
Annals of Operations Research 13(1988)125 - 190 125

THE RELAX CODES FOR LINEAR MINIMUM COST NETWORK FLOW
PROBLEMS*

Dimitri P. BERTSEKAS and Paul TSENG

Laboratory for Information and Decision Systems and the Operations Research Center,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Abstract

We describe a relaxation algorithm [1,2] for solving the classical minimum cost net-
work flow problem. Our implementation is compared with mature state-of-the-art
primal simplex and primal-dual codes and is found to be several times faster on all
types of randomly generated network flow problems. Furthermore, the speed-up
factor increases with problem dimension. The codes, called RELAX-II and RELAXT-II,
have a facility for efficient reoptimization and sensitivity analysis, and are in the
public domain.

1. In t roduc t ion

Consider a directed graph with a set of nodes Y and a set of arcs ~. Each arc
(i,]) has associated with it an integer air referred to as the cost of (i, j). We denote by
f/j the flow of the arc (i, j) and consider the classical minimum cost flow problem

minimize ~ aqfq (MCF)
(i,j) e,~

subjectto ~ f m i - ~. f ~ = 0 , Vi E X (conservation of flow) (1)
m m

(m,i) E~t (i,m)E~t

4j< %, V(i,j) (capacity constraint) (2)

where £q and cq are given integers. We assume throughout that there exists at least
one feasible solution of (MCF). We formulate a dual problem to (MCF).

We associate a Lagrange multiplier Pi (referred to as the price of node/)wi th
the ith conservation of flow constraint (1). By denoting by f and p the vectors with
elements f/j, (i, j) E N and Pi, i E •, respectively, we can write the corresponding
Lagrangian function

*This work has been supported by the National Science Foundation under Grant NSF-ECS-
8217668.

© J.C, Baltzer AG, Scientific Publishing Company

126 D.P. Bertsekas and P. Tseng, Relax codes

L(f , p) = ~. (aii+ pi- pi)fq.
(i , j) ~ zll

The dual problem is

maximize q(p)

subject to no constraints on p,

where the dual functional q is given by

q (p) = min L (f , p)
~ij <<- f i] <<- ci]

= if'. rain {(aij + " i - P i) f q } ~- ~'
(i , j) E,~ ~ij ~ f i j <<. cq (LI) E.~I

The form o f the dual arc cost funct ions qq is shown in fig. 1.

qi i (pi - p/).

(3)

(4)

Primal cost Dual cost
for arc (i,j) for arc (i,j)

~ ~ Slope = all

l i i oil

Slol~. = - lij

f~j p,- pj

Slope = -cij f \
Fig. 1. Primal and dual costs for arc (i,/).

v

Given any price vector p, we consider the corresponding tension vector t
having elements tq, (i, j) E pl defined by

%- = P i - Pj, V (i , /) ~ :~. (5)

Since the dual functional as well as subsequent definitions, optimality conditions and
algorithms depend on the price vector p only through the corresponding tension
vector t, we will often make no distinction between p and t in what follows.

D.P. Bert.eekas and P. Tseng, Relax codes 127

For any price vector p, we say that an arc (i, j)is:

Inactive if tij < ai]

Balanced if t.. = a..

Active if t.. > a...
t / z/

For any flow vector f , the scalar

d,= Z f,m- Z fro,
m m

(i, rn)Ed l (m,i) E.~A

(6)

(7)

(8)

(9)

will be referred to as the deficit of node i. It represents the difference of total flow
exported and total flow imported by the node.

The optimality conditions in connection with (MCF) and its dual given by
(3) and (4) state that (f , p) is a primal and dual optimal solution pair if and only if

fij = £ij for all inactive arcs (i, j) (i0)

£ij <~ fq <<" cij forallbalancedarcs(i,]) (11)

fij = Cij for all active arcs (i, j) (12)

d i = 0 for all nodes i. (13)

Relations (10) - (12) are known as the complementary slackness conditions.
Our approach is based on iterative ascent of the dual functional. The price

vector p is updated while simultaneously maintaining a flow vector f satisfying comple-
mentary slackness with p. The algorithms proposed terminate when fsatisfies primal
feasibility (deficit of each node equals zero). The main feature of the algorithms,
which distinguishes them from classical primal-dual methods, is that the choice of
ascent directions is very simple. At a given price vector p, a node i with nonzero
deficit is chosen, and an ascent is attempted along the coordinate Pi. If such an
ascent is not possible and a reduction of the total absolute deficit ~ m l d r n l c a n n o t

be effected through flow augmentation, an adjacent node of i, say i l , is chosen and
an ascent is attempted along the sum of the coordinate vectors corresponding to i and
i l . If such an ascent is not possible, and flow augmentation is not possible either, an
adjacent node of either i or il is chosen and the process is continued. In practice,
most of the ascent directions are single coordinate directions, leading to the inter-
pretation of the algorithms as coordinate ascent or relaxation methods. This is an
important characteristic, and a key factor in the algorithms' efficiency. We have
found through experiment that, for ordinary networks, the ascent directions used

128 D.P. Bertsekas and P. Tseng, Relax codes

by our algorithms lead to comparable improvement per iteration as the direction
of maximal rate of ascent (the one used by the classical primal-dual method), but
are computed with considerably less overhead.

In the next section, we characterize the ascent directions used in the algorithms.
In sect. 3, we describe our relaxation methods. In sect. 4, we describe the codes and
give results of computational experimentation.

2. Cha rac t e r i za t i on o f a scen t d i r ec t ions

Each ascent direction used by the algorithm is associated with a connected
strict subset S of A r, and has the form v = {vql(i,]) E s~ }, where

1 if i ~ S ,] E S

-1 if i E S , j q ~ S

0 otherwise.

(14)

Changing any tension vector t in the direction v of (14) corresponds to decreasing
the prices of all nodes in S by an equal amount while leaving the prices of all other
nodes unchanged. It is seen from (4) that the directional derivative at t of the dual
cost in the direction v is C(v, t), where

C(v, t) = Z lim qii(tii + rvvij) - qq(tti)
(i,])~s~ ~--+o + a

= 2. eii(vq, tq) (lS)

and

eij (oq, tq) =

-vqf~q if (i ,]) is inactiveorif(i ,])
is balanced and vii <<, 0

- t~j cq if (i,]) is active or if (i,])
is balanced and vq > /0 .

(16)

Note that C(o, t) is the difference of outflow and inflow across S when the flows of
inactive and active arcs are set at their lower and upper bounds, respectively, while
the flow of each balanced arc incident to S is set to its lower or upper bound depend-
ing on whether the arc is going out of S or coming into S, respectively. We have the
following proposition.

D.P. Bertsekas and P. Tseng, Relax codes 129

PROPOSITION 1

For every non-empty strict subset S of N and every tension vector t, there
holds

w (t + 3'0) = w(t) + 7C(o, t), V3' E [0,6), (17)

where w(.) is the dual cost as a function of t

w(t) = ff~. qti(tii).
(i,i)

(18)

Here, u is given by (14) and ~ is given by

= inf {{ tim - aim i i E S, m ~ S, (i, m) : active },

{ a m i -- tmil i E S, m q~ S, (m, /):inactive}}. (19)

(We use the convention 8 = + ~ if the set over which the infimum above is taken is
empty.)

/'roof

It was seen [cf. (15)] that the rate of change of the dual cost w at t along o is
C(v, t). Since w is piecewise linear, the actual change of w along the direction v is
linear in the stepwise 3' up to the point where 3' becomes large enough so that the
pair [w(t + 7 0 , t + 3'v] meets a new face of the graph of w. This value of 7 is the
one for which a new arc incident to S becomes balanced and it equals the scalar ti
of (19). Q.E.D.

3. T h e r e l axa t i on m e t h o d

The relaxation algorithm maintains complementary slackness at all times. At
each iteration, it starts from a single node with nonzero deficit and checks whether
changing its price can improve the value of the dual cost. If not, it gradually builds
up, via a labeling procedure, either a flow augmenting path or a cutset associated
with a direction of ascent. The main difference from the classical primal-dual method
is that instead of continuing the labeling process until a maximal set of nodes is
labeled, we stop at the first possible direction of ascent - frequently the direction
associated with just the starting node.

130 D.P. Bertsekas and P. Tseng, Relax codes

TYPICAL RELAXATION ITERATION FOR AN ORDINARY NETWORK

At the beginning of each iteration, we have a pair (f , t) satisfying comple-
mentary slackness. The iteration determines a new pair (f , t) satisfying comple-
mentary slackness by means of the following process.

Step 1: Choose a node s with d s > 0. (The iteration can be started also from a node s
with d s < 0 - the steps are similar.) If no such node can be found, terminate the
algorithm. Else give the label "0" to s, set S = 0, and go to step 2. Nodes in S are
said to be scanned.

Step 2: Choose a labeled but unscanned node k, set S = S U { k }, and go to step 3.

Step 3: Scan the label of the node k as follows: Give the label "k" to all unlabeled
nodes m such that (m, k) is balanced and fmk < Cm~, and to all unlabeled rn such
that (k, m) is balanced and £k,n < fkm" If v is the vector corresponding to S as in (14)
and

C(u, t) > 0, (20)

go to step 5. Else if for any of the nodes m labeled from k we have d m < 0, go to
step 4. Else go to step 2.

Step 4 (flow augmentation): A directed path P has been found that begins at the start-
ing node s and ends at the node m with d m < 0 identified in step 3. The path is con-
structed by tracing labels backwards starting from m, and consists of balanced arcs
such that we have £kn < fkn for all (k, n) E P* and fk,~ < ckn for all (k, n) E P- ,
where

P+ = {(k, n)E Pl(k, n) is oriented in the direction from s to m} (21)

Let

P- = { (k, n) E Pl(k, n) is oriented in the direction from m to s}. (22)

e = min{d s, - d m, {fkn - £kn I(k' n) E P+}, {C~n - fknl(k , n) E P-}}. (23)

Decrease by e the flows of all arcs (k, n) E P+, increase by e the flows of all arcs
(k, n) E P- , and go to the next iteration.

D.P. Bertsekas and P. Tseng, Relax codes 131

Step 5 (price ad]ustment]: Let

= min{ttkm - a k m l k e S, m ¢~S, (k, m): activeJ,

{amk - tmk lk ~ S, m ~ S, (m, k): inactive}},

where S is the set of scanned nodes constructed in step 2. Set

(24)

fkm "= ~km' V balanced arcs (k, m) with k E S, m E L, m ~ S

fmk "= crnk' V balanced arcs (m, k) with k E S, m E L, m q~ S,

where L is the set of labeled nodes. Set

tkrn + 5 if k ~ S, m E S

t k m - ~ if k E S , m ~ S

tkm otherwise.

Go to the next iteration.

The relaxation iteration terminates with either a flow augmentation (via
step 4) or with a dual cost improvement (via step 5). In order for the procedure to
be well defined, however, we must show that whenever we return to step 2 from
step 3, there is still some labeled node which is unscanned. Indeed, when all labeled
nodes are scanned (i.e. the set S coincides with the labeled set), there is no balanced
arc (m, k) such that m ~ S, k E S and fmk < Cmk or a balanced arc (k, m) such that
k E S, m q~ S and ftcrn > I~krn" It follows from the definition (15), (16) [see also the
following equation (25)] that

c(o , t) = a k
k E S

Under the above circumstances, all nodes in S have nonnegative deficit and at least
one node in S (the starting node s) has strictly positive deficit. Therefore, C(o, t) > 0
and it follows that the procedure switches from step 3 to step 5 rather than switch
back to step 2.

If aij, ~ij' and cij are integer for all (i,/ ') E zg and the starting t is integer, then
8 as given by (24) will also be a positive integer and the dual cost is increased by an
integer amount each time step 5 is executed. Each time a flow augmentation takes
place via step 4, the dual cost remains unchanged. If the starting f is integer, all

132 D.P. Bertsekas and P. Tseng, Relax codes

successive f will be integer, so the amount of flow augmentation e in step 4 will be
a positive integer. Therefore, there can be only a finite number of flow augmentations
between successive reductions of the dual cost. It follows that the algorithm will
finitely terminate at an integer optimal pair (f , t) if the starting pair (f , t) is integer.

It can be seen that the relaxation iteration involves a comparable amount of
computation per node scanned as the usual primal-dual method [3]. The only addi-
tional computation involves maintaining the quantity C(v, t), but it can be seen that
this can be computed incrementally in step 3 rather than recomputed each time the
set S is enlarged in step 2. As a result, this additional computation is insignificant. To
compute C(v, t) incrementally in the context of" the algorithm, it is helpful to use
the identity

c(,,, t) = Z d , - T. (.f,,j- 9.,j) - T. (c,j-
i E S (i,]) : balanced (i, j) : balanced

iEg, j~S i~8, jES

(25)

We note that a similar iteration can be constructed starting from a node with
negative deficit. Here, the set S consists of nodes with nonpositive deficit, and in
step 5, the prices of the nodes in S are increased rather than decreased. The straight-
forward details are left to the reader. Computational experience suggests that termina-
tion is typically accelerated when ascent iterations are initiated from nodes with
negative as well as positive deficit.

L I N E S E A R C H

The stepsize ~ of (24) corresponds to the first break point of the (piecewise
linear) dual functional along the ascent direction. It is possible to instead use an
optimal stepsize that maximizes the dual functional along the ascent direction. Such
a stepsize can be calculated quite efficiently by testing the sign of the directional
derivative of the dual cost at successive break points along the ascent direction. Com-
putational experimentation showed that this type of line search is beneficial, and was
implemented in the relaxation codes.

S I N G L E N O D E I T E R A T I O N S

The case where the relaxation iteration scans a single node (the starting node s
having positive deficit ds), finds the corresponding direction v s to be an ascent direction,
i.e.

C % , t) = d s - ~ (fsm--~sm) -- Z (Cms--fms)> O, (26)
(S, m) : balanced (m, s) : balanced

reduces the price Ps (perhaps repeatedly via the line search mentioned earlier) and
terminates is particularly important for the conceptual understanding of the algorithm.

D.P. Bertsekas and P. Tseng, Relax codes 133

Dual Functional

/
Slope = - d s

D i r e c t ~ r e c f c o n a , I ~ J
derivative C(~vs .t) I \ ' ~

- I x \

Pa Price of Node s

Dual Functional

/
Slope = -c(-~ ,t) = -d s = ~ (v ,t)

Ps Price of Node s

CASES WHERE A SINGLE NODE ITERATION IS POSSIBLE

Dual Functional

Slope = -C(v s ,t),

/
Slope = - d

v

Price of Node s

CASE WHERE A SINGLE NODE ITERATION IS NOT POSSIBLE

Fig. 2. Illustration o f dual funct ional and its directional
derivatives along the price coordinate Ps" Break points
correspond to values o f Ps where one or more arcs inci-
dent to node s are balanced.

We believe that much of the success of the algorithm is owed to the relatively large
number of single node iterations for many classes of problems.

When only the price of a single node s is changed, the absolute value of the
deficit of s is decreased at the expense of possibly increasing the absolute value of
the deficit of its neighboring nodes. This is reminiscent of relaxation methods where a
change of a single variable is effected with the purpose of satisfying a single constraint
at the expense of violating others.

A dual viewpoint, reminiscent of coordinate ascent methods, is that a single
(the sth) coordinate direction is chosen and a Iine search is performed along this
direction. Figure 2 shows the form of the dual function along the direction of the
coordinate Ps for a node with

d s > O.

134 D.P. Ber t sekas and P. Tseng, R e l a x codes

The left-hand slope at Ps is

- C(v, t),

while the right-hand slope is

-C(os , t) = - Z Csm - Z
(s, m) ~ .~l (s, rn) ~ Jt

(s, rn) : active (s , m) : inactive
or balanced

s m

Z Cm +
(re,s) ~ ~ (re,s) ~ ~

(m , 3) : active (m, s) : inactive
or balanced

md~

We have

- d - C % , t) , (27)

so - d s is a subgradient of the dual functional at Ps in the sth coordinate direction•

A single node iteration will be possible if and only if the right-hand slope is
negative or equivalently

c%, t) > o.

This will always be true if we are not at a corner and hence equality holds throughout
in (27). However, if the dual cost is nondifferentiable at Ps along the sth coordinate,
it may happen that (see fig. 2)

- C (v s, t) < - d < o <<. - c % , t) ,

in which case the single node iteration fails to make progress and we must resort to
scanning more than one node.

