
Chapter I

SHORTEST PATHS

Annals of Operations Research 13(1988)3 -79 3

S H O R T E S T P A T H A L G O R I T H M S *

Giorgio GALLO

Department of Informatics, University of Pisa, 40, Corso Italia, 1-56100 Pisa, Italy

and

Stefano PALLOTTINO

LA.C., National Research Council, 137, viale del Policlinico, 1-00161 Roma, ltaly*

A b s t r a c t

The shortest path problem is considered from a computational point of view.
Eight algorithms which solve the shortest path tree problem on directed graphs are
presented, together with the results of wide-ranging experimentation designed to
compare their relative performances on different graph topologies. The focus of this
paper is on the implementation of the different data structures used in the algorithms.
A "Pidgin Pascal" description of the algorithms is given, containing enough details
to allow for almost direct implementation in any programming language. In addition,
Fortran codes of the algorithms and of the graph generators used in the experi-
mentation are provided on the diskette.

1. I n t r o d u c t i o n

In this paper, we deal with the shortest path problem from a computational
point of view. As is well known, this problem is a fundamental component in real-life
large-scale network models. This explains why, although the problem itself is quite
simple and widely studied, new contributions keep appearing in the scientific literature
(see, for one example, the paper by Glover et al. [20]).

For an extended survey on the subject, we refer to Gallo and Pallottino [16],
where the shortest path methods are presented in a unified framework. There, all the
algorithms are shown to derive from a single prototype procedure, the main difference
between them being in the particular data structures used to implement the set of
candidate nodes. Here, from among the ones presented there, we have selected eight
algorithms which solve the shortest path tree problem on directed graphs. In this
selection, we followed three main criteria: historical importance, practical computa-
tional relevance and simplicity of implementation. Thus, we have left out a certain
number of important algorithms, either because their interest is more theoretical

*Research carried out as part of the SOFMAT (Mathematical Software) activities of the Italian
National Research Council (C.N.R.) ~Progetto Finalizzato Informatica".

*Present affiliation: Department of Informatics, University of Pisa, 1-56100 Pisa, Italy.

© J.C. Baltzer AG, Scientific Publishing Company

4 G. Gallo and S. Pallottino, Shortestpath algorithms

than practical (see, for instance, Johnson [25]) or because their use implies rather
complex implementation such as some of the algorithms presented in Denardo and
Fox [5].

The focus of the paper is on the implementation of the different data struc-
tures used in the algorithms. Although Fortran codes are provided on the diskette,
the "'Pidgin Pascal" description of the algorithms contains enough details to allow
for almost direct implementation in any other language. In fact, there is a one-to-one
correspondence between Fortran codes and Pascal descriptions of the algorithms.

The results of wide-ranging experimentation with a large number of types of
graphs are reported. The source codes of the graph generators used in the experi-
mentation are contained on the diskette.

Although the aim of the paper is to provide well tested and efficient algorithms
for the shortest path tree problem, some attention has also been reserved for the all
pairs problem. In sect. 9, an efficient algorithm for this problem is described, in such
a way that its implementation can easily be obtained making use of the shortest path
tree algorithms on the diskette as subroutines.

2. Definitions and notation

Let us state the main assumptions and the notation we shall use throughout.
G = (N, A; l) is a directed graph with n = I NI nodes, m = I AI arcs and a length
function l:A -~ R. We shall denote the length of arc (i,]) b y lq. The length of a path
(respectively, of a cycle) is the sum of the lengths of its arcs. The arc lengths may be
either positive or negative; the only assumptions we need to make is that there is no
directed cycle with negative length in G. A further possible assumption is that G is
strictly connected, i.e. for each pair on nodes u and o, a directed path exists from u
to o. Note that this assumption is not binding; in fact, the connection can always be
achieved by the insertion of arcs with a very high length (+ o~). In the following,
instead of directed path (directed cycle), we shall simply use path (cycle).

Given a node r, which we call the origin, a shortest path tree (spt), T*(r), is a
spanning directed tree of G, rooted at r, which, for each o E N, contains a shortest
path from r to v (see Lawler [30]). We shall be dealing with the problem of finding
a shortest path tree.

We sha~ assume that the graph be given in the form of arc-lists. That is, for
each node u, the list is given of those arcs (u , j) which have u as the first node. The
set of such arcs, FS(u) = I(u,]) E A}, is called the forward star of node u. When
the graph is sparse, which is often the case in applications, it is much better to use
this data structure than the matrix of arc lengths; this is because it requires less
computer storage and usually allows the implementation of more efficient algorithms.

G, then, is represented by n lists, one for each forward star (see fig. 1), accessed
by one array of pointers.

G. Gallo and S. Pallottino, Shortestpath algorithms 5

An efficient implementation of the arc-lists is to put them consecutively in a
pair of arrays, ND[.] and L N G T [.] . The pointers are stored in array A[.] ; e a c h
component points to the first element of the corresponding arc-list, i.e. A [u] = w if
(u, o) is the first arc in the forward star of u where o = ND [w] and luo = LNGT [w].
By convention, we set A [u] := A [u + 1] when FS(u) = 0, and A [n + 1] := m + 1.

Thus, the information relative to FS(u) is stored in ND [.] and LNGT[.],
from position A [u] to A [u + 1] - 1 (see fig. 2). The storage requirement for this
implementation is 2m + n + 1. An example of this technique of representing graphs
is given in fig. 3.

The scanning of FS(u) can be implemented as:

if A[u] < A [u + l] then

f o r j : = A [u] to A [u + l] - I do

begin

v := ND[j] ;

luv := LNGT []];

end;

In the following, such a sequence of operations shall be denoted by the single
compact statement

foreach (u, v) E FS(v) d o . . .

In order to represent a tree, we shall use the predecessor list, that is, a vector p,
where Pv is the predecessor of node v in the tree. The predecessor list p is implemented
by means of an n-arrayP[.] in such a way that:

(i) P[r] = 0 ~-~ r is the root of T,

(ii) P[]] = i ~ (i ,]) is an arc ofT.

Together with the vectors defined so far, an n-array D [.] is used, which will
be returned by the algorithms as the shortest distance vector.

3. A prototype shortest path tree algorithm

Virtually all the shortest path tree algorithms can be viewed as performing
the following operations:

6 G. Gallo and S. Pallottino, Shortest path algorithms

n-i

n

~ointers

_d
I
I
I

I I

-I
_,_i

are-lists

,m ~|i~ |i |

=I I

............ ~ ! !

. I
Fig. 1. A record in the lists contains the
ending node of one arc and its length.

A ND LNGT

~are-list of node i

3
• l I arc-list of node 2

! I
l ! l

I I l I

n I I l i FS(n-I) is empty
n+l

are-list of node n

Fig. 2. Graph storage.

1 2 3 4 5 6

AI"I 3 5 5 71o I
I

1 2 3 4 5 6 7 8 9

NDI 23 ~ 3 1 5 2 3 ~]

L~GT 1 3 3 ~ 6 5 1 Z 2 2]

Fig. 3. A graph with five nodes and nine arcs.

G. Gallo and S. Pallottino, Shortest.path algorithms 7

1. Initialize a directed tree T rooted at r and, for each o E N, let d o be the
length of the path from r to u in T;

2. Let (i, j) E A be an arc for which d i + lij - d i < 0, then adjust the vector
d by setting dj = d i + lij, and update the tree T by replacing the current
arc incident into node j b~, the new arc (i, j) ;

3. Repeat step (2) until the optimality conditions

di+ l . . ~ ,i dj, V(i,i) A

are satisfied.
Note that, during the execution of the procedure, d o is greater than, or equal

to, the distance on the current tree from r to o, o E N; only at termination is equality
bound to hold. We shall call d o the label of node v.

A crucial point in the implementation of this procedure is how to select
arcs at step 2.

Since n ~< m, it seems quite reasonable to select nodes rather than arcs, then
once a node u has been selected, the operations of step 2 are performed on all arcs of
FS(u). This choice has the further advantage of being able to exploit reasonably well
the arc-list representation of the graph.

Although a few algorithms have been developed in which only one arc of the
forward star is considered for each selected node, in the large majority of the algo-
rithms presented in the literature, when a node is selected the whole forward star is
considered in one go.

Algorithm SPT, which is given next, is a rather general implementation of the
procedure, based on the exploration of complete forward stars.

Procedure SPT(r);
begin

TINIT(r); QINIT(r);
repeat

QOUT(u);
foreach (u, o) E FS(u) do If D [u] + luo < D [v] then

begin QIN(v); TUPDATE(u, o) end
until Q=O

end;

Procedure TINIT(r);
begin

for i : = 1 to n do begin P[i] := r ; D[i] := + ~ end;
P[r] : = 0 ; D [r] :=0

end;

8 G. Gallo and S. Pallottino, Shortest path algorithms

Procedure QINIT(r);
begin

Q:={r}
end;

Procedure TUPDATE(u, v);
begin

e[v] :=u ; O[v] :=O[u] +luo
end;

Procedure QOUT(u);
begin

select u E Q; Q : = Q - { u } ; update Q
end;

Procedure QIN(v);
begin

if v ~ Q then Q : : Q U { v } ;
update Q

end;

The initial tree in TINIT is a star-shaped tree, with one dummy arc (r, v) for
each v E N - {r}; these dummy arcs are assigned a length equal to +o~.

At this point, no assumption is made about how, in QOUT, a node u is selected
from the set of candidate nodes Q. This is crucial. In fact, almost all the spt-algorithms
of practical interest are derived from SPT by properly defining the operation of
selection and, consequently, the particular data structure which is used to implement
the set Q.

In the following section, different selection rules and different data structures
for Q are described. For each implementation of SPT, the storage requirements and
the time complexity are given. As a theoretical measure of time complexity, the
worst-case running time on a random-access machine is used (Tarjan [43]).

We now give a general expression of the complexity of SPT. Here, the com-
plexity is given as a function of the operations performed: from this expression, we
shall derive the complexity of the different implementations of SPT as a function of
n and m. Let qo, ql and q2 denote the complexity of QINIT, QOUT and QIN,
respectively. Let cx and c2 denote the number of times QOUT and QIN are performed,
respectively.

Let ~" be the maximum number of selections of a single node. Then we may state
the complexity ofSPTas O(qo + ql .c l + q2-c2).Note that ~ 1> 1, n ~< cl ~< n .~',
m ~< c2 ~< min{n .ci, m .~}, and hence cl ~< c2 (GaUo and Pallottino [16]).

G. Gallo and S. Pallottino, Shortest path algorithms 9

4. S e l e c t i o n rules

The choice of the selection rule in QOUT affects the way in which the graph G
is explored to check whether the optimality conditions are satisfied: each selection
rule induces a particular search strategy on G. Three of the most commonly .used
search strategies are the breadth-first search, the depth-first search and the best-first
search (Aho et al. [1], Tarjan [42]).

In the breadth-first search (also known as FIFO, First-In-First-Out), at each
iteration the oldest element in Q is selected, i.e. the element which was inserted first,

remove remove

I 7 , -]
add add

head tail

Fig. 4. A list.

whereas in the depth-first search (or LIFO, Last-In-First-Out), the element of Q
which is selected is the newest one, i.e. the element which was inserted last.

A characteristic common to the breadth-first search, the depth-first search and
all search strategies derived from them, is that to implement them properly, lists need
to be used. A list is a sequence of elements; the first element is its head and the last
element is its tail.

Typical operations on a list are: adding an element to form the new head of
the list (making the old head the second element); adding an element to form the new
tail; removing (retrieving and deleting) the head of the list; removing the taft of the list.

Other list operations include: concatenating two lists (making the tail of the
first list point to the head of the second one), inserting an element after an element
whose location in the list is known, and deleting an element whose location in the list
is known (Tarjan [42]).

In the best-first search, we assume that a real valued label is associated with
each element, and the element to be selected is the minimum label element currently
in Q. Although a list might also be used to implement this search strategy, an efficient
implementation calls for more sophisticated data structures. The data structure most
commonly used in this case is the priority queue. A priority queue is a collection of
elements, each with an associated numerical value (label), on which the following
operations are efficiently performed: adding a new element, removing the minimum
value element and correcting the label of an element whose location is known.

In the following section, we shall call list-search algorithms the spt algorithms
which make use of either a breadth-first or a depth-first search (or any other search
strategy derived from them). We shall call shortest-first search algorithms those spt

10 G. Gallo and S. Pallottino, Shortest.path algorithms

algorithms which make use of a search strategy derived from the best-first one. The
name of the latter class of algorithms comes from the fact that the label of node v,
do, represents the distance of a path from r to o in G at each iteration. Then the best
label element is the one, out of those of Q, which is at the shortest distance from r,
at least as far as we can ascertain at that stage of the computations.

5. List i m p l e m e n t a t i o n

The two simplest and most common types of lists are the queue and the stack.
A queue is a list in which additions are allowed only at the tail and deletions are
allowed only at the head; the queue is used to implement the breadth-first search
strategy. A stack is a list with addition and deletion allowed only at the head; it is
used to implement the depth-first search strategy.

Two other types of lists which are relevant in the implementation of shortest
path algorithms are the deque and the 2queue (Horowitz and Sahni [21], Knuth [28],
Pallottino [35]).

remove

~ stack Q' [queue Q" k

add add

Fig. 5. Deque Q.

A deque, or double-ended queue, is a list in which additions and deletions
are possible at either end. In the deque Q, used in the following, additions are made
at both ends, while deletions are made at the head. Deque can be interpreted as a
stack Q' and a queue Q" connected in series, in such a way that the tail of the stack
points to the head of the queue.

remove

[queue Q' [queue Q" L

t 1
add add

Fig. 6.2queue Q.

2queue differs from deque in that the elements are inserted into Q' at the tail
instead of being inserted at the head; thus, Q can be interpreted as two queues, Q' and
Q", connected in series.

Queues, stacks, deques and 2queues are efficiently implemented by means of
linked -lists.

G. Gallo and S. Pallottino, Shortest path algorithms 11

5.1. LINKED LIST

The linked-list we deal with is a sequence of elements, l l , 12 In, each of
which is one of the nodes in the graph (l i E N) .

Each element is linked by means of a pointer to the next one. Two special
elements, frst and last (frs t = l l , last = ln) , are used for quick retrieval of the head
and the tail of the list, respectively.

last

Fig. 7. Linked-list.

In practice, it is advantageous to implement the linked-list in a circular fashion,
making the last element l n point to the dummy element frst. The general structure of
this kind of list is depicted in fig. 7.

Since the nodes are represented by the first n integers, the linked-list is
efficiently implemented by means of an n + 1 array Q[.] , where:

Q[i]

0
-- j

n + l

i f i ~ Q ,

(0 < / " ~< n) if i precedes] in Q,

if i is the last element;

Q [n + 1] = frst = the head of Q.

An additional element, last, is needed so that the total storage requirement is
n + 2 .

The single vector Q[.] can be used to represent two (or more)linked-lists
connected in series, such as deque and 2queue, provided that these lists are disjoint.

In particular, the general implementation described above can be used for
deque, with the following proviso that the last element of queue Q" points to n + 1
and Q [n + 1] contains the first element (the head) of stack Qt.

Note that there is no need to know the connection point between the stack
and the queue. On the other hand, this point must be known in order to perform the
insertion operation (at the tail of the queue Q~) in 2queue; so, in this case an addi-
tional pointer, pntr, is used.

Since v E Q if and onlyi f Q [o] 4 0, and Q = ¢ if and onlyi f Q [n + 1] = n + 1,
the questions "is o in Q?" and "is Q empty?" can be answered in constant time.

12 G. Gallo and S. Pallottino, Shortest path algorithms

The complexity of procedure QINIT is O(n):

Procedure QINIT(r);
begin

for i : = 1 to n do Q[i] :=0;
a [n + 1] :=r ; a i r] :=n + 1; last := r;
pntr := n + 1 ; comment: only for 2queue

end;

Procedure QOUT, described next, is common to all the lists consiedered; it
runs in constant time.

Procedure QOUT(u);
begin

u : = Q [n + l] ; Q [n + 1] : - - -a [u] ; Q[u] :=0;
if last = u then last : = n + l ;
if pntr = u then pntr := n + 1; comment: only for 2queue

end;

As for the addition of a new element, Q := Q u Iv}, we must distinguish
between the case of addition at the head and the case of addition at the tail:

addition at the head

a[v] := a [n + 1];
a [n + 1] :=v;
if last = n + l then last :=v;
if pntr = 17 + 1 then pntr : = v;

comment: only for 2queue;

addition at the tail

Q[last] := v;
Q[v] : = n + l ;
last := v;

Hence, procedure QIN is different for each of the four lists considered. In
deque and 2queue, the choice of the list to which the new element v must be added
is commanded by a logical variable, cond, which can assume either of two values: true
or false. All these procedures run in constant time.

Procedure QIN(v);
begin comment: version for queue;

if Q[o] = 0 then begin Q[last] := o; Q [o] := n + 1; last := v end
end;

Procedure QIN(v);
begin comment: version for stack;

if a [o] =0 then begin a [o] := Q[n + 1]; Q[n + 1] := o end
end;

G. Gallo and S. Pallottino, Shortest path algorithms 13

Procedure QIN(v);
begin comment: version for deque;

ff Q[v] =0 then ff cond
then

begin comment: taft insertion;
O[last] :=v; Q[v] : = n + l ; last:=v

end

else
begin comment: head insertion;

Q[v] : = a [n + 1]; Q[n+ l l : = v ;
if last = n + 1 then last : = v

end
end;

Procedure QIN(v);
begin comment: version for 2queue;

if Q [v] = 0 then if cond
then

begin comment: tail insertion in Q";
Q[last] := v; a[v] : = n + 1; last:= v

end
else

begin comment: tail insertion in Q';
a [v] := a [pntr] ; Q [pntr] := v;
if last= pntr then last:= v;
pntr := O

end
end;

5.2. TWO-WAY LINKED-LIST

Two-way linked-lists are used when elements are either deleted from, or
inserted into, the list at an arbitrary position. In this case, two n + 1 arrays are used,
UP[.] and DOWN[.] , where:

UP[i] = DOWN[i] = 0
UP[DOWN[i]] = DOWN[UP[i]] = i
DOWN[n + I] = fist = the head of Q,
UP[n + 1] = last = the tail of Q.

i f / ~ 0 ,
i f i E Q ,

DOWN[i] points to the element following i in the list, while UP[i] points
to the preceding element. Note that, since a two-way linked-list has an inherent

14 G. Gallo and S. Pallottino, Shortest path algorithms

symmetry, it is just a matter of convention to call one of the two ends of the list
head and the other one tail: the roles of tail and head can be interchanged.

