH,FEASBL~QUIT 
COMMON/ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X/ARRAY9/RC 

~/ARRAYB/DFCT/BLKI/LABEL/BLK2/PRDCSR/BLK3/FOU/BLK4/ 
~NXTOU/BLK5/FIN/BLK6/NXTIN/BLKT/SAVE/BLK8/SCAN/BLK9/MARK 
~/L/N~NA,LARGE 
COMMON /BLKIO/TFSTOU/BLKII/TNXTOU/BLKI2/TFSTIN/BLKI3/TNXTIN 
COMMON /ASCBLK/B 
DIMENSION TFSTOU(1),TNXTOU(1),TFSTIN(1),TNXTIN(1) 
DIMENSION STARTN(1)~ENDN(1)~U(I>~X(1)~RC(1)~DFCT(1)~LABEL(I> 
DIMENSION PRDCSR(1),FOU(1),NXTOU(1),FIN(1)~NXTIN(1) 
DIMENSION SAVE<I)~SCAN(1),MARK(1) 

~:~ Store the arcs between the set of scanned nodes and 
its complement in SAVE and compute DELPRC~ the stepsize 
to the next breakpoint in the dual cost in the direction 
of decreasing prices of the scanned nodes. ~li~ 

DELPRC=LARGE 
DLX=O 
NSAVE=O 

~ calculate the array SAVE of arcs across the cut of scanned 
nodes in a different way depending on whether NSCAN>N/2 or not. 
This is done for efficiency. ~ 

IF (NSCAN.LE.N/2) THEN 
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10 

20 

30 

DO 30 I=I~NSCAN 
NODE=LABEL(I) 

ARC=FOU(NODE) 
IF (ARC.GT.O) THEN 

~ i  ARC is an arc pointing from the set of scanned 
nodes to its complement. ~ 

IF 

NODE2=ENDN(ARC) 
IF (.NOT.SCAN(NODE2)) THEN 

NSAVE=NSAVE+I 
SAVE(NSAVE)=ARC 
RDCOST=RC(ARC) 

((RDCOST. EQ.O).AND. (PRDCSR(NODE2).NE.ARC)) DLX=DLX+X(ARC) 
IF ((RDCOST.LT.O).AND. (-RDCOST.LT.DELPRC)) DELPRC=-RDCOST 
END IF 
ARC=NXTOU(ARC) 
GOTO 10 

END IF 
ARC=FIN(NODE) 

IF (ARC.GT.O) THEN 

li~ ARC is an arc pointing to the set of scanned 
nodes from its complement. ~ i  

NODE2=STARTN(ARC) 
IF (.NOT.SCAN(NODE2)) THEN 

NSAVE=NSAVE+I 
SAVE(NSAVE)=-ARC 
RDCOST=RC(ARC) 

IF ((RDCOST.EQ.O).AND. (PRDCSR(NODE2).NE.-ARC)) DLX=DLX+U(ARC) 
IF ((RDCOST.GT.O).AND. (RDCOST.LT.DELPRC)) DELPRC=RDCOST 

END IF 
ARC=NXTIN(ARC) 
GOTO 20 

END IF 
CONTINUE 

ELSE 

DO 60 NODE=I,N 
IF (SCAN(NODE)) GO TO 60 

ARC=FIN(NODE) 
40 IF (ARC.GT.O) THEN 

NODE2=STARTN(ARC) 
IF (SCAN(NODE2)) THEN 

NSAVE=NSAVE+I 
SAVE(NSAVE)=ARC 
RDCOST=RC(ARC) 

IF ((RDCOST.EQ.OI.AND. (PRDCSR(NODE).NE.ARC)) 
IF ((RDCOST.LT.O).AND. (-RDCOST.LT.DELPRC)) 
END IF 
ARC=NXTIN(ARC) 
GOTO 40 

END IF 
ARC=FOU(NODE) 

50 IF (ARC.GT.O) THEN 
NODE2=ENDN(ARC) 
IF (SCAN(NODE2)) THEN 

DLX=DLX+X(ARC) 
DELPRC=-RDCOST 
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NSAVE=NSAVE+I 
SAVE(NSAVE)=-ARC 
RDCOST~RC(ARC) 

IF  ((RDCOST.EQ.O).AND. (PRDCSR(NODE).NE.-ARC)) DLX=DLX+U(ARC) 
IF  ((RDCOST.GT.O).AND. (RDCOST.LT.DELPRC)) DELPRC=RDCOST 

END IF  
ARC=NXTOU(ARC) 
GOTO 50 

END IF 
60 CONTINUE 

END IF 
C 
C ~**~g Check if the set of scanned nodes truly corresponds 
C to a dual ascent direction. Here DELX+DLX is the exact 
C sum o f  t h e  f l o w  on a r c s  f r o m  t h e  scanned s e t  t o  t h e  
C unscanned s e t  p l u s  t h e  ( c a p a c i t y  - f l o w  ) on a r c s  f rom 
C the unscanned set t o  the scanned set. g,g** 
C 