Figure 3 illustrates a single node iteration for the case where d s > 0. It is seen
that the break points of the dual functional along the coordinate Ps are the values of
Ps for which one or more arcs incident to node s are balanced. The single node itera-
tion shown starts with arcs (i , s) and (3, s) inactive, and arcs (s, 2) and (s, 4) active.
To reduce Ps beyond the first break point P4 + as4. the flow of arc (s, 4) must be
pulled back from fs4 = 30 to fs4 = 0. At thelevel Pa - aas, the dual cost is maximized
because if the flow of arc (3, s) is set to the lower bound of zero, the deficit d s

switches from positive (+ 10) to negative (-10) . Figure 4 illustrates a single node
iteration for the same node when d s < 0. The difference to the case d s > 0 is that

Dual lunctional

slope

slope = 2 0 ~

Pl "% P2 *asz P3 "a3s

(a)

Flow reduction from 30 to 0
Price level

" ~ ' / / r i ~ e ~r~p ~,,~ p4 . as4

,o, oy y,
J ~ P 2 *as2 Pl-a~s ~

(b)

10

slope = -40

\

P4 + as4 Ps Price of node s

D.P. Bertsekas and P. Tseng, Relax codes 135

(c) (d)

Fig. 3. Illustration of an iteration involving a single node s with four adjacent arcs
(1, s), (3, s), (s, 2), (s, 4) with feasible arc flow ranges [1, 20] , [0, 20] , [0, 10],
[0,30], respectively. (a) Form of the dual functional along Ps for given values of
P~, P2, P3, and P4. The break points correspond to the levels of Ps for which the
corresponding arcs become balanced. (b) Illustration of a price drop of Ps from a
value higher than all break points to the break point at which arc (s, 4) becomes
balanced. (c) Price drop of Ps to the break point at which arc (3, s) becomes balanced.
When this is done, arc (s, 4) becomes inactive from balanced and its flow is reduced
from 30 to 0 to maintain complementary slackness. (d) Ps is now at the break point
P3 - aas that maximizes the dual cost. Any further price drop makes arc (3. s)
active, increases its flow from 0 to 20, and changes the sign of the deficit d s from
positive (+10) to negative (- 10).

136 D.P. Bertsekas and P. Tseng, Relax codes

Dual functional

=

Pl "als Ps P2 +as2

2nd price rise

P3-% P. + a~4

(a)

Price of node s

Price Level

p4+ as4

,,s/ '°?
• ~ ~ P 2 +as2

Pl-% ~ IO,lOl
[0,201 Ps Flow increase from 0 to 10

(b) (c) (d)

Fig. 4. Il lustration of a price rise involving the single node s for the example of
fig. 3. Here, the initial price Ps lies between the two lef tmost break points corre-
sponding to the arcs (1, s) and (s, 2). Init ially, arcs (1, s), (s, 2), and (s, 4) are in-
active, and arc (3, s) is active.

D.P. Bertsekas and P. Tseng, Relax codes 137

the price Ps is increased, instead of decreased, and as Ps moves beyond a break point,
the flow of the corresponding balanced arc is pushed to the lower bound (for incoming
arcs) and to the upper bound (for outgoing arcs), rather than pulled to the upper
bound and lower bound, respectively.

DEGENERATE ASCENT ITERATIONS

If, for a given t, we can fred a connected subset S of ~f such that the corre-
sponding vector (u, o) satisfies

c(o, t) = o,

then from proposition 1 we see that the dual cost remains constant as we start moving
along the vector o. i.e.

w(t + -- w(t), V e [0, 8),

where w, v, and 8 are given by (14), (18), (19). We refer to such incremental changes
in t as degenerate ascent iterations. If the ascent condition C(o, t) > 0 [cf. (20)] is
replaced by C(o, t) >1 O, then we obtain an algorithm that produces at each iteration
either a flow augmentation, or a strict dual cost improvement, or a degenerate ascent
step. This algorithm has the same convergence properties as the one without degenerate
steps under the following condition:

(C) For each degenerate ascent iteration, the starting node s has positive
deficit d s, and at the end of the iteration, all nodes in the scanned set S have non-
negative deficit.

We refer the reader to [1] for a proof of this fact. It can be easily seen that
condition (C) always holds when the set S consists of just the starting node s. For
this reason, if the ascent iteration is modified so that a price adjustment at step 5 is
made not only when C(v, t) > 0 but also when d s > O, S = { s } and C(o s, t) = O, the
algorithm maintains its termination properties. This modification was implemented
in the relaxation codes and can have an important beneficial effect for special classes
of problems such as assignment and transportation problems. We have no clear
explanation for this phenomenon. For the assignment problem, condition (C) is
guaranteed to hold even if S contains more than one node. The assignment algorithm
of [4] makes extensive use of degenerate ascent steps.

4. C o d e d e s c r i p t i o n a n d c o m p u t a t i o n a l resu l t s

The relaxation codes RELAX-II and RELAXT-II solve the problem

138 D.P. Bertsekas and P. Tseng, Relax codes

minimize Z
(i,i) ~ a~

subject to Z fmi -- Z rim = b i, V i E X
(m , i) ~ (i, rn)E~

O <<. fq <<- c~i, V(/ , j)ea .

This form has become standard in network codes as it does not require storage and
use of the array of lower bounds {9.ij }. Instead, the smaller size array Ibi} is stored and
used. The problem (MCF) of sect. 1 can be reduced to the above form by making the
transformation of variables f q : = f/j - 9~ij. The method for representing the problem
is the linked list structure suggested by Aashtiani and Magnanti [5] and used in their
KILTER code (see also Magnanti [6]). Briefly, during solution of the problem, we
store for each arc its start and end node, its capacity, its reduced cost (aq - tij), its
flow f / i ' the next arc with the same start node, and the next arc with the same end
node. An additional array of length equal to half the number of arcs is used forinternal
calculations. This array could be eliminated at the expense of a modest increase in
computation time. The total storage of RELAX-II for arc length arrays is 7.5 IM 1.
RELAXT-II is a code that is similar to RELAX-II but employs two additional grc
length arrays that essentially store the set of all balanced arcs. This code, written with
the assistance of Jon Eckstein, is faster than RELAX-II, but requires 9.5 IMI total
storage for arc length arrays. There is additional storage needed for node length
arrays, but this is relatively insignificant for all but extremely sparse problems. This
compares unfavorably with primal simplex codes, which can be implemented with
four arc length arrays.

The RELAX-II and RELAXT-II codes implement with minor variations the
relaxation algorithm of sect. 3. Line search and degenerate ascent steps are imple-
mented as discussed in sect. 3.

The codes assume no prior knowledge about the structure of the problem or
the nature of the solution. Initial prices are set to zero and initial arc flows are set to
zero or the upper bound, depending on whether the arc cost is nonnegative or negative,
respectively. RELAX-II and RELAXT-II include a preprocessing phase (included
in the CPU time reported) whereby arc capacities are reduced to as small a value as
possible without changing optimal solutions of the problem. Thus, for transportation
problems, the capacity of each arc is set at the minimum of the supply and demand
at the start and end nodes of the arc. We found experimentally that this preprocessing
can markedly improve the performance of relaxation methods, particularly for trans-
portation problems. We do not fully understand the nature of this phenomenon, but
it is apparently related to the fact that tight arc capacities tend to make the shape of
the isocost surfaces of the dual functional more "round". Generally speaking, tight

D.P. Bertsekas and P. Tseng, Relax codes 139

arc capacity bounds increase the frequency of single node iterations. This behavior
is in sharp contrast with that of primal simplex, which benefits from loose arc capacity
bounds (fewer extreme points to potentially search over), and appears to be one of
the main reasons for the experimentally observed superiority of relaxation over
primal simplex for heavily capacitated problems.

It is possible to reduce the memory requirements of the codes by ordering the
arc list of the network by head node, i.e. the outgoing arcs of the first node are listed
first, followed by the outgoing arcs of the second node, etc. (forward star representa-
tion). If this is done, one arc length array becomes unnecessary, thereby reducing the
memory requirements of RELAX-II to 6.5 arc length arrays, and of RELAXT-II to
8.5 arc length arrays. The problem solution time remains essentially unaffected by
this device, but the time needed to prepare (or alter) the problem data will be in-
creased. The same technique can also be used to reduce the memory requirements
of the primal simplex method to three arc length arrays.

We have compared RELAX-II and RELAXT-II under identical test conditions
with the primal-dual code KILTER (Aashtiani and Magnanti [5]) and the primal
simplex code RNET (Grigoriadis and Hsu [7]). It is generally recognized that the
performance of RNET is representative of the best that can be achieved with presently
available simplex network codes written in FORTRAN. For example, Kennington and
Helgason in their 1980 book [8] (p. 255) compare RNET with their own primal
simplex code NETFLO on the first 35 NETGEN benchmarks [9] and conclude that
" R N E T . . . produced the shortest times that we have seen on these 35 test problems".
Our computational results with these benchmarks are given in table 1 and show
substantially faster computation times for the relaxation codes over both KILTER and
RNET.

An important and intriguing property of RELAX-II and RELAXT-II is that
their speedup factor over RNET apparently increas'es with the size of the problem.
This can be seen by comparing the results for the small problems 1 -35 with the
results for the larger problems 3 7 - 4 0 of table 1. The comparison shows an improve-
ment in the speedup factor that is not spectacular, but is noticeable and consistent.
TabIe 2 shows that for even larger problems, the speedup factor increases further
with problem dimension, and reaches or exceeds an order of magnitude (see fig. 5).
This is particularly true for assignment problems where, even for relatively small
problems, the speedup factor is of the order of 20 or more.

We note that there was some difficulty in generating the transportation prob-
lems of this table with NETGEN. Many of the problems generated were infeasible
because some node supplies and demands were coming out zero or negative. This
was resolved by adding the same number (usually 10) to all source supplies and all
sink demands, as noted in table 2. Note that the transportation problems of the
table are divided into groups and each group has the same average degree per node
(8 for problems 6 - 1 5 , and 20 for problems 16-20) .

140 D.P. Bertsekas and P. Tseng, Relax codes

Table 1

Standard Benchmark Problems 1 - 4 0 of [9] obtained using NETGEN. All times are in secs on a
VAX 11/750. All codes compiled by FORTRAN in OPTIMIZE mode under VMS version 3.7,
and under VMS version 4.1, as indicated. All codes run on the same machine under identical
conditions. Problem 36 could not be generated with our version of NETGEN

RELAX-II RELAXT-II KILTER RNET
Problem Problem No. of No. of (VMS 3.7/ (VMS 3.7/ VMS 3.7 VMS 3.7

type no. nodes arcs VMS 4.1) VMS 4.1)

0

1 200 1300 2.07/1.75 1.47/1.22 8.81 3.15
2 200 1500 2.12/1.76 1.61/1.31 9.04 3.72
3 200 2000 1.92/1.61 1.80/1.50 9.22 4.42
4 200 2200 2.52/2.12 2.38/1.98 10.45 4.98
5 200 2900 2.97/2.43 2.53/2.05 16.48 7.18
6 300 3150 4.37/3.66 3.57/3.00 25.08 9.43
7 300 4500 5.46/4.53 3.83/3.17 35.55 12.60
8 300 5155 5.39/4.46 4.30/3.57 46.30 15.31
9 300 6075 6.38/5.29 5.15/4.30 43.12 18.99

10 300 6300 4.12/3.50 3.78/3.07 47.80 16.44

Total (problems 1 -10) 37.32/31.11 30.42/25.17 251.85 96.22

-~ 11 400 1500 1.23/1.03 1.35/1.08 8.09 4.92
E 12 400 2250 1.38/1.16 1.54/1.25 10.76 6.43
" 13 400 3000 1.68/1.42 1.87/1.54 8.99 8.92
"~ 14 400 3750 2.43/2.07 2.67/2.16 14.52 9.90 <

15 400 4500 2.79/2.34 3.04/2.46 14.53 10.20

Total (problems 11-15) 9.51/8.02 10.47/8.49 56.89 40.37

16 400 1306 2.79/2.40 2.60/2.57 13.57 2.76
• U 17 400 2443 2.67/2.29 2.80/2.42 16.89 3.42

18 400 1306 2.56/2.20 2.74/2.39 13.05 2.56 t~

19 400 2443 2.73/2.32 2.83/2.41 17.21 3.61
~ 20 400 1416 2.85/2.40 2.66/2.29 11.88 3.00
-- 21 400 2836 3.80/3.23 3.77/3.23 19.06 4.48
~ 22 400 1416 2.56/2.18 2.82/2.44 12.14 2.86

23 400 2836 4.91/4.24 3.83/3.33 19.65 4.58
24 400 1382 1.27/1.07 1.47/1.27 13.07 2.63
25 400 2676 2.01/1.68 2.13/1.87 26.17 5.84

~ 26 400 1382 1.79/1.57 1.60/1.41 11.31 2.48
27 400 2676 2.15/1.84 1.97/1.75 18.88 3.62

Total (problems 16 -27) 32.09/27.42 31.22/27.38 192.88 41.94

D.P. Bertsekas and P. Tseng, Relax codes 141

Table 1 (continued)

RELAX-II RELAXT-II KILTER RNET
Problem ProbIem No. of No. of (VMS 3.7/ (VMS 3.7/ VMS 3.7 VMS 3.7

type no. nodes arcs VMS 4.1) VMS 4.1)

"~ "~ 28 1000 2900 4.90/4.10 5.67/5.02 29.77 8.60
"~ 29 1000 3400 5 .57•4 .76 5.13/4.43 32.36 12.01

30 1000 4400 7.31/6.47 7.18/6.26 42.21 11.12
• ~ ~ ~ 31 1000 4800 5.76/4.95 7.14/6.30 39.11 10.45
e~ ~ E, 32 1500 4342 8.20/7.07 8.25/7.29 69.28 18.04

• =~ 33 1500 4385 10.39/8.96 8.94/7.43 63.59 17.29
;= 34 1500 5107 9.49/8.11 8.88/7.81 72.51 20.50

35 1500 5730 10.95/9.74 10.52/9.26 67.49 17.81

Total (problems 28-35) 62.57/54.16 61.71/53.80 356.32 115.82

~"~ ~o,~ ~ 37 5000 23000 87.05/73.64 74.67/66.66 681.94 281.87
~ ~" E 38 3000 35000 68.25[57.84 55.84/47.33 607.89 274.46
~- ~ --~ 39 5000 15000 89.83/75.17 66.23/58.74 558,60 151.00
= ~ 40 3000 23000 50.42/42.73 35.91/30.56 369.40 174.74

Total (problems 37-40) 295.55/249.38 232.65/203.29 2 217.83 882.07

142 D.P. Bertsekas and P. Tseng, Relax codes

Table 2

Large Assignment and Transportation Problems. Times in secs on VAX 11/750. All problems
obtained using NETGEN, as described in the text. RELAX-II and RELAXT-II compiled under
VMS 4.1; RNET compiled under VMS 3.7. Problems marked with ~ were obtained by NETGEN,
and then, to make to problem feasible, an increment of 2 was added to the supply of each source
node, and the demand of each sink node. Problems marked with + were similarly obtained, but the
increment was 10

Problem No. of No. of No. of Cost Total RELAX-II RELAXT-II RNET
No. type sources sinks arcs range supply

1 E 1 000 1 000 8 000 1 - 1 0 1 000 4.68 4.60 79.11
2 E 1 500 1 500 12 000 1 - 1 0 1500 7.23 7.03 199.44
3 ~ 2 000 2 000 16 000 1 - 1 0 2 000 12.65 9.95 313.64
4 "~ 1 000 1 000 8 000 1 - 1 000 1 000 9.91 10.68 118.60 <
5 1 500 1 500 12 000 1 - 1 000 1500 17.82 14.58 227.57

6 o 1 000 1 000 8 000 1 - 1 0 100 000 31.43 27.83 129.95
7* = 1 500 1 500 12 000 1 - 1 0 153 000 60.86 56.20 300.79
8 ÷ o 2 000 2 000 16 000 1 - 1 0 220000 127.73 99.69 531.14
9 + ~ 2 500 2 500 20000 1 - 1 0 275 000 144.66 115.65 790.57

10 + ~ 3 000 3 000 24 000 1 - 1 0 330 000 221.81 167.49 1 246.45

11 ~ 1 000 1 000 8 000 1 - i 000 100 000 32.60 31.99 152.17
12" ~ 1 500 1 500 12 000 1 - 1 000 153 000 53.84 54.32 394.12
13* ~ 2 000 2 000 16 000 1 - 1 000 220000 101.97 71.85 694.32
14 ÷ ~ 2 500 2 500 20 000 1 - 1 000 275 000 107.93 96.71 1 030.35
15 + ~ 3 000 3 000 24 000 1 - 1 000 330 000 133.85 102.93 1 533.50

16 + ~ 500 500 10 000 1 - 1 0 0 15 000 16.44 11.43 84.04
17 ÷ ~ 750 750 15 000 1 - 100 22 500 28.30 t8.12 176.55
18 + o 1 000 1 000 20 000 1 - t 0 0 30 000 51.01 31.31 306.97
19" ~ 1 250 1 250 25 000 1 - 1 0 0 37 500 71.61 38.96 476.57
20 + ~ 1 500 1 500 30 000 1 - 1 0 0 45 000 68.09 41.03 727.38

D.P. Bertsekas and P. Tseng, Relax codes 143

7
Speedup 6

o v e r

RNET. 5
Problems 4
6-t0 in 3 Table 2

2
1

2

RELAXT-II
• 15

~ E ~ R E ~I..AX 13
Speedup

over 11
-II RNET, 9

Problems 7
t1-15 in
Table 2 5

3

1 3 4 5 6
D: Normalized problem

size

RELAXT-II

~X -II

2 3 4 5 6
D: Normalized problem

size

17
15

Speedup 13
O V e r

RNET. 11
Problems 9
16-20 in 7'
Table 2 5'

3
1

RELAXT-II

. . ~ . . . ~ r . ~ RELAX'II

! I I !

3 4 5 6
D: Normalized problem

size

Fig. 5. Speedup factor of RELAX-II and RELAXT-II over RNET for the trans-
portation problems of table 2. The normalized dimension D gives the number of
nodes JV and arcs .~/as follows:

Ixl = 1000 * D, I~l = 4000 * D for problems 6 - 1 5
IXl = 500 * D, I.~1 = 5000 * D for p roblems 1 6 - 2 0 .