The initialization of the two arrays LIP[.] and DOWN[.] is similar to the
initialization of the array Q [.] described above.

Characteristic of the two-way linked-lists are the following elementary opera-
tions:

Procedure DELETE(x);
begin

comment: deletion of element x from Q;
UP[DOWN[x]] := UP[x] ; DOWN[UP[x]] := DOWN[x];
DOWN[x] := UP[x] : = 0

end;

Procedure INSERT(x, y) ;
begin

comment: insertion of element x to Q immediately after y;
DOWN[x] := DOWN[y] ; UP[DOWN[x]] := x;
DOWN[y] : : x ;UP[x] : = y

end;

5.3. MULTIPLE LISTS

A multiple list is a collection of h disjoint linked-lists (one or two ways)
L 1, L2 L h .

A single array Q [.] (or, in the case of two ways, a pair of arrays UP[.] and
DOWN [.]) can be used to implement a multiple list. Since each list needs two pointers
frst and last, two additional arrays of h elements FRST[.] and LAST [.] are needed.
Thus, the overall storage requirement is n + 2h for multiple linked-lists and 2n + 2h
for multiple two-way linked-lists.

Two-way linked-lists and multiple lists will be used to implement priority
queues (see sect. 7).

6. Lis t sea rch a l g o r i t h m s

We now present four spt algorithms which make use of linked-lists in order
to implement the set Q.

Remembering the general complexity bound presented in sect. 3,
O(qo + ci ql + c2q2), where c2 i> cl >i n, it is easy to verify that these algorithms
run in O(c2);in fact, qo is O(n), ql and q2 are constant.

G. Gallo and S. Pallottino, Shortest path algorithms 15

Algorithm L-queue

The queue seems to be a very natural choice when implementing SPT. We shall
call such an algorithm L-queue. It represents an efficient implementation of a well-
known shortest path method which is often credited to Bellman [3], Ford [12] and
Moore [32].

Procedure LQUEUE(r);
begin

comment: TINIT and QINIT;
for i : = 1 to n do begin P[i] :=r; D[i] :=+oo; Q[i] :=0 end;
P[r] :=D[r] :=0; Q[n+ l] :=last:=r; a[r] :=n+ l;
repeat

comment: QOUT;
u : = a [n + l] ; Q[n+ 1] := Q[u]; Q[u] :=0;
if last = u then last : = n + 1;
comment: scan FS(u);
foreach (u, v) E FS(u) do if D [u] + luo < D [o] then

begin
comment: QIN;
if Q[v] =0 then begin a[last] := last:= v; Q[v] := n + 1 end;
comment: TUPDATE;
/'[o] :=u; D[o] :=D[u] + l.o

end
until Q [n + l] = n + l

end;

Since each node cannot be inserted in the queue more than n times (Lawler
[30]), ~" ~< n and, as c2 ~< m~', the complexity of L-queue is O(nm) (O(n a) for
complete graphs).

The space requirement is 4n + 2m: n + 2m for the input data, n for the
queue, and 2n for the arrays P[.] and D [.].

Algorithm L-deque

A deque is used in the well-known D'Esopo- Pape algorithm (see Pape [36-38]),
where the insertion policy is the following:

the first time a node is to be inserted into Q, it is added to Q" at the
tail; this corresponds to a breadth-first search strategy. When, later on,
the same node, after being removed from Q, again becomes a candidate
for insertion, it is added to Q' at the head: from now on the node is
processed on the basis of a depth-first search strategy.

16 G. Gallo and S. PaUottino, Shortest path algorithms

The rationale for using this rather peculiar policy is that every time a label du
is updated (decreased), except the first time, it is worth trying to decrease the labels
of the successors of u in the current tree as well: this is the aim of the depth-first
search phase.

We caU this algorithm L-deque.

Procedure LDEQUE(r);
begin

comment: TINIT and QINIT;
for i := 1 to n do begin P[i] : = r ; D [i] :=+o~; Q[i] :=0 end;
P[r] :=D[r] :=0; Q[n+ 1] :=last:=r; a[r] : = n + l ;
repeat

comment: QOUT;
u : = a [n + l] ; a [n + l] := Q[u]; Q[u] :=0;
if last = u then last : = n + 1 ;
comment: scan FS(u);
foreach (u, v) E FS(u) do if D [u] + luo < D [v] then

begin
comment: QIN;

if Q[v] =0 then i fD[v] = +
then begin Q[last] :=last:=v; Q[v] : = n + l end
else begin Q[v] : = a [n + l] ; Q[n+ 1] :=v;

if last=n+ 1 then last:= v end;
comment: TUPDATE;
P[v] := u; D[v] :=O[u] + luv

end
until Q In + 1] : n + 1

end;

In this case, ~" and cl are bounded by 0(2 n) and, as c2 <<- ncl , the complexity
of L-deque is O(n. 2 n) (Kershenbaum [27], Shier and WitzgaU [39]).

Although characterized by a rather high worst-case complexity, the algorithm
L-deque is very efficient in practice, mainly when dealing with sparse, almost planar,
graphs (Dial et al. [7], Gallo et al. [17], Van Vliet [44]). An interesting experimental
finding is that, for sparse graphs, ~ is independent of n (~" ~ 1.5) (see table 5 in
sect. 10).

The space requirement is 4n + 2m, as for L-queue.

Algorithm L-2queue

L-2queue is the algorithm obtained when Q is implemented by means of a
2queue and the insertion policy is similar to the one used in L-deque.

G. Gallo and S. Pallottino, Shortest path algorithms 17

Procedure L2QUEUE(r);
begin

comment: TINIT and QINIT;
for i : = 1 t o n do begin P[i] :=r ; D[i] := +o0; Q[i] :=0 end;
P[r] :=D[r] :=0; Q[n+ l] :=last:=r; Q[r] : = p n t r : = n + l;
repeat

comment: QOUT;
u : = Q [n + l] ; Q [n + l] : = Q [u] ; Q[u] :=0;
if pntr = u then pntr := n + 1;
if last = u then last : = n + 1 ;
comment: scan FS(u);
foreaeh (u, o) E FS(u) do if D [u] + luo < D [o] then

begin
comment: QIN;

if Q[o] =0 then i fD[o] = +oo
then begin Q [last] := last := o; Q [o] := n + 1 end
else begin Q[o] := a [pntr] ; Q [pntr] := v;

if last = pntr then last : = o;
pntr := o end;

comment: TUPDATE;
e[o] :=u; D[o] :=D[u] + luo

end
until Q[n + 1] =n + 1

end;

The main difference between L-deque and L-2queue is in the worst-case
computational complexity; in fact, as ~" = 0 (n2), the complexity for L 2queue is
O(n2m) (Pallottino [34,35]). In practice, the two algorithms behave quite similarly.

Since L-2queue (at least in our experimentation) has always proved to be
almost as good as L-deque without the risk of bad behavior in pathological cases, it
can be recommended to risk-averse users.

The space requirement of L-2queue is the same as for L-queue.

Algorithm L-threshold

The interesting idea behind L-deque and L-2queue is the partitioning of the
set of nodes into two subsets and the different processing of the nodes according to
which of the two subsets they belong to. The partitioning is dynamically updated
at each iteration.

In the papers by Glover et al. [19, 20], the use of the threshold value s is
suggested for partitioning Q into two subsets, Q' and Q": deletions are made at the
head of Q', which contains only nodes with labels less than, or equal to, s. Many

18 G. Gallo and S. Pallottino, Shortest path algorithms

different algorithms can be obtained, depending on the choice of: the threshold, the
policy for updating its value, the implementation of Qt and Q", and the way elements
are moved from Q' to Q".

The algorithm L-threshold is derived from the threshold algorithm proposed
by Glover et al. [19]. The set of candidate nodes Q is partitioned into two subsets
Q' and Q", where Q' is a queue and Q" is a linked-list. Note that, while in L-deque
and in L-2queue Q' and Q" were implemented as two sections of a single list, here
Q' and Q" are two distinct linked-lists.

The queue Q' contains all the nodes of Q whose labels are less than, or equal
to, the current threshold value thrs; the remaining nodes are maintained in Q".

The procedure QOUT removes the head of Q' if Q' :~ 0; when Q' is emptied,
the threshold value thrs is updated (increased) and Q" is scanned to move all the
nodes with label ~< thrs to Q' and then the new head of Q' is removed. A node v
is inserted in Q' , at the tail, only if d u (. thrs. When anode o currently belonging to
Q" is assigned a new label d o <~ thrs, v is moved to Q'. In practice it has been proved
to be computationally advantageous to leave a copy of o in Q"; when Q" is scanned
to refresh Q', all the copies are deleted.

To evaluate and update the threshold value, two parameters are computed
in procedure QINIT (Glover et al. [19]):

s = rain{rain, 35},

I x2. lmax if s ~< 7,
t / 7.x2. lmax/s otherwise;

where lmax is the maximum arc length and where the value of x 2 is chosen on the
basis of the topology of the graph: Glover et al. suggest x2 -- 1.5 for grid graphs and
x2 = 0.25 for random graphs.

Procedure LTHRESHOLD(r);
begin

comment: TINIT and QINIT;
for i : = to n do begin P[i] := r ; D[i] := +oo; QI [i] := Q2[i] :=0 end;
P[r] : = D [r] :=0; Ql[n + 1] :=last:=r; Q2[n+ 1] := Ql[r] : = n + l ;
s := MIN(m/n,35); t := x2 • Imax; if s > 7 then t := t • 7/s; thrs := - 1;
repeat

comment: QOUT;
if Q l [n + l] = n + l then

begin
min := +~o; t l := thrs+ t+ 1; i :=n + 1; 1" := Q2[i] ;
comment: scan Q2[.] , compute min, remove copies of nodes

akeady removed, and move nodes from Q2 [.] to Q 1 [.] ;

G. Gallo and S. Pallottino, Shortest path algorithms 19

while]4= n + l do i f D []] > t l
then begin comment: update min;

if D[]] < min then min:=D[]] ;
i : =] ; j : = Q 2 [i] end

else begin comment: remove] from Q2[.] ;
Q2[i] := Q2[/] ; Q2[j] := 0;
if D []] <~ thrs then begin Ql [last] := last : = j ;

Q1 []] := n + 1 end;
] := Q2[i] end;

if Q l [n + l] 4 = n + l then thrs:=t l else
begin comment: if Q2 = ~ STOP;

if Q2[n+l] = n + l then stop;
thrs := rain + t; i := n + 1;] := Q2[i] ;
while] =~ n +

then begin
else begin

end
end;

1 do if D[]] > thrs
i : =] ; j := Q2[i] end
a2[i] := Q2[j] ; Q2[]] := 0;
al[last] :=last:=j; a l [j] : = n + 1;
j : = a2[i] end

u : = Q l [n + l] ; Q l [n + 1] := Ql [u] ; Ql[u] :=0 ;
if last = u then last := n + 1 ;
comment: scan FS(u);
foreach (u, v) ~ FS(u) do if D [u] + luo < D [v] then

begin
comment: QIN,
if D [u] + luv ~< thrs

then if Q1 [o] = 0 then begin Q1 [last] := last := o;
Ql[o] : = n + l end

else if Q2[v] =0 then begin Q2[v] : = Q 2 [n + l] ;
Q 2 [n + l] :=v end;

comment: TUPDATE;
P[v] :=u ; O[v] :=D[u] + luv

end
until Q l [n + l] = Q 2 [n + I] = n + l

end;

In QINIT we set thrs = - 1 , and in QOUT, when needed, the threshold value
is updated on the basis of

J thrs + t + l if dmin ~< thrs + t + l,
thrs

I dmin + t otherwise,

where dmin = min{d o :v E Q"}.

20 G. Gallo and S. Pallottino, Shortest path algorithms

As for complexity, q0 is O(n) and q2 is constant; q l , the cost of QOUT, is
a constant if Qt is not empty, otherwise it is O(n) since the linked-list Q" must be
scanned. Note that, since thrs cannot decrease and the node labels cannot increase,
when a label d o goes below thrs its node o can no longer be inserted in Q". Then
the number of times that Q" is scanned to refresh Q' is bounded by n, and hence
the total cost of "refreshing" operations is bounded by n 2 .

Between two successive refreshing operations, L-threshold behaves like L-queue
on a smaller graph, the partial graph (N, A '), with A ' = { (i, j) E A : d i ~< thrs }. Hence,
the number of extractions from Q~ for each node is bounded by n; then ? ~< n 2 and
the overall cost of QOUT is O(n 3).

The total cost of QIN is O(m~') = O(n2m). We may conclude that the com-
plexity of L-threshold is O (n 2 m).

Since to implement Q' and Q" we need two distinct n-arrays, the space
requirement for L-threshold is 5n + 2m.

7. P r io r i t y q u e u e s i m p l e m e n t a t i o n

As mentioned in sect. 4, a priority queue Q is a collection of elements with
each of which is associated a real valued label. We shall denote the label of element
i E Q by D [i] . The procedure QOUT retums a minimum label element out of the
one currently in the priority queue Q.

The elements of Q can be maintained either in order (ordered priority queue)
or out of order (unordered priority queue). This choice is crucial to the complexity
of the algorithms; in fact, when an ordering of the elements is maintained, any opera-
tion involving individual elements (change of the label values, insertion or deletion)
requires, at least in principle, the updating of the whole priority queue.

For the sake of computational efficiency, we shall consider only implementa-
tions of priority queues in which the questions "is o in Q?" and "is Q empty?" can
be answered in constant time*.

7.1. UNORDERED LINKED-LIST

The simplest way to implement a priority queue is the linked-list (see sect. 5),
in which the insertion is made at the head so that only one pointer frst is needed.
With this implementation, all operations performed on Q but QOUT are the same as
the corresponding operations described for the stacks.

QOUT, described next, requires the full scanning of Q in order to select the
minimum label element u.

*After the writing of this paper was completed, the paper by M.L. Fredman and R.E. Tarjan,
Fibonacci heaps and their uses in improved network optimization algorithms (J. ACM 34(1987)
596) has been brought to our attention. In this paper, a new data structure is described which
allows a very efficient implementation of priority queues for shortest path algorithms.

G. Gallo and S. Pallottino, Shortest path algorithms 21

Procedure QOUT(u);
begin

min := +~o; i := n + 1; x := i;
while Q[i] C n + l do

begin
if D [Q [i]] < min then begin x := i; rain := D [Q [i]] end;
i : = a [i]

end;
u : = a [x] ; a [x] : = a [u] ; a [u] : = 0

end;

For a better understanding of the procedure, note that to remove an element u,
the element x preceding u in the list must be known.

Let nq be the maximum cardinality of Q; then QOUT runs in O(nq) time.

7.2. ORDERED LINKED-LIST

Q can easily be implemented by means of a two-way linked-list UP[.] end
DOWN [.] , where the elements are sorted on the basis of a non-decreasing order of
the label values:

D[]] >t D[i] if] = DOWN[i],

and

D[frst] = m i n { d / : j E Q}, where fist = DOWN[n + 1].

QINIT runs in O(n) time and elementary operations DELETE and INSERT
have constant cost (see sect. 5.2).

Procedure QOUT, which is described next, has constant complexity.

Procedure QOUT(u);
begin

u := DOWN[n + I] ; DELETE(u)
end;

Much more expensive is procedure QIN, since we have to determine the posi-
tion at which the new element is to be inserted.

22 G. Gallo and S. Pallottino, Shortest path algorithms

Procedure QIN(o);
begin

if DOWN[w] = 0 then pntr := UP[n + 1]
else begin pntr := UP[w]; DELETE(w) end;

while D [pntr] > D [o] and pntr ~ n + 1 do pntr := UP[pntr] ;
INSERT (v, pntr)

end;

If nq <<. n is an upper bound on the cardinality of Q, then QIN runs in O(nq)
time.

7.3. BUCKETS

Let f be a monotonic non-decreasing integer function which maps the set of
labels onto the set of integers 1 , . . . , K. We shall assume that the function f (do) can
be evaluated in unit time.

The kth bucket is defined to be the subset of all the nodes o E Q such that
f(do) = k (Denardo and Fox [5], Knuth [29], Tarjan [42]).

A priority queue structured by buckets can be implemented by means of a
K-array of pointers Q [.] , where Q [k] points to the kth bucket. Each bucket is

Q DOWN

2
3

t i

K 1 t ,

i
i J

]
]

¢
Fig. 8. A buckets data structure.

UP

........ !

implemented as an unordered two-way linked-list; since the buckets are disjoint, they
can be implemented as just one multiple list by means of a pair of n-arrays UP[.]
and DOWN[.]. Note that Q[.] plays the role of the array FRST[.] described in
sect. 5.3, while the array LAST[.] is not needed since the additions in our imple-
mentation are performed only at the heads of the tists. An additional pointer pntr
is used, which contains the index of the first non-empty bucket. The overall storage
requirement is K + 2n + 1.