IF (DELX+DLX.GE.DM) THEN 
SWITCH=.TRUE. 
AUGNOD=O 
DO 70 I=NSCAN+I,NLABEL 

NODE=LABEL(I> 
IF (DFCT(NODE).LT.O) AUGNOD=NODE 

70 CONTINUE 
RETURN 

END IF 
DELX=DELX+DLX 

C 
C *~g*~* check that the problem is feasible ~***g*g~**~**g***~ 
C 

80 IF (DELPRC. EQILARGE> THEN 
C 

C *g~*~ We can decrease the dual cost without bound. 
C Therefore the primal problem is infeasible. ***g* 
C 

FEASBL=.FALSE. 
RETURN 

END IF 
C 

C g~*~*~g Decrease prices of the scanned nodes~ add more 
C nodes to the labeled set & check if a newly labeled node 
C has negative deficit. ***~ 
C 

IF (SWITCH) THEN 
AUGNOD=O 
DO 90 I=I,NSAVE 

ARC=SAVE(I) 
IF (ARC.GT.O) THEN 

RC(ARC)=RC(ARC)+DELPRC 
IF (RC<ARC).EQ.O) THEN 

NODE2=ENDN(ARC) 
IF (TNXTOU(ARC) .LT. O) THEN 

TNXTOU(ARC) = TFSTOU(STARTN(ARC)) 
TFSTOU(STARTN(ARC)) = ARC 

END IF 
IF (TNXTIN(ARC> .LT. O) THEN 

TNXTIN(ARC) = TFSTIN(NODE2) 
TFSTIN(NODE2) = ARC 

END IF 
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90 

PRDCSR(NODE2)=ARC 
IF <DFCT(NODE2).LT.O) THEN 

AUGNOD=NODE2 
ELSE 

IF (.NOT.MARK(NODE2)) THEN 
MARK(NODE2)=.TRUE. 
NLABEL=NLABEL+I 
LABEL(NLABEL)=NODE2 

END IF 
END IF 

END IF 
ELSE 

ARC=-ARC 
RC(ARC)=RC(ARC)-DELPRC 
IF (RC(ARC).EQ.O) THEN 

NODE2=STARTN(ARC) 
IF (TNXTOU<ARC) .LT. O) THEN 

TNXTOU(ARC) = TFSTOU(NODE2) 
TFSTOU(NODE2) = ARC 

END IF 
IF (TNXTIN(ARC) .LT. O) THEN 

TNXTIN(ARC) = TFSTIN(ENDN(ARC)) 
TFSTIN(ENDN<ARC)) = ARC 

END IF 
PRDCSR(NODE2)=-ARC 
IF (DFCT(NODE2).LT.O) THEN 

AUGNOD=NODE2 
ELSE 

IF (.NOT.MARK(NODE2)) THEN 
MARK(NODE2)=.TRUE. 
NLABEL=NLABEL+I 
LABEL(NLABEL)=NODE2 

END IF 
END IF 

END IF 
END IF 

CONTINUE 
RETURN 

ELSE 

~ i ~  Decrease t h e  p r i c e s  o f  t h e  scanned 
A d j u s t  arc  f l o w  t o  m a i n t a i n  complementary  
t h e  p r i c e s .  ~ 

NB = 0 

DO 100 I=I,NSAVE 
ARC=SAVE(I) 
IF (ARC.GT.O) THEN 

TI=RC(ARC) 
IF (TI.EQ.O) THEN 
T2=X(ARC) 
T3=STARTN(ARC) 
DFCT(T3)=DFCT(T3)-T2 
T3=ENDN(ARC) 
DFCT(T3)=DFCT(T3)+T2 
U(ARC)=U(ARC)+T2 
X(ARC)=O 

END IF 
RC(ARC)=TI+DELPRC 

nodes by DELPRC. 
s l a c k n e s s  w i t h  
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IF (RC(ARC).EQ.O) THEN 
DELX=DELX+X(ARC) 
NB = NB + i 
PRDCSR(NB) = ARC 

ENDIF 
ELSE 

ARC=-ARC 
TI=RC(ARC) 
IF (T1.EQ.O) THEN 

T2=U(ARC) 
T3=STARTN(ARC) 
DFCT(T3)=DFCT(T3)+T2 
T3=ENDN(ARC) 
DFCT(T3)=DFCT(T3)-T2 
X(ARC)=X(ARC)+T2 
U(ARC)=O 

END IF 
RC(ARC)=TI-DELPRC 
IF (RC(ARC).EQ.O) THEN 

DELX=DELX+U(ARC) 
NB = NB + 1 

PRDCSR(NB) = ARC 
END IF 

END IF 
100 CONTINUE 

END IF 

IF (DELX.LE.DM) THEN 

g**~g The se t  o f  scanned nodes s t i l l  c o r r e s p o n d s  t o  a 
dual  ( p o s s i b l y  degene ra te )  ascent  d i r e c t i o n .  Compute 
t he  s t e p s i z e  DELPRC t o  t he  n e x t  b r e a k p o i n t  i n  t h e  
dual  c o s t .  * g * * *  