To corroborate the results of table 2, the random seed number of NETGEN
was changed, and additional problems were solved using some of the problem data
of the table. The results were qualitatively similar to those of table 2. We also solved
a set of transhipment problems of increasing size generated by our random problem
generator called RANET. The comparison between RELAX-II, RELAXT-II and
RNET is given in fig. 6. More experimentation and/or analysis is needed to establish
conclusively the computational complexity implications of these experiments.

8. Conclusions

Relaxation methods adapt nonlinear programming ideas to solve linear network
flow problems. They are much faster than classical methods on standard benchmark
problems and a broad range of randomly generated problems. They are also better

144 D.P. Bertsekas and P. Tseng, Relax codes

RELAXT- 11

11

Speedup Factor 9
ever RNET in
Transhipment 7

Problems 5

3 '

2 3 4 5 6 7 8 9 t0 11 12 13

D: Normalized Problem Size

Fig. 6. Speedup factor of RELAX-II and RELAXT-II over RNET in lightly capaci-
rated transhipment problems generated by our own random problem generator
RANET. Each node is a transhipment node, and it is either a source or a sink. The
normalized problem size D gives the number of nodes and arcs as follows

Ixl -- 200 * D, I~1 = 3000 * D.

The node supplies and demands were drawn from the interval [- 1000, 1000]
according to a uniform distribution. The arc costs were drawn from the interval
[1,100] according to a uniform distribution. The arc capacities were drawn from
the interval [500, 3000] according to a uniform distr~ution.

suited for post optimization analysis than primal-simplex. For example, suppose a
problem is solved, and then is modified by changing a few arc capacities and/or node
supplies. To solve the modified problem by the relaxation method, we use as starting
node prices the prices obtained from the earlier solution, and we change the arc
flows that violate the new capacity constraints to their new capacity bounds. Typically,
this starting solution is close to optimal and solution of the modified problem is
extremely fast. By contrast, to solve the modified problem using primal-simplex, one
must provide a starting basis. The basis obtained from the earlier solution will typically
not be a basis for the modified problem. As a result, a new starting basis has to be
constructed, and there are no simple ways to choose this basis to be nearly optimal.

The main disadvantage of relaxation methods relative to primal-simplex is
that they require more computer memory. However, technological trends are such
that this disadvantage should become less significant in the future.

Our computational results provided some indication that relaxation has a
superior average computational complexity over primal-simplex. Additional experi-
mentation with large problems and/or analysis are needed to provide an answer to
this important question.

The relaxation approach applies to a broad range of problems beyond the
class considered in this paper (see [10-- 13]), including general linear programming
problems. It also lends itself to distributed or parallel computation (see [10 ,13-16]).

D.P. Bertsekas and P. Tseng, Relax codes 145

The relaxation codes RELAX-II and RELAXT-II together with other support
programs, including a reoptimization and sensitivity analysis capacity, are in the
public domain with no restrictions, and can be obtained from the authors at no cost
on IBM-PC or Macintosh diskette.

References

[1] D.P. Bertsekas, A unified framework for minimum cost network flow problems, LIDS
Report LIDS-P-1245-A, M.I.T. (1982); also Math. Progr. 32(1985)125.

[2] D.P. Bertsekas and P. Tseng, Relaxation methods for minimum cost - ordinary and general-
ized network flow problems, LIDS Report LIDS-P-1462, M.I.T. (1985); also Oper. Res.
Journal, to appear.

[3] L.R. Ford, Jr. and D.R. Fulkerson, F / o N in Networks (Princeton University Press, New
Jersey, 1962).

[4] D.P. Bertsekas, A new algorithm for the assignment problem, Math. Progr. 21(1982)152.
[5] H.A. Aashtiani and T.L. Magnanti, Implementing primal-dual network flow algorithms,

Opel Res. Center Report 055-76, M.I.T. (1976).
[6] T. Magnanti, Optimization for sparse systems, in: Sparse Matrix Computations, ed. J.R.

Bunch and D.J. Rose (Academic Press, New York, 1976) pp. 147-176.
[7] M.D. Grigoriadis and T. Hsu, The Rutgers minimum cost network flow subroutines (RNET

documentation), Dept. of Computer Science, Rutgers University (1980).
[8] J. Kennington and R. Helgason, Algorithms for Network ~ogramming 6Viley, New York,

1980).
[9] D. Klingman, A. Napier and J. Stutz, NETGEN - A program for generating large scale

(un)capacitated assignment, transportation and minimum cost flow network problems
Management Science 20(1974)814.

[10] D.P. Bertsekas, P. Hosein and P. Tseng, Relaxation methods for network flow problems
with convex arc costs, SIAM J. Control and Optimization 25(1987).

[11] P. Tseng, Relaxation methods for monotropic programs, Ph.D. Thesis, M.I.T. (1986).
[12] P. Tseng and D.P. Bertsekas, Relaxation methods for linear programs, LIDS Report LIDS-

P-1553, M.I.T. (1986); also Math. of Oper. Res. 12(1987).
[13] P. Tseng and D.P. Bertsekas, Relaxation methods for problems with strictly convex separable

costs and linear constraints, LIDS Report LIDS-P-1567, M.I.T. (1986); also Math. ProgI.
38(1987).

[14] D.P. Bertsekas, Distributed relaxation methods for linear network flow problems, Proc.
25th IEEE Conf. on Decia'on and Control, Athens, Greece (1986).

[15] D.P. Bertsekas and D. E1 Baz, Distributed asynchronous relaxation methods for convex
network flow problems, LIDS Report LIDS-P-1417, M.I.T. (1984); also SIAM J. Control
and Optimization 25(1987)74.

[16] D.P. Bertsekas and J. Eckstein, Distributed asynchronous relaxation methods for linear
network flow problems, Proc. of IFAC '87, Munich, Germany (1987) (Pergamon Press,
Oxford).

146 D.P. Bertsekas and P. Tseng, Relax codes

THE BASIC A L G O R I T H M

/* Read in p r o b l e m data. "/

nn : = numbe r o f nodes in n e t w o r k

na : = numbe r o f arcs in n e t w o r k

/* The nodes are n u m b e r e d f r om 1 to nn and the arcs f r om 1 to na.* l

f o r arc := l t o n a d o

cost(arc) : = cost o f arc

upbd(arc) : = f l o w upper bound of arc

head(arc) : = head node o f arc

tail(arc) : = ta i l node o f arc

end do

fo r node : = 1 to nn do

dfc t (node) : = ex t raneous f l o w supply o u t o f node

end do

/* In i t ia l ize dual pr ices to 0 and then assign f l o w to arcs to sat isfy c o m p l e m e n t a r y slackness. */

fo r a r c : = l t o n a d o

rdcost(arc) : = cost(arc)

i f rdcost(arc) > 0 t hen

f l o w (a r c) : = 0

else

f l o w (a r c) : = upbd(arc)

dfct (head(arc)) : = dfct (head(arc)) + upbd(arc)

dfc t (tai l (arc)) : = d fc t (tai l (arc)) - upbd(arc)

e n d d o

/ " Star t re laxa t ion i te ra t ions . */

w h i l e dfct0~ ~ 0 fo r some i do

fo r node : = 1 to nn do

i f dfc t (node) > 0 t hen

pred(node) : = 0

labelset : = { n o d e }

scanset : = { 0 }

augnode : = 0

ascent : = false

D.P. Bertsekas and P. Tseng, Relax codes 147

whi le augnode = 0 and not ascent do

Choose a node I E labelset \ scanset

scanset : = scanset U { n o d e l }

/* Start scanning step. */

scanning(node t ,augnode)

/* Check i f scanset corresponds to a dual ascent direct ion. */

i f

dfct (nodel) :> ~ f low(arc)

node1 E scanset rdcost(arc) = 0

head(arc) E scanset

tail(arc) g scanset

~,, upbd(arc)-f tow(arc)

rdcost(arc) = 0

head(arc) ~ scanset

tail(arc) E scanset

end do

end do

then ascent : = true

end do

i f ascent then

doascent

else

augf low(augnode,node)

proced u re scan n ing(node 1, augnode)

/* This procedure performs a scanning step at node1. ~1

for all arc such that head(arc) = node I do

i f rdcost(arc) = 0 and f low(arc) > 0 then

node2 : = tail(arc)

i f node2 g labelset then

pred(node2) : = arc

labelset : = labelset U {node2}

i f dfct(node2) < 0 then augnode : = node2

end do

for all arcsuch that tail(arc) = node1 do

i f rdcost(arc) = 0 and f low(arc) < upbd(arc) then

148 D.P. Bertsekas and P. Tseng, Relax codes

end do

end;

node2 : = head(arc)

i f node2 q labelset then

pred(node2) : = -arc

labelset : = labelset U {node2 }

i f dfct(node2) < 0 then augnode : = node2

procedure doascent

/* This procedure performs dual ascent by line-rn~imization and updates the f low accordingly to satisfy

complementary slackness. */

while

dfct (node l)

node1 (scanset

do

> ~ flow(arc)

rdcost(arc) = 0

head(arc) ~ scanset

tail(arc) #, scanset

upbd(arc) - f low(arc)

rdcost(arc) = 0

head(arc) q scanset

tail(arc) E scanset

/* Compute the stepsize to the next breakpoint in the dual cost and decrease the price of all nodes in

scanset by the stepsize. Adjust the arc flow accordingly to maintain complementary slackness. "/

pr icechange : = very large positive number

for all arc such that head(arc) E scanset and tail(arc) ~ scanset do

i f rdcost(arc) = 0 then

dfct(head(arc)) : = dfct(head(arc)) - f low(arc)

dfct(tai l(arc)) : = dfct(tai l(arc)) + f low(arc)

f low(arc) : = 0

i f 0 < -rdcost(arc) < pr icechange then pr icechange : = -rdcost(arc)

end do

for all arc such that head(arc) ~ scanset and tail(arc) ~ scanset do

i f rdcost(arc) = 0 then

dfct(head(arc)) := dfct(head(arc)) + (upbd(arc) - f low(arc))

dfct(tai l(arc)) : = dfct(tai l(arc)) - (upbd(arc) - f low(arc))

f low(arc) := upbd(arc)

i f 0 < rdcost(arc) < pr icechange then pr icechange : = rdcost(arc)

end do

for all arc such that head(arc) (scanset and tail(arc) ~ scanset do

D.P. Bertsekas and P. Tseng, Relax codes 149

rdcost(arc) : = rdcost(arc) + pr icechange

end do

for all arc such that head(arc) ~ scanset and tai l (arc) ~ scanset do

rdcost(arc) : = rdcost(arc) - p r i c e c h a n g e

end do

end do

end;

proced u re aug f l ow(augnode ,node)

/* This procedure adjusts the f low on arcs to decrease the total deficit, while maintaining complement

slackness. "/

f l owchange : = rain{ d fc t (node) , -d f c t (augnode) }

node1 : = augnode

wh i le n o d e l ~ n o d e d o

a rc : = p r e d (n o d e l)

i f arc > 0 then

f l owchange : = rain(f lowchange, f low(arc) }

n o d e l : = head(arc)

else

f l owchange : = rain{ f l owchange , upbd(-a rc) - f l ow(-a rc) }

node I : = tai l(-arc)

end do

dfc t (node) : = d fc t (node) - f l owchange

d fc t (augnode) : = d fc t (augnode) + f l owchange

node l : = augnode

while node1 ~ node do

arc : = p r e d (n o d e l)

i farc > Othen

f low(arc) : = f low(arc) - f l owchange

node 1 : = head(arc)

else

f low(-arc) : = f low(-arc) + f l owchange

node I : = tai l(-arc)

end do

end;

D.P. Bertsekas and P. Tseng, Relax codes 151

Appendix

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

* * * * * * * SAMPLE CALLING PROGRAM FOR SUBROUTINE RELAXT * g * * * * t
* * * (MINIMUM COST NETWORK FLOW PROBLEM) * g t

*** THE PROGRAM IS BASED ON THE PAPER ***
*** D.P. BERTSEKAS~ P.TSENG "THE RELAX CODES FOR ***
*** LINEAR MINIMUM COST NETWORK FLOW PROBLEMS", ~**

* * * ANNALS O F OPERATIONS RESEARCH, THIS VOLUME * * *

* * * ALL THE SUBROUTINES ARE WRITTEN IN STANDARD * * *
* * * FORTRAN77. * * *

* * * QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO * * *
* * * DIMITRI BERTSEKAS AND PAUL TSENG * * *
* * * DEPARTMENT OF ELECTRICAL ENGINEERING & * * *
* * * COMPUTER SCIENCE * * *
* * * LABORATORY FOR INFORMATION AND DECISION SYSTEMS * * *
*** M.I.T. CAMBRIDGE~ MASSACHUSETTS~ 02139~ U.S.A. ***

THIS PROGRAM WILL READ AND SOLVE A PROBLEM FILE CREATED VIA
THE RANDOM PROBLEM GENERATOR NETGEN OR ANY GENERATOR THAT
USES THE NETGEN FORMAT.

DOUBLE PRECISION TCOST
INTEGER C(7C30CJCI),X(7C;CIC~O)~U(7OCJOO),RC(7C~OOCJ),B(60CIO)
INTEGER CAP(7OOOO),STARTN(7OOOO),ENDN(70000)
INTEGER II(6CJC~O),I2(6CK)O),I3(6C~C~CJ)~I4(7C:OC:CO,I5(600C))
INTEGER 16(70000), I7(70000)
LOGICAL LI(6OOO),L2(6OOO),TEST~REPEAT
COMMON /ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X

*/ARRAY9/RC/ARRAYB/B/BLK1/I1/BLK2/I2/BLK3/I3/BLK4/14/BLK5/I5/BLK6
*/I6/BLK7/I71BLKG/L1/BLK9/L2/L/N~NA~LARGE
COMMON/BLKR/REPEAT/ARRAYC/C/BLKCAP/CAP
COMMON /BLK10/TFSTOU/BLK11/TNXTOU/BLK12/TFSTIN/BLK13/TNXTIN
DIMENSION TFSTOU(6OOO),TNXTOU(7OOOO),TFSTIN(6OOO)~TNXTIN(70000)

1 0

READ (5, *) N, IA
READ (5, t) (STARTN (I) , I = l , IA)
READ (5, g) (ENDN (1), I=1 ~ IA)
READ (5, *) (C (I) , I = I , IA)
READ (5, *) (U(I) ~ I = I , IA)
DO 10 I = I , N
B(1)=O
M=O
DO 20 I = I . I A

IF (STARTN(I).EQ.N+I) THEN
B (ENDN(I))=-U(I)

ELSE IF (ENDN(I).EQ.N+2) THEN
B (STARTN (I))=U(I)

ELSE
M=M+I
C(M)=C(I)

152 D.P. Bertsekas and P. Tseng, Relax codes

C

U(M)=U(1)
STARTN(M)=STARTN(1)
ENDN(M)=ENDN(II

END IF
20 CONTINUE

NA=M
LARGE=20000000
REPEAT=.FALSE.
DO 30 I=I,NA

30 CAP(I)=U(I)
CALL INIDAT
~ Set initial dual prices to zero ~i~
DO 40 I=I,NA

40 RC(1)=C(1)
CALL RELAXT
~ Display previous optimal cost ~i~
IF (REPEAT) WRITE(6,50)TCOST

50 FORMAT< ~ ~,'PREVIOUS OPTIMAL COST=',FI4.2)
TCOST=DFLOAT(O)
DO 60 I=I,NA

60 TCOST=TCOST+DFLOAT(X(I)~C(I>)
WRITE(6,70) TCOST

70 FORMAT(' ','OPTIMAL COST =~,F14.2)
END

C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE INIDAT
i ~ This subroutine uses the data arrays STARTN and ENDN
to construct auxiliary data arrays FOU, NXTOU, FIN, and
NXTIN that are required by RELAXT. In this subroutine we
arbitrarily order the arcs leaving each node and store
this information in FOU and NXTOU. Similarly, we arbitra-
filly order the arcs entering each node and store this
information in FIN and NXTIN. At the completion of the
cons t ruc t i on , we have t ha t

FOU(1)
NXTOU (J)
FIN(1)
NXTIN(J)

= First arc leaving node I.
= Next arc leaving the head node of arc 3.
= First arc entering node I.
= Next arc entering the tail node of arc J.

10

COMMON /ARRAYS/STARTN/ARRAYE/ENDN/BLKI/TEMPIN/BLK2/TEMPOU
~/BLK3/FOU/BLK4/NXTOU/BLK5/FIN/BLK6/NXTIN
~/L/N,NA
INTEGER STARTN(1),ENDN(1),TEMPIN(1),TEMPOU(1),FOU(1)
INTEGER NXTOU(1),FIN(1),NXTIN(1)
LOGICAL L
~ construct data structure required by RELAXT ~ ~
DO 10 I=I,N

FIN(I)=O
FOU(I)=O
TEMPIN(1)=O
TEMPOU(I)=O

DO 20 I=I,NA
NXTIN(I)=O
NXTOU(1)=O

D.P. Bertsek~s ~nd P. Tseng, Relax codes 153

20

II=STARTN(1)
12=ENDN(1)
IF (FOU(I1).NE.O> THEN

NXTOU(TEMPOU(II))=I
ELSE

FOU(I1)=I
END IF
TEMPOU(I1)=I
IF (FIN(12).NE.O) THEN

NXTIN(TEMPIN(12))=I
ELSE

FIN(12)=I
END IF
TEMPIN(I2)=I

RETURN
END

SUBROUTINE RELAXT
C ~$~$$$$$~$~$~$$$$~$~$$$~$$~$$$$$~$$$~$~$$~$~$~$~$~
C
C SUBROUTINE RELAXT
C RELEASE APR. 1988
C
C ~$~$$~$$~$~$$~$~$$$$~$~$~$~$$~$~$~$~~$$$$$~$~$~
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

This subroutine solves the minimum (linear) cost ordinary
network flow problem.
The routine implements the relaxation method of
Bertsekas, D. P.~ "A Unified Framework for Primal-Dual Methods .."