G. Gallo and S. Pallottino, Shortest path algorithms 23

Procedure QINIT runs in O(K + n) time:

Procedure QINIT(r);
begin

for i : = 1 to K do Q[i] : = n + l ;
for i : = l to n do UP[i] : = D O W N [i] : = 0 ;
pntr:=f(O); Q[pntr] :=r ; UP[r] := DOWN[r] :=n + 1

end;

In the procedure QOUT, we update pntr by scanning the array Q [.] to find
the first non-empty bucket; then the bucket is scanned to retrieve and remove the
minimum label dement. Since the algorithms using buckets are intended for graphs
with non-negative lengths, we may assume that the minimum labels are monotonically
non-decreasing and hence that pntr cannot decrease from one iteration to the next
in the algorithm. The complexity of QOUT can be split into two parts: the cost of
updating pntr, plus the cost of retrieving the minimum label element in the bucket.

Procedure QOUT(u);
begin

while Q [pntr] = n + 1 and pntr < K do pntr : = pntr + 1;
u := Q [pntr] ; min := D [u] ; i := DOWN[u] ;
while i ¢ n + l do

begin if D [i] < rain then begin min := D [i] ; u := i end;
i := DOWN[i] end;

DELETE(u)
end;

Procedure QIN runs in constant time.

Procedure QIN(o);
begin

if UP[o] :/: 0 then DELETE(o);
k := f (D [o]); INSERT(o, k)

end;

Note that DELETE and INSERT are the operations described in sect. 5.2 with
only minor modifications due to the fact that here we deal with multiple linked-lists.

7.4. BINARY HEAPS

The binary heap (Williams [46]) is a balanced binary tree where each node
points to one of the elements of a set of labeled elements, in such a way that the
label of the element pointed to by node i is less than, or equal to, the labels of the

24 G. Gallo and S. Pallottino, Shortest path algorithms

aP [3 lz 6 13 ~ 2 7 8 5 91
I 2 3 h 5 6 7 8 9 io

nhp= I 0

9kLJ Dr1 9 7 8 8 7 0" 00

8 Y 10 1 2 3 4 5 6 7 8 9 i0 ii 12 13

Fig. 9. The binary heap HP[.] and its dictionary Q [.].

elements pointed to by its descendants. Clearly, the root of the tree, node 1, points
to a minimum label element.

Binary heaps can be implemented as a pair of n-arrays HP[.] and Q[.],
where liP[i] is the element pointed to by node i and Q [o] is the index of the node
which points to the element o; if v ~ Q, then Q[v] = 0. An additional integer,
nhp = I QI,is used. The storage requirement is 2n + 1.

As usual, the nodes of the heap are numbered in such a way that the two sons
of a node i are nodes 2i and 2i + 1 (see fig. 9).

Procedure QINIT(r);
begin for i : = 1 to n do Q [i] :=I-IP[i] := O;

Q[r] :=1; HP[1] := r ; nhp:= 1
end;

Procedure QINIT runs in O(n) time.
The two procedures QOUT and QIN run in O(log nq) time, where net is the

maximum cardinality of Q.
In the former, the element u = HP[1] is removed and the heap is updated:

the last element HP[nhp] is placed at the root and is then moved down to restore the
order of the labels.

In the latter, first we check if o is not already in Q, in which case v is placed
in the first available position nhp 4- 1, then v is moved up until it reaches its correct
position in the heap.

Procedure QOUT(u);
begin

u : = HP[1]; Q[u] :=0 ; h:=I-IP[nhp]; nhp:=nhp-1;
if nhp > 0 then

G. Gallo and S. Pallottino, Shortest path algorithms 25

begin
k := 1;
repeat

k 2 : = 2 * k;
if k2 ~< nhp then

begin
if k 2 < nhp and D[HP[k2 + 1]] < D[HP[k2]]

then k2 := k2 + 1;
i : = HP[k2] ;
if D [i] < D [h] then begin HP[k] := i; Q [i] := k;

k := k2 end
end

until k # k2;
HP[k] := h; Q[h] := k

end
end;

Procedure QIN(v);
begin

if Q [v] = 0 then begin nhp := nhp + 1; HP[nhp] := v; Q [v] : = nhp end;
k : = Q [v]; k 2 : = INT(k/2);
while k2 > 0 and D [o] < D [HP[k2]] do

b e ~ I ~ [k] := m'[k2] ; Q [UP[k2]] := k;
k := k2; k2 := INT(k/2) end;

riP[k] :=o; Q Iv] := k
end;

8. S h o r t e s t - f i r s t sea rch a l g o r i t h m s

The first algorithm to use a shortest-first search strategy can be credited both
to Dijkstra [8] and to Moore [32], although it was the former who stated formally
its properties; actually, any algorithm which uses this strategy can be considered a
particular implementation of Dijkstra's original method.

The basic property of these algorithms is the following:

Proposition 1. I f lij >1 0, V (i , /) E A, then each node is removed from (and
hence inserted into) Q exactly once.

This is due to the fact that, at each step, if u is a minimum label element
of Q, then d u is the shortest distance from r to u, provided that no arc has a negative
length. In this case, we have ~" = 1, Cl = O(n) and c2 = O(m).

26 G. Gallo and S. Pallottino, Shortest path algorithms

So, the complexity for the shortest-first algorithms when the lengths are non-
negative is O(q0 + nqx + mq2).

Unfortunately, such a nice property no longer holds when the arc lengths are
not restricted to being non-negative. In this case, it can be shown (Johnson [24])
that the algorithm might pass through step 2 exponentially many times, and then
ci = O(2 n) and c2 = O(n. 2n).

In the following, we shall restrict ourselves to the case of non-negative lengths.

Algorithm S-Dijkstra

S-Dijkstra represents the simplest implementation of Dijkstra's original idea.

Q is an unordered linked-fist. As shown in sects. 5.1 and 7.1, qo is O(n),
ql is O(nq) ~ O(n) and q2 is constant. In this case, the algorithm runs in O(n 2)
time.

Its space requirement is 4n + 2m.

Procedure SDIJKSTRA(r);
begin

comment: TINIT and QINIT;
for i : = I to n do begin P[i] : = r ; D [i] :=+oo; Q[i] :=0 end;
P[r] :=O[r] :=0; Q[n+ 1] :=r; air] : = n + l ;
repeat

comment: QOUT;
min := +oo; i : = n + l ; x : = i ;
while Q[i] 4: n + 1 do

begin
if D [Q [i]] < min then begin x := i; min := D [Q [i]] end;
i:=Q[i]

end;
u:=Q[x]; Q[x] := Q[u]; Q[u] : : 0 ;
comment: scan FS(u);
foreaeh (u, v) E FS(u) do if D [u] + luo < D [v] then

begin
comment: QIN;
i fQ[v] =0 then begin Q[v] : = Q [n + l] ; Q [n + l] :=vend ;
comment: TUPDATE;
P[v] :=u; D[v] :=D[u] + luv

end
until a[n + 1] =n + 1

end;

G. Gallo and S. Pallottino, Shortest path algorithms 27

Algorithm S-ord

The algorithm S-ord makes use of an ordered two-way linked-list. To improve
its efficiency, a pre-processing phase is performed where the forward stars are sorted
in decreasing order of arc lengths (Simeone [40]). In doing so, we obtain the two
following advantages:

(i) to perform the operations QIN on the ending nodes of the arcs in FS(u),
the list must be scanned only once from the tail (highest label element)
to the head;

(ii) let (u, v) and (u, w) be successive arcs in FS(u), and assume that, after
having performed operation QIN(v) we also update the label of node w

I from the old value d w to the new value d w = d u + luw. Then, since
FS(u) has been sorted, d" ~< min{do, d w }.

These facts can be exploited to "skip" uninteresting portions of the list when
QIN(w) is performed.

The complexity of the pre-processing phase is O(mn); in fact, in our imple-
mentation each forward star is sorted by means of a bubble-sort algorithm.

Now we derive the complexity of the algorithm without considering the pre-
processing phase. This is of interest when the algorithm must be used many times on
the same set of data. The cost qo is O(n) and ql is constant. Since all the QIN opera-
tions relative to the same forward star cost O(n) because of (i), the overall cost due
to QIN is O(n 2). Hence, the complexity of S-ord is O(n 2).

The space requirement is 5n + 2m.

Procedure SORD(r);
begin

comment: TINIT and QINIT;
for i :=1 to n do begin P[i] :=r; D[i] : = + ~ ;

UP[i] := DOWN[i] := 0 end;
e[r] :=D[r] :=0; UP[n+ 1] :=DOWN[n+ 1] :=r;

UP[r] :=DOWN[r] : = n + 1;
O [n + 1] := -oo;
repeat

comment: QOUT;
u := DOWN[n + 1] ;
UP[DOWN[u]] := n + 1; DOWN[n + 1] :=DOWN[u];
DOWN[u] :=UP[u] :=0; pntr:= UP[n + 1];
comment: scan FS(u);
foreach (u, v) E FS(u) do if D [u] + luv < D [v] then

begin
comment: QIN;
if DOWN[v] :~ 0 then

28 G. Gallo and S. Pallottino, Shortest path algorithms

begin UP[DOWN[v]] := UP[v] ; DOWN[UP[v]] := DOWN[v];
if D[v] < D[pntr] then pntr:=UP[v] end;

delta := D [u] + luo;
while D [pntr] > delta do pntr := UP[pntr] ;
DOWN[o] := DOWN[pntr] ; UP[DOWN[v]] := v;
DOwN[pntr] :=v; UP[o] := pntr;
comment: TUPDATE;
e[v] := u; D [v] := delta

end
until DOWN[n + 1] = n + 1

end;

Algorithm S-Dial

The algorithm S-Dial (Dial [6]) makes use of the buckets to implement Q.
Without loss of generality, we can consider the arc-length (non-negative) integers.
Let lmax =max{lil : (i ,])E A}.

The function f (do) is: f (do) = d o + 1, so that the first non-empty bucket
contains only minimum label nodes; hence, in operation QOUT, the scanning of the
bucket is not necessary.

Moreover, the dimension of the vector Q [.] , which is crucial to the storage
requirement of the algorithm, can be reduced by means of the following con-
sideration: if u is a minimum label element of Q, then, for each v E Q,
d u <<. d o <~ d u + tmax. Hence, the function f introduced can be replaced by the new

• t " 1 - " " " function f = f .mod(Imax 1), which is implemented by means of:

f ' (do) =
f ' (du) + luv

f ' (du) + luo - Imax - 1

if f ' (du) + luo < lmax + 1,

otherwise;

and the dimension of Q[.] is reduced to K = lmax + 1. The effect of using the latter
function f ' is that each bucket is used several times.

The overall complexity of QOUT is O(dmax), where dmax = maxId o : v E N}
<~ n. lmax.

As qo = O(n + Imax) and qz is constant, the complexity of S-Dial is
O(m + n.lmax).

The space requirement is 5n + 2m + lmax.

G. Gallo and S. Pallottino, Shortest path algorithms 29

Procedure SDIAL(r);
begin

comment: TINIT and QINIT;
for i := 1 to n do begin P[i] := r ; D [i] : = +oo;

UP[i] :=DOWN[i] :=0 end;
for i : = 1 to lmax+l do Q[i] : = n + l ;
e[r] : = D [r] :=0 ; Q[1] := r ; UP[r] := - I ; DOWN[r] : = n + 1;
cntr:= pntr:= 1;
repeat

comment: QOUT;
while Q [pntr] = n + 1 do if pntr > lmax then pntr := 1

else pntr:=pntr+ 1;
u := Q[pntr]; Q[pntr] := DOWN[u];
UP[DOWN[u]] := -pntr; UP[u] := DOWN[u] := 0; cntr :=cntr- 1;
comment: scan FS(u);
foreach (u, o) E FS(u) do if D [u] + luo < D [v] then

begin
comment: QIN;
if DOWN[v] := 0 then cntr := cntr + 1

else
begin

if UP[v] > 0 then DOWN[UP[o]] := DOWN[v]
else a [- UP Iv]] : = DOWN [v] ;

UP[DOWN[v]] := UP[v]
end;

x := pntr + Luv;
if x > lmax+ 1 then x : = x - l m a x - 1 ;
DOWN[v] := a [x] ; UP[DOWN[v]] := v;
a[x] :=v; UP[v] := - x ;
comment: TUPDATE;
P[o] := u; D[v] : = D [u] + luo

end
until cntr = 0

end;

Algorithm S-heap

In S-heap, the priority queue is a partially ordered set implemented by means
of a binary heap (see sect. 7.4). The operations QOUT and QIN run in O(log nq). Then
the complexity of S-heap is O(m. log n) (D.B. Johnson [25] and E.L. Johnson [26]).

30 G. Gallo and S. Pallottino, Shortest path algorithms

Procedure SHEAP (r);
begin

comment: TINIT and QINIT;
for i : = 1 to n do begin P[i] :=r ; D[i] := +c,,;

HP[i] := Q[i] :=0 end;
P[r] :=D[r] :=0; Q[r] :=nhp:=l; HP[1] :=r;
repeat

comment: QOUT;
u :=HP[1]; Q[u] :=0; h:=HP[nhp]; nhp:=nhp-1;
if nhp > 0 then

begin
k : = l ;
repeat

k2 := 2 * k;
if k2 < nhp then

begin
if k 2 < nhp and D[I-[P[k2 + 1]] < D[HP[k2]]

then k2 := k2 + 1;
i := I-IP[k2] ;
i f O [i] < O [h] then

begin HP[k] := i; Q[i] := k; k := k2 end
end

until k ¢ k2;
HP[k] := h; Q[h] := k

end;
comment: scan FS(u);
foreaeh (u, v) E FS(u) do if D [u] + luv < D Iv] then

begin
comment: QIN;
if Q[o] =0 then begin nhp := nhp + 1; HP[nhp] :=v;

Q [v] := nhp end;
k := Q [v] ; k2 := INT(k/2);
while k 2 > 0 and D[v] < D[HP[k2]] do

begin HP[k] := HP[k2] ; Q [HP[k2]] := k;
k := k2; k2 := INT(k/2) end;

HP[k] :=o; Q[o] := k;
comment: TI~DATE;
P[v] :=u; D[v] :=D[u] + luo

end
until nhp = 0

end;

G. Gallo and S. Pallottino, Shortest path algorithms 31

Note that quite often in sparse graphs, m is O(n), and the complexity becomes
O(n.log n).

The space requirement is 5n + 2m.

9. The all pairs problem

In most real-life models, the requirement is to f'md the shortest distances
between all pairs of nodes. Algorithms exist which solve this problem directly. One
of them, very ingenious indeed, is due to Floyd [11] and is based on a result by
Warshall [45]. The underlying idea is rather simple: let db n) be the length of the
shortest path from i to j, subject to the condition that the path does not pass through
any of the nodes h, h + 1 n (i and j except); then we have

d/(/1) =
lq, if (i, j) E A,

O, if i =j,

+ ~, otherwise;

The array of predecessor nodes, where pq is the predecessor of node j in the
shortest path from i to j, is (Hu [22]):

i, if (i, j) E A,

p~l) = 0, otherwise;

p(n+l) q
p(n) hj '

if d:? +1) = d/~ h),

otherwise.

Clearly, d~ n + I) is the shortest distance between nodes i and]. The complexity
of this algorithm is O(n 3), whatever the density of the graph.

32 G. Gallo and S. Pallottino, Shortest path algorithms

Procedure FLOYD(n);
begin

comment: initialization;
for i : = l to n do f o r j : = l to n do

if (i , j) E A then begin D[i,j] :=lij; P[i,j] := i end
else begin D[i,j] := + o o ; p [i , j] :=0 end;

for i : = 1 to n do D[i , i] :=0;
comment: paths computation;
for h : = l to n do for i :=1 to n do for j : = l to n do

if O[i,j] >O[i ,h] + O [h , /] then
begin D[i,j] :=D[i,h] + D[h,j]; P[i,j] :=P[h,j] end

end;

A major drawback of this algorithm is its high storage requirement, O(n2),
which prevents it being used in large-scale models. The need for a storage space of the
order of n 2 is a characteristic shared by all direct approaches to the all-pairs shortest
path problem (Dantzig [4], Tabourier [41]).

This explains why the approach most often used in practice consists of carrying
out a sequence of n distinct spt computations. This sequential approach may seem
rather redundant, but can in fact be implemented efficiently (Bazaraa and Langley [2]).

The problem of finding the spt rooted at s ~ r, T*(s), once T*(r) is known, is
simply a particular reoptirnization problem, as shown in the paper by GaUo [13]. An
efficient sequential solution procedure can be devised making use of the transformation

lij = lij + dri -dr j >1 0, (i, j) E A;

where dri is the shortest distance from the old root r to node i.
It is easy to see that such a transformation does not affect the shortest path

tree T(s), since its effect is to change the length of each path by a constant (Edmonds
and Karp [9], GaUo [14], Nemhauser [33]). Once the shortest distances with trans-
formed lengths have been found, the true distances are determined by means of the
inverse transformation

= - + d v ~ N , dso ~o drs to'

where dso is the shortest distance from s to v with the transformed lengths l.
The resulting procedure is:

Procedure SA (Sequential All pairs) (Gallo and Pallottino [15])

Step 1. Find T*(1) and dlo, o E N, making use of any list-search algorithm. Set
k = l .

G. Gallo and S. Pallottino, Shortest path algorithms 33

Step 2. S e t l ' i i = l q + d k i - d x / , (i , /) E A ; set k = k + t.

Step 3. Find T*(k) and dkv, o E N, making use of any shortest-first search algo-
rithm.

S tep4 . S e t d k o = d k v - d (k _ l) x + d(k_l)v, v ~ N .
If k < n, then go to step 2; else STOP.

Unlike the Floyd-Warshall method, this procedure needs a storage space
linear with m and n. If L-queue and S-heap are used at step I and at step 3, respectively,
the complexity of SA is O(m- n . log n) (Lawler [31]), which for sparse graphs can be
less than the complexity of the Floyd-Warshall method. Moreover, while the actual
number of operations for this method is always of the order of n 3 , this is not the case
for SA for which, in practical problems, the complexity is often far below its worst-
case figure.