110 

DELPRC=LARGE 
DO 110 I=I,NSAVE 

ARC=SAVE(1) 
IF (ARC.GT.O) THEN 

RDCOST=RC(ARC) 
IF ((RDCOST. LT.O).AND.(-RDCOST.LT.DELPRC)) DELPRC=-RDCOST 

ELSE 
ARC=-ARC 
RDCOST=RC(ARC) 

IF ((RDCOST.GT.O).AND.<RDCOST.LT.DELPRC)) DELPRC=RDCOST 
END IF 
CONTINUE 
IF ((DELPRC.NE. LARGE).OR. (DELX.LT.DM)) GO TO 80 

END IF 

~*~ Add new ba lanced  a rcs  t o  t h e  s u p e r s e t  o f  ba lanced  a r c s .  * ~  

DO 120 I=I~NB 
ARC=PRDCSR(1) 

IF (TNXTIN(ARC).EQ.- I )  THEN 
J=ENDN(ARC) 
TNXTIN(ARC)=TFSTIN(J) 
TFSTIN(J)=ARC 

END IF 
IF (TNXTOU<ARC).EQ.-1) THEN 

J=STARTN(ARC) 
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120 

TNXTOU(ARC)=TFSTOU(J) 
TFSTOU(J)=ARC 

END IF 
CONTINUE 
RETURN 
END 

C 
C 
C 

SUBROUTINE AUGFL2(AUGNOD) 
IMPLICIT INTEGER (A-Z) 
COMMON/ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X 

*/ARRAYB/DFCT/BLK2/PRDCSR 
DIMENSION STARTN(1)~ENDN(1)~U(1)~X(1),DFCT(1)~PRDCSR(1) 

* * * * * * *  an augmenting path i s  found, determine f l ow  change 

DX=DFCT(AUGNOD) 
IB=AUGNOD 

10 IF (PRDCSR(IB).NE.O) THEN 
ARC=PRDCSR(IB) 
IF (ARC.GT.O) THEN 

DX=MINO(DX~X(ARC)> 
IB=ENDN(ARC) 

ELSE 
DX=MINO(DX,U(-ARC)) 
IB=STARTN(-ARC) 

END IF 
GOTO 10 

END IF 
ROOT=IB 
DX=MIN0(DX~-DFCT(ROOT)) 
IF (DX .LE. 0) RETURN 

~****** update the flow and 

DFCT(AUGNOD)=DFCT(AUGNOD)-DX 
DFCT(ROOT)=DFCT(ROOT)+DX 
IB=AUSNOD 

20 IF (IB.NE.ROOT) THEN 
ARC=PRDCSR(IB) 
IF (ARC.GT.O) THEN 

X(ARC)=X(ARC)-DX 
U(ARC>=U(ARC)+DX 
IB=ENDN(ARC) 

ELSE 
NARC=-ARC 
X(NARC)=X(NARC)+DX 
U(NARC)=U(NARC)-DX 
IB=STARTN(NARC) 

END IF 
GOTO 20 

END IF 
RETURN 
END 

d e f i c i t s  * * * * g * * ~ g * * ~ * * ~ * * * * * ~ * *  

SUBROUTINE ASCNT2(DM,DELX,NLABEL,AUGNOD,FEASBL,SWITCH, 
*NSCAN) 
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C 
C 
C 
C 
C 
C 

10 

20 

IMPLICIT INTEGER (A-Z) 

The two "tree"-based ascent routines have a common temporary 
storage area whose dimension is set below. The maximum conceivable 
amount needed equals the number of arcs~ but this should never 
a c t u a l l y  occur.  

LOGICAL SCAN~MARK~SWITCH~FEASBL~QUIT 
COMMON/ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X/ARRAY9/RC 

~/ARRAYB/DFCT/BLK1/LABEL/BLK2/PRDCSR/BLK3/FOU/BLK4/ 
~NXTOU/BLK5/FIN/BLK6/NXTIN/BLK7/SAVE/BLKS/SCAN/BLKg/MARK 
~/L/N~NA,LARGE 
COMMON /BLKIO/TFSTOU/BLK11/TNXTOU/BLKI2/TFSTIN/BLKI3/TNXTIN 
COMMON /ASCBLK/B 
DIMENSION TFSTOU(1)~TNXTOU(1)~TFSTIN(1)~TNXTIN(1) 
DIMENSION STARTN(1)~ENDN(1)~U(1)~X(1)~RC(1),DFCT(1)~LABEL(1) 
DIMENSION PRDCSR(1)~FOU(1)~NXTOU(1)~FIN(1)~NXTIN(1) 
DIMENSION SAVE(1)~SCAN(1),MARK(1) 