Math. Programming~ Vol. 32~ 1985~ pp. 125-145
Bertsekas~ D. P.~ & Tseng~ P.~ "Relaxation Methods for Minimum .."

Operations Research O., 1987 (to appear)
Bertsekas~ D. P.~ & Tseng~ P.~ "The RELAX Codes for Linear Minimum

Cost Network Flow Problems", ANNALS OF OPERATIONS
RESEARCH~THIS VOLUME

The routine was written by Dimitri Bertsekas and Paul Tseng with
contributions by Jonathan Eckstein.

This code i s in the pub l i c domain and can be used fo r any
purpose. I t can be d i s t r i b u t e d f r e e l y .
Users are requested to acknowledge the authorship
of the code~ and the relaxation algorithm. No modifications
should be made to this code other than the minimal necessary
to make it compatible with the FORTRAN compilers of specific
machines. When reporting computational results please be sure
to describe the memory limitations of your machine. Generally
RELAXT requires more memory than primal simplex codes and may
penalized severely by limited machine memory.

The difference between this routine and the similar code RELAX is
that it maintains a data structure that gives all the balanced
arcs in the network. This structure is called the "tree" for
historical reasons, even though it describes a subnetwork that
will generally be neither acyclic nor connected. Also~ the tree
may contain some arcs that are not balanced: it turns out to be
cheaper to purge arcs that have become unbalanced only when their
end nodes are being scanned~ as opposed to always maintaining an
exact set of balanced arcs.

154 D.P. Bertsekas and P. Tseng, Relax codes

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

The user must supply the following inputs to the subroutine:
All data should be in INTEGER*4. To run in limited memory systems
the arrays STARTN, ENDN, NXTIN~ NXTOU r SAVEr FINr FOUr LABEL,
PRDCSR may be declared as INTEGERg2.

N (the number of nodes)
NA (the number of arcs)
LARGE (a very large positive integer to represent infinity.
All problem data should be less than LARGE in magnitude~
and LARGE should be less than,say, I/4 the largest INTEGER*4
of the machine used. This will guard primarily against
overflow in uncapacitated problems where the arc capacities
are taken finite but very large.)

STARTN(NA) (the head node array)
ENDN(NA) (the tail node array)
RC(NA) (the reduced cost array)
X(NA) (the arc f l o w a r ray)
U(NA) (the arc f l ow c a p a c i t y a r ray)
DFCT(N) (the d e f i c i t a r ray)
FOU(N) (the f i r s t arc out a r ray)
FIN(N) (the f i r s t arc in a r ray)
NXTOU(NA) (the nex t arc out a r ray)
NXTIN(NA) (the next arc in a r ray)

This subroutine places the optimal flow in the array X
and the corresponding reduced cost vector in the aCray RC.

IMPLICIT INTEGER (A-Z)
LOGICAL REPEAT,FEASBL~QUIT, SCAN,SWITCH~MARK,POSIT~PCHANG
COMMON/ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X/ARRAY9/RC

~/ARRAYB/DFCT/BLK1/LABEL/BLK2/PRDCSR/BLK3/FOU/BLK4/NXTOU/BLK5/FIN
*/BLK6/NXTIN/BLK7/SAVE/BLKS/SCAN/BLK9/MARK/L/N,NArLARGE
g/BLKR/REPEAT
COMMON /BLKIO/TFSTOU/BLKII/TNXTOU/BLKI2/TFSTIN/BLKI3/TNXTIN

Each common block contains just one array~ so the arrays in RELAXT
can be dimensioned to 1 element and take their dimension from the
main calling routine. With this trick RELAXT need not be recompiled
if the problem dimension changes. If your FORTRAN does not support
this feature change the dimensions below to be the same as the
ones declared in your main calling program.

DIMENSION TFSTOU(1)~TNXTOU(1),TFSTIN<I),TNXTIN(1)
DIMENSION STARTN(1),ENDN(1),U(1)~X(1),RC(1)~DFCT(1)
DIMENSION LABEL(1),PRDCSR(1)rSCAN(1)~FOU(1),NXTOU(1)
DIMENSION FIN(1),NXTIN(1),SAVE(1),MARK(1)

DDPOS and DDNEG are arrays that give the directional derivatives
for all positive and negative single-node price changes. These
are used only in the initial phase of the algorithm, before the
"tree" datastructure comes into play. Therefore, they are
equivalenced to TFSTOU and TFSTIN~ which are the same size (number
of nodes) and are only used after the tree comes into use.

DIMENSION DDPOS(1)~DDNEG(1)
EQUIVALENCE (DDPOS(1),TFSTOU(1)), (DDNEG(1)~TFSTIN(1))

D.P. Bertsekas and P. Tseng, Relax codes 155

C
C
C $ reduce arc capacity as much as possible w/out changing the problem
C ~ If this is a sensitivity run via routine SENSTV skip the
C initialization
C

IF (REPEAT) GO TO 190
DO 50 NODE=I,N

C
C Note that we also set up the initial DDPOS and DDNEG for each node
C (this is not necessary in RELAX).
C

DDPOS(NODE)=DFCT(NODE)
DDNEG(NODE)=-DFCT(NODE)
SCAPOU=O
ARC=FOU(NODE)

10 I F (ARC.GT.O) THEN
SCAPOU=MINO(LARGE,SCAPOU+U(ARC))
ARC=NXTOU(ARC)
GO TO I0

END IF
CAPOUT=MINO(LARGE,SCAPOU+DFCT(NODE))
IF (CAPOUT.LT.O) THEN

C
C $$ PROBLEM IS INFEASIBLE - EXIT
C

WRITE(6,$)'EXIT DURING INITIALIZATION'
WRITE(6,~)'EXOGENOUS FLOW INTO NODE',NODE,' EXCEEDS OUT CAPACITY'
CALL PRFLOW(NODE)
GO TO 640
END IF

C
SCAPIN=O
ARC=FIN(NODE)

20 IF (ARC.GT.O) THEN
U(ARC)=MINO(U(ARC),CAPOUT)
SCAPIN=MINO(LARGE~SCAPIN+U(ARC))
ARC=NXTIN(ARC)
GO TO 20

END IF
30 CAPIN=MINO(LARGE,SCAPIN-DFCT(NODE))

IF (CAPIN.LT.O) THEN
C
C ~ PROBLEM IS INFEASIBLE - EXIT
C

WRITE(&,~)~EXIT DURING INITIALIZATION ~
WRITE(6~$)'EXOGENOUS FLOW OUT OF NODE~NODE~

" EXCEEDS IN CAPACITY"
CALL PRFLOW(NODE)
GO TO 640
END IF

C
ARC=FOU(NODE)

40 IF (ARC.GT.O) THEN
U(ARC)=MINO(U(ARCI,CAPIN)
ARC=NXTOU(ARC)
GO TO 40

END I F
50 CONTINUE

156 D.P. Bertsekas and P. Tseng, Relax codes

C ~ initialize the arc flows and the nodal deficits ~ ~
C ~ note that U(ARC) is redefined as the residual capacity of ARC
C
C Now compute the directional derivatives for each coordinate
C exactly.
C As well as computing the actual defecits. U(ARC) is the residual
C capacity on ARC~ and X(ARC) is the flow. These always add up to the
C total capacity.
C

DO 60 ARC=I,NA
X(ARC) = 0
IF (RC(ARC) .LE. 0) THEN

T = U(ARC)
T1 = STARTN(ARC)
T2 = ENDN(ARC)
DDPOS(TI) = DDPOS(TI) + T
DDNEG(T2) = DDNEG(T2) + T
IF (RC(ARC) .LT. 0) THEN

X(ARC) = T
U(ARC) = 0
DFCT(TI) = DFCT(T1) + T
DFCT(T2) = DFCT(T2) - T
DDNEG(TI) = DDNEG(TI) - T
DDPOS(T2) = DDPOS(T2) - T

END IF
END IF

60 CONTINUE
C

C Adaptive strategy: the number of strictly single-node iteration
C passes attempted is a function of the average density of the
C network.
C

IF (NA. GT.N~IO) THEN
NPASS=2

ELSE
NPASS=3

END IF
C

C We now do 2 or 3 passes through all the nodes. This is the initial
C phase:if a single node iteration is not possible, we just go on to
C the next node.
C

DO 180 PASSES = I,NPASS
DO 170 NODE=I,N
IF (DFCT(NODE) .NE. 0) THEN

C Price rise or price drop? (Note: it is impossible to have both.)
C

IF (DDPOS(NODE) .LE. 0) THEN

C Price rise. Loop over breakpoints in +Price(NODE) direction.
C On outgoing arcs, tension will rise and reduced cost will fall

C -- so, next break comes at smallest positive reduced cost.
C On incoming arcs, tension will fall and reduced cost will rise
C -- so~ next break comes at smallest negative reduced cost.
C

DELPRC = LARGE

ARC = FOU(NODE)
70 IF (ARC .GT. O) THEN

TRC = RC(ARC)

IF ((TRC .GT. O) .AND. (TRC .LT. DELPRC)) THEN

D.P. Bertsekas and P. Tseng, Relax codes 157

80

90

100

DELPRC = TRC
END IF

ARC = NXTOU(ARC)
GOTO 7(3

END IF

ARC = FIN(NODE)

IF (ARC .GT. 0) THEN
TRC = RC(ARC)
IF ((TRC .LT. 0) .AND. (-TRC .LT. DELPRC)) THEN

DELPRC = -TRC
END IF

ARC = NXTIN(ARC)
GOTO 80

END IF

If no breakpoints left and ascent still possible, the problem

is infeasible.

IF (DELPRC .GE. LARGE) THEN
IF (DDPOS(NODE> .EQ. O) GOTO 170
GOTO 640

ENDIF
We have an ac tua l b r e a k p o i n t . l n c r e a s e p r i c e by t h a t q u a n t i t y .
F i r s t check the eq fec t on a l l outbound arcs , which w i l l have a
t e n s i o n i nc rease and reduced cos t drop.

NXTBRK = LARGE

ARC = FOU(NODE)

IF (ARC .GT. 0) THEN

TRC = RC(ARC)
IF (TRC .EQ. (3) THEN

T1 = ENDN(ARC)
T = U(ARC)

IF (T .GT. 0) THEN
DFCT(NODE) = DFCT(NODE) + T
DFCT(TI) = DFCT(TI) - T

X(ARC) = T

U(ARC) = 0
ELSE

T = X(ARC)

END IF
DDNEG(NODE) = D D N E G (N O D E) - T
DDPOS(TI) = DDPOS(TI) - T

END IF

For all outgoing arcs tension rises~and reduced cost drops

TRC = TRC - DELPRC

IF ((TRC .GT. 0) .AND. (TRC .LT. NXTBRK)) THEN
NXTBRK = TRC

ELSE IF (TRC .EQ. 0) THEN

Arc goes from i n a c t i v e t o ba lanced. Just change t e n s i o n
inc rease d e r i v a t i v e s ~ and check f o r s t a t u s change a t
o the r end.

DDPOS(NODE) = DDPOS(NODE> + U(ARC)
DDNEG(ENDN(ARC)) = DDNEG(ENDN(ARC)) + U(ARC)

END IF

RC(ARC) = TRC

ARC = NXTOU(ARC)

GOTO i00

END iF

Time to check the incoming arcs into the node.

158 D.P. Bertsekas and P. Tseng, Relax codes

C These a r c s w i l l have an t e n s i o n d e c r e a s e and a reduced c o s t
C r i s e .
C

ARC = FIN(NODE)
110 IF (ARC .GT. O) THEN

TRC = RC(ARC)
IF (TRC .EQ. O) THEN

T1 = STARTN(ARC)
T = X(ARC)
IF (T .GT. O) THEN

DFCT(NODE) = DFCT(NODE) + T
DFCT(T1) = DFCT(T1) - T
U(ARC) = T
X(ARC) = 0

ELSE
T = U(ARC)

END IF
DDPOS(T1) = DDPOS(TI) - T
DDNEG(NODE) = DDNEG(NODE) - T

END IF
C Note t h e reduced c o s t r i s e f o r e v e r y a r c .

TRC = TRC + DELPRC
IF ((TRC .LT . O) .AND. (-TRC .LT . NXTBRK)) THEN

NXTBRK = -TRC
ELSE IF (TRC .EQ. O) THEN

C Now check f o r movement f r o m a c t i v e t o b a l a n c e d .
C I f so~ t e n s i o n dec rease d e r i v a t i v e s i n c r e a s e .

DDNEG(STARTN(ARC)) = DDNEG(STARTN(ARC)) + X(ARC)
DDPOS(NODE) = DDPOS(NODE) + X(ARC)

END IF
RC(ARC) = TRC
ARC = NXTIN(ARC)
GOTO 110

END IF
C We are now done with the iteration. If the current direction
C is still a (degenerate) descent direction~ push onward.
C

IF ((DDPOS(NODE) .LE. O) .AND. (NXTBRK .LT. LARGE)) THEN
DELPRC = NXTBRK
GOTO 90

END IF
C Now comes the code for a price decrease at NODE.
C On outgoing arcs, tension will drop and reduced cost will increase
C -- so~ next break comes at smallest negative reduced cost.
C On incoming arcs~ tension will increase and reduced cost will fall
C -- so, next break comes at smallest positive reduced cost.
C

ELSE IF (DDNEG(NODE) .LE. O) THEN
DELPRC = LARGE
ARC = FOU(NODE)

120 IF (ARC .GT. O) THEN
TRC = RC(ARC)
IF ((TRC .LT . O) .AND. (-TRC .LT . DELPRC)) THEN

DELPRC = -TRC
ENDIF
ARC = NXTOU(ARC)
GOTO 120

ENDIF
ARC = FIN(NODE)

130 IF (ARC .GT. O) THEN

D.P. Bertsekas and P. Tseng, Relax codes 159

C
C
C

C

140

150

160

TRC = RC(ARC)
IF ((TRC .GT. O) .AND. (TRC .LT. DELPRC>) THEN

DELPRC = TRC
END IF
ARC = NXTIN(ARC)
GOTO 130

END IF
I f t h e r e i s no breakpoin t~ the problem i s i n f e a s i b l e ~
un less we are making a degenerate s tep .

IF (DELPRC .EQ. LARGE) THEN
IF (DDNEG(NODE) .EQ. O) GOTO 170
GOTO 640

END IF
Now we make the step to the next breakpoint. We start with the
outbound arcs. These have a tension decrease and reduced cost
rise. Therefore~ the possible transitions are from balanced to
inactive or active to balanced.

NXTBRK = LARGE
ARC = FOU(NODE)
IF (ARC .GT. 0) THEN

TRC = RC(ARC)
IF (TRC .EQ. O) THEN

T1 = ENDN(ARC)
T = X(ARC)

IF (T .GT. 0) THEN
DFCT(NODE) = DFCT(NODE) - T
DFCT(TI) = DFCT(TI) + T
U(ARC) = T
X(ARC) = 0

ELSE

T = U(ARC)
END IF
DDPOS(NODE) = D D P O S (N O D E) - T
DDNEG(TI) = DDNEG(TI) - T

END IF
Log the reduced cos t r i s e f o r a l l a r cs .
TRC = TRC + DELPRC
IF ((TRC .LT. 0) .AND. (rTRC .LT. NXTBRK)) THEN

NXTBRK = -TRC
ELSE IF (TRC .EQ. O) THEN

A c t i v e t o balanced. Tension decrease d e r i v s go up.
DDNEG(NODE) = DDNEG(NODE) + X(ARC)
DDPOS(ENDN(ARC)) = DDPOS(ENDN(ARC)> + X(ARC)

END IF
RC(ARC) = TRC
ARC = NXTOU(ARC)
GOTO 150

END IF

Now do the incoming arcs. These have a tension increase and
therefore a reduced cost drop. The possible transitions are
from inactive to balanced and from balanced to active.

ARC = FIN(NODE)

IF (ARC .GT. O) THEN

TRC = RC(ARC)
IF (TRC .EQ. O) THEN

T1 = STARTN(ARC)
T = U(ARC)

160 D.P. Bertsekas and P. Tseng, Relax codes

IF (T .GT. O) THEN
DFCT(NODE) = D F C T (N O D E > - T
DFCT(TI) = DFCT(TI) + T

X(ARC) = T
U(ARC) = 0

ELSE
T = X(ARC)

END IF
DDNEG(TI) = DDNEG(TI) - T
DDPOS(NODE) = D D P O S (N O D E) - T

END IF
TRC = TRC - DELPRC
IF ((TRC .ST. 0) .AND. (TRC .LT. NXTBRK)) THEN

NXTBRK = TRC

ELSE IF (TRC .EQ. O) THEN
DDPOS(STARTN(ARC)) = DDPOS(STARTN(ARC)) + U(ARC)
DDNEG(NODE) = DDNEG(NODE) + U(ARC)

END IF
RC(ARC) = TRC
ARC = NXTIN(ARC)
GOTO 160

END IF
OK. Movement is done. Is this direction still a (degenerate)
descent direction. If so, keep going.