Note that at step 3, an spt problem is solved where the distribution of the arc
lengths is very peculiar indeed. In fact, a large number of arcs have zero length (at
least all the n - 1 arcs of T*(k - I) since for such arcs d(k _ 1)i - d(k_ t)i = lq), while
some others may have rather large lengths depending on the relative value of d(k_ t)i
and d(k_ ~)]. These facts can be exploited to speed up the algorithm.

Moreover, a bound to the longest shortest path can easily be determined:

Proposition 2 (Gallo [13])

Dk = max{dko "rE N} = ~(k -1) = dk(~- l) + d(k-1)k "

D k, at least for graphs without zero length cycles, is a norm and can be con-
sidered as a measure of the "distance" between the kth and (k - 1)th problems. Then,
the computational complexity of step 3 is O(m + Dk).

Similar results, although slightly more intricate, can be obtained with the
other shortest-first search algorithms.

From these considerations, it follows that the ordering of the nodes (origins)
is not immaterial to the computational complexity of SA.

To maximize the efficiency of SA, one should try to order the nodes in such
a way that nodes k - 1 and k be as close as possible. This can be done either with an
"apriori" ordering, or in an "adaptive" way, i.e. by selecting at each step, on the
basis of the current shortest distances, the node to be considered next. An "apriori"
ordering calls for a pre-processing of the graph, which can be done by means of any
heuristic algorithm for the travelling saleman problem; this is particularly advantageous
when many all-pairs problems are to be solved on the same graph.

In the following, an implementation of SA is described (Gallo and Pailottino
[15]).

34 G. Gallo and S. Pallottino, Shortest path algorithms

Algorithm PSA (Primal Sequential All pairs)

This algorithm is based on two facts which derive from the considerations
developed before and in proposition 2:

(i) in the execution of algorithm SPT, at step 3 of SA, it is likely that more
than one element with a minimum label exists in Q (this happens, for instance, when a
node u is selected, whose forward star contains more than one arc with zero trans-
formed length);

(ii) a node v E Q with label d v > D k cannot be a candidate for selection at
step 2 of SPT.

Then we may partition Q into three sets Q', Q" and Q"', and the insertion of
a node v at step 3 of SPT is carried out according to the following rule, where D is an
estimate of Dk:

(1) if d o = d u (i.e. ~{uo = 0), then v is inserted into Q' (and deleted from Q"
or from Q"' if already in Q);

(2) if d u < d o <<. D, then o is inserted into Q" (and deleted from Q"' if
necessary);

(3) if d o > D, then v is inserted into Q"'.

The sets Q' and Q" ' are implemented as linked-lists, whereas the set Q" is imple-
mented as a priority queue. Each time the set Q' is empty, all the minimum label
elements of Q" are moved into Q'. When Q' and Q" are empty and Q"' is not, D is
increased and all the elements v E Q"' with d o less than, or equal to, the new esti-
mate D are moved into Q' or into Q". A reasonable initial estimate of D k is 2d(k_ 1)k
(GaUo [13], GaUo and Pallottino [15]).

Note that when node k - 1 (the previous origin) is inserted into Q', the explora-
tion of Q can be interrupted. In fact, any node v not yet inserted into Q' can be
reached from k - 1 at zero (transformed) distance, and a shortest path from k to
v passes through node k - 1. Hence, provided that additional bookkeeping is carried
out to update the predecessor vector, it is easy to determine the new spt T*(k) . The
main advantage of this fact is that each shortest path tree computation in SA (except
for the first one) does not necessarily pass through the examination of all the arcs;
thus, its complexity is ~2(n) and not £Z(m) as in the general case.

The computational complexity of this implementation of SA depends on
the particular data structure chosen to implement the priority queue, and in any case
it can be bounded by O(n3).

The application of PSA and an analogous algorithm based on a dual approach
(Florian et al. [10]) to some real urban transportation problems has shown that
about 10% of the nodes and arcs do not need to be examined at each iteration; more-
over, up to 90% of the examined nodes are inserted directly into Q'. The solution was
attained with computer times from 20% to 35% lower than the times needed by
L-deque or by S-Dial.

G. Gallo and S. Pallottino, Shortest path algorithms 35

10. Numer ica l e x p e r i m e n t a t i o n

Now we describe the experimentation performed on a rather broad set of
test problems, in order to achieve a deeper understanding of the algorithms' behavior
and to assess their relative efficiency.

The experimentation reported refers to the spt algorithms described in sects. 6
and 8 and is part of wider ranging experimentation illustrated in Gallo et al. [17].

The codes we used are an almost "one-to-one" FORTRAN-ANSI implementa-
tion of the pidgin Pascal description of the algorithms. The only modifications, which
regard minor points in the implementation of the data structures, were made for
reasons of computational efficiency. For this reason, we do not include in the text
the source lists, which of course can be obtained together with the test problem
generators from the enclosed diskette.

The graphs used in the experimentation can be partitioned into two major
classes: complete and sparse graphs.

Due to the high growth rate of the storage requirement, only relatively small-
size (up to a maximum of 175 nodes) complete graphs were generated.

Three types of sparse graphs were considered: random graphs, k-lineargraphs
and grid graphs. Graphs going from i000 of nodes and 10 000 arcs up to 3000 and
30 000 arcs were generated.

In random graphs, the arcs were generated randomly, without repetitions, in
order to achieve assigned density values.

k-linear graphs (see sect. I0.3) are particularly structured sparse graphs which
represent real-life models quite well, such as a large class of transportation networks.

The grid graphs, which have been widely used in previous experimentations
(Gilsinn and Witzgall [18], Dial et al. [7]), can be regarded as a particular case of
k-linear graphs.

Integer arc lengths were generated randomly, with a uniform distribution
between 0 and an assigned maximum positive value lmax.

As expected, the only algorithm whose behavior is noticeably affected by the
arc-length range is S-Dial which, out of the shortest-first algorithms, is the fastest
for small values of Imax (100 in our experimentation). When tmax increases, S-Dial
slows down strongly.

Out of the list-search algorithms, L-threshold turns out to be the fastest. Out
of the other algorithms in this class, L-deque and L-2queue, which behave very much
alike, out-perform L-queue for well structured graphs, k-linear and grid graphs, while
L-queue is usually faster for complete and random graphs. It can be noted that these
experimental findings go against what is suggested by the worst-case computational
complexity.

The efficiency of L-threshold is mainly due to the choice of the parameters s,
t and x2 (see sect. 6), determined by the authors (Glover et al. [19]) by means of a
very great deal of experimentation. Since the parameter values depend on the particular

36 G. Gallo and S. Pallottino, Shortest path algorithms

topology of the graph and on lmax, a tuning-up phase might be needed in some
applications to achieve the maximum efficiency of the algorithm.

Although slower, L-deque and L-2queue, whose behavior is quite stable with
respect to the input data, are fast enough to be considered a good choice in most
applications. Out of the two, risk-averse users might prefer the latter, which is poly-
nomiatly bounded.

Strong points for some users are the simplicity of implementation and the
storage requirement.

L-queue, L-deque and L-2queue, which are based on linked lists with simple
handling operations, are easy to implement with a small number of statements. More
complicated are S-Dijkstra and S-ord because of the operations performed on the
linked-lists.

S-heap, S-Dial and L-threshold require more sophisticated data structures
and are the most complex to implement out of the spt algorithms described in this
paper. Hence, their implementations are characterized by a rather large number of
statements.

Table 1

Memory requirement

Storage requirement Algorithms

4n + 2m S-Dijkstra, L-queue, L-deque, L-2queue
5 n + 2m S-ord, S-heap, L-threshold
5n + 2 m + lmax S-Dial

In table 1, the storage requirement of the different algorithms is summarized.
Remember that in assessing overall memory occupation one should consider, in
addition to the space for the data, given in the table, the in-core memory needed
by the program itself, which usually increases with the number of statements.

We now give a detailed description of the experimentation. In the tests, two
ranges, from which the arc lengths have been uniformly drawn, were used: [0 + 100]
and [0 + 10 000]. Since all the algorithms but S-Dial are unaffected by lmax, we
report only the results obtained with lmax = 100 except for S-Dial, for which we
fully report on all the tests performed.

The CPU times in sec. 10 -3 given in the tables and in the figures are the
mean values over ten runs, each differing from the others only as far as the origin
of the paths is concerned.

The computer used was an IBM 3033 N08 under VM/CMS Operating System
and a FORTGI compiler.

G. Gallo and S. Pallottino, Shortest path algorithms 37

10.1. COMPLETE GRAPHS

Four different complete graphs were generated with n = 25, 7 5 , 1 2 5 and 175.
We ran L-threshold with different values o f x , obtaining the CPU time reported

in table 2, which suggests that x = 0.25 is a good choice for complete graphs.

Table 2

CPU times for n = 175

x2 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time 72 90 100 104 108 109 112 113

Table 3

Complete graphs

Algorithms n = 25 n = 75 n = 125 n = 175

S-Dijkstra 2.2 20 55 107
S-ord 2 52 217 573
S-heap 2 14 37 71
S-Dial (lmax = 102) 2 14 37 71
S-Dial (hnax = 104) 20.8 31 54 89

L-queue 2.2 23 62 125
L-deque 2.4 32 83 186
L-2queue 2.4 31 81 179
L-threshold (trnax = 102) 1.8 14 38 72
(x2 = 0.25)
L-threshold (lmax = 104) 1.8 15 40 94
(x2 = 0.25)

The results o f the experimentat ion reported in table 3 show that (only) in
this case the fastest algorithm is S-heap.

The behavior of the algorithms on the basis o f the data o f table 3 is sum-
marized in fig. 10.

The relatively disappointing performance o f the list-search algorithms (except
L-threshold) can be credited to the following fact: the number o f label updates per-
formed in these algorithms increases with the number o f alternative paths with dif-
ferent lengths f rom the root to each node. A large number o f such paths may produce
too many trials before hitting on the right label. Of course, it is in complete graphs
that we have a maximum number o f alternative paths.

38 G. Gallo and S. Pallottino, Shortest path algorithms

t

200

180

160

120

i00

8O

6O

~0

2C

!

25
I

75

I S-ord
I
I
I
i
l

I
125

L-deque

L-2queue

L-queue

kstra

hold(imax=lO h)

imax=lO h)

L-threshold(imax=lO 2)

,~S-heap 2
S-Dial(max=lO)

175 n

Fig. 10. Complete graphs.

G. Gallo and S. Pal lo t t ino , S h o r t e s t pa th a lgor i thms 39

Table 4

Complete graphs: lmax = n a

Algorithms n = 25 n = 75 n = 125 n = 175

S-Dijkstra 2.4 20 55 108
S-ord 2.2 53 219 576
S-heap 2.2 15 39 72
S-Dial 3 24 64 123

L-queue 2.2 29 73 162
L-deque 2.4 40 109 284
L-2queue 2.6 39 105 258
L-threshold (x2 = 0.25) 1.8 15 40 94

These considerations are backed up by the experimental findings reported in

table 4, where we ran the same problems as before with increasing l m a x values,

namely l m a x = n 2 . Clearly, the effect of increasing the arc-length range is to increase

the probability o f distinct paths having different lengths. In any case, the effect o f the

arc-length range on the behavior o f list-search algorithms is relatively small.

10.2. RANDOM GRAPHS

Four different random graphs were generated with n -- 1000, 3000 and

m - 10 000, 30 000; (l m a x = 100 for all the algorithms except for S-Dial, for which
the value 10 000 was also used).

Table 5

Random graphs

n = 1000 n = 1000 n = 3000 n = 3000
Algorithms m = 10 000 m = 30 000 m = 10 000 m = 30 000

S-Dijkstra 1180 1420 6017 9506
S-ord 163 333 597 1106
S-heap 72 121 171 226
S-Dial (lmax = 102) 39 88 64 112
S-Dial (lmax = 10 ~) 76 238 153 163

L-queue 55 161 70 183
L-deque 57 186 65 193
L-2queue 58 186 64 193
L-threshold (x2 = 0.25) 36 83 64 105

40 G. Gallo and S. Pallottino, Shortest path algorithms

From the results reported in table 5, the following considerations derive:

- as anticipated, L-threshold is the fastest algorithm;
- the behavior of algorithms S-Dijkstra and S-oral is more affected by the

number of the nodes than by the number of the arcs, which is reasonable
since their theoretical complexity is O(n 2);

- the other algorithms are more affected by the number of the arcs; this is
particularly true for the list-search algorithms.

10.3. k-LINEAR GRAPHS

k-linear graphs are layered graphs where the nodes are partitioned into k sub-
sets, N1, N2 N k, with arcs connecting either nodes of the same subset or nodes
belonging to adjacent subsets.

In the experimentation, we always chose

2tN~I = IN=t = . . . = INk_~t = 21N~I = n/(k-1).

As for arcs, which were randomly generated, two types of k-linear graphs
were used:

(i) the stable ones, where no arc exists between nodes in the same subset;
(ii) the unstable ones, where such arcs are allowed.

More details on the way these arcs were generated can be obtained from the
comments of the generators source lists in the diskette.

For each of these two types of graphs, four different topologies were generated
with 2500 nodes, 30 000 arcs and k = 10, 50,100, 200. Again,we have set lmax = 100,
and lmax = 10 000 only for S-Dial.

From the results reported in table 6, one can observe that:

- L-threshold strictly dominates all the other algorithms;
- except for L-queue, the list-search algorithms are unaffected by k;
- as backed up also be experimental findings not reported here, L-queue

slows down when the diameter of the graph increases, which in this case
is bounded from below by k - 1;

- except for S-Dial, the effect of increasing k is to decrease (although only
slightly) the running times of the shortest-first search algorithms; this is
due to the fact that as the diameter increases, the maximum number of
elements currently in the priority queue decreases (for a given size of
graphs);

- the behavior of S-Dial is explained by that fact that, as reported in sect. 8,
the number of operations performed linearly increases with dmax, which
in turn increases with k.

G. Gallo and S. Pallottino, Shortest path algorithms 41

Table 6

k-linear graphs: n = 2500, m = 30 000

Algorithms k = 10 k = 50 k -- 100 k = 200

S-Dijkstra 6145 1282 649 349
S-ord 734 243 186 160
S-heap 206 176 164 152
S-Dial (lmax = 102) 113 106 105 107
S-Dial (tmax = 104) 157 185 243 371

L-queue (stable graphs) 194 241 297 292
L-queue (unstable graphs) 196 434 360 1208
L-deque 159 117 110 105
L-2queue 159 118 111 106
L-threshold (x2 = 0.25) 104 98 97 97

I L-queue
I (unstable graphs)
I
I

bOO

300

200

I00

t

500

I I I
i0 50 i00

Fig. 11. k-linear graphs.

L-queue
(stable graphs)

_ L-deque and L-2queue

L-threshold

20o k

42 G. Gallo and S. Pallottino, Shortest path algorithms

Table 7

CPU times for n = 2500, m = 30 000, lmax = 10 000, k = 200

x2 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time 98 103 111 122 130 142 142 149

In table 6, the results on unstable graphs have been listed only for L-queue
because all others are almost unaffected by the stability of the graph.

The behavior of the list-search algorithms is summarized in fig. 11. In table 7,
the experimentation which led to the choice of the table value of x2 is reported.

1 0 . 4 , G R I D G R A P H S

Four grid graphs with 2500 nodes and about 10 000 arcs were generated by
varying the number of rows (nr) and columns (nc) of the grid.

/
/

/ /
K \

\
\

/

/ 1
/ , /

/ /

\ \
\ \

/ - -\ \
/ , , \ \

/ \ \ \

\ \ (=~// /
1 /

/

/ / \ %
/ \ \

N

\
\

\

/
/

\
\

\

\ \ / [k--;/@ / \ \ /d
\ ",,

Fig. 12. A grid graph.

)

The results (see table 8) are consistent with the results obtained with k-linear
graphs. In fact, as illustrated by fig. 12, a grid is a particularly stable k-linear graph,
where k increases with maxlnc, nrt.

In addition to the considerations of the previous section, we only note that:

- the effect of lmax on the behavior of S-Dial is particularly evident;
- the behavior of L-deque, L-2queue and L-threshold is almost indistinguish-

able.

Here, the value of x2 in L-threshold has been set equal to I, according to
the experimental results of table 9.

G. Gallo and S. Pallottino, Shortest path algorithms 43

Table 8

Grid graphs: n = 2500

n r = 5 0 n r = 25 n r = 10 n r = 5
Algorithms n o = 5 0 n c = 100 n c = 250 n c = 500

S-D~kstra 582 407 176 108
S-ord 111 92 67 59
S-heap 110 104 88 75
S - D i a l (l m a x = 10 a) 53 53 57 67
S - D i a l (l m a x = 10 ') 348 464 1054 2094

L-queue 95 146 336 557
L-deque 43 46 48 45
L-2queue 44 46 49 44
L-threshold (x2 = 1) 48 47 45 42

Table 9

CPU times for n = 2500

x2 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
n r = 5 0 , n c = 50 50 47 47 48 48 47 49 50
n r = 5 , n c = 500 47 44 43 42 43 43 43 44

A c k n o w l e d g e m e n t s

The authors are indebted to Carlo Ruggeri for his valuable contribution in
carrying out the numerical experimentation.

References

[1] AN. Aho, J.E. Hopcroft and J.D. UUman, The D e s i g n a n d A n a l y s i s o f C o m p u t e r A lgo -

r i t h m s (Addison-Wesley, Reading, Mass., 1974).
[2] M.S. Bazaraa and R.W. Langley, A dual shortest path algorithm, SIAM J. Appl. Math. 26,

3(1974)496.
[3] R. Bellman, On a routing problem, Quart. Appl. Math. 16(1958)88.
[4] G.B. Dantzig, All shortest routes in a graph, Theory of Graphs, Int. Symp., Rome 1966

(Dunod, Paris, 1967) pp. 9 1 - 9 2 .
[5] E.V. Denardo and B.L. Fox, Shortest-route methods. I: Reaching, pruning, and buckets,

Oper. Res. 27, 1(1979)161.
[6] R.B. Dial, Algorithm 360: Shortest path forest with topological ordering, Commun. A.C.M.