~ augment f l ows  across the  cu t  & compute p r i c e  r i s e  ~ i ~  

DELPRC=LARGE 
DLX=O 
NSAVE=O 
IF (NSCAN.LE.N/2) THEN 
DO 30 I=I,NSCAN 

NODE=LABEL(1) 
ARC=FIN(NODE) 
IF (ARC.GT.O) THEN 

NODE2=STARTN(ARC) 
IF (.NOT. SCAN(NODE2)) THEN 

NSAVE=NSAVE+I 
SAVE(NSAVE)=ARC 
RDCOST=RC(ARC) 

IF ((RDCOST.EQ.O).AND.(PRDCSR(NODE2).NE.ARC)) DLX=DLX+X(ARC) 
IF ((RDCOST.LT.O).AND.(-RDCOST.LT.DELPRC)) DELPRC=-RDCOST 
END IF 
ARC=NXTIN(ARC) 
GOTO 10 

END IF 
ARC=FOU(NODE) 
IF (ARC.GT.O) THEN 

NODE2=ENDN(ARC) 
IF (.NOT.SCAN(NODE2)> THEN 

NSAVE=NSAVE+I 
SAVE(NSAVE)=-ARC 
RDCOST=RC(ARC) 

IF ((RDCOST.EQ.O).AND.(PRDCSR(NODE2).NE.-ARC)) DLX=DLX+U(ARC) 
IF ((RDCOST.GT.O).AND.(RDCOST.LT.DELPRC)) DELPRC=RDCOST 

END IF 
ARC=NXTOU(ARC) 
GOTO 20 

END IF 
30 CONTINUE 

ELSE 
DO 60 NODE=I,N 

IF (SCAN(NODE)) GO TO 60 
ARC=FOU(NODE) 

40 IF (ARC.GT.O) THEN 
NODE2=ENDN(ARC) 
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C 
C 
C 

C 
C 
C 

IF (SCAN(NODE2)) THEN 
NSAVE=NSAVE+I 
SAVE(NSAVE)=ARC 
RDCOST=RC<ARC) 

((RDCOST.EQ.O).AND. (PRDCSR(NODE).NE.ARC)) IF 
IF ((RDCOST.LT.O).AND. (-RDCOST.LT.DELPRC)) 
END IF 
ARC=NXTOU<ARC) 
GOTO 40 

END IF 
ARC=FIN(NODE) 

50 IF (ARC.GT.O> THEN 
NODE2=STARTN(ARC) 
IF (SCAN(NODE2)> THEN 

NSAVE=NSAVE+I 
SAVE(NSAVE)=-ARC 
RDCOST=RC(ARC) 