IF ((DDNEG(NODE) .LE. 0) .AND. (NXTBRK .LT. LARGE)) THEN
DELPRC = NXTBRK
GOTO 140

END IF
END IF

END IF
170 CONTINUE
180 CONTINUE

******* initialize the tree ************************************
190 DO 200 I=I,N

TFSTOU(1)=O
200 TFSTIN(1)=O

DO 210 I=I,NA
TNXTIN(1)=-I

TNXTOU(I)=-I
IF (RC(I).EQ.O) THEN

TNXTOU(I)=TFSTOU(STARTN(I))

TFSTOU(STARTN(I))=I
TNXTIN(I)=TFSTIN(ENDN(I))

TFSTIN(ENDN(I))=I
END IF

210 CONTINUE

*********** Initialize other variables ***********

FEASBL=.TRUE.

NDFCT=N
NNONZ=O
SWITCH=.FALSE.
DO 220 I=I,N

MARK(I)=.FALSE.
SCAN(I)=.FALSE.

220 CONTINUE
NLABEL=O
******* Set threshold f o r SWITCH *******************************

D.P. Bertsekas and P. Tseng, Relax codes 161

C RELAXT uses an adaptive strategy for deciding whether to
C continue the scanning process after a price change.
C The threshold parameters tp and ts that control
C this strategy are set in the next few lines.
C

TP=IO
TS=INT(N/15)

C
C ~ start relaxation algorithm ~ ~

C
230 CONTINUE

C
DO 630 NODE=I~N

DEFCIT=DFCT(NODE)
IF (DEFCIT.EQ.O) THEN

GO TO 630
ELSE

POSIT = <DEFCIT .GT. O)
NNONZ=NNONZ+I

END IF
C
C li~ ATTEMPT A SINGLE NODE ITERATION FROM NODE ~i~
C

IF <POSIT) THEN
C
C ~$$$~$$~$$ CASE OF NODE W/ POSITIVE DEFICIT ~ ~
C

PCHANG = .FALSE.
INDEF=DEFCIT
DEL X =0
NB=O

C
C Check outgoing <probably) balanced arcs from NODE.
C

ARC=TFSTOU(NODE)
240 IF (ARC .GT. 0) THEN

IF ((RC(ARC) .EQ. 0) .AND. (X(ARC) .GT. 0)) THEN
DELX = DELX + X(ARC)
NB = NB + 1

SAVE(NB) = ARC
ENDIF
ARC = TNXTOU(ARC)
GOTO 240

END IF
C
C Check incoming arcs now.
C

ARC = TFSTIN(NODE)
250 IF (ARC .GT. 0) THEN

IF ((RC(ARC) .EQ. O) .AND. (U(ARC) .GT. 0)) THEN
DELX = DELX + U(ARC)
NB = NB + i

SAVE(NB) = -ARC
ENDIF
ARC = TNXTIN(ARC)
GOTO 250

END IF
C

C ~i~ end of initial node scan ! ~
C

162 D.P. Bertsekas and P. Tseng, Relax codes

260 CONTINUE
C
C ~ ~ IF no p r i c e change i s p o s s i b l e e x i t ~ ~
C

IF (DELX.GT.DEFCIT) THEN
QUIT = (DEFCIT'.LT. INDEF)
GO TO 33O

END IF
C
C Now compute d i s t a n c e t o next b r e a k p o i n t .
C

DELPRC = LARGE
ARC = FOU(NODE)

270 IF (ARC .GT. O) THEN
RDCOST = RC(ARC)
IF ((RDCOST .LT. 07 .AND. (-RDCOST .LT. DELPRC)) THEN

DELPRC = -RDCOST
ENDIF
ARC = NXTOU(ARC)
GOTO 270

END IF
ARC = FIN(NODE>

280 IF (ARC .GT. O) THEN
RDCOST = RC(ARC)
IF ((RDCOST .ST. O) .AND. (RDCOST .LT. DELPRC>) THEN

DELPRC = RDCOST
ENDIF
ARC = NXTIN(ARC)
GOTO 280

END IF
C
C ~ i ~ check i f the problem is infeasible i ~ i
C

IF ((DELX.LT.DEFCIT).AND. (DELPRC.EQ.LARGE)) THEN
C ~ The dual cost can be decreased without bound ~

GO TO 640
END IF

C
C ~ SKIP FLOW ADJUSTEMT IF THERE IS NO FLOW TO MODIFY i~
C

IF (DELX.EQ.O) GO TO 300
C
C ~ i ~ Ad jus t t he f l o w on balanced arcs i n c i d e n t o f NODE t o
C maintain complementary slackness after the price change ~
C

DO 290 J=I~NB
ARC=SAVE(J)
IF (ARC.GT.O) THEN

NODE2=ENDN(ARC)
TI=X(ARC)
DFCT(NODE2)=DFCT(NODE2)+TI
U(ARC)=U(ARC)+TI
X(ARC)=O

ELSE
NARC=-ARC
NODE2=STARTN(NARC)
TI=U(NARC)
DFCT(NODE2)=DFCT(NODE2)+T1
×(NARC)=X(NARC)+TI
U(NARC)=O

D.P. Bertsekas and P. Tseng, Relax codes 163

END IF
290 CONTINUE

DEFCIT=DEFCIT-DELX
300 IF (DELPRC.EQ.LARGE) THEN

QUIT=.TRUE.
GO TO 350

END IF
C
C i ~ i ~ NODE corresponds t o a dual ascent d i r e c t i o n . Decrease
C the p r i c e of NODE by DELPRC and compute the s teps ize t o the
C next breakpoin t in the dual cost ~
C

NB=O
PCHANG = .TRUE.
DP=DELPRC
DELPRC=LARGE
DEL×=O
ARC=FOU(NODE)

310 IF (ARC.GT.O) THEN
RDCOST=RC(ARC)+DP
RC(ARC)=RDCOST
IF (RDCOST.EQ.O> THEN

NB=NB+I
SAVE(NB)=ARC
DELX=DELX+X(ARC)

END IF
IF ((RDCOST.LT.O).AND.(-RDCOST.LT.DELPRC)) DELPRC=-RDCOST
ARC=NXTOU(ARC>
GOTO 310

END IF
ARC=FIN(NODE)

320 IF (ARC.GT.O> THEN
RDCOST=RC(ARC)-DP
RC(ARC)=RDCOST
IF (RDCOST.EQ.O) THEN

NB=NB+I
SAVE(NB)=-ARC
DELX=DELX+U(ARC)

END IF
IF ((RDCOST.GT.O).AND. (RDCOST.LT.DELPRC)) DELPRC=RDCOST
ARC=NXTIN(ARC)
GOTO 320

END IF
C
C ~ re tu rn to check i f another p r i ce change i s poss ib l e ~
C

GO TO 260
C
C ~ i ~ perform flow augmentation at NODE ~
C

330 DO 340 J=I,NB
ARC=SAVE(J>
IF (ARC.GT.O) THEN

C ~ ARC is an outgoing arc from NODE ~ ~ ~
NODE2=ENDN(ARC>
TI=DFCT(NODE2)
IF (TI.LT.O) THEN

C ~ Decrease the total deficit by decreasing flow of ARC
QUIT=.TRUE.
T2=X(ARC)

164 D.P. Bertsekas and P. Tseng, Relax codes

C

C
C
C
C
C
C
C
C
C
C

340
350

360

370

DX=MINO(DEFCIT,-TI,T2)
DEFCIT=DEFCIT-DX
DFCT(NODE2)=TI+DX
X(ARC)=T2-DX
U(ARC)=U(ARC)+DX
IF (DEFCIT.EQ.O) GO TO 350

END IF
ELSE

*** -ARC is an incoming arc to NODE *********************
NARC=-ARC
NODE2=STARTN(NARC)
TI=DFCT(NODE2)
IF (TI.LT.O> THEN

* * * * * Decrease t h e t o t a l d e f i c i t by i n c r e a s i n g f l o w o f -ARC
QUIT=.TRUE.
T2=U(NARC)
DX=MINO(DEFCIT,-TI,T2)
DEFCIE=DEFCIT-DX
DFCT(NODE2)=TI+DX
X(NARC)=X(NARC)+DX
U(NARC)=T2-DX
IF (DEFCIT.EQ.O) GO TO 350

END IF
END IF

CONTINUE
DFCT(NODE)=DEFCIT

R e c o n s t r u c t t h e l i s t o f ba lanced a r c s a d j a c e n t t o t h i s node.
F i r s t , t h e l i s t a t t h i s node i s now t o t a l l y d i f f e r e n t . Eat
t h e o l d l i s t s o f incoming and o u t g o i n g ba lanced a r c s , and c r e a t e
a whole new one. Th is way we ge t t h e i n and ou t l i s t s o f ba lanced
a r c s f o r NODE t o be e x a c t l y c o r r e c t . For t h e a d j a c e n t nodes, we
add in a l l t he newly ba lanced a r c s , but do no t b o t h e r g e t t i n g r i d
o f f o r m e r l y ba lanced ones (t h e y w i l l be purged t he n e x t t ime t h e
a d j a c e n t node i s scanned) .

IF (PCHANG) THEN
ARC = TFSTOU(NODE)
TFSTOU(NODE) = 0
IF (ARC .GT. O) THEN

NXTARC = TNXTOU(ARC)
TNXTOU(ARC) = - I
ARC = NXTARC
GOTO 360

END IF
ARC = TFSTIN(NODE)
TFSTIN(NODE) = 0
IF (ARC .GT. O) THEN

NXTARC = TNXTIN(ARC)
TNXTIN(ARC) = -I
ARC = NXTARC
GOTO 370

END IF

* * * Now add t he c u r r e n t l y ba lanced a r c s t o t h e l i s t f o r t h i s
* * * node(which i s now empty)~and t h e a p p r o p r i a t e a d j a c e n t ones

DO 380 J=I,NB
ARC = SAVE(J)
IF (ARC.LE.O) ARC=-ARC

D.P. Bertsekas and P. Tseng, Relax codes 165

I F (TNXTOU(ARC) .LT. O) THEN
TNXTOU(ARC) = TFSTOU(STARTN(ARC))
TFSTOU(STARTN(ARC)) = ARC

END IF
IF (TNXTIN(ARC) .LT . 0) THEN

TNXTIN(ARC) = TFSTIN(ENDN(ARC))
TFSTIN(ENDN(ARC)) = ARC

END IF
380 CONTINUE

END IF
C
C ~ end of single node iteration for a positive deficit node ~

C
ELSE

C
C ~ single node iteration for a negative deficit node ~

C
PCHANG = .FALSE.
DEFCIT=-DEFCIT
INDEF=DEFCIT

DELX=O
NB=O

C
ARC = TFSTIN(NODE)

390 IF (ARC .GT. @) THEN
IF ((RC(ARC) .EQ. 0) .AND. (X(ARC) .GT. 0)) THEN

DELX = DELX + X(ARC)
NB = NB + 1

SAVE(NB) = ARC
ENDIF
ARC = TNXTIN(ARC)
GOTO 390

END IF
ARC=TFSTOU(NODE)

400 IF (ARC .GT. 0) THEN
IF ((RC(ARC) .EQ. 0) .AND. (U(ARC) .GT. 0)) THEN

DELX = DELX + U(ARC)
NB = NB + 1

SAVE(NB) = -ARC

ENDIF
ARC = TNXTOU(ARC)
GOTO 400

END IF
C

410 CONTINUE

IF (DELX.GT.DEFCIT) THEN
QUIT = (DEFCIT .LT. INDEF)
GO TO 480

END IF
C

C Now compute distance to next breakpoint.
C

DELPRC = LARGE
ARC = FIN(NODE)

420 IF (ARC .GT. O) THEN
RDCOST = RC(ARC)

IF ((RDCOST .LT. 0) .AND. (-RDCOST .LT. DELPRC)) THEN
DELPRC = -RDCOST

ENDIF
ARC = NXTIN(ARC)

166 D.P. Bertsekas and P. Tseng, Relax codes

C

C
C

GOTO 420
END IF
ARC = FOU(NODE)

430 IF (ARC .GT. O) THEN
RDCOST = RC(ARC)
IF ((RDCOST .GT. O) .AND. (RDCOST .LT. DELPRC)) THEN

DELPRC = RDCOST
ENDIF
ARC = NXTOU(ARC)
GOTO 430

END IF
******* check if problem is infeasible ************************
IF ((DEL×.LT. DEFCIT).AND. (DELPRC.EQ.LARGE)) THEN

GO TO 640
END IF
IF (DELX.EQ.O) GO TO 450

440

450

460

~** flow augmentation is possible
DO 440 J=I~NB

ARC=SAVE(J)
IF (ARC.GT.O) THEN

NODE2=STARTN(ARC)
TI=X(ARC)
DFCT(NODE2)=DFCT(NODE2)-TI
U(ARC)=U(ARC)+TI
X(ARC)=O

ELSE
NARC=-ARC
NODE2=ENDN(NARC>
TI=U(NARC)
DFCT(NODE2)=DFCT(NODE2)-TI
X(NARC)=X(NARC)+TI
U(NARC)=O

END IF
CONTINUE

DEFCIT=DEFCIT-DELX
IF (DELPRC.EQ.LARGE) THEN

QUIT=.TRUE.
GO TO 500

END IF
****~** price increase at NODE is possible
NB=O
PCHANG = .TRUE.
DP=DELPRC
DELPRC=LARGE
DELX=O
ARC=FIN(NODE)
IF (ARC.GT.O) THEN

RDCOST=RC(ARC)+DP
RC(ARC)=RDCOST
IF (RDCOST.EQ.O) THEN

NB=NB+I
SAVE(NB)=ARC
DELX=DELX+X(ARC)

END IF
IF ((RDCOST.LT.O).AND. (-RDCOST.LT. DELPRC))
ARC=NXTIN(ARC)
GOTO 460

END IF
ARC=FOU(NODE)

DELPRC=-RDCOST

D.P. Bertsekas and P. Tseng, Relax codes 167

470 IF (ARC.GT.O) THEN
RDCOST=RC(ARC)-DP
RC(ARC)=RDCOST
IF (RDCOST. EQ.O) THEN

NB=NB+I
SAVE(NB)=-ARC
DELX=DELX+U(ARC)

END IF
IF ((RDCOST.GT.O).AND. (RDCOST.LT.DELPRC)) DELPRC=RDCOST
ARC=NXTOU(ARC)
GOTO 470

END IF
GO TO 410

~ i ~ perform flow augmentation at NODE i~

480 DO 490 J=I,NB
ARC=SAVE(J)
IF (ARC.GT.O) THEN

~ ARC i s an incoming a rc t o NODE ~ ~ ~ * ~
NODE2=STARTN(ARC)
TI=DFCT(NODE2)
IF (TI.GT.O) THEN

QUIT=.TRUE.
T2=X(ARC)
DX=MINO(DEFCIT~TI~T2)
DEFCIT=DEFCIT-DX
DFCT(NODE2)=TI-DX
X(ARC)=T2-DX
U(ARC)=U(ARC)+DX
IF (DEFCIT.EQ.O) GO TO 500

END IF
ELSE

~ -ARC is an outgoing arc from NODE ~ $ ~ ~ ~
NARC=-ARC
NODE2=ENDN(NARC)
TI=DFCT(NODE2)
IF (TI.GT.O) THEN

QUIT=.TRUE.
T2=U(NARC)
DX=MINO(DEFCIT~TI,T2)
DEFCIT=DEFCIT-DX
DFCT(NODE2)=TI-DX
X(NARC)=X(NARC)+DX
U(NARC)=T2-DX
IF (DEFCIT.EQ.O) GO TO 500

END IF
END IF

490 CONTINUE
500 DFCT(NODE)=-DEFCIT

Reconstruct the list of balanced arcs adjacent to this node.
First~ the list at this node is now totally different. Eat
the old lists of incoming and outgoing balanced arcs.

510

IF (PCHANG) THEN
ARC = TFSTOU(NODE)
TFSTOU(NODE) = 0
IF (ARC .GT. 0) THEN

NXTARC = TNXTOU(ARC)

168 D.P. Bertsekas and P. Tseng, Relax codes

TNXTOU(ARC) = - I
ARC = NXTARC
GOTO 510

END IF
ARC = TFSTIN(NODE)
TFSTIN(NODE) = 0

520 IF (ARC .GT. O) THEN
NXTARC = TNXTIN(ARC)
TNXTIN(ARC) = -I
ARC = NXTARC
GOTO 520

END IF
C
C ~ Now add the currently balanced arcs to the list for this
C ~ node(which is now empty),and the appropriate adjacent ones
C

DO 530 O=I~NB
ARC = SAVE(O>
IF (ARC.LE.O) ARC=-ARC
IF (TNXTOU(ARC) .LT. 0) THEN

TNXTOU(ARC) = TFSTOU(STARTN(ARC))
TFSTOU(STARTN(ARC)) = ARC

END IF
IF (TNXTIN(ARC) .LT. 0) THEN

TNXTIN(ARC) = TFSTIN(ENDN(ARC)>
TFSTIN(ENDN(ARC)) = ARC

END IF
530 CONTINUE

END IF
C
C ~i~ end of single node iteration for a negative deficit node ~i~
C

END IF

C
IF (QUIT) GO TO 630

C
C ~ do a multi-node operation from NODE ~ i ~ ~
C

SWITCH = (NDFCT .LT. TP)
C
C ~ UNMARK NODES LABELED EARLIER ~
C

DO 540 O=I,NLABEL
NODE2=LABEL(3)
MARK(NODE2)=.FALSE.
SCAN(NODE2)=.FALSE.