12, I1(1969)632.

44 G. Gallo and S. Pallottino, Shortest path algorithms

[7] R.B. Dial, F. Glover, D. Karney and D. Klingman, A computational analysis of alternative
algorithms and labeling techniques for finding shortest path trees, Networks 9, 3(1979)215.

[8] E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik
1(1959)269.

[9] J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency for network
flow problems, J. A.C.M. 10, 2(1972)248.

[10] M. Florian, S. Nguyen and S. Pallottino, A dual simplex algorithm for finding all shortest
paths, Networks 11 (1981)367.

[11] R.W. Floyd, Algorithm 97: Shortest path, Commun. A.C.M. 5(1962)345.
[12] L.R. Ford, Jr., Network flow theory, Rand Corporation Report No. P-293 (1956).
[13] G. Gallo, Reoptimization procedures in shortest path problems, Rivista di Matematica e di

Scienze Economiche e Sociali 3, 1(1980)3.
[14] G. GaUo, Updating shortest paths in large-scale networks, paper presented at the Int. Work-

shop on Advances in Linear Optimization Algorithms and Software, Pisa, Italy (1980).
[15] G. Gallo and S. Pallottino, A new algorithm to find the shortest paths between all pairs

of nodes, Discr. Appl. Math. 4(1982)23.
[16] G. GaUo and S. Pallottino, Shortest path methods: A unifying approach, Mathematical

Programming Study 26(1986)38.
[17] G. Gallo, S. Pallottino, C. Ruggeri and G. Storchi, Metodi ed algoritmi per la determinazione

di cammini minimi, Monografie di Software Matematico, N.29 (1984).
[18] J. Gilsinn and C. Witzgall, A performance comparison of labeling algorithms for calculating

shortest path trees, Natl. Bureau of Standards, Technical Note N.772 (1973).
[19] F. Glover, R. Glover and D. Klingman, Computational study of an improved shortest path

algorithm, Networks 14(1984)25.
[20] F. Glover, D. Klingman and N. Phillips, A new polynomially bounded shortest path algo-

rithm, Opel Res. 33(1985)65.
[21] E. Horowitz and S. Sahni, Fundamentals of Data Structures (Pitman, London, 1976).
[22] T.C. Hu, Revised matrix algorithms for shortest paths, SIAM J. Appl. Math. 15(1967)207.
[23] D.B. Johnson, Algorithms for shortest paths, Ph.D. Dissertation, Cornell University, Report

No. tr-73-169 (1973).
[24] D.B. Johnson, A note on Dijkstra's shortest path algorithm, J. A.C.M. 20, 3(1973)385.
[25] D.B. Johnson, Efficient algorithms for shortest paths in sparse networks, J. A.C.M. 24

1(1977)1.
[26] E.L. Johnson, On shortest paths and sorting, Proc. 25th A.C.M. Annual Conference (1972)

pp. 510-517.
[27] A. Kershenbaum, A note on finding shortest path trees, Networks 11(1981)399.
[28] D.E.Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms (Addison-

Wesley, Reading, Mass., 1968).
[29] D.E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching (Addison-

Wesley, Reading, Mass., 1973).
[30] E.L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and

Winston, New York, 1976).
[31] E.L. Lawler, Shortest path and network flow algorithms, Ann. Discr. Maths. 4(1979)251.
[32] E.F. Moore, The shortest path through a maze, Proc. Int. Symp. on Theory of Switching,

part 2, Harvard University Press (1959) pp. 285-. 292.
[33] G.L. Nemhauser, A generalized permanent label setting algorithm for the shortest path

between specified nodes, J. Math. Analysis and Appl. 38(1972)328.
[34] S. Pallottino, Adaptation de l'algorithme de d'Esopo-Pape pour ta determination de tous

les chemins les plus courts: ameliorations et simplifications, CRT, University of Montreal,
Publ. No. 136 (1979).

G. Gallo and S. Pallottino, Shortest path algorithms 45

[35] S. Pallottino, Shortest path methods: Complexity, interrelations and new propositions,
Networks 14(1984)257.

[36] U. Pape, Implementation and efficiency of Moore algorithms for the shortest route problem,
Math. Progr. 7(1974)212.

[37] U. Pape, Algorithm 562: Shortest path lengths, A.C.M. Transactions on Mathematical
Software 6(1980)450.

[38] U. Pape, Remark on algorithm 562, A.C.M. Transactions on Mathematical Software 9,
2(1983)260.

[39] D.R. Shier and C. Witzgall Properties of labeling methods for determining shortest path
trees, J. Res. Natl. Bureau of Standards 86, 3(1981)317.

[40] B. Simeone, Private communication, Bologna, Italy (1980).
[41] Y. Tabourier, All shortest distances in a graph. An improvement to Dantzig's inductive

algorithm, Discr. Math. 4(1973)83.
[42] R.E. Tarjan, Complexity of combinatorial algorithms, SIAM Review 20, 3(1978)457.
[43] R.E. Tarjan, Data structures and network algorithms, CBMS-NSF 44 (SIAM, Philadelphia,

1983).
[44] D. Van Vliet, Improved shortest path algorithms for transport networks, Trans. Res. 12,

1(1978)7.
[45] S. WarshaU, A theorem on Boolean matrices, J. A.C.M. 9(1962)11.
[46] J.W.J. Williams, Algorithm 232: Heapsort, Commun. A.C.M. "](1964)347.

G. Gallo and S. Pallottino, Shortest path algorithms 47

Appendix

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

* * * * * * * SAMPLE CAI_LING PROGRAM FOR SUBROUTINE LQUEUE * * * * * * *
* * * (SHORTEST PATH PROBLEM) * * *
* * * * * *

* * * THE PROGRAM I S BASED ON THE F'APER * * *
* * * G. GALLO, S. P A L L O T T I N O "SHOIt;TEST PATH ALGO- * * *
* * * R I T H M S " , * * *
* * * ANNALS OF OPERATIONS RESEARCH, THIS VOLUME * * *
* * * * $ *

* * * ALL THE SLJBROUTINES ARE WP, ITTEI',.I I N AMERICAN * * *
* * * STANDARD FORTRAIq AND ARE ACCEPTED BY THE * * *
* * * PFORT V E R I F I E R . * * *
* * * * * *

* * * QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO * * *
* * * S. P A L L O T T I N O AND C. RUGGERI * * *
* * * (] . N . R . - I . A . C . , ROMA, I T A L Y . * * *
*

C MEANIIqG OF THE MAIN PARAMETERS blOT EXPLAINED IN THE SUBROUTINE:
C
C RAD(I) = I-TH NODE ORIGIIq, I=J,2,...,NR
C
C ALL_ TI-IE F'ARAMETERS ARE INTEGER
C
C AT F'RESENT THE SIZE DIMENSIONS ARE NMAX = 30Ol FOR A(.), D(.). P(.),
C Q(.)

C MMAX =31000 FOR ND(.), LNGT(.)
C RMAX =100 FOR RAD(.)
C
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET TO A
C LARGE INTEGER VALUE
C
C
C THE INITIALIZATION OF Q(.) AND P(.) ARRAYS IS MADE]IN THE MAIN
C PROGRAM, (THE SUBROUTINE RESETS THEM AT THE END OF EACH ITERATION)
C
C EXTERIqALS :
C READ
C LQUEUE
C
C

C THIS WORK biAS SUPPORTED BY C.N.R., ITALY.
C
*

DIMENSION A(3001),ND(31000),LNGT(31000),RAD(IOO),D(3001),P(3001),
IQ (30(]i)
INTEGER A,D,P,Q,R,RAD,RMAX
DATA NMAX/3001/, MMAX/31000/, RMAX / 100/, I NF/999999999/
CALL READ(N,M,NR,LMAX,A,ND,LNGT,RAD,NMAX,MMAX,RMAX)
DO 10 I=I,N

Q(I) = 0
P (I) = 0

10 CONTINUE
DO 20 I=I,NR

R = RAD(I)

48 G. Gallo and S. Pallottino, Shortest path algorithms

CALL LQUEUE(A,ND~LNGT, D,P,Q~NMAX~MMAX,N, INF,R)
W R I T E (& ~ 3 0 > R , (~ P (O) , D (d) ~ = I ~ N >

20 CONTINUE
STOP

30 FORMAT(/7H ROOT = , I 4 / / 5 H NODE,4X,1HP~7X~IHD/(215, I 9))
END

C
C

SUBROUTINE LQUEUE(A~ND~LNGT~D,P~Q,NMAX,MMAX,N~INF~R)
C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
C
C ROUTINE LQUEUE
C
C 1) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST
C DISTANCES

C 2) IS BASED ON THE FORD-BELLMAN-MOORE METHOD, WITH THE SET Q
C IMPLEMENTED AS A QUEUE Q(.)
C
C MEANING OF THE INPUT PARAMETERS:
C
C A(1) = POINTER TO ARC-LIST OF NODE I, l=i, 9 .N+I
C ND(3) = ENDING NODE OF ARC 3~ ~=I ~ M
C LNGT(3) = LENGTH OF ARC ~ d=l~ ~ M
C NMAX = DIMENSION OF ARRAYS A(.)~ D(.), P(.>, Q(.)
C MMAX = DIMENSION OF ARRAYS ND<.), LNGT(.)
C N = NUMBER OF NODES
C INF = VERY LARGE INTEGER VALUE (INFINITY)
C R = ROOT
C
C MEANING OF THE OUTPUT PARAMETERS:
C
C D<I) = SHORTEST DISTANCE FROM R TO I, I=I,2,...,N
C P(1) = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE, I = i , ~, ,N
C
C MEANING OF THE MAIN INTERNAL PARAMETERS:
C
C Q (I) = LIST OF THE CANDIDATE NODES; Q(1)= 0 IF I IS NOT IN Q
C = ~ IF I PRECEDES NODE ~ IN Q
C NN = N+I
C U = CURRENT NODE
C V = ENDING NODE OF THE CURRENT ARC
C IN IT = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE
C I F I N = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE
C DV = TENTATIVE LABEL FOR NODE V
C LAST = POINTER TO THE LAST NODE OF Q(.)
C
C ALL THE PARAMETERS ARE INTEGER
C
C ~ l i ~ i ~ i ~ ~ ~ ~ i ~ i ~ ~ i ~ i ~ i ~ ~

INTEGER A,D,P,Q~R,U~V, DV

DIMENSION D(NMAX),P<NMAX),Q(NMAX)~A(NMAX),ND(MMAX),LNGT(MMAX)
C
C INITIALIZE
C

DO 10 I=I,N
D(I) = INF

10 CONTINUE

G. Gallo and S. Pallottino, Shortest path algorithms 49

D (R) = 0

P (R) = 0
NN = N + 1

Q(NN) = NN
LAST = NN
'J = R

C
C EXPLORE THE FORWARD STAR OF U

C
20 INIT = A(U)

IFIN = A(U+I) - 1
IF (INIT .GT. IFIN) GO TO 40
DO 30 J=INIT~ IFIN

V = ND(J)
DV = D(U) + LNGT(J)

C
C CHEK WHETHER THE LABEL OF V CAN BE IMPROVED

C
IF (D(V) .LE. DV) GO TO 30
D (V) = DV
P(V) = U

C
C IF V IS NOT IN Q~ IT IS INSERTED AT THE TAIL OF Q

C
IF (Q(V) .GT. 0) GO TO 30
Q (LAST) = V
Q(V) = NN
LAST = V

30 CONTINUE

C
C REMOVE THE NEW CURRENT NODE U

C
40 U = Q(NN)

Q(NN) = Q(U)
Q (U) = 0
]IF (LAST .EQ. U) LAST = NN

C
C CHECK WHETHER TIdE QUEUE IS EMPTY
C

IF (U .LE. N) GO TO 20
RETURN
END

SUBROUTINE READ(N,M,NR,LMAX,A,ND,LNGT~RAD, NMAX,MMAX,RMAX)
C**
C READS TIdE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS
C LIST.
*

INTEGER A, RAD~RMAX
D IMENSION A (N M A X) , N D (M M A X) , L N G T (M M A X) , R A D (R M A X)
READ (5 , 3 0) N~ M, NR, LMAX
N I = I\I + i
READ (5,40) (A(1),I=I,NI)
READ (5,50) (ND(I),LNGT(I), I=I,M)
READ (5~40) (RAD(I), I=I~NR)

RETURN
30 FORMAT (416)
40 FORMAT (1016)

50 FORMAT (1216)

END

50 G. Gallo and S. Pallottino, Shortest path algorithms

C
C
C
C
C
C-
C
C
C
C
C
C
C
C
C
C
C

* * * * * * * SAMPLE C A L L I N G PROGRAM FOR SUBROUTINE LDEQUE * * * * * * *
* * * (SHORTEST PATH PROBLEM) * * *
* * * * * *

* * * THE PROGRAM IS BASED ON THE PAPER * * *
*** G. GALLO, S. PALLOTTINO "SHORTEST PATH ALGO- ***
* * * RITHMS", * * *
* * * ANNALS OF OPERATIONS RESEARCH, THIS VOLUME * * *
* * * * * *

* * * ALL THE SUBROUTINES ARE WRITTEN IN AMERI'CAN * * *
* * * STANDARD FORTRAN AND ARE ACCEPTED BY THE * * *
* * * PFORT VERIFIER. * * *
* * * * * *

* * * QUESTIONS AND COMMENTS SHOULD BE D IRECTED TO * * *
* * * S. P A L L O T T I N O AND C. RUGGERI * * *
* * * C . N . R . - I . A . C . , ROMA, I T A L Y . * * *
*

C MEANING OF THE MAIN PARAMETERS NOT EXPLAINED IN THE SUBROUTINE:
C
C RAD(I} = I-TH NODE ORIGIN, I=I,2,...,NR
C
C ALL TIdE PARAMETERS ARE INTEGER
C
C AT PRESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A<.), D(.). P<. ~,
C Q(.)
C MMAX =31000 FOR ND(.), LNGT(.)
C RMAX = 100 FOR RAD(.)
C
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET TO A
C LARGE INTEGER VALUE
C
C
C THE INITIALIZATION OF F'(.) ARRAY IS MADE IN TIdE MAIN PROGRAM, (THE
C SUBROUTINE RESETS IT AT THE END OF EACH ITERATION)
C
C EXTERNALS:
C READ
C LDEQUE
C
C
C THIS WORK WAS SUPPORTED BY C.N.R., ITALY.
C
*

DIMENSION A('3c]OI),ND(31000) ~LNGT(31000),RAD(100),D(300I>,F'(30c~I),
IQ (3001)
INTEGER A, D, P, Q, R, RAD, RMAX
DATA NMAX / 3001/, MMAX / 31000/, RMA X / ! O0/, I NF/999999999/
CALL READ(N,M,NR,LMAX,A,ND,LNGT,RAD,NMAX,MMAX,RMAX
DO 10 I=I,N

P(I) = 0
10 CONTINUE

DO 20 I=I,NR
R = RAD(I)
CALL_ LDEQUE (A, ND, LNGT, D, P, Q, NMA X, MMA X ~ N, I NF, R)

WRITE(6,30)R, (J,P(J),D(J),J=I,N)
20 CONTINUE

STOP
30 FORMAT(/7H ROOT =, I4//5H NODE,4X, IHP,7X, IHD/(215, 19))

END

G. Gallo and S. Pallottino, Shortest path algorithms 51

C
C

SUBROUTINE LDEQUE(A,ND,LNGT,D,P,Q,NMAX,MMAX,N, INF,R)

C
C ROUTINE LDEQUE

C
C I) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST
C DISTANCES
C 2) IS BASED ON THE D'ESOPO-PAPE METHOD, WITH THE SET Q IMPLEMENTED AS
C DOUBLE-ENDED-QUEUE Q(.)
C
C MEANING OF THE INPUT PARAMETERS:
C
C A(I) = POINTER TO ARC-LIST OF NODE I, I=I,2,...,N+I
C ND(J) = ENDING NODE OF ARC J, O=I,2,...,M
C LNGT(O) = LENGTH OF ARC J, D=I,2,...,M
C NMAX = DIMENSION OF ARRAYS A(.), D(.), P(.), Q(.)
C MMAX = DIMENSION OF ARRAYS ND(.), LNGT(.)
C N = NUMBER OF NODES
C INP = VERY LARGE INTEGER VALUE (INFINITY)
C R = ROOT
C
C MEANING OF THE OUTPUT PARAMETERS:
C
C D(I) = SHORTEST DISTANCE FROM R TO I, I=l, °~,...,N

C P(1) = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE, I=I,2,...,N
C
C OF THE MAIN INTERNAL PARAMETERS:
C
C Q(I) = LIST OF CANDIDATE NODES; Q(I)= -I IF I IS NOT IN Q AND IT HAS
C ALREADY BEEN SCANNED
C = 0 IF I IS NOT IN Q AND IT HAS

C NOT BEEN SCANNED
C = J IF I PRECEDES NODE J IN THE
C LIST
C NN = N+I
C U = CURRENT NODE
C V = ENDING NODE OF THE CURRENT ARC
C INIT = START-POINTER TO THE ARC~LIST OF THE CURRENT NODE
C IFIN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE
C DV = TENTATIVE LABEL OF NODE V
C LAST = POINTER TO THE LAST NODE OF Q(.)
C
C ALL THE PARAMETERS ARE INTEGER
C
C**********g************g**g**************gg~*g*g*******~,$,g**g**g***g*

INTEGER A,D,P,Q,R,U,V,DV
DIMENSION D(NMA×),P(NMAX),Q(NMAX),A(NMAX),ND(MMAX),LNGT(MMAX)