IF ((RDCOST. EQ.O).AND. <PRDCSR(NODE).NE.-ARC)) 
IF ((RDCOST. GT.O).AND. (RDCOST. LT.DELPRC)> 

END IF 
ARC=NXTIN(ARC) 
GOTO 50 

END IF 
60 CONTINUE 

END IF 
IF (DELX+DLX.GE.-DM) THEN 

SWITCH=.TRUE. 
AUGNOD=O 
DO 70 I=NSCAN+I~NLABEL 

NODE=LABEL(I) 
IF (DFCT(NODE).GT.O) AUGNOD=NODE 

70 CONTINUE 
RETURN 

END IF 
DELX=DELX+DLX 

DLX=DLX+X(ARC) 
DELPRC=-RDCOST 

DLX=DLX+U(ARC) 
DELPRC=RDCOST 

~ check that the problem is feasible ~ ~ ~  

80 IF (DELPRC.EQ.LARGE) THEN 
FEASBL=.FALSE. 
RETURN 

END IF 

~ $  INCREASE PRICES ~ 

IF (SWITCH) THEN 
AUGNOD=O 
DO 90 I=I~NSAVE 

ARC=SAVE(1) 
IF (ARC.GT.O) THEN 

RC(ARC)=RC(ARC)+DELPRC 
IF (RC(ARC).EQ.O) THEN 

NODE2=STARTN(ARC) 
IF (TNXTOU(ARC) .LT. 0) THEN 

TNXTOU(ARC) = TFSTOU(NODE2) 
TFSTOU(NODE2) = ARC 

END IF 
IF (TNXTIN(ARC) .LT. 0) THEN 

TNXTIN(ARC) = TFSTIN(ENDN(ARC)) 
TFSTIN(ENDN(ARC)) = ARC 
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90 

END IF 
PRDCSR(NODE2)=ARC 
IF (DFCT(NODE2).GT.O) THEN 

AUGNOD=NODE2 
ELSE 
IF (.NOT. MARK(NODE2)) THEN 

MARK(NODE2)=.TRUE. 
NLABEL=NLABEL+I 
LABEL(NLABEL)=NODE2 

END IF 
END IF 

END IF 
ELSE 

ARC=-ARC 
RC(ARC)=RC(ARC)-DELPRC 
IF (RC(ARC).EQ.O) THEN 

NODE2=ENDN(ARC) 
IF (TNXTOU(ARC) .LT. 0) THEN 

TNXTOU(ARC) = TFSTOU(STARTN(ARC)) 
TFSTOU(STARTN(ARC)) = ARC 

END IF 
IF (TNXTIN(ARC) .LT. 0) THEN 

TNXTIN(ARC) = TFSTIN(NODE2) 
TFSTIN(NODE2) = ARC 

END IF 
PRDCSR(NODE2)=-ARC 
IF (DFCT(NODE2).GT.O) THEN 

AUGNOD=NODE2 
ELSE 
IF (.NOT.MARK(NODE2)) THEN 
MARK(NODE2)=.TRUE. 
NLABEL=NLABEL+I 
LABEL(NLABEL)=NODE2 

END IF 
END IF 

END IF 
END IF 

CONTINUE 
RETURN 

ELSE 

NB = 0 
DO 100 I=I,NSAVE 

ARC=SAVE(I) 
IF (ARC.GT.O) THEN 

TI=RC(ARC) 
IF (TI.EQ.O) THEN 
T2=X(ARC) 
T3=STARTN(ARC) 
DFCT(T3)=DFCT(T3)-T2 
T3=ENDN(ARC) 
DFCT(T3)=DFCT(T3)+T2 
U(ARC)=U(ARC)+T2 
X(ARC)=O 

END IF 
RC(ARC)=TI+DELPRC 
IF (RC(ARC).EQ.O) THEN 

DELX=DELX+X(ARC) 
NB = NB + 1 
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I00 

I I 0  

120 

PRDCSR(NB> = ARC 
END IF 

ELSE 
ARC=-ARC 
TI=RC(ARC) 

IF (TI.EQ.O) THEN 
T2=U(ARC) 
T3=STARTN(ARC) 
DFCT(T3)=DFCT<T3)+T2 
T3=ENDN(ARC) 
DFCT(T3)=DFCT(T3)-T2 
X(ARC)=X(ARC)+T2 
U(ARC)=O 

END IF 
RC(ARC)=T1-DELPRC 
IF (RC(ARC).EQ.O) THEN 

DELX=DELX+U(ARC) 
NB = NB + 1 
PRDCSR(NB) = ARC 

END IF 
END IF 
CONTINUE 

END IF 
IF (DELX.LE.-DM) THEN 

DELPRC=LARGE 
DO I I 0  I=I,NSAVE 

ARC=SAVE(1) 
IF (ARC.GT.O) THEN 

RDCOST=RC(ARC) 
IF ((RDCOST.LT.O).AND. (-RDCOST.LT.DELPRC)) DELPRC=-RDCOST 

ELSE 
ARC=-ARC 
RDCOST=RC(ARC) 

IF ((RDCOST.GT.O).AND.(RDCOST.LT.DELPRC)) DELPRC=RDCOST 
END IF 
CONTINUE 
IF <(DELPRC. NE.LARGE).OR. (DELX.LT.-DM)) GO TO 80 

END IF 

~ Add new ba lance arcs t o  the  supe rse t  o f  balanced arcs .  

DO 120 I=I~NB 
"ARC=PRDCSR(1) 

IF (TNXTIN(ARC).EQ.-I) 
J=ENDN<ARC> 
TNXTIN(ARC)=TFSTIN(J) 
TFSTIN(J)=ARC 

END IF 
IF (TNXTOU(ARC).EQ.-I) 

J=STARTN(ARC) 
TNXTOU(ARC)=TFSTOU(~) 
TFSTOU(J)=ARC 

END IF 
CONTINUE 

RETURN 
END 

THEN 

THEN 
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C 

SUBROUTINE SENSTV 

SENSITIVITY ANALYSIS FOR THE MINIMUM COST NETWORK FLOW PROBLEM. 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

* * *  'THE SUBROUTINE I S  BASE[) ON THE PAPER * * *  
* * *  D . P .  BERTSEKAS, P .TSENG "THE RELAX CODES FOR * * *  
* * *  L I N E A R  MINIMUM COST NETWORK FL.OW PROBLEMS" .  * * *  

* * * A N N A L S  OF OPERATIONS RESEARCH, THIS VOLUME * **  
* * *  * * *  

* * *  THE SUBPOUTINE I S  NRl l -TEIq  IN  STANDARD F'ORTIRAN77 * * *  
* * *  * * *  

* * *  QUESTIONS AND COMMENTS SHOULD BE DIRECTIED TO * * *  
* * *  D I M I T R I  BERTSEKAS AI"ID F'AUL TSENG * * *  
* * *  DEF*ARTMEblT OF ELECTRICAl_  EI, IG]:NEER]NG & * * *  
* * *  COMPLJTER SCIENCE * * *  
* * *  LABORATORY FOR 1NFORIIATIOIq AND D E C I S I O N  SYSTEMS * * *  
* * *  M . I . T , ,  CAMBRIDGE,, MASSACHUSETTS, 0 2 1 3 ~ .  U , , S . A .  * * *  