540 CONTINUE
C
C ~ i ~ INITIALIZE LABELING ~
C

NLABEL=I
LABEL(1)=NODE
MARK(NODE)=.TRUE.
PRDCSR(NODE)=O

C
C ~ ~ SCAN STARTING NODE ~ ~
C

SCAN(NODE)=.TRUE.
NSCAN=I
DM=DFCT(NODE)

D.P. Bertsekas and P. Tseng, Relax codes 169

550

56r~

DELX=O
DO 550 J=I~NB

ARC=SAVE(J)
IF (ARC.GT.O) THEN

IF (POSIT) THEN
NODE2=ENDN(ARC)

ELSE
NODE2=STARTN(ARC)

END IF
IF (.NOT.MARK(NODE2)) THEN

NLABEL=NLABEL+I
LABEL(NLABEL)=NODE2
PRDCSR(NODE2)=ARC
MARK(NODE2)=.TRUE.
DELX=DELX+X(ARC)

END IF
ELSE

NARC=-ARC
IF (POSIT> THEN

NODE2=STARTN(NARC)
ELSE

NODE2=ENDN(NARC)
END IF
IF (.NOT.MARK(NODE2)) THEN

NLABEL=NLABEL+I
LABEL(NLABEL)=NODE2
PRDCSR(NODE2)=ARC
MARK(NODE2)=.TRUE.
DELX=DELX+U(NARC)

END IF
END IF

CONTINUE

~*g start scanning labeled nodes *g*~

NSCAN=NSCAN+I

~ g ~ g * check t o see i f SWITCH needs t o be se t * ~ $ ~ *
SWITCH i n d i c a t e s i t may now be bee t t o change o v e r t o a more
c o n v e n t i o n a l p r i m a l - d u a l a l g o r i t h m (one which can r e u s e o l d
labels to some e>:tent).

SWITCH = SWITCH .OR. ((NSCAN .GT. TS) .AND. (NBFCT .LT. TS))

~*~* scan next node on the list of labeled nodes g*~
scanning will continue until either an OVERESTIMATE of the residual
capacity across the cut corresponding to the scanned set of nodes
(called DELX) exceeds the absolute value of the total deficit of the
scanned nodes (called DM)~ or else an augmenting path is found. Arcs
that are in the tree but are not balanced are purged as part of the
scanning process.

I=LABEL(NSCAN)
SCAN(I)=.TRUE.
IF (POSIT) THEN

* * ~ * * ~ scann ing node I f o r case o f p o s i t i v e d e f i c i t * *~g*g

NAUGND=O
PRVARC=O

170 D.P. Bertsekas and P. Tseng, Relax codes

C

C
C

C
C
C
C

ARC = TFSTOU(I)
570 IF (ARC.GT.O) THEN

~ ARC is an outgoing arc from NODE ~

IF (RC(ARC) .EQ. 0) THEN
IF (X(ARC) .GT. 0) THEN

NODE2=ENDN(ARC)
IF (.NOT. MARK(NODE2)) THEN

~ NODE2 is not in the labeled set. Add NODE2 to the
labeled set. ~

PRDCSR(NODE2)=ARC
IF (DFCT(NODE2>.LT.O) THEN

NAUGND=NAUGND+I
SAVE(NAUGND)=NODE2

END IF
NLABEL=NLABEL+I
LABEL(NLABEL)=NODE2
MARK(NODE2)=.TRUE.
DELX=DELX+X(ARC)

END IF
END IF
PRVARC = ARC
ARC = TNXTOU(ARC)

ELSE
TMPARC = ARC
ARC = TNXTOU(ARC)
TNXTOU(TMPARC) = -I
IF (PRVARC .EQ. 0) THEN

TFSTOU(I) = ARC
ELSE

TNXTOU(PRVARC) = ARC
END IF

END IF
GOTO 570

END IF

PRVARC : 0
ARC=TFSTIN(I)

580 IF (ARC.GT.O) THEN

~!~ ARC is an incoming arc into NODE ~

IF (RC(ARC) .EQ. O) THEN
IF (U(ARC) .GT. 0) THEN

NODE2=STARTN(ARC)
IF (.NOT. MARK(NODE2)> THEN

~ NODE2 is not in the labeled set. Add NODE2 to the
labeled set. ~ *

PRDCSR(NODE2)=-ARC
IF (DFCT(NODE2).LT.O> THEN

NAUGND=NAUGND+I
SAVE(NAUGND)=NODE2

END IF

D.P. Bertsekas and P. Tseng, Relax codes 171

C
C
C

C
C

C

C

C
C

NLABEL=NLABEL+I

LABEL(NLABEL)=NODE2

MARK(NODE2)=.TRUE.

DELX=DELX+U(ARC)
END IF

END IF

PRVARC = ARC
ARC = TNXTIN(ARC)

ELSE
TMPARC = ARC

ARC = TNXTIN(ARC)

TNXTIN(TMPARC) = -I
IF (PRVARC .EQ. 0) THEN

TFSTIN(I) = ARC
ELSE

TNXTIN(PRVARC) = ARC
END IF

END IF
GOTO 580

END IF

* correct the residual capacity of the scanned nodes cut

ARC=PRDCSR(I)
IF (ARC. GT.O) THEN

DELX=DELX-X(ARC)
ELSE

DELX=DELX-U(-ARC)
END IF

* * * * * * * ~ * ~ end o f scann ing o f I f o r p o s i t i v e d e f i c i t case * * * *

ELSE

* * * * * * * scann ing node I f o r case o f n e g a t i v e d e f i c i t * * * *

NAUGND=O
PRVARC = 0
ARC=TFSTIN(I)

590 IF (ARC.GT.O) THEN
IF (RC(ARC) .EQ. O) THEN

IF (X(ARC) .GT. O) THEN
NODE2=STARTN(ARC)
IF (.NOT. MARK(NODE2)) THEN

PRDCSR(NODE2)=ARC
IF (DFCT(NODE2).GT.O) THEN

NAUGND=NAUGND+I
SAVE(NAUGND)=NODE2

END IF
NLABEL=NLABEL+I
LABEL(NLABEL)=NODE2
MARK(NODE2)=.TRUE.
DELX=DELX+X(ARC)

END IF
END IF
PRV~RC = ARC

ARC = TNXTIN(ARC)

ELSE

TMPARC = ARC

ARC = TNXTIN(ARC)

172 D.P. Bertsekas and P. Tseng, Relax codes

C
C
C

C

TNXTIN(TMPARC) = -1
IF (PRVARC .EQ. 0) THEN

TFSTIN(1) = ARC

ELSE
TNXTIN(PRVARC) = ARC

END IF
END IF
GOTO 590

END IF

PRVARC = 0
ARC = TFSTOU(I)

600 IF (ARC.GT.O) THEN
IF (RC(ARC) .EQ. 0) THEN

IF (U(ARC) .GT. 0) THEN
NODE2=ENDN(ARC)
IF (.NOT. MARK(NODE2)) THEN

PRDCSR(NODE2)=-ARC
IF (DFCT(NODE2).GT.O} THEN

NAUGND=NAUGND+I
SAVE(NAUGND)=NODE2

END IF
NLABEL=NLABEL+I
LABEL(NLABEL)=NODE2
MARK(NODE2)=.TRUE.
DELX=DELX+U(ARC)

END IF
END IF
PRVARC = ARC
ARC = TNXTOU(ARC)

ELSE
TMPARC = ARC
ARC = TNXTOU(ARC)
TNXTOU(TMPARC) = -I
IF (PRVARC .EQ. 0) THEN

TFSTOU(I) = ARC
ELSE

TNXTOU(PRVARC) = ARC

END IF
END IF
GOTO 600

END IF

ARC=PRDCSR(1)
IF (ARC.GT.O) THEN

DELX=DELX-X(ARC)
ELSE

DELX=DELX-U(-ARC)

END IF

END IF

~ i ~ ADD DEFICIT OF NODE SCANNED TO DM ~

DM=DM+DFCT(1)

~ check i,f the set of scanned nodes correspond
t o a dual ascent d i r e c t i o n ; i f yes, per form a
p r i c e adjustment step~ o the rw ise con t i nue l a b e l i n g

D.P. Bertsekas and P. Tseng, Relax codes 173

C
C
C
C
C
C
C

C
C
C
C

C

C
C
C

C
C
C

C
C
C
C
C

IF (NSCAN.LT.NLABEL) THEN
IF <SWITCH) GO TO 610
IF <(DELX.GE.DM).AND. (DELX.GE.-DM)) GO TO 610

END IF

~ i ~ i ~ i ~ TRY A PRICE CHANGE ~ i ~ ~
Note that since DELX-ABS(DM) is an OVERESTIMATE of ascent slope~ we
may occasionally try a direction that is not really an ascent.
this case the ANCNTx routines return with QUIT set to .FALSE.
main code, it turn, then tries to label some more node.

IF (POSIT) THEN
CALL ASCNTI(DM,DELX,NLABEL, AUGNOD~FEASBL~
SWITCH,NSCAN)

ELSE
CALL ASCNT2(DM,DELX,NLABEL~AUGNOD,FEASBL~
SWITCH~NSCAN)

END IF
IF (.NOT.FEASBL) GO TO 640
IF (.NOT.SWITCH) GO TO 630
IF ((SWITCH).AND. (AUGNOD.GT.O)) THEN

NAUSND=I
SAVE(1)=AUGNOD

END IF

610

620

630

In

~ CHECK IF AUGMENTATION IS POSSIBLE.
IF NOT RETURN TO SCAN ANOTHER NODE. ~

CONTINUE

IF (NAUGND. EQ.O) GO TO 560

Do the augmentation.

DO 620 J=I~NAUGND
AUGNOD=SAVE(O)
IF <POSIT) THEN

CALL AUGFLI(AUGNOD)
ELSE

CALL AUGFL2(AUGNOD)
END IF
CONTINUE

~ RETURN TO TAKE UP ANOTHER NODE W/ NONZERO DEFICIT ~

CONTINUE

~ ~ TEST FOR TERMINATION ~ ~

We have just done a sweep throught all the nodes.
had zero defecit, we must be done.

NDFCT=NNONZ
NNONZ=O

IF (NDFCT.EQ.O) THEN
RETURN

ELSE
GO TO 230

T h e

If they all

174 D.P. Bertsekas and P. Tseng, Relax codes

END IF

******* problem i s found to be i n f e a s i b l e *********************
640 WRITE(6,*) ~ PROBLEM IS FOUND TO BE INFEASIBLE. ~

FEASBL = .FALSE.
RETURN
END

C

C
C
C

SUBROUTINE PRFLOW(NODE)

***** This subroutine prints the deficit and the flows of
arcs incident to NODE. It is used for diagnostic purposes
in case of an infeasible problem here. It can be used also
for more general diagnostic purposes. **~**

IMPLICIT INTEGER (A-Z)

COMMON/ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X
*/ARRAYB/DFCT/BLK3/FOU/BLK4/NXTOU/BLK5/FIN/BLK6/NXTIN

DIMENSION STARTN(1),ENDN(1)~U(1),X(1)~DFCT(1)
DIMENSION FOU(1),NXTOU(1)
DIMENSION FIN(1),NXTIN(1)

10

WRITE(6,*)'DEFICIT (I . E . , NET FLOW OUT) OF NODE =',DFCT(NODE)
WRITE(6,*)'FLOWS AND CAPACITIES OF INCIDENT ARCS OF NODE',NODE
IF (FOU(NODE).EQ.O) THEN

WRITE(6,*)'NO OUTGOING ARCS'
ELSE

ARC=FOU(NODE)
IF (ARC.GT.O) THEN

WRITE(6,*)'ARC',ARC, ~ BETWEEN NODES',NODE,ENDN(ARC)
WRITE(6,*)'FLOW =',X(ARC)
WRITE(6,~)'RESIDUAL CAPACITY =',U(ARC)
ARC=NXTOU(ARC)
GO TO I0

END IF
END IF

20

IF (FIN(NODE).EQ.O) THEN
WRITE(6~)'NO INCOMING ARCS ~

ELSE
ARC=FIN(NODE)
IF (ARC.GT.O) THEN

WRITE(6,~)~ARC',ARC, ~ BETWEEN NODES'~STARTN(ARC),NODE
WRITE(6,*)'FLOW =',X(ARC)
WRITE(6,*)~RESIDUAL CAPACITY ='~U(ARC)
ARC=NXTIN(ARC)
GO TO 2(])

END IF
END IF

D.P. Bertsekas and P. Tseng, Relax codes 175

C
RETURN
END

C
C
C
C
C

SUBROUTINE AUGFLI(AUGNOD>

~ i This subroutine performs the flow augmentation step.
A flow augmenting path has been identified in the scanning
step and here the flow of all arcs positively (negatively)
oriented in the flow augmenting path is decreased (increased)
to decrease the total deficit, i ~

IMPLICIT INTEGER (A-Z)
COMMON/ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X

~/ARRAYB/DFCT/BLK2/PRDCSR
DIMENSION STARTN(1)~ENDN(1)~U(1)~X(1),DFCT(1)~PRDCSR(1)

~i~ A flow augmenting path ending at AUGNOD is found.
Determine DX, the amount of flow change. ~

DX=-DFCT(AUGNOD)
IB=AUGNOD

10 IF (PRDCSR(IB).NE.O) THEN
ARC=PRDCSR(IB)
IF (ARC. GT.O) THEN

DX=MINO(DX~X(ARC)>
IB=STARTN(ARC)

ELSE
DX=MINO(DX,U(-ARC))
IB=ENDN(-ARC)

END IF
GOTO 10

END IF
ROOT=IB
DX=MINO(DX~DFCT(ROOT))
IF (DX .LE. 0) RETURN

~i~ Update the flow by decreasing (increasing) the flow of
all arcs positively (negatively) oriented in the flow
augmenting path. Adjust the deficits accordingly. ~

20

DFCT(AUGNOD)=DFCT(AUGNOD)+DX
DFCT(ROOT)=DFCT(ROOT)-DX
IB=AUGNOD
IF (IB.NE.ROOT> THEN

ARC=PRDCSR(IB)
IF (ARC.GT.O) THEN

X(ARC)=X(ARC)-DX
U(ARC)=U(ARC)+DX
IB=STARTN(ARC)

ELSE
NARC=-ARC
X(NARC>=X(NARC>+DX
U(NARC)=U(NARC)-DX
IB=ENDN(NARC)

END IF
GOTO 20

END IF

176 D.P. Bertsekas and P. Tseng, Relax codes

RETURN
END

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE ASCNTI(DM,DELX,NLABEL~AUGNOD~FEASBL,SWITCH,
~NSCAN)

This subroutine essentially performs the multi-node
price adjustment step. It first checks if the set
of scanned nodes correspond to a dual ascent direction.
If yes~ then decrease the price of all scanned nodes.
There are two possibilities for price adjustment:
If SWITCH=.TRUE. then the set of scanned nodes
corresponds to an elementary direction of maximal
rate of ascent~ in which case the price of all scanned
nodes are decreased until the next breakpoint in the
dual cost is encountered. At this point some arc
becomes balanced and more node(s) are added to the
labeled set.
If SWITCH=.FALSE. then the prices of all scanned nodes
are decreased until the rate of ascent becomes
negative (this corresponds to the price adjustment
step in which both the line search and the degenerate
ascent iteration are implemented).

IMPLICIT INTEGER (A-Z)

The two "tree"-based ascent routines have a common temporary
storage area whose dimension is set below. The maximum conceivable
amount needed equals the number of arcs, but this should never
actually occur.