C
C INITIALIZE
C

DO 10 I=I,N
Q(I) = 0
D(1) = INF

52 G. GalIo and S. Pallottino, Shortest path algorithms

10 CONTINUE
Q(R) = - 1
D(R)=O
P (R) = 0
NN = N + 1
Q(NN) = NN
LAST = NN
PNTR = NN
U = R

C
C EXPLORE THE FORWARD STAR OF U
C

20 I N I T = A(U)
I F I N = A'(U+I) - i
IF (IN IT .GT. I F I N) GO TO 60
DO 50 J = I N I T , I F I N

V = ND(J)
DV = D(U) + LNGT(J)

C
C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED
C

IF (D (V) ..LE. DV) GO TO 50
D (V) = DV
P(V) = Q
IF (Q (V)) 3 0 , 4 0 , 5 0

C
C IF V IS NOT IN Q AND IT HAS ALREADY BEEN SCANNED, IT IS INSERTED AT
C THE POSITION POINTED BY PNTR
C

30 Q(V) = Q(PNTR)
Q(PNTR) = V
IF (LAST .EQ. PNTR) LAST=V
PNTR = V
GO TO 50

C
C IF V IS NOT IN Q AND IT WAS NEVER SCANNED., IT IS INSERTED AT THE TAIL
C OF Q
C

40 Q(LAST) = V
Q (V) = NN
LAST = V

50 CONTINUE
C
C REMOVE THE NEW CURRENT NODE U
C

6O U = Q(NN)
Q(NN) = Q(U)
Q (U) = - I
IF (LAST .EQ. U) LAST = NN
IF (PNTR .EQ. U) PNTR = NN

C
C CHECK WHETHER THE LIST IS EMPTY
C

IF < U .LE. N > GO TO 20
RETURN
END

SUBROUTINE READ(N,M,NR,UMAX,A~ND~LNGT,RAD,NMAX~MMAX,RMAX)

G. Gallo and S. Pallottino, Shortest path algorithms 53

*
C READS THE GRAPH DATA (STORED AS AN ADaACENCE LIST) AND THE ORIGINS
C LIST.
*

INTEGER A,RAD~RMAX
DIMENSION A(MMAX),ND(MMAX),LNGT(MMAX),RAD(RMAX)
READ (5~30) N~ M, NR, LMAX
NI=N+I
READ (5,40) (A(I)~I=I,NI)
READ (5,50) (ND(I),LNGT(I),I=I,M)
READ (5,40) (RAD(I),I=I~NR)
RETURN

30 FORMAT(416)
40 FORMAT(1016)
50 FORMAT(1216)

END

54 G. Gallo and E Pallottino, Shortest path algorithms

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

~ SAMPLE CALLING PROGRAM FOR SUBROUTINE L2QUE *~*****
*** <SHORTEST PATH PROBLEM) ***

*** THE PROGRAM IS BASED ON THE PAPER **~
*** G. GALLO, S. PALLOTTINO "SHORTEST PATH ALGO- ***
*** RITHMS", ***

* * * A N N A L S OF OPERATIONS RESEARCH, THIS VOLUME * * *

*** ALL THE SUBROUTINES ARE WRITTEN IN AMERICAN ***
*** STANDARD FORTRAN AND ARE ACCEPTED BY THE ***
* * * PFORT VERIFIER. * * *

* * * QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO * * *
* * * S. PALLOTTINO AND C. RUGGERI * * t
* * * C.N.R.-I.A.C., ROMA, ITALY. * * *

C MEANING OF THE MAIN PARAMETERS NOT EXPLAINED IN THE SUBROUTINE:
C
C RAD(I) = I-TH NODE ORIGIN, I=I,2,...,NR
C
C ALL THE PARAMETERS ARE INTEGER
C
C AT PRESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A(.), D(.). P(.),
C Q(.)
C MMAX =31000 FOR ND(.), LNGT(.)
C RMAX = 100 FOR RAD<.)
C
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET TO A
C LARGE INTEGER VALUE
C
C
C THE INITIALIZATION OF P(.) ARRAY IS MADE IN THE MAIN PROGRAM, (THE
C SUBROUTINE RESETS IT AT THE END OF EACH ITERATION).
C
C EXTERNALS:
C READ
C L2QUE
C
C
C THIS WORK WAS SUPPORTED BY C.N.R., ITALY.
C

INTEGER A, D, P, Q, R, RAD, RMAX
DIMENSION A(3001),I\ID(31000),LNGT(31000),RAD(100),D(3001),F'(3001),

IQ (3001)
DATA NMAX/300I/,MMAX/31000/,RMA×/100/, INF/999999999/
CALL READ < N, M, NR, LMAX, A, ND, LNGT, RAD, NMAX, MMAX, RMA X)
DO IQ I=I,N

P(I) = 0
10 CONTINUE

DO 20 I=I,NR
R = RAD(I)
CALL L2QUE (A, ND, I_NGT, D, P, Q, NMAX,MMAX,N, INF,R)

G. Gallo and E Pallottino, Shortest path algorithms 55

WRITE(6,30)R, (J,P(J),D(d)~O=I,N)
20 CONTINUE

STOP
30 FORMAT(/7H ROOT = ~ I 4 / / 5 H NODE~4X,IHP~7X,1HD/(215~I9))

END

C ND(J)
C LNGT (d)
C NMAX
C MMAX
C N
C INF
C R
C

C
C

SUBROUTINE L2QUE(A,ND,LNGT~D,P~Q,NMAX,MMAX,N, INF,R)
C ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~
C
C ROUTINE L2QUE
C
C I) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST
C DISTANCES
C 2) IS BASED ON THE D'ESOPO-PAPE METHOD WITH THE SET Q IMPLEMENTED
C AS A DOUBLE QUEUE Q(.)
C
C MEANING OF THE INPUT PARAMETERS:
C
C A(I) = POINTER TO ARC-LIST OF NODE I, I=I~2~...~N+I

= ENDING NODE OF ARC ~ O=I,2~...~M
= LENGTH OF ARC O~ J=I,2~...,M
= DIMENSION OF ARRAYS A(.), D(.)~ P(.)~ Q(.)
= DIMENSION OF ARRAYS ND(.)~ LNGT(.)
= NUMBER OF NODES
= VERY LARGE INTEGER VALUE (INFINITY)
= ROOT

C MEANING OF THE OUTPUT PARAMETERS:
C
C D (1) = SHORTEST DISTANCE FROM R TO I~ I = l , ~ . ~ . . . , N
C P(1) = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE, I=1, ~ N
C
C OF THE MAIN INTERNAL PARAMETERS:
C
C Q (I) = LIST OF CANDIDATE NODES; Q (I) = -1 IF I IS NOT IN Q AND IT HAS
C ALREADY BEEN SCANNED
C = O IF I IS NOT IN Q AND IT HAS
C NOT BEEN SCANNED
C = d IF I PRECEDES NODE J IN THE
C LIST
C NN = N+I
C U = CURRENT NODE
C V = ENDING NODE OF THE CURRENT ARC
C INIT = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE
C IFIN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE
C DV = TENTATIVE LABEL OF NODE V
C LAST = POINTER TO THE LAST NODE OF Q(.)
C PNTR = POINTER TO THE LAST NODE OF THE FIRST QUEUE OF Q(.)
C

C ALL THE PARAMETERS ARE INTEGER
C
C ~ i ~ ~ ~ i ~ i ~ i ~ l i ~ l i ~ ~ ~ ~ i ~

INTEGER A~D,P~Q~R~U~V,DV,PNTR
DIMENSION D(NMAX)~P(NMAX)~Q(NMAX)~A(NMAX),ND(MMAX)~LNGT(MMAX)

C

C INITIALIZE

56 G. Gallo and S. PalIottino, Shortest path algorithms

DO 10 I=1, N

Q(1) = 0
D(1) = INF

10 CONT I NUE
Q(R) =- i
D(R) = 0
P(R) = 0

NN = N + 1
Q(NN) = NN

LAST = NN
U = R

C
C EXPLORE THE FORWARD STAR OF U

C
20 INIT = A<U)

IFIN = A(U+I) - i
IF (INIT .GT. IFIN) GO TO 60

DO 50 J=INIT, IFIN

V = ND(J)

DV = D(U) + LNGT(J)

C
C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED

C
IF < D(V) .LE. DV) GO TO 50

D (V) = DV

P (V) = U
IF (Q(V>) 30,40,50

C
C IF V IT NOT IN Q AND IT HAS ALREADY BEEN SCANNED, IT IS INSERTED AT

C THE HEAD OF Q
C

30 Q(V) = Q(NN)

Q(NN) = V

IF (LAST .EQ. NN) LAST = V

GO TO 50

C
C IF V IS NOT IN Q AND IT WAS NEVER SCANNED, IT IS INSERTED AT THE

C TAIL OF Q
C

40 Q(LAST) = V

Q (V> = NN
LAST = V

50 CONTINUE

C

C REMOVE THE NEW CURRENT NODE U

C
60 U = Q<NN)

Q(NN) = Q(U)
Q(U) =- 1

IF (LAST .EQ. U) LAST = NN

C

C CHECK WHETHER THE LIST IS EMPTY
C

IF (U .LE. N) GO TO 20
RETURN

END

G. Gallo and S. Pallottino, Shortest path algorithms 57

SUBROUT I NE READ (N ~, M, NR ~ LMA X, A ~ ND ~ LNGT, RAD ~ NMA X ~ MMA × ~, RMA X)

C READS THE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS
C LIST.

INTEGER A,RAD~RMA×
DIMENSION A(NMAX),ND(MMAX),LNGT(MMAX) ,RAD(RMAX)
READ (5,30) N~ M~ NR, LMAX
N1 = N + 1
READ (5~40) (A(I) ~ I=I,NI)
READ (5,50) (ND(I),LNGT(I),I=I,M)
READ (5,,40) (RAD(I)~, I=I~NR)
RETURN

30 FORMAT (416)
40 FORMAT (1016)
50 FORMAT(1216)

END

58 G. Gallo and S. Pallottino, Shortest path algorithms

C
C * * *
C * * *
C * * *
C * * *
C * * *
C * * *
C * * *
C * * *
C * * *
C * * *
C * * *
C * * *
C ***
C ***
C
C

******* SAMPLE CALLING PROGRAM FOR SUBROUTINE LTHRS *******

(SHORTEST PATH PROBLEM) ***

THE PROGRAM IS BASED ON THE PAPER ***
G. GALLO, S. PALLOTTINO "SHORTEST PATH ALGO- ***

RITHMS"~ ***

ANNALS OF OPERATIONS RESEARCH, THIS VOLUME ***

ALL THE SUBROUTINES ARE WRITTEN IN AMERICAN ***
STANDARD FORTRAN AND ARE ACCEPTED BY THE ***
PFORT VERIFIER. ***

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO ***
S. PALLOTTINO AND C. RUGGERI ***
C.N.R.-I.A.C., ROMA, ITALY. ***

*

C MEANING OF THE MAIN PARAMETERS NOT EXPLAINED
C
C RAD(I) = I-TH NODE ORIGIN, I=I,2,...,NR
C
C ALL THE PARAMETERS ARE INTEGER
C
C
C AT PRESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A(.),

IN THE SUBROUTINE:

D(.), P(.),
C Q1 (.).Q2(.)
C MMAX =31000 FOR ND(.), LNGT(.)
C RMAX = 100 FOR RAD(.~
C
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET TO A
C LARGE INTEGER VALUE
C
C
C THE INITIALIZATION OF Qt (.),Q2(.) AND P(.) ARRAYS IS MADE IN THE MAiN
C PROGRAM, (THE SUBROUTINE RESETS THEM A]- THE END OF EACH ITERATION,
C
C EXTERNALS:
C READ
C THINCR
C LTHRS
C
C
C THIS WORK WAS SUPPORTED BY C.N.R.,]ITALY.
C
*

INTEGER A , D , P , Q 1 , Q 2 , T , R ~ R A D , R M A X
DIMENSION A(3001),ND(31000),LNGT(31000),RAD(100) ..D(3001),F'(3001)..

IQI (3001),Q2(3001)
DATA NMAX/300I/,MMAX/31000/,RMAX/100/~ INF/99999999~/
CALL READ(N,M,NR,LMAX,A, ND,LNGT,RAD,NMAX,MMAX,RMAX)
CALL THINCR(N,Id+I_MAX,T)
DO 10 I=l, N

P(I) = 0
Q1 (I) = 0

G. Gallo and S. Pallottino, Shortest path algorithms 59

Q2(I) = 0
10 CONTINUE

DO 20 I=I,NR
R = RAD(1)
CALL LTHRS(A,ND,LNST,D,P,Q1,Q2, NMAX,MMAX,N, INF,T,R)
WRITE(6,30)R, (J,P(J>,D(a),~=I~N)

20 CONTINUE
STOP

30 FORMAT(/7H ROOT =,I4//5H NODE,4X~IHP,7X,IHD/(215, I9/))
END

C MMAX
C N
C I NF
C R
C T
C

SUBROUTINE LTHRS (A,ND,LNST,D,P,QI~Q2~NMAX,MMAX,N, INF~T,R)

C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
C
C ROUTINE LTHRS
C
C i) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST
C DISTANCES
C 2) IS BASED ON THRESHOLD METHOD PROPOSED BY F.GLOVER, R. GLOVER AND D.
C KLINGMAN, WITH INSERTION POLICY DEPENDING ON A THRESHOLD VALUE
C AND WITH Q IMPLEMENTED AS A PAIR OF LISTS: QI<.) AS A QUEUE AND
C Q2<.) AS A LINKED-LIST.
C
C MEANING OF THE INPUT PARAMETERS:
C

C A<I> = POINTER TO ARC-LIST OF NODE I~ I=I~2,...,N+I
C ND<J) = ENDING NODE OF ARC a
C LNGT<J) = LEIqGTH OF ARC J~ J=I~2,...,M ,2,...~M
C NMAX = DIMENSION OF ARRAYS A(.), D(.>, P(.), QI(.), Q2(.>

= DIMENSION OF ARRAYS ND(.), LNGT(.)
= NUMBER OF NODES

= VERY LARGE INTEGER VALUE (INFINITY)
= ROOT
= INCREMENT FOR THE THRESHOLD

C MEANING OF THE OUTPUT PARAMETERS:
C

C D(1) = SHORTEST DISTANCE FROM R TO I, I=I,2~...,N
C P(I) = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE,
C

C MEANING OF THE MAIN INTERNAL PARAMETERS:
C
C QI<I) = LIST OF CANDIDATE NODES QI(I)

C HAVING THEIR LABEL LESS THAN
C OR EQUAL TO THE CURRENT
C THRESHOLD
C

C Q2<I) = LIST OF THE OTHER CANDIDATE Q2(I)
C NODES AND OLD COPIES OF NODES
C INSERTED IN QI(.)
C
C NN = N+I
C U = CURRENT NODE
C V = ENDING NODE OF THE CURRENT ARC

C INIT = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE
C IFIN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE
C DV = TENTATIVE LABEL FOR NODE V
C LAST = POINTER TO THE LAST NODE OF QI(.)

I=I,2,...~N

= 0 IF I IS NOT IN QI(.)
= J IF I PRECEDES NODE a

IN THE LIST

= 0 IF I IS NOT IN Q2(.)
= ~ IF I PRECEDES NODE O

I~ THE LIST

60 G. Gallo and E Pallottino, Shortest path algorithms

C THRS = CURRENT THRESHOLD VALUE
C T1 = TENTATIVE NEW THRESHOLD VALUE

C MIN = MINIMUM LABEL VALUE OF NODES IN Q2(o)

C
C ALL THE PARAMETERS ARE INTEGER
C

DIMENSION A(NMAX),D(NMAX),P(NMAX),QI(NMAX),Q2(NMAX),ND(MMAX),LNGT(

~MMAX)

INTEGER A,D,F',QI,Q2,T,THRS,TI,U,V,DV,R
C
C INITIALIZE

C

DO 10 I=I,N
D(I) = INF

10 CONTINUE

D(R) = 0
P(R) = 0

N N = N + I
QI(NN) = NN
Q2(NN) = NN

THRS = -I
LAST = NN
U = R

C

C EXPLORE THE FORWARD STAR OF U
C

20 INIT = A(U)

IFIN = A(U+I) - 1
IF (INIT .GT. IFIN) GO TO 60

DO 50 J=INIT, IFIN
V = ND(J)

DV = D(U) + LNGT(J)
C

C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED
C

IF (D(V) .LE. DV) GO TO 50
IF (DV .GT. THRS) GO TO 30

IF (QI(V) .GT. 0,) GO TO 40
C

C INSERT V AT THE TAIL OF QI(.)
C

QI(LAST) = V
QI(V) = NN

LAST = V

GO TO 40

30 IF (Q2(V) .GT. 0) GO TO 40
C

C IF V IS NOT IN Q2(.), IT IS INSERTED AT THE HEAD OF Q2(.)
C

Q2(V) = Q2(NN)

Q2(NN) = V
40 D(V) = DV

P(V) = U
50 CONTINUE

C
C CH~CK WHETHER QI(.) IS EMPTY
C

60 IF (LAST .EQ. NN) GO TO 80
C

G. Gallo and S. Pallottino, Shortest path algorithms 61

C REMOVE THE NEW CURRENT NODE U FROM THE HEAD OF Q1 (.)

C
7F~ U = Q1 (NN)

Q1 (NN) = Q1 (U)

Q1 (U) = 0
IF (LAST .EQ. U) LAST = NN

GO TO 20

C
C CHECK WHETHER ALSO Q2(.) IS EMPTY

C
80 IF (Q2(NN) .EQ. NN) RETURN

C
C COMPUTE THE NEW TENTATIVE THRESHOLD VALUE T1

C
M I N -- I I\IF

T1 = THRS + 1 + T

I = NN
O = Q2(I)

C
C SCAN Q2(.) IN ORDER TO COMPUTE MIN AND TO REMOVE COPIES OF NODES

C ALREADY REMOVED

C
90 IF (D(J) .LE. T1) GO TO 100

C
C UPDATE MIN
C

MIN = MINO(MIN, D(J))

I = O
GO TO I 10

C
C REMOVE 3 FROM Q2(.)