***** Thi=_ subroutine aJlo~s the user to Jnteract.ively 
either change noda] ~upply~ or change flow upper bound 
o-~ an e'-:isting arc: or change cost of an e~:isting arc~ 
or delete an e}.:i=_ting arc, or- add an arc. ***** 

NOTE : I ;  Jn  t h e  svs laem o n  wh : i ch  t h i s  s u b r o u t i n e  i s  r a n , ,  t h e  
v a r i a b l e  ) o c a l  t o  a s u b r o u t i n e  i ~  r e - i n i t i a l i z e d  ( t o  =_ome d e f a u l t  
value) each time t'he subroutine is ca'lied., Khen Mne u-=er muse make 
the To]lowing currently local variables DELARE, DARC, DU,, ADDARC, 
AARC global (by either putting them in a common blc~ck ~r passtn,:_) 
[hem through the ca] ling p,~rameter;. 
IMF'LICIT INTEGER (A-Z~ 
COMMON/ARRAYS / STARTN/ARRAYE /EIqDN / ARRAYU / U / ARRAY X / X / ARRAY9 /F:C 

*/ARRAYB/DFCT/BU:: 1/I_ABEL/BI_K2/PRICE/BI_K3/FOU/BLK4/NXTOU 
* / BLI<5 / F I N / BLK6 /N X T I N / BI_K~ / MARl: / L / N, NA, L.ARGE 
COMMOIq / ARRAYC / C / BL.KC AP / CAF'/BLKR / REPEAT 
INTEGER CAP(J  ) . , U ( I )  ~,X' : I )  , C ( J )  , R C ( I ) , D F C T " . I ' I  
INTEGER STARTN ( I ) , ENDN ( ~ ) , LABEL ( 1 ) ~ PRICE ~ I ) , FOU ( I ) , Nxrou ( 1 ~ , 

* F I N ( 1 ) , N X T I N ( I )  
L O G I C A L  ADDARC,DEL.ARC,REPEAT,MAR}-  ( I )  
I F  ( . N O l ' . R E P E A T )  THEN 

***** Restore the arc capa~zJty to that of the original problem 
(recall that when solving the original pr-oblem., RELAX in the 
problem preprocessing phase may dec_tease the arc capac~tv) and 
update flow and deficit to agree w~th this "new" capacity. ***** 

DO JA I=J~NA 
IF (RC(I).LT.,O) THEN 

DFCT (STARTN (I) ) =DFCT (STARTN ( I ) ) +CAP ( I ) -X (I) 
DFCT (ENDN ( I ) ) =DFCT (ENDN ( I ) ) -CAF' ( I ) +X ( I ) 
X (1)=CAP(I) 

ELSE 
U(1)=CAP(1)-X(II 

END I F 
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C 
C 

[} 

C 

10 CONTINUE 
REF'EAT=. TRUE. 

END IF 
20 WRITE (6,30) 

WRITE (6, 40) 

WRITE ( 6 ,  50) 
WRITE ( 6 , 6 0 )  
WRITE (6 ,  70 )  
WRITE ( 6 , 8 0 )  
I F  (ADDARC) WRITE (6 ,  90 )  
IF (DELARC) WRITE(6, I00) 

30 FORMAl" ( ' 
4(! FORMAT (' ' , ' 
50 FORMAT ( '  ' , ' 

60 FORMAT ( ' ' , ' 
70 FORMAT (" ' , ' 
80 FORMAT ( ' ' , ' 
90 FORMAT (' " , ' 

J 0() FORMAT ( ' ' , ' 
READ (5, *) SEL 

AARC 
DARC 

' , ' I N P U T  0 TO SOLVE THE MODIFIED PROBLEM ~) 

1 TO CHANGE NODAL FLOW SUPF'LY ~) 
2 TO CHANGE ARC FLOW UPPER BOUND') 

3 TO CHANGE ARC COST') 

4 TO DELETE AN ARC ~) 
5 TO ADD AN ARC ~) 
6 TO DELETE LAST ARC',I8, ' 

7 TO RESTORE I_AST ARC',I8, ' 

I F  ( S E L . E Q . A )  "[HEN 
RETURN 

ELSE I F  ( S E L . E Q .  i )  THEN 

ADDED') 

DELETED' )  

* * * * *  C h a n g e  n o c l a l  f l o w  s u p p l y  * * * * *  
1 1 0  WRITE (6 ,  1 2 0 )  

120 FORMAT(' ','INPUT NODE # WHERE FLOW SUPPLY IS INCREASED') 
READ (5, *) NODE 
IF ( (NODE.LE.O).OR. (NODE.G]'.N)) GO TO 1.10 
WRITE (6, 130) 