LOGICAL SCAN~MARK~SWITCH,FEASBL~QUIT
COMMON/ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X/ARRAY9/RC

~/ARRAYB/DFCT/BLKI/LABEL/BLK2/PRDCSR/BLK3/FOU/BLK4/
~NXTOU/BLK5/FIN/BLK6/NXTIN/BLKT/SAVE/BLK8/SCAN/BLK9/MARK
~/L/N~NA,LARGE
COMMON /BLKIO/TFSTOU/BLKII/TNXTOU/BLKI2/TFSTIN/BLKI3/TNXTIN
COMMON /ASCBLK/B
DIMENSION TFSTOU(1),TNXTOU(1),TFSTIN(1),TNXTIN(1)
DIMENSION STARTN(1)~ENDN(1)~U(I>~X(1)~RC(1)~DFCT(1)~LABEL(I>
DIMENSION PRDCSR(1),FOU(1),NXTOU(1),FIN(1)~NXTIN(1)
DIMENSION SAVE<I)~SCAN(1),MARK(1)

~:~ Store the arcs between the set of scanned nodes and
its complement in SAVE and compute DELPRC~ the stepsize
to the next breakpoint in the dual cost in the direction
of decreasing prices of the scanned nodes. ~li~

DELPRC=LARGE
DLX=O
NSAVE=O

~ calculate the array SAVE of arcs across the cut of scanned
nodes in a different way depending on whether NSCAN>N/2 or not.
This is done for efficiency. ~

IF (NSCAN.LE.N/2) THEN

D.P. Bertsekas and P. Tseng, Relax codes 177

10

20

30

DO 30 I=I~NSCAN
NODE=LABEL(I)

ARC=FOU(NODE)
IF (ARC.GT.O) THEN

~ i ARC is an arc pointing from the set of scanned
nodes to its complement. ~

IF

NODE2=ENDN(ARC)
IF (.NOT.SCAN(NODE2)) THEN

NSAVE=NSAVE+I
SAVE(NSAVE)=ARC
RDCOST=RC(ARC)

((RDCOST. EQ.O).AND. (PRDCSR(NODE2).NE.ARC)) DLX=DLX+X(ARC)
IF ((RDCOST.LT.O).AND. (-RDCOST.LT.DELPRC)) DELPRC=-RDCOST
END IF
ARC=NXTOU(ARC)
GOTO 10

END IF
ARC=FIN(NODE)

IF (ARC.GT.O) THEN

li~ ARC is an arc pointing to the set of scanned
nodes from its complement. ~ i

NODE2=STARTN(ARC)
IF (.NOT.SCAN(NODE2)) THEN

NSAVE=NSAVE+I
SAVE(NSAVE)=-ARC
RDCOST=RC(ARC)

IF ((RDCOST.EQ.O).AND. (PRDCSR(NODE2).NE.-ARC)) DLX=DLX+U(ARC)
IF ((RDCOST.GT.O).AND. (RDCOST.LT.DELPRC)) DELPRC=RDCOST

END IF
ARC=NXTIN(ARC)
GOTO 20

END IF
CONTINUE

ELSE

DO 60 NODE=I,N
IF (SCAN(NODE)) GO TO 60

ARC=FIN(NODE)
40 IF (ARC.GT.O) THEN

NODE2=STARTN(ARC)
IF (SCAN(NODE2)) THEN

NSAVE=NSAVE+I
SAVE(NSAVE)=ARC
RDCOST=RC(ARC)

IF ((RDCOST.EQ.OI.AND. (PRDCSR(NODE).NE.ARC))
IF ((RDCOST.LT.O).AND. (-RDCOST.LT.DELPRC))
END IF
ARC=NXTIN(ARC)
GOTO 40

END IF
ARC=FOU(NODE)

50 IF (ARC.GT.O) THEN
NODE2=ENDN(ARC)
IF (SCAN(NODE2)) THEN

DLX=DLX+X(ARC)
DELPRC=-RDCOST

178 D.P. Bertsekas and t'. Tseng, Relax codes

NSAVE=NSAVE+I
SAVE(NSAVE)=-ARC
RDCOST~RC(ARC)

IF ((RDCOST.EQ.O).AND. (PRDCSR(NODE).NE.-ARC)) DLX=DLX+U(ARC)
IF ((RDCOST.GT.O).AND. (RDCOST.LT.DELPRC)) DELPRC=RDCOST

END IF
ARC=NXTOU(ARC)
GOTO 50

END IF
60 CONTINUE

END IF
C
C ~**~g Check if the set of scanned nodes truly corresponds
C to a dual ascent direction. Here DELX+DLX is the exact
C sum o f t h e f l o w on a r c s f r o m t h e scanned s e t t o t h e
C unscanned s e t p l u s t h e (c a p a c i t y - f l o w) on a r c s f rom
C the unscanned set t o the scanned set. g,g**
C

IF (DELX+DLX.GE.DM) THEN
SWITCH=.TRUE.
AUGNOD=O
DO 70 I=NSCAN+I,NLABEL

NODE=LABEL(I>
IF (DFCT(NODE).LT.O) AUGNOD=NODE

70 CONTINUE
RETURN

END IF
DELX=DELX+DLX

C
C *~g*~* check that the problem is feasible ~***g*g~**~**g***~
C

80 IF (DELPRC. EQILARGE> THEN
C

C *g~*~ We can decrease the dual cost without bound.
C Therefore the primal problem is infeasible. ***g*
C

FEASBL=.FALSE.
RETURN

END IF
C

C g~*~*~g Decrease prices of the scanned nodes~ add more
C nodes to the labeled set & check if a newly labeled node
C has negative deficit. ***~
C

IF (SWITCH) THEN
AUGNOD=O
DO 90 I=I,NSAVE

ARC=SAVE(I)
IF (ARC.GT.O) THEN

RC(ARC)=RC(ARC)+DELPRC
IF (RC<ARC).EQ.O) THEN

NODE2=ENDN(ARC)
IF (TNXTOU(ARC) .LT. O) THEN

TNXTOU(ARC) = TFSTOU(STARTN(ARC))
TFSTOU(STARTN(ARC)) = ARC

END IF
IF (TNXTIN(ARC> .LT. O) THEN

TNXTIN(ARC) = TFSTIN(NODE2)
TFSTIN(NODE2) = ARC

END IF

D.P. Bertsekas and P. Tseng, Relax codes 179

90

PRDCSR(NODE2)=ARC
IF <DFCT(NODE2).LT.O) THEN

AUGNOD=NODE2
ELSE

IF (.NOT.MARK(NODE2)) THEN
MARK(NODE2)=.TRUE.
NLABEL=NLABEL+I
LABEL(NLABEL)=NODE2

END IF
END IF

END IF
ELSE

ARC=-ARC
RC(ARC)=RC(ARC)-DELPRC
IF (RC(ARC).EQ.O) THEN

NODE2=STARTN(ARC)
IF (TNXTOU<ARC) .LT. O) THEN

TNXTOU(ARC) = TFSTOU(NODE2)
TFSTOU(NODE2) = ARC

END IF
IF (TNXTIN(ARC) .LT. O) THEN

TNXTIN(ARC) = TFSTIN(ENDN(ARC))
TFSTIN(ENDN<ARC)) = ARC

END IF
PRDCSR(NODE2)=-ARC
IF (DFCT(NODE2).LT.O) THEN

AUGNOD=NODE2
ELSE

IF (.NOT.MARK(NODE2)) THEN
MARK(NODE2)=.TRUE.
NLABEL=NLABEL+I
LABEL(NLABEL)=NODE2

END IF
END IF

END IF
END IF

CONTINUE
RETURN

ELSE

~ i ~ Decrease t h e p r i c e s o f t h e scanned
A d j u s t arc f l o w t o m a i n t a i n complementary
t h e p r i c e s . ~

NB = 0

DO 100 I=I,NSAVE
ARC=SAVE(I)
IF (ARC.GT.O) THEN

TI=RC(ARC)
IF (TI.EQ.O) THEN
T2=X(ARC)
T3=STARTN(ARC)
DFCT(T3)=DFCT(T3)-T2
T3=ENDN(ARC)
DFCT(T3)=DFCT(T3)+T2
U(ARC)=U(ARC)+T2
X(ARC)=O

END IF
RC(ARC)=TI+DELPRC

nodes by DELPRC.
s l a c k n e s s w i t h

180 D.P. Bertsekas and P. Tseng, Relax codes

IF (RC(ARC).EQ.O) THEN
DELX=DELX+X(ARC)
NB = NB + i
PRDCSR(NB) = ARC

ENDIF
ELSE

ARC=-ARC
TI=RC(ARC)
IF (T1.EQ.O) THEN

T2=U(ARC)
T3=STARTN(ARC)
DFCT(T3)=DFCT(T3)+T2
T3=ENDN(ARC)
DFCT(T3)=DFCT(T3)-T2
X(ARC)=X(ARC)+T2
U(ARC)=O

END IF
RC(ARC)=TI-DELPRC
IF (RC(ARC).EQ.O) THEN

DELX=DELX+U(ARC)
NB = NB + 1

PRDCSR(NB) = ARC
END IF

END IF
100 CONTINUE

END IF

IF (DELX.LE.DM) THEN

g**~g The se t o f scanned nodes s t i l l c o r r e s p o n d s t o a
dual (p o s s i b l y degene ra te) ascent d i r e c t i o n . Compute
t he s t e p s i z e DELPRC t o t he n e x t b r e a k p o i n t i n t h e
dual c o s t . * g * * *

110

DELPRC=LARGE
DO 110 I=I,NSAVE

ARC=SAVE(1)
IF (ARC.GT.O) THEN

RDCOST=RC(ARC)
IF ((RDCOST. LT.O).AND.(-RDCOST.LT.DELPRC)) DELPRC=-RDCOST

ELSE
ARC=-ARC
RDCOST=RC(ARC)

IF ((RDCOST.GT.O).AND.<RDCOST.LT.DELPRC)) DELPRC=RDCOST
END IF
CONTINUE
IF ((DELPRC.NE. LARGE).OR. (DELX.LT.DM)) GO TO 80

END IF

~*~ Add new ba lanced a rcs t o t h e s u p e r s e t o f ba lanced a r c s . * ~

DO 120 I=I~NB
ARC=PRDCSR(1)

IF (TNXTIN(ARC).EQ.- I) THEN
J=ENDN(ARC)
TNXTIN(ARC)=TFSTIN(J)
TFSTIN(J)=ARC

END IF
IF (TNXTOU<ARC).EQ.-1) THEN

J=STARTN(ARC)

D.P. Bertsekas and P. Tseng, Relax codes 181

120

TNXTOU(ARC)=TFSTOU(J)
TFSTOU(J)=ARC

END IF
CONTINUE
RETURN
END

C
C
C

SUBROUTINE AUGFL2(AUGNOD)
IMPLICIT INTEGER (A-Z)
COMMON/ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X

*/ARRAYB/DFCT/BLK2/PRDCSR
DIMENSION STARTN(1)~ENDN(1)~U(1)~X(1),DFCT(1)~PRDCSR(1)

* * * * * * * an augmenting path i s found, determine f l ow change

DX=DFCT(AUGNOD)
IB=AUGNOD

10 IF (PRDCSR(IB).NE.O) THEN
ARC=PRDCSR(IB)
IF (ARC.GT.O) THEN

DX=MINO(DX~X(ARC)>
IB=ENDN(ARC)

ELSE
DX=MINO(DX,U(-ARC))
IB=STARTN(-ARC)

END IF
GOTO 10

END IF
ROOT=IB
DX=MIN0(DX~-DFCT(ROOT))
IF (DX .LE. 0) RETURN

~****** update the flow and

DFCT(AUGNOD)=DFCT(AUGNOD)-DX
DFCT(ROOT)=DFCT(ROOT)+DX
IB=AUSNOD

20 IF (IB.NE.ROOT) THEN
ARC=PRDCSR(IB)
IF (ARC.GT.O) THEN

X(ARC)=X(ARC)-DX
U(ARC>=U(ARC)+DX
IB=ENDN(ARC)

ELSE
NARC=-ARC
X(NARC)=X(NARC)+DX
U(NARC)=U(NARC)-DX
IB=STARTN(NARC)

END IF
GOTO 20

END IF
RETURN
END

d e f i c i t s * * * * g * * ~ g * * ~ * * ~ * * * * * ~ * *

SUBROUTINE ASCNT2(DM,DELX,NLABEL,AUGNOD,FEASBL,SWITCH,
*NSCAN)

182 D.P. Bertsekas and P. Tseng, Relax codes

C
C
C
C
C
C

10

20

IMPLICIT INTEGER (A-Z)

The two "tree"-based ascent routines have a common temporary
storage area whose dimension is set below. The maximum conceivable
amount needed equals the number of arcs~ but this should never
a c t u a l l y occur.

LOGICAL SCAN~MARK~SWITCH~FEASBL~QUIT
COMMON/ARRAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARRAYX/X/ARRAY9/RC

~/ARRAYB/DFCT/BLK1/LABEL/BLK2/PRDCSR/BLK3/FOU/BLK4/
~NXTOU/BLK5/FIN/BLK6/NXTIN/BLK7/SAVE/BLKS/SCAN/BLKg/MARK
~/L/N~NA,LARGE
COMMON /BLKIO/TFSTOU/BLK11/TNXTOU/BLKI2/TFSTIN/BLKI3/TNXTIN
COMMON /ASCBLK/B
DIMENSION TFSTOU(1)~TNXTOU(1)~TFSTIN(1)~TNXTIN(1)
DIMENSION STARTN(1)~ENDN(1)~U(1)~X(1)~RC(1),DFCT(1)~LABEL(1)
DIMENSION PRDCSR(1)~FOU(1)~NXTOU(1)~FIN(1)~NXTIN(1)
DIMENSION SAVE(1)~SCAN(1),MARK(1)

~ augment f l ows across the cu t & compute p r i c e r i s e ~ i ~

DELPRC=LARGE
DLX=O
NSAVE=O
IF (NSCAN.LE.N/2) THEN
DO 30 I=I,NSCAN

NODE=LABEL(1)
ARC=FIN(NODE)
IF (ARC.GT.O) THEN

NODE2=STARTN(ARC)
IF (.NOT. SCAN(NODE2)) THEN

NSAVE=NSAVE+I
SAVE(NSAVE)=ARC
RDCOST=RC(ARC)

IF ((RDCOST.EQ.O).AND.(PRDCSR(NODE2).NE.ARC)) DLX=DLX+X(ARC)
IF ((RDCOST.LT.O).AND.(-RDCOST.LT.DELPRC)) DELPRC=-RDCOST
END IF
ARC=NXTIN(ARC)
GOTO 10

END IF
ARC=FOU(NODE)
IF (ARC.GT.O) THEN

NODE2=ENDN(ARC)
IF (.NOT.SCAN(NODE2)> THEN

NSAVE=NSAVE+I
SAVE(NSAVE)=-ARC
RDCOST=RC(ARC)

IF ((RDCOST.EQ.O).AND.(PRDCSR(NODE2).NE.-ARC)) DLX=DLX+U(ARC)
IF ((RDCOST.GT.O).AND.(RDCOST.LT.DELPRC)) DELPRC=RDCOST

END IF
ARC=NXTOU(ARC)
GOTO 20

END IF
30 CONTINUE

ELSE
DO 60 NODE=I,N

IF (SCAN(NODE)) GO TO 60
ARC=FOU(NODE)

40 IF (ARC.GT.O) THEN
NODE2=ENDN(ARC)

D.P. Bertsekas and P. Tseng, Relax codes 183

C
C
C

C
C
C

IF (SCAN(NODE2)) THEN
NSAVE=NSAVE+I
SAVE(NSAVE)=ARC
RDCOST=RC<ARC)

((RDCOST.EQ.O).AND. (PRDCSR(NODE).NE.ARC)) IF
IF ((RDCOST.LT.O).AND. (-RDCOST.LT.DELPRC))
END IF
ARC=NXTOU<ARC)
GOTO 40

END IF
ARC=FIN(NODE)

50 IF (ARC.GT.O> THEN
NODE2=STARTN(ARC)
IF (SCAN(NODE2)> THEN

NSAVE=NSAVE+I
SAVE(NSAVE)=-ARC
RDCOST=RC(ARC)

IF ((RDCOST. EQ.O).AND. <PRDCSR(NODE).NE.-ARC))
IF ((RDCOST. GT.O).AND. (RDCOST. LT.DELPRC)>

END IF
ARC=NXTIN(ARC)
GOTO 50

END IF
60 CONTINUE

END IF
IF (DELX+DLX.GE.-DM) THEN

SWITCH=.TRUE.
AUGNOD=O
DO 70 I=NSCAN+I~NLABEL

NODE=LABEL(I)
IF (DFCT(NODE).GT.O) AUGNOD=NODE

70 CONTINUE
RETURN

END IF
DELX=DELX+DLX

DLX=DLX+X(ARC)
DELPRC=-RDCOST

DLX=DLX+U(ARC)
DELPRC=RDCOST

~ check that the problem is feasible ~ ~ ~

80 IF (DELPRC.EQ.LARGE) THEN
FEASBL=.FALSE.
RETURN

END IF

~ $ INCREASE PRICES ~

IF (SWITCH) THEN
AUGNOD=O
DO 90 I=I~NSAVE

ARC=SAVE(1)
IF (ARC.GT.O) THEN

RC(ARC)=RC(ARC)+DELPRC
IF (RC(ARC).EQ.O) THEN

NODE2=STARTN(ARC)
IF (TNXTOU(ARC) .LT. 0) THEN

TNXTOU(ARC) = TFSTOU(NODE2)
TFSTOU(NODE2) = ARC

END IF
IF (TNXTIN(ARC) .LT. 0) THEN

TNXTIN(ARC) = TFSTIN(ENDN(ARC))
TFSTIN(ENDN(ARC)) = ARC

184 D.P. Bertsekas and P. Tseng, Relax codes

90

END IF
PRDCSR(NODE2)=ARC
IF (DFCT(NODE2).GT.O) THEN

AUGNOD=NODE2
ELSE
IF (.NOT. MARK(NODE2)) THEN

MARK(NODE2)=.TRUE.
NLABEL=NLABEL+I
LABEL(NLABEL)=NODE2

END IF
END IF

END IF
ELSE

ARC=-ARC
RC(ARC)=RC(ARC)-DELPRC
IF (RC(ARC).EQ.O) THEN

NODE2=ENDN(ARC)
IF (TNXTOU(ARC) .LT. 0) THEN

TNXTOU(ARC) = TFSTOU(STARTN(ARC))
TFSTOU(STARTN(ARC)) = ARC

END IF
IF (TNXTIN(ARC) .LT. 0) THEN

TNXTIN(ARC) = TFSTIN(NODE2)
TFSTIN(NODE2) = ARC

END IF
PRDCSR(NODE2)=-ARC
IF (DFCT(NODE2).GT.O) THEN

AUGNOD=NODE2
ELSE
IF (.NOT.MARK(NODE2)) THEN
MARK(NODE2)=.TRUE.
NLABEL=NLABEL+I
LABEL(NLABEL)=NODE2

END IF
END IF

END IF
END IF

CONTINUE
RETURN

ELSE

NB = 0
DO 100 I=I,NSAVE

ARC=SAVE(I)
IF (ARC.GT.O) THEN

TI=RC(ARC)
IF (TI.EQ.O) THEN
T2=X(ARC)
T3=STARTN(ARC)
DFCT(T3)=DFCT(T3)-T2
T3=ENDN(ARC)
DFCT(T3)=DFCT(T3)+T2
U(ARC)=U(ARC)+T2
X(ARC)=O

END IF
RC(ARC)=TI+DELPRC
IF (RC(ARC).EQ.O) THEN

DELX=DELX+X(ARC)
NB = NB + 1

D.P. Bertsekas and P. Tseng, Relax codes 185

I00

I I 0

120

PRDCSR(NB> = ARC
END IF

ELSE
ARC=-ARC
TI=RC(ARC)

IF (TI.EQ.O) THEN
T2=U(ARC)
T3=STARTN(ARC)
DFCT(T3)=DFCT<T3)+T2
T3=ENDN(ARC)
DFCT(T3)=DFCT(T3)-T2
X(ARC)=X(ARC)+T2
U(ARC)=O

END IF
RC(ARC)=T1-DELPRC
IF (RC(ARC).EQ.O) THEN

DELX=DELX+U(ARC)
NB = NB + 1
PRDCSR(NB) = ARC

END IF
END IF
CONTINUE

END IF
IF (DELX.LE.-DM) THEN

DELPRC=LARGE
DO I I 0 I=I,NSAVE

ARC=SAVE(1)
IF (ARC.GT.O) THEN

RDCOST=RC(ARC)
IF ((RDCOST.LT.O).AND. (-RDCOST.LT.DELPRC)) DELPRC=-RDCOST

ELSE
ARC=-ARC
RDCOST=RC(ARC)

IF ((RDCOST.GT.O).AND.(RDCOST.LT.DELPRC)) DELPRC=RDCOST
END IF
CONTINUE
IF <(DELPRC. NE.LARGE).OR. (DELX.LT.-DM)) GO TO 80

END IF

~ Add new ba lance arcs t o the supe rse t o f balanced arcs .