C
100 Q2(I) = Q2(O)

Q2(O) = 0
C

C CHECK WHETHER J MUST BE INSERTED IN Q1 (.)
["

IF (D(O) .LE. THRS) GO TO 110

Q1 (LAST) = J

Q1 (J) = NN
LAST = 0

110 J = Q2(I)

IF (J .NE. NN) GO TO 90

C
C UPDATE THE THRESHOLD VALUE

C
THRS = T I

C
C CHECK WHETHER Q1 (.) IS STILL EMPTY

C
IF (LAST .NE. NN) GO TO 70

C
C IF Q2(.) WAS EMPTIED THEN RETURN

C
IF (Q2(NN) .EQ. NN) RETURN

C

C INCREASE THE THRESHOLD VALUE THRS AND SCAN AGAIN Q2(.)

C

THRS = MIN + T

I = NN

62 G. Gallo and S. Pallottino, Shortest path algorithms

J = Q2(1)
120 IF (D(J) .GT. THRS) GO TO 130

C
C MOVE J FROM Q2(.) TO Q I (.)

C
Q2(1) = Q2(O)
Q2(J) = 0
Q1 (LAST) = J
QI(J) = NN
LAST = J
GO TO 140

C
C CONTINUE TIdE SCANNING OF Q2(.)
C
130 I = J
]40 J = Q2(I)

IF (J .NE. NN) GO TO 120
GO TO 70
END

SUBROUTINE THINCR(N,M,I_MAX,T)
C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
C COMPUTE TIdE INCREMENT OF THE THRESHOLD AS PROPOSED IN "F.GLOVER; R.
C GLOVER; D.KLINGMAN, CENTER FOR CYBERNETIC STUDIES, UNIVERSITY OF
C TEXAS, AUSTIN TX, USA. RESEARCH REPORT CCS 419, JUNE 1981.

C ~ ~ ~ ~ * ~ * ~ * ~ ~ ~ ~ ~
INTEGER T,S
READ (5,100) X2
S = MINO(35,M/N)
ALMAX = LMAX
T = X2 ~ ALMAX
AT = T
AS = S
IF (S .GT. 7) T = AT ~ 7. / AS
IF (T .LE. 0) T = 1
RETURN

100 FORMAT(F4.2)
END

C
SUBROUTINE READ(N,M,NR,LMAX,A,ND,LNGT,RAD,NMAX,MMAX,RMAX)

C ~ ~ ~ ~ * ~ ~ ~ ~ * ~ ~ * ~ ~
C READS THE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS
C LIST.
C ~ ~ ~ i ~ ~ ~ i ~ i ~ ~ ~ ~ i ~ i ~ ~

INTEGER A,RAD,RMAX

DIMENSION A(NMAX),ND(MMAX),LNGT(MMAX),RAD(RMAX)
READ (5,30) N,M,NR,LMAX
N I = N + I
READ (5,40) (A(1),I=I,NI)
READ (5,50) (ND(1),LNGT(1),I=I,M)
READ (5,40) (RAD(I),I=I,NR)
RETURN

30 FORMAT(416)
40 FORMAT(1016)
50 FORMAT(1216)

END

G. Gallo and S. Pallottino, Shortest path algorithms 63

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

~i~i~ SAMPLE CALLING PROGRAM FOR SUBROUTINE SDKSTR ~
~ (SHORTEST PATH PROBLEM> ~

~ THE PROGRAM IS BASED ON THE PAPER ~
~ G. GALLO, S. PALLOTTINO "SHORTEST PATH ALGO- ~
~ RITHMS", ~

* ~ ANNALS O F OPERATIONS RESEARCH, THIS VOLUME ~**

~$ ALL THE SUBROUTINES ARE WRITTEN IN AMERICAN ~
~ STANDARD FORTRAN AND ARE ACCEPTED BY THE ~
~ PFORT VERIFIER. ~

~ QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO ~
~ S. PALLOTTINO AND C. RUGGERI ~
~ C.N.R.-I.A.C., ROMA, ITALY. ~

C MEANING OF THE MAIN PARAMETERS NOT EXPLAINED IN THE SUBROUTINE:
C
C RAD(I) = I-TH ORIGIN NODE, I=I,2,...,NR
C
C ALL THE PARAMETERS ARE INTEGER
C
C
C AT PRESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A(.), D(.). P(.),
C Q(.)
C MMAX =31000 FOR ND(.), LNGT(.)
C RMAX = 100 FOR RAD(.)
C
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET TO A
C LARGE INTEGER VALUE
C
C
C THE INITIALIZATION OF Q(.), AND P(.> ARRAYS IS MADE IN THE MAIN
C PROGRAM, (THE SUBROUTINE RESETS THEM AT THE END OF EACH ITERATION>
C
C EXTERNALS:
C READ
C SDKSTR
C
C
C THIS WORK WAS SUPPORTED BY C.N.R., ITALY.
C
C ~ ~ ~ ~ ~ ~ ~ ~ ~

INTEGER A,D,P,O,R,HP,RAD,Y,X,T2, RMAX
DIMENSION A(300I),ND(31000),RAD(100),D(300I),P(300I),LNGT(31000),

IQ(3001)
DATA NMAX/300I/,MMAX/31000/,RMAX/100/,INF/999999999/
CALL READ(N,M,NR,LMAX,A,ND,LNGT,RAD,NMAX,MMAX,RMAX)
DO I0 I=I,N

Q(I) = 0
P(I) = 0

I0 CONTINUE
DO 20 I=I,NR

64 G. Gallo and S. Pallottino, Shortest path algorithms

R = RAD(I)
CALL SDKSTR(A,ND,LNGT,D,P~Q,NMAX,MMAX~N, INF~R)
WRITE(6~30)R~ (J,P(J>,D(~),~=I,N)

2(i) CONTINUE
STOP

30 FORMAT(/7H ROOT =,I4//5H NODE,4X, IHP,7X, IHD/(215~I9/))
END

C
C

SUBROUTINE SDKSTR(A~ND~LNGT~D,F',Q,NMAX~MMAX~N, INFER)
C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
C
C ROUTINE SDKSTR
C
C i) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST
C DISTANCES
C 2) IS BASED ON DIOKSTRA~S METHOD~ WITH PRIORITY QUEUE Q IMPLEMENTED
C AS AN UNORDERED LIST
C
C MEANING OF THE INPUT PARAMETERS:
C
C A(I) = POINTER TO ARC-LIST OF NODE I, I=i~2 ,N+I
C ND(~> =ENDING NODE OF ARC ~, J=I,2~...,M
C LNGT(O) = LENGTH OF ARC d, J=I~2,...~M
C NMAX = DIMENSION OF ARRAYS A(.), D(.>, P(.>, Q(.), HP(.)
C MMAX = DIMENSION OF ARRAYS ND(.), LNGT(.)
C N = NUMBER OF NODES
C INF = VERY LARGE INTEGER VALUE (INFINITY)
C R = ROOT
C
C MEANING OF THE OUTPUT PARAMETERS:
C
C D(I) = SHORTEST DISTANCE FROM R TO I, I=I,2,...,N
C P(I) = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE, I=I,2,...,N
C
C MEANING OF THE MAIN INTERNAL PARAMETERS:
C
C Q(I) = LIST OF THE CANDIDATE NODES: = 0 IF NODE I IS NOT IN Q
C ~ IF NODE I PRECEDES NODE ~ IN Q

C NN = N+I
C U = CURRENT NODE
C V = ENDING NODE OF THE CURRENT ARC
C INIT = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE
C IFIN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE
C DV = TENTATIVE LABEL OF NODE V
C
C ALL THE PARAMETERS ARE INTEGER
C
C ~ ~ ~ ~ ~ i ~ ~ ~ ~ ~ ~

INTEGER A,D,P,Q,R,U,V, DV,VAL
DIMENSION A(NMAX),D(NMAX),P(NMAX),Q(NMAX),ND(MMAX),LNGT(MMAX)

C
C INITIALIZE
C

DO 10 I=I,N
D(I) = INF

10 CONTINUE

G. Gallo and S. Pallottino, Shortest path algorithms 65

D(R) = 0
P (R) = O
NN = N + 1

Q (NN) = NN
U = R

C
C EXPLORE THE FORWARD STAR OF
C

C

20 INIT : A(U>
IFIN = A(U+I) - 1
IF (IFIN .LT. INIT) GO TO 40
DO 30 J=INIT, IFIN

V : ND(J)

DV = D(U> + LNGT(J)

C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED

C
IF < D(V) .LE. DV) GO TO 30

D(V> = DV

P <V) = U

C
C IF V IS NOT IN Q, INSERT V AT THE HEAD OF Q

C
IF < Q(V) .NE. 0) GO TO 30

Q(V> = Q(NN)

Q(NN) = V

30 CONTINUE

C
C CHECK WHETHER THE LIST IS EMPTY

C
40 IF < Q(NN) .EQ. NN) GO TO 70

C
C SEARCH THE MINIMUM LABEL NODE IN Q

C
K = 0

I = NN
VAL = INF

50 JJQ = Q(I>
IF (D(JJQ) .GE. VAL) GO TO 60

VAL = D(JJQ)
K = I

60 I = Q(I)
IF (Q(I) .NE. NN) GO TO 50

C

C REMOVE THE NEW CURRENT NODE U FROM Q

C
U = Q(K)

Q(K) = Q(U)
Q(U) = 0
GO TO 20

70 CONTINUE

RETURN
END

SUBROUTINE READ(N,M,NR, LMAX~A~ND, LNGT,RAD,NMAX~MMAX~RMAX)

C READS THE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS
C LIST.

66 G. Gallo and S. Pallottino, Shortest path algorithms

INTEGER A,RAD~RMAX
DIMENSION A(NMAX) ,IqD(MMAX) ~LNGT(MMAX),RAD(RMAX)
READ (5~30) N~ M~ lqR~ LMAX
N1 = N + 1

READ (5,40) (A(I) ~I=I~NI)
READ (5.,50) (ND(I),LNGT(I)~I=I~M)
READ (5.~40) (RAD(~).~ I=I,NR)
RETURN

30 FORMAT','416)
4~'~ FORMAT (1016)
50 FORMAT (1216)

END

G. Gallo and S. Pallottino, Shortest path algorithms 67

******* SAMPLE CALLING PROGRAM FOR SUBROUTINE SORD2 *******
*** (SHORTEST PATH PROBI_EM) ***
*** ***

*** THE PROGRAM IS BASED ON THE PAPER ***
*** G. GALL(]~ S. PALLOTTINO "SHORTEST PATH ALSO- ***
* * * R I THMS" ~ ***

* * * A N N A L S O F O P E R A T I O N S R E S E A R C H , THIS V O L U M E * * *
* * * * * *

* * * ALl_ TIdE SUBROUTINES ARE WRITTEN IN AMERICAN * * *
* * * STANDARD FORTRAN AND ARE ACCEPTED BY THE * * *
* * * PFORT VERIFIER.. * * *
* * * * * *

* * * QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO * * *
* * * S. PALLOTTINO AND C. RUGGERI * * *
~** C.N.R.-I.A.C., ROMA, ITALY. * * *
**

C MEANING OF TIdE MAIN PARAMETERS NOT EXPLAINED IN THE SUBROUTINE:
C
C RADii) = I-TH ORIGIN NODE~ I=~,2....~NR

C IVER = BUBBLE SORT PARAMETER; SET IVER = I FOR INCREASING ORDER AND
C IVER = -J FOR DECREASING ORDER
C
C ALL TIdE PARAMETERS ARE INTEGER
C

C AT PRESENT TIdE SIZE DIMENSIONS ARE NMAX = 300J FOR A(.), D(.). P(.),

C UP(.), DOWN(.)
C MMAX =31000 FOR ND(.), LNBT(.)
C RMAX = 100 FOR RAD(.)
C
C TIdE ONLY MACHINE DEF'ENDENT CONSTANT USED IS INF: MUST BE SET TO A
C LARGE II4TEGER VALUE
C

C THE INITIALIZATION OF UP(.), DOWN(.), AND P(.) ARRAYS IS MADE IN THE
C MAIN PROGRAM~, (THE SUBROUTINE RESET THEM AT THE END OF EACH
C ITERATION)
C
C EXTERNALS:

C READ
C BUBBLE
C SORD2
C
C
C THIS WORK WAS SUPPORTED BY C.N.R. ~ ITALY.
C
*

DIMENSION A(300I),ND(3100~z~),RAD(100),D(300I),P(300I),UP(3001),
IDOWN ','3001) , LNGT (31000)
INTEGER A,D,P,R,UP,RAD,DOWN,RMAX
DATA NMAX/3c~OI/,MMAX/31000/,RMAX/100/, INF/999999999/
CALL READ (N, M, NR, LMAX, A ~ ND, LNGT ~ RAD, NMAX, MMA X, RMAX)
IVER = - 1
DO 10 I=I,N

68 G. Gallo and S. Pallottino, Shortest path algorithms

SORT THE FORWARD STAR OF NODE I

IN IT = A (I)
IF IN = A (I + I) - 1
IF (IN IT .GE. IF IN) GO TO 10
CALL BUBBLE(INIT~IFIN,LNGT, ND, IVER)

10 CONTINUE
DO 20 ~=I~N

UP(J) = 0
DOWN(O) = 0
P(J) = 0

20 CONTINUE
DO 30 I=I~NR

R = RAD(1)
CALL SORD2(A,ND,LNGT~D~P~UP~DOWN,NMAX,MMAX~N, INF,R)
WRITE(6~40)R, (J ~ P (J) , D (J) , J = I , N)

30 CONTINUE
STOP

40 FORMAT(/7H ROOT = ~ 1 4 / / 5 H NODE,4X, IHP~7X~IHD/<215~I9))
END

SUBROUTINE SORD2(A~ND,LNGT,D,P~UP,DOWN,NMAX~MMAX,N~INF,R)
C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
C
C ROUTINE SORD2
C
C i> FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST
C DISTANCES
C 2) IS BASED ON DOKSTRA~S METHOD, WITH THE PRIORITY QUEUE Q IMPLEMENTED
C AS AN ORDERED TWO-WAY LINKED LIST
C
C MEANING OF THE INPUT PARAMETERS:
C
C A<I) = POINTER TO ARC-LIST OF NODE I, I=I~2,...,N+I
C NO(O) = ENDING NODE OF ARC J, J=I,2,...,M
C LNGT(J) = LENGTH OF ARC O~ O=I,2~...~M
C NMAX = DIMENSION OF ARRAYS A(.), D(.>, P(.), UP(.), DOWN<.>
C MMAX = DIMENSION OF ARRAYS NO(.), LNGT<.)
C N = NUMBER OF NODES
C INF = VERY LARGE INTEGER VALUE (INFINITY)
C R = ROOT
C
C MEANING OF THE OUTPUT PARAMETERS:
C
C D<I) = SHORTEST DISTANCE FROM R TO I, I=I,2,...,N
C P(1) = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE, I=1,2~ N
C
C MEANING OF THE MAIN INTERNAL PARAMETERS:
C
C UP(1)= 0 IF I DOES NOT BELONG TO THE LIST
C = O IF O PRECEDES I IN THE LIST
C DOWN(I)= 0 IF I DOES NOT BELONG TO THE LIST
C 0 IF ~ FOLLOWS I IN THE LIST
C NN = N+I
C U = CURRENT NODE
C V = ENDING NODE OF THE CURRENT ARC
C INIT = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE
C IF IN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE

G. Gallo and S. Pallottino, Shortest path algorithms 69

C PNTR = POINTER TO THE PORTION OF THE LIST TO BE SCANNED. IT MOVES
C BOTTOM-UP

C DV = TENTATIVE LABEL OF NODE V

C
C ALL THE PARAMETERS ARE INTEGER

C

INTEGER A~D~P~R~U~V,UP~DOWN~DV~PNTR

DIMENSION D(NMAX)~P(NMAX)~UP(NMAX)~DOWN(NMAX)~A(NMAX)~ND(MMAX)~

ILNGT(MMAX)

INITIALIZE

DO I(:) I=I~N

D(I) = INF

10 CONTINUE
D(R) = 0

P (R) = 0
NN = N + 1

D(NN) =- 1

UP (NN) = NN
DOWN(NN) = NN

U = R
C
C EXPLORE OF THE FORWARD STAR OF U

C

20 INIT = A(U)
IFIN = A(U+I) - 1
IF (INIT .GT. IFIN) GO TO 80

RESET PNTR TO THE BOTTOM OF THE LIST

PNTR = UP(NN)
DO 70 J=INIT~IFIN

V = ND(J)
DV = D(U) + LNGT(J)

C
C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED
C

IF (D(V) .LE. DV) GO TO 70

C

C RESET THE POINTER
C

IF (D(V) .LT. D(PNTR) .AND. UP(V) .GT. 0) PNTR = V

C

C FIND THE INSERTION POINT FOR V
C

30 IF (D(PNTR) .LE. DV) GO TO 40

PNTR = UP(PNTR)
GO TO 30

40 IF (DOWN(PNTR) .EQ. V) GO TO 60

C
C REMOVE V FROM UP(.) AND DOWN(.)" IF NECESSARY
C

IF (UP(V) .EQ. 0) GO TO 50

IUV = UP(V)

IDV = DOWN(V)

DOWN(IUV) = IDV

UP(IDV) = IUV

70 G. Gallo and S. Pallottino, Shortest path algorithms

INSERT V INTO IJP(.) AND DOWN(.)