130 FORMAT(' '.' INF'IJT AMOUNT OF INCREASE (<0 VALUE ALLOWED)') 
READ (5, *) DELsuP 
DFCT (NODE) =DFCT (NODE) -DELSUP 

.4() W R I T E ( 6 ,  1 5 0 )  
J50 FORMAT<' '., 'INPUT NODE NO. WHERE FLOW SUPF'LY IS DECREASED ~) 

READ (5, *) NODE 
IF ((NODE.LE.O).OR. (NODE.GT.N)) GO TO 140 
DFCT (NODE) =DFCT (NODE) +DEI_SUP 

ELSE IF (SEL.EQ.2) THEN 

1. 60 
:170 

* * * * *  C h a n q e  a r c  f l o w  c a p a c i t y  * * * * *  
* * *  N o t e  t h a t  I! is n o t  l:Ine a r c  c a p a c i t y  b u t  r a t h e r  t h e  f l o w  m a r g i n  
(:i . e .  I.! = c a p a c : i t v  - f l o w ) .  * * *  

WRITE ( 6 ,  J70)  
FORMAT( '  , '  INPUT ARC N[].  AND THE INCREASE IN UPPER BOUND ~) 
READ (5 ,  * )  ARC, DELUB 
I F  ( ( A R C . I _ E . O ) . O R .  ( A R C . G T . N A ) )  GO TO 160 
I F  ( R C ( A R C ) . L T . O )  THEIxl 

***** ARC 'is active, therefore ma:[nhain +low at. (new) 
DFCT (STARTN (ARC)) =DFCT (STAPTN (ARC)) +DELUB 

DFCT (ENDN (ARC)) =DFCT (ENDN (ARC)) -DELUB 
X (ARC) =X (ARC) +DELUB 
IF (X(ARC).LT.O) WRITE(6, 180) 

EI_SE IF <RC(ARC).EQ.O) THEN 
]IF (U(ARC).(BE.-DELUB) THEN 

U <ARC) =U (ARC) +DEI_UB 
EI_SE 

capacity. ** 

* * * * *  New capacity :i.s less t h a i ,  current -Flow, tlnereEore decrease 
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C 
C 

C 
C 

C 
C 

180 

190 
200 

210 
220 

230 

flow to new capacity. ~ * * * *  
DEI_=-DELUB-U(ARC) 
DFCT(STARTN<ARC))=DFCT(STARTN(ARC))-DEL 
DFCT(ENDN(ARC))=DFCT(ENDN(ARC))+DEL 
X(ARC)=X(ARC)-DEL 
IF (X(ARC>.LT.O> WRITE(6~I80) 
U(ARC)=O 

END IF 
ELSE 

U(ARC)=U(ARC)+DELUB 
IF (U(ARC).LT.O) WRITE(6~I80) 
FORMAT(" '~'FLOW UPPER BOUND IS NOW < 0') 

END IF 
ELSE IF (SEL.EQ.3) THEN 

~ * * * *  Change arc cost * * * $ *  
WRITE(6,200) 
FORMAT(' ~,'INPUT ARC NO. & INCREASE IN COST') 
READ(5,*>ARC~DELC 
IF (<ARC.LE.O).OR. (ARC.GT.NA>) GO TO 190 
IF ((RC(ARC).GE.O).AND. (RC(ARC)+DELC.LT.O>) THEN 

~ * ~ *  ARC becomes active~ therefore increase flow to capacity. 
DFCT(STARTN(ARC)>=DFCT(STARTN(ARC)>+U(ARC> 
DFCT(ENDN(ARC))=DFCT(ENDN(ARC))-U(ARC) 
X(ARC)=U(ARC)+X(ARC) 
U(ARC)=O 

ELSE IF ((RC(ARC).LE.O).AND. (RC(ARC)+DELC.GT.O))THEN 

* * ~ * ~  ARC becomes inactive, therefore decrease flow to zero. 
DFCT(STARTN(ARC))=DFCT(STARTN(ARC))-X(ARC> 
DFCT(ENDN(ARC))=DFCT(ENDN(ARC))+X(ARC) 
U(ARC)=U(ARC>+X(ARC) 
X(ARC)=O 

END IF 
RC(ARC)=RC(ARC)+DELC 
C(ARC)=C(ARC)+DELC 

ELSE IF ((SEL.EQ.4).OR.(SEL.EQ.6)) THEN 

***** Delete an arc ***** 
IF (SEL.EQ.6) THEN 

IF (.NOT.ADDARC) GO TO 20 
ADDARC=.FALSE. 
ARC=AARC 

ELSE 
WRITE(6,220) 
FORMAT(' ','INPUT ARC NO. FOR DELETION ~) 
READ(5,*)ARC 
IF ((ARC.LE.O).OR. (ARC.GT.NA)) GO TO 210 
DELARC=.TRUE. 
DARC=ARC 
DU=U(ARC>+X(ARC) 