DO 120 I=I~NB
"ARC=PRDCSR(1)

IF (TNXTIN(ARC).EQ.-I)
J=ENDN<ARC>
TNXTIN(ARC)=TFSTIN(J)
TFSTIN(J)=ARC

END IF
IF (TNXTOU(ARC).EQ.-I)

J=STARTN(ARC)
TNXTOU(ARC)=TFSTOU(~)
TFSTOU(J)=ARC

END IF
CONTINUE

RETURN
END

THEN

THEN

186 D.P. Bertsekas and P. Tseng, Relax codes

C
C
C
C
C
C.
C
C
C
C
C
C
C
C
[:

C
L"
C
C
C
C
C
C
C
C
[:

C
C
C
C

C
C
C
C

C

SUBROUTINE SENSTV

SENSITIVITY ANALYSIS FOR THE MINIMUM COST NETWORK FLOW PROBLEM.

*

* * * 'THE SUBROUTINE I S BASE[) ON THE PAPER * * *
* * * D . P . BERTSEKAS, P .TSENG "THE RELAX CODES FOR * * *
* * * L I N E A R MINIMUM COST NETWORK FL.OW PROBLEMS" . * * *

* * * A N N A L S OF OPERATIONS RESEARCH, THIS VOLUME * **
* * * * * *

* * * THE SUBPOUTINE I S NRl l -TEIq IN STANDARD F'ORTIRAN77 * * *
* * * * * *

* * * QUESTIONS AND COMMENTS SHOULD BE DIRECTIED TO * * *
* * * D I M I T R I BERTSEKAS AI"ID F'AUL TSENG * * *
* * * DEF*ARTMEblT OF ELECTRICAl_ EI, IG]:NEER]NG & * * *
* * * COMPLJTER SCIENCE * * *
* * * LABORATORY FOR 1NFORIIATIOIq AND D E C I S I O N SYSTEMS * * *
* * * M . I . T , , CAMBRIDGE,, MASSACHUSETTS, 0 2 1 3 ~ . U , , S . A . * * *

***** Thi=_ subroutine aJlo~s the user to Jnteract.ively
either change noda] ~upply~ or change flow upper bound
o-~ an e'-:isting arc: or change cost of an e~:isting arc~
or delete an e}.:i=_ting arc, or- add an arc. *****

NOTE : I ; Jn t h e svs laem o n wh : i ch t h i s s u b r o u t i n e i s r a n , , t h e
v a r i a b l e) o c a l t o a s u b r o u t i n e i ~ r e - i n i t i a l i z e d (t o =_ome d e f a u l t
value) each time t'he subroutine is ca'lied., Khen Mne u-=er muse make
the To]lowing currently local variables DELARE, DARC, DU,, ADDARC,
AARC global (by either putting them in a common blc~ck ~r passtn,:_)
[hem through the ca] ling p,~rameter;.
IMF'LICIT INTEGER (A-Z~
COMMON/ARRAYS / STARTN/ARRAYE /EIqDN / ARRAYU / U / ARRAY X / X / ARRAY9 /F:C

*/ARRAYB/DFCT/BU:: 1/I_ABEL/BI_K2/PRICE/BI_K3/FOU/BLK4/NXTOU
* / BLI<5 / F I N / BLK6 /N X T I N / BI_K~ / MARl: / L / N, NA, L.ARGE
COMMOIq / ARRAYC / C / BL.KC AP / CAF'/BLKR / REPEAT
INTEGER CAP(J) . , U (I) ~,X' : I) , C (J) , R C (I) , D F C T " . I ' I
INTEGER STARTN (I) , ENDN (~) , LABEL (1) ~ PRICE ~ I) , FOU (I) , Nxrou (1 ~ ,

* F I N (1) , N X T I N (I)
L O G I C A L ADDARC,DEL.ARC,REPEAT,MAR}- (I)
I F (. N O l ' . R E P E A T) THEN

***** Restore the arc capa~zJty to that of the original problem
(recall that when solving the original pr-oblem., RELAX in the
problem preprocessing phase may dec_tease the arc capac~tv) and
update flow and deficit to agree w~th this "new" capacity. *****

DO JA I=J~NA
IF (RC(I).LT.,O) THEN

DFCT (STARTN (I)) =DFCT (STARTN (I)) +CAP (I) -X (I)
DFCT (ENDN (I)) =DFCT (ENDN (I)) -CAF' (I) +X (I)
X (1)=CAP(I)

ELSE
U(1)=CAP(1)-X(II

END I F

D.P. Bertsekas and P. Tseng, Relax codes 187

C
C

[}

C

10 CONTINUE
REF'EAT=. TRUE.

END IF
20 WRITE (6,30)

WRITE (6, 40)

WRITE (6 , 50)
WRITE (6 , 6 0)
WRITE (6 , 70)
WRITE (6 , 8 0)
I F (ADDARC) WRITE (6 , 90)
IF (DELARC) WRITE(6, I00)

30 FORMAl" ('
4(! FORMAT (' ' , '
50 FORMAT (' ' , '

60 FORMAT (' ' , '
70 FORMAT (" ' , '
80 FORMAT (' ' , '
90 FORMAT (' " , '

J 0() FORMAT (' ' , '
READ (5, *) SEL

AARC
DARC

' , ' I N P U T 0 TO SOLVE THE MODIFIED PROBLEM ~)

1 TO CHANGE NODAL FLOW SUPF'LY ~)
2 TO CHANGE ARC FLOW UPPER BOUND')

3 TO CHANGE ARC COST')

4 TO DELETE AN ARC ~)
5 TO ADD AN ARC ~)
6 TO DELETE LAST ARC',I8, '

7 TO RESTORE I_AST ARC',I8, '

I F (S E L . E Q . A) "[HEN
RETURN

ELSE I F (S E L . E Q . i) THEN

ADDED')

DELETED')

* * * * * C h a n g e n o c l a l f l o w s u p p l y * * * * *
1 1 0 WRITE (6 , 1 2 0)

120 FORMAT(' ','INPUT NODE # WHERE FLOW SUPPLY IS INCREASED')
READ (5, *) NODE
IF ((NODE.LE.O).OR. (NODE.G]'.N)) GO TO 1.10
WRITE (6, 130)

130 FORMAT(' '.' INF'IJT AMOUNT OF INCREASE (<0 VALUE ALLOWED)')
READ (5, *) DELsuP
DFCT (NODE) =DFCT (NODE) -DELSUP

.4() W R I T E (6 , 1 5 0)
J50 FORMAT<' '., 'INPUT NODE NO. WHERE FLOW SUPF'LY IS DECREASED ~)

READ (5, *) NODE
IF ((NODE.LE.O).OR. (NODE.GT.N)) GO TO 140
DFCT (NODE) =DFCT (NODE) +DEI_SUP

ELSE IF (SEL.EQ.2) THEN

1. 60
:170

* * * * * C h a n q e a r c f l o w c a p a c i t y * * * * *
* * * N o t e t h a t I! is n o t l:Ine a r c c a p a c i t y b u t r a t h e r t h e f l o w m a r g i n
(:i . e . I.! = c a p a c : i t v - f l o w) . * * *

WRITE (6 , J70)
FORMAT(' , ' INPUT ARC N[]. AND THE INCREASE IN UPPER BOUND ~)
READ (5 , *) ARC, DELUB
I F ((A R C . I _ E . O) . O R . (A R C . G T . N A)) GO TO 160
I F (R C (A R C) . L T . O) THEIxl

***** ARC 'is active, therefore ma:[nhain +low at. (new)
DFCT (STARTN (ARC)) =DFCT (STAPTN (ARC)) +DELUB

DFCT (ENDN (ARC)) =DFCT (ENDN (ARC)) -DELUB
X (ARC) =X (ARC) +DELUB
IF (X(ARC).LT.O) WRITE(6, 180)

EI_SE IF <RC(ARC).EQ.O) THEN
]IF (U(ARC).(BE.-DELUB) THEN

U <ARC) =U (ARC) +DEI_UB
EI_SE

capacity. **

* * * * * New capacity :i.s less t h a i , current -Flow, tlnereEore decrease

188 D.P. Bertsekas and P. Tseng, Relax codes

C
C

C
C

C
C

180

190
200

210
220

230

flow to new capacity. ~ * * * *
DEI_=-DELUB-U(ARC)
DFCT(STARTN<ARC))=DFCT(STARTN(ARC))-DEL
DFCT(ENDN(ARC))=DFCT(ENDN(ARC))+DEL
X(ARC)=X(ARC)-DEL
IF (X(ARC>.LT.O> WRITE(6~I80)
U(ARC)=O

END IF
ELSE

U(ARC)=U(ARC)+DELUB
IF (U(ARC).LT.O) WRITE(6~I80)
FORMAT(" '~'FLOW UPPER BOUND IS NOW < 0')

END IF
ELSE IF (SEL.EQ.3) THEN

~ * * * * Change arc cost * * * $ *
WRITE(6,200)
FORMAT(' ~,'INPUT ARC NO. & INCREASE IN COST')
READ(5,*>ARC~DELC
IF (<ARC.LE.O).OR. (ARC.GT.NA>) GO TO 190
IF ((RC(ARC).GE.O).AND. (RC(ARC)+DELC.LT.O>) THEN

~ * ~ * ARC becomes active~ therefore increase flow to capacity.
DFCT(STARTN(ARC)>=DFCT(STARTN(ARC)>+U(ARC>
DFCT(ENDN(ARC))=DFCT(ENDN(ARC))-U(ARC)
X(ARC)=U(ARC)+X(ARC)
U(ARC)=O

ELSE IF ((RC(ARC).LE.O).AND. (RC(ARC)+DELC.GT.O))THEN

* * ~ * ~ ARC becomes inactive, therefore decrease flow to zero.
DFCT(STARTN(ARC))=DFCT(STARTN(ARC))-X(ARC>
DFCT(ENDN(ARC))=DFCT(ENDN(ARC))+X(ARC)
U(ARC)=U(ARC>+X(ARC)
X(ARC)=O

END IF
RC(ARC)=RC(ARC)+DELC
C(ARC)=C(ARC)+DELC

ELSE IF ((SEL.EQ.4).OR.(SEL.EQ.6)) THEN

***** Delete an arc *****
IF (SEL.EQ.6) THEN

IF (.NOT.ADDARC) GO TO 20
ADDARC=.FALSE.
ARC=AARC

ELSE
WRITE(6,220)
FORMAT(' ','INPUT ARC NO. FOR DELETION ~)
READ(5,*)ARC
IF ((ARC.LE.O).OR. (ARC.GT.NA)) GO TO 210
DELARC=.TRUE.
DARC=ARC
DU=U(ARC>+X(ARC)

END IF

***** Remove ARC from the data array FIN,
ARCI=FOU(STARTN(ARC))
IF (ARC1.EO.ARC) THEN

FOU(STARTN(ARC)>=NXTOU<ARCI)
ELSE

ARC2=NXTOU(ARCI)

FOU, NXTIN~ NXTOU. * * * * ~

D.P. Bertsekas and P. Tseng, Relax codes 189

C
C
C

C
C
C
C
C
C

240

250

260

270
280

290
300

IF (ARC2.EQ.ARC) THEN
NXTOU(ARCI)=NXTOU(ARC2)
GO TO 240

END IF
ARCI=ARC2
GO TO 230

END IF
ARCI=FIN(ENDN(ARC))
IF (ARCI.EQ.ARC) THEN

FIN(ENDN(ARC))=NXTIN(ARCI)
ELSE

ARC2=NXTIN(ARC1)
IF (ARC2.EQ.ARC) THEN

NXTIN(ARCI)=NXTIN(ARC2)
GO TO 260

END IF
ARCI=ARC2
GO TO 250

END IF

~ Remove flow of ARC from network by setting its flow and
capacity to O.

DECT(STARTN(ARC))=DFCT(STARTN(ARC))-X(ARC)
DFCT(ENDN(ARC))=DFCT(ENDN(ARC))+X(ARC)
X(ARC)=O
U(ARC)=O

ELSE IF ((SEL.EQ.5).OR. (SEL.EQ.7)) THEN
IF (SEL.EQ.7) THEN

IF (.NOT.DELARC) GO TO 20
IARC=DARC
IH=STARTN(IARC)
IT=ENDN(IARC)
DELARC=.FALSE.
IU=DU

ELSE
WRITE(6,280)NA+I
FORMAT(' ",'INPUT HEAD & TAIL NODES OF NEW ARC',I8)
READ(5,~)IH, IT
IF ((IH.LE.O).OR. (IH.GT.N).OR. (IT.LE.O).OR. (IT.GT.N))GO TO 270
WRITE(6,300)
FORMAT(' ",'INPUT COST & FLOW UPPER BD ~)
READ (5, ~) IC, IU
IF (IU.LT.O) GO TO 290
ADDARC=.TRUE.
AARC=NA+I
NA=NA+I
C(NA)=IC
STARTN(NA)=IH
ENDN(NA)=IT
IARC=NA
END IF

~ Determine the dual prices at IH and IT. ~
~ We first set the price at node IH to zero and then construct
the price at the remaining nodes using the arc cost array C and
the reduced cost array RC (using the fact that RC(ARC) = C(ARC) -
PRICE(STARTN(ARC)) + PRICE(ENDN(ARC))). This is done by breadth
first search. ~

NSCAN=O
NLABEL=I
LABEL(1)=IH

190 D.P. Bertsekas and P. Tseng, Relax codes

C
C
C

PRICE(IH)=O
DO 310 I=I,N

310 MARK(I)=.FALSE.
MARK(IH)=.TRUE.

320 IF (NLABEL.LE.NSCAN) GO TO 370
NSCAN=NSCAN+I
NODE=LABEL(NSCAN)
ARC=FOU(NODE)

330 IF (ARC.LE.O) GO TO 340
NODE2=ENDN(ARC)
IF (.NOT.MARK(NODE2)) THEN

MARK(NODE2)=.TRUE.
PRICE(NODE2)=RC(ARC)-C(ARC)+PRICE(NODE)
IF (NODE2.EQ. IT) GO TO 370
NLABEL=NLABEL+I
LABEL(NLABEL)=NODE2

END IF
ARC=NXTOU(ARC)

GO TO 330
340 ARC=FIN(NODE)
350 IF (ARC.LE.O) GO TO 360

NODE2=STAR]b!(ARC)
IF (.NOT.MARK(NODE2)) THEN

MARK(NODE2)=.TRUE.
PRICE(NODE2)=C(ARC)-RC(ARC)+PRICE(NODE)
IF (NODE2.EQ. IT) GO TO 370
NLABEL=NLABEL+I
LABEL(NLABEI_)=NODE2

END IF
ARC=NXTIN(ARC)

GO TO 350
360 GO TO 320

370

~ Compute reduced cost of
deficit accordingly. ~

RC(IARC)=C(IARC)+PRICE(IT)
IF (RC(IARC).LT.O) THEN

DFCT(IH)=DFCT(IH)+IU
DFCT(IT)=DFCT(IT)-IU
X(IARC)=IU
U(IARC)=O

ELSE
X(IARC)=O
U(IARC)=IU

END IF
NXTOU(IARC)=FOU(IH)
FOU(IH)=IARC
NXTIN(IARC)=FIN(IT)
FIN(IT)=IARC

END IF
GO TO 20
END

the new arc and update f l o w and