END IF 

***** Remove ARC from the data array FIN, 
ARCI=FOU(STARTN(ARC)) 
IF (ARC1.EO.ARC) THEN 

FOU(STARTN(ARC)>=NXTOU<ARCI) 
ELSE 

ARC2=NXTOU(ARCI) 

FOU, NXTIN~ NXTOU. * * * * ~  
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C 
C 
C 

C 
C 
C 
C 
C 
C 

240 

250 

260 

270 
280 

290 
300 

IF (ARC2.EQ.ARC) THEN 
NXTOU(ARCI)=NXTOU(ARC2) 
GO TO 240 

END IF 
ARCI=ARC2 
GO TO 230 

END IF 
ARCI=FIN(ENDN(ARC)) 
IF (ARCI.EQ.ARC) THEN 

FIN(ENDN(ARC))=NXTIN(ARCI) 
ELSE 

ARC2=NXTIN(ARC1) 
IF (ARC2.EQ.ARC) THEN 

NXTIN(ARCI)=NXTIN(ARC2) 
GO TO 260 

END IF 
ARCI=ARC2 
GO TO 250 

END IF 

~ Remove flow of ARC from network by setting its flow and 
capacity to O. 

DECT(STARTN(ARC))=DFCT(STARTN(ARC))-X(ARC) 
DFCT(ENDN(ARC))=DFCT(ENDN(ARC))+X(ARC) 
X(ARC)=O 
U(ARC)=O 

ELSE IF ((SEL.EQ.5).OR. (SEL.EQ.7)) THEN 
IF (SEL.EQ.7) THEN 

IF (.NOT.DELARC) GO TO 20 
IARC=DARC 
IH=STARTN(IARC) 
IT=ENDN(IARC) 
DELARC=.FALSE. 
IU=DU 

ELSE 
WRITE(6,280)NA+I 
FORMAT(' ",'INPUT HEAD & TAIL NODES OF NEW ARC',I8) 
READ(5,~)IH, IT 
IF ((IH.LE.O).OR. (IH.GT.N).OR. (IT.LE.O).OR. (IT.GT.N))GO TO 270 
WRITE(6,300) 
FORMAT(' ",'INPUT COST & FLOW UPPER BD ~) 
READ (5, ~) IC, IU 
IF (IU.LT.O) GO TO 290 
ADDARC=.TRUE. 
AARC=NA+I 
NA=NA+I 
C(NA)=IC 
STARTN(NA)=IH 
ENDN(NA)=IT 
IARC=NA 
END IF 

~ Determine the dual prices at IH and IT. ~ 
~ We first set the price at node IH to zero and then construct 
the price at the remaining nodes using the arc cost array C and 
the reduced cost array RC (using the fact that RC(ARC) = C(ARC) - 
PRICE(STARTN(ARC)) + PRICE(ENDN(ARC)) ). This is done by breadth 
first search. ~ 

NSCAN=O 
NLABEL=I 
LABEL(1)=IH 
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C 
C 
C 

PRICE(IH)=O 
DO 310 I=I,N 

310 MARK(I)=.FALSE. 
MARK(IH)=.TRUE. 

320 IF (NLABEL.LE.NSCAN) GO TO 370 
NSCAN=NSCAN+I 
NODE=LABEL(NSCAN) 
ARC=FOU(NODE) 

330 IF (ARC.LE.O) GO TO 340 
NODE2=ENDN(ARC) 
IF (.NOT.MARK(NODE2)) THEN 

MARK(NODE2)=.TRUE. 
PRICE(NODE2)=RC(ARC)-C(ARC)+PRICE(NODE) 
IF (NODE2.EQ. IT) GO TO 370 
NLABEL=NLABEL+I 
LABEL(NLABEL)=NODE2 

END IF 
ARC=NXTOU(ARC) 

GO TO 330 
340 ARC=FIN(NODE) 
350 IF (ARC.LE.O) GO TO 360 

NODE2=STAR]b!(ARC) 
IF (.NOT.MARK(NODE2)) THEN 

MARK(NODE2)=.TRUE. 
PRICE(NODE2)=C(ARC)-RC(ARC)+PRICE(NODE) 
IF (NODE2.EQ. IT) GO TO 370 
NLABEL=NLABEL+I 
LABEL(NLABEI_)=NODE2 

END IF 
ARC=NXTIN(ARC) 

GO TO 350 
360 GO TO 320 

370 

~ Compute reduced cost of 
deficit accordingly. ~ 

RC(IARC)=C(IARC)+PRICE(IT) 
IF (RC(IARC).LT.O) THEN 

DFCT(IH)=DFCT(IH)+IU 
DFCT(IT)=DFCT(IT)-IU 
X(IARC)=IU 
U(IARC)=O 

ELSE 
X(IARC)=O 
U(IARC)=IU 

END IF 
NXTOU(IARC)=FOU(IH) 
FOU(IH)=IARC 
NXTIN(IARC)=FIN(IT) 
FIN(IT)=IARC 

END IF 
GO TO 20 
END 

the new arc and update f l o w  and 