50 IDV = DOWN(PNTR)
DOWN(V) = IDV
DOWN(PNTR) = V
UP(IDV) = V
UP(V) = PNTR

60 D(V) = DV
P(V) = U

70 CONTINUE
C
C REMOVE THE NEW CURRENT NODE U
C

80 U = DOWN(NN)
IDU = DOWN(U)
DOWN(NN) = IDU
UP(IDU) = NN
UP(U) = 0

C
C CHECK WHETHER THE LIST IS EMPTY

C
I F (U . L E . N) GO TO 20
RETURN
END

C
C

SUBROUTINE BUBBLE(INIT~IFIN, IVI~IV2~IVER)

C SORTS A PORTION OF THE ARRAYS IV1(.) AND IV2(.) ACCORDING TO THE
C DECREASING (IVER=-I) OR INCREASING (IVER=I> ORDER OF THE ELEMENTS OF
C IV1(.). THE ELEMENTS TO BE SORTED HAVE INDEX J BETWEEN INIT AND IFIN.
C A BUBBLE SORTING TECHNIQUE IS USED.
C ~ ~ i ~ ~ ~ ~ i ~ l i ~ ~ l i ~ i ~ l i ~ i ~ i

INTEGER PNTR
DIMENSION IVI(IFIN),IV2(IFIN)
LAST = IFIN

10 PNTR = LAST - 1
LAST = 0
DO 20 J=INIT~PNTR

IF ((IVI(J) - IVI(O+I))~IVER .LE. 0) GO TO 20
IBUF = I V l (J)

I V I (J) = I V I (~ + I)
I V I (~ + I) = IBUF
IBUF = I V 2 (J)
I V 2 (~) = I V 2 (O + I)
I V 2 (~ + 1) = IBUF
LAST = 0

20 CONTINUE
IF (LAST .GT. 1) GO TO I 0
RETURN
END

SUBROUTINE READ(N,M,NR,LMAX,A,ND~LNGT,RAD~NMAX,MMAX,RMAX)
C $ ~ ~ $ ~ $ ~ $ ~ $ $ ~ $ ~ ~ $ ~ $ ~ $ ~ $ ~ I ~
C READS THE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS

G. Gallo and S. Pallottino, Shortest path algorithms 71

C L I S T .
*

INTEGER A,RAD, RMAX
DIMENSION A(NMAX),ND(MMAX),LNGT(MMAX),RAD(RMAX)
READ (5,30) N, M, NR, LMAX
N1 = N + 1

READ (5,40) (A(I),I=I,NI)
READ (5,50) (ND(I),LNGT(I),I=I,M)
READ (5,40) ~RAD(I),I=I,NR)
RETURN

30 FORMAT (416)
40 FORMAT (1016)
50 FORMAT(1216)

END

72 G. Gallo and S. Pallottino, Shortest path algorithms

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

******* SAMPLE CALLING PROGRAM FOR SUBROUTINE SDIAL **g*~
* * * (SHORTEST PATH PROBLEM> ~*g

g THE PROGRAM IS BASED ON THE PAPER ~*
~ G. GALLO, S. PALLOTTINO "SHORTEST PATH ALGO- ~
*** RITHMS", ~*

*** ANNALS OF OPERATIONS RESEARCH, THIS VOLUME ***

~ ALL THE SUBROUTINES ARE WRITTEN IN AMERICAN *
*** STANDARD FORTRAN AND ARE ACCEPTED BY THE *g~
g** PFORT VERIFIER. ***

*** QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO ***
*** S. PALLOTTINO AND C. RUGGERI g**
~ C.N.R.-I.A,C., ROMA, ITALY. *

C MEANING OF THE MAIN PARAMETERS NOT EXPLAINED IN THE SUBROUTINE:
C
C RAD(I) = I-TH NODE ORIGIN, I=I,2,...,NR
C
C ALL THE PARAMETERS ARE INTEGER
C
C AT PRESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A(.), D(.). P(.),
C UP(.>, DOWN(.)
C MMAX =31000 FOR ND(.), LNGT(.)
C RMAX = 100 FOR RAD(.)
C QMAX =10001 FOR Q(.)
C
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET TO A
C LARGE INTEGER VALUE
C
C
C THE INITIALIZATION OF Q(.), UP(.), DOWN(.), AND P(.) ARRAYS IS MADE
C IN THE MAIN PROGRAM, (THE SUBROUTINE RESETS THEM AT THE END OF EACH
C ITERATION).
C
C EXTERNALS:
C SDIAL
C READ
C
C
C THIS WORK WAS SUPPORTED BY C.N.R., ITALY.
C

DIMENSION A(300I),ND(31000>,RAD(100),D(300I),P<300I),UP(3001),
IDOWN(300I),Q(1000I),LNGT(31000)
INTEGER A.D,P,Q,R,UP,DOWN,RAD,QMAX~RMAX
DATA NMAX/300I/,MMAX/31000/,RMAX/IOO/,INF/999999999/,QMAX/IO001/
CALL READ(N,M,NR,LMAX,A,ND, LNGT,RAD,NMAX,MMAX,RMAX)
NN = N + I

I_MAX = LMAX + I
DO i0 I=I,LMAX

Q(I) = NN

G. Gallo and S. Pallottino, Shortest path algorithms 73

10 CONTINUE
DO 20 J=I,N

UP(J) = 0
DOWN (J) = 0
P(J) = 0

20 CONTINUE
DO 30 I=I ,NR

R = RAD(I)
CALL SDIAL(A,ND,LNGT,D,P,Q,UP~DOWN~NMAX,MMAX,QMAX,N, INF,R,LMAX)
WRITE(6~40>R,(J,P(J),D<J),J=I~N)

30 CONTINUE
STOP

40 FORMAT(/7H ROOT = ,14 / /5H NODE,4X,1HP,7X,1HD/(215,19))
END

C
C

SUBROUTINE SDIAL(A,ND,LNGT,D,P,Q,UP,DOWN,NMAX,MMAX,QMAX,N, INF,R,

*LMAX)

C
C ROUTINE SDIAL
C
C I) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST
C DISTANCES
C 2) IS BASED ON DIAL'S METHOD, WITH THE PRIORITY QUEUE Q IMPLEMENTED AS
C AN ADDRESS ARRAY AND A TWO-WAY LINKED LIST
C
C MEANING OF THE INPUT PARAMETERS:
C
C A < I) = POINTER TO ARC-LIST OF NODE I~ I = I , 2 , . . . , N + I
C N D (J) = ENDING NODE OF ARC J~ J = I , 2 , . . . , M
C LNGT(J) = LENGTH OF ARC J, J = I , 2 , . . . ~ M
C NMAX = DIMENSION OF ARRAYS A(.), D(.), PC.), UP(.), DOWN(.)
C MMAX = DIMENSION OF ARRAYS ND<.)~ LNGT(.)
C QMAX = DIMENSION OF ARRAY Q(.)
C N = NUMBER OF NODES
C INF = VERY LARGE INTEGER VALUE (INFINITY)
C R = ROOT
C LMAX = LENGTH OF THE ACTIVE PART OF ARRAY Q(.)
C
C MEANING OF THE OUTPUT PARAMETERS:
C
C D(1) = SHORTEST DISTANCE FROM R TO I, I=I,2,...,N
C P(I> = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE~ I=I,2,...,N
C
C MEANING OF THE MAIN INTERNAL PARAMETERS:
C
C Q(1) = J IF J IS THE FIRST ELEMENT OF THE I-TH LIST
C = NN IF THE I-TH LIST IS EMPTY
C UP(J)= 0 IF J DOES NOT BELONG TO ANY LIST
C K IF K PRECEDES J IN THE SAME LIST
C -I IF J IS THE FIRST ELEMENT OF THE I-TH LIST (Q(I)=J)
C DOWN(J)= 0 IF J DOES NOT BELONG TO ANY LIST
C K IF K FOLLOWS J IN THE SAME LIST
C NN IF J IS THE LAST ELEMENT OF THE LIST
C NN = N+I
C U = CURRENT NODE

74 G. Gallo and S. PaUottino, Shortest path algorithms

C V = ENDING NODE OF THE CURRENT ARC

C INIT = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE
C IFIN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE

C DV = TENTATIVE LABEL OF NODE V

C PNTR = POINTER TO THE LAST SCANNED POSITION OF Q(.)
C PREC= POINTER FOR UP(.) AND DOWN(.) ARRAYS
C IF PREC < 0 THEN -PREC IS A POINTER TO Q(.) ARRAY
C SEG = POINTER FOR UP(.) AND DOWN (.) ARRAYS

C ADDR= POINTER TO THE LIST IN WHICH V MUST BE INSERTED

C
C ALL THE PARAMETERS ARE INTEGER
C
C*************************i********ii**********i**i*********************

INTEGER A,D,P,Q,R,U~V,DV~SEG,PREC,ADDR~PNTR,UP, DOWN,QMAX

DIMENSION A(NMAX),D(NMAX),P(NMAX),UP(NMAX),DOWN(NMAX),ND(MMAX>,

1LNGT (MMAX) , Q (QMAX)
C
C INITIALIZE

C
DO 10 I=I,N

D(I) = INF

10 CONTINUE

D (R) = 0

P (R) = 0
NN = N + 1
UP(NN) = NN

DOWN(NN) = NN

PNTR = 1

U = R
C

C EXPLORE THE FORWARD STAR OF U

C
20 INIT = A(U)

IFIN = A(U+I> - 1
IF (IFIN .LT. INIT) GO TO 60

DO 50 J=INIT, IFIN
V = ND(J)

DV = D(U) + LNGT(J)
C

C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED
C

IF (D(V) .LE. DV) GO TO 50
D (V) = DV

P (V) = U

IF (UP(V) .EQ. 0) GO TO 4(])
C

C REMOVE V FROM UP(.) AND DOWN(.) IF NECESSARY
C

PREC = UP(V)

SEG = DOWN(V)

IF (F'REC .LT. 0) GO TO 30

DOWN(PREC) = SEG
UP(SEG) = PREC
GO TO 40

30 I P = - PREC

Q(IP) = SEG

UP(SEG) = PREC
C

C COMPUTE THE POINTER TO TE LIST IN WHICH V MUST BE INSERTED
C

G. Gallo and S. Pallottino, Shortest path algorithms 75

40 ADDR = DV + 1 - DV/LMAX~LMAX
SEG = Q(ADDR)
DOWN(V) = SEG
Q(ADDR) = V
UP(V) = - ADDR
UP(SEG) = V

50 CONTINUE
C
C REMOVE THE NEW CURRENT NODE U

C
60 ADDR = PNTR
70 IF (Q(PNTR) .EQ. NN) GO TO 80

U = Q (PNTR)
IDU = DOWN(U)
Q(PNTR) = IDU
UP(IDU) = - PNTR
UP(U) = 0
GO TO 20

80 PNTR = PNTR + 1
IF (PNTR .GT. LMAX) PNTR = I

C
C CHECK WHETER Q(.)
C

IF (PNTR .NE.
RETURN
IsND

IS EMPTY

ADDR) GO TO 70

SUBROUTINE READ(Iq,MrNR,LMAX,A,ND,LNGT,RAD,NMAX,MMAX,RMAX)

C READS THE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS
C LIST.

INTEGER A,RAD,RMAX
DIMENSION A(NMAX),ND(MMAX),LNGT(MMAX).,RAD(RMAX)

READ (5~30) N, M, NR, LMAX
N1 = N + 1

READ (5,40) (A(I),I=I,NI)
READ (5,50) (ND(I),LNGT(I), I=I,M)
READ (5,40) (RAD(1), I=I,NR)
RETURN

30 FORMAT(416)
40 FORMAT (1016)
50 FORMAT (1216)

END

76 G. Gallo and S. PaUottino, Shortest path algorithms

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

* * * * * * * SAMPLE CALLING PROGRAM FOR SUBROUTINE SHEAP * * * * * * *
* * * (SHORTEST PATH PROBLEM) * * *
* * * * * *

* * * THE PROGRAM IS BASED ON THE PAPER * * *
* * * G. GALLO, S. PALLOTTINO "SHORTEST PATH ALGO- * * *
*** RITHMS", ***

* * * ANNALS O F OPERATIONS RESEARCH, THIS VOLUME * * *
* * * * * *

* * * ALL THE SUBROUTINES AR~ WRITTEN IN AMERICAN * * *
* * * STANDARD FORTRAN AND ARE ACCEPTED BY THE * * *
* * * PFORT VERIFIER. * * *

* * * QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO * * *
* * * S. PALLOTTINO AND C. RUGGERI * * *
* * * C.N.R.-I.A.C., ROMA, ITALY. * * *

C MEANING OF THE MAIN PARAMETERS NOT EXPLAINED IN THE SUBROUTINE:
C
C RAD(I) = I-TH ORIGIN NODE, I=I,2,...,NR
C
C ALL THE PARAMETERS ARE INTEGER
C
C
C AT F'RESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A(.), D(.). F'(.),
C HP(.), Q(.)
C MMAX =31000 FOR NO(.), LNGT(.)
C RMAX = 100 FOR RAD(.)
C
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET T
C
C
C THE INITIALIZATION OF Q(.), AND P(.) ARRAYS IS MADE IN THE MAIN
C PROGRAM, (THE SUBROUTINE RESETS THEM AT THE END OF EACH ITERATION)
C
C EXTERNALS:
C READ
C SHEAP
C
C
C THIS WORK WAS SUPPORTED BY C.N.R., ITALY.
C
C***

INTEGER A,D,P,Q,R,HP,RAD,Y,X,T2,RMAX
DIMENSION A(300I),ND(31000),RAD(100),D(300I),P(300I),HP(3001),

1LNGT(31000),Q(3001)
DATA NMAX/3001/,MMAX/31000/,RMAX/IOO/,INF/999999999/
CALl_ READ(N,M,NR,LMAX,A,ND, LNGT,RAD,NMAX,MMAX,RMAX)
DO 10 I=I,N

Q(1) = 0
P(I) = 0

10 CONTINUE
DO 20 I=I,NR

R = RAD(I)

G. Gallo and S. Pallottino, Shortest path algorithms 77

CALL SHEAP(A,ND,LNGT,D~P,Q,HP,NMAX~MMAX,N, INF,R)
WRITE(6~30)R, (d,P(~)~D(d),~=I,N)

20 CONTINUE
STOP

30 FORMAT(/7H ROOT =,I4//5H NODE~4X~IHP,7X,1HD/(215, I9))
END

C
C

SUBROUTINE SHEAP(A,ND,LNGT,D,P,Q,HP, NMAX,MMAX,N, INF,R)
C ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ ~
C
C ROUTINE SHEAP
C
C i) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST
C DISTANCES
C 2) IS BASED ON DIOKSTRA~S METHOD, WITH PRIORITY QUEUE Q IMPLEMENTED
C AS A BINARY HEAP
C
C MEANING OF THE INPUT PARAMETERS:
C
C A(I) = POINTER TO ARC-LIST OF NODE I, I=I,2,...,N+I
C ND(J) = ENDING NODE OF ARC ~, O=I,2,...,M
C LNGT(J) = LENGTH OF ARC J, J=I,2,...,M
C NMAX = DIMENSION OF ARRAYS A(.), D(.), P(.>, Q<.>, HP(.)
C MMAX = DIMENSION OF ARRAYS ND(.), LNGT(.)
C N = NUMBER OF NODES
C INF = VERY LARGE INTEGER VALUE (INFINITY)
C R = ROOT
C
C MEANING OF THE OUTPUT PARAMETERS:
C
C D(I) = SHORTEST DISTANCE FROM R TO I, I=I,2,...,N
C I IN THE SHORTEST PATH TREE, I=I,2,...,N
C
C MEANING OF THE MAIN INTERNAL PARAMETERS:
C
C Q(I) = DICTIONARY OF THE HEAP: Q(I) GIVES THE POSITION OF NODE
C I IN THE HEAP HP(.), I=I,2,...,N
C HP(I)= I-TH NODE IN THE HEAP, I=I,2,...,NHP
C NHP = NUMBER OF NODES IN THE HEAP (NHP<=N)
C NN = N+I
C U = CURRENT NODE
C V = ENDING NODE OF THE CURRENT ARC
C INIT = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE
C IFIN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE
C DV = TENTATIVE LABEL OF NODE V
C
C ALL THE PARAMETERS ARE INTEGER
C
C ~ l i ~ ~ ~ i ~ ~ ~ i ~ ~ l i i ~ i ~ ~

INTEGER A,D,P,Q,R,U, V,DV,HP,DPI,HPI~HP2,HP3
DIMENSION A(NM~X),D(NMAX),P(NMAX),Q(NMAX),HP(NMAX),ND(MMAX),

1LNGT (MMAX)
C
C INITIALIZE
C

DO i0 I=I,N

78 G. Gallo and S. Pallottino, Shortest path algorithms

D(I) = INF
10 CONTINUE

NHP = 0
D (R) = 0

P (R) = 0

NN = N + 1
U = R

C
C EXPLORE THE FORWARD STAR OF

C

20 INIT = A(U)

IFIN = A(U+I) - 1

IF (IFIN .LT. INIT) GO TO 70

DO 60 J=INIT, IFIN

V = ND(J)

DV = D(U) + LNGT(J)

C
C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED

C
IF (D(V) .LE. DV > GO TO 60
D (V) = DV

P (V) = U

IF (Q(V) .NE. 0) GO TO 30

C
C INSERT NODE V INTO THE HEAP

C
NHP = NHP + 1

Q(V) = NHP

C
C UPDATE THE HEAP

C
30 K = Q (V)
40 K2 = K/2

IF (K2 .LE. 0) GO TO 50

HP2 = HP(K2>

IF (DV .GE. D(HP2)) GO TO 50
HP(K) = HP2

Q(HP2) = K

K = K2
GO TO 40

50 HP (K) = V
Q(V) = K

60 CONTINUE
C

C REMOVE THE NEW CURRENT NODE U FROM THE HEAP

C

70 U -- HP(1)

Q(U) = 0
NHP = NHP - 1

C
C CHECK WHETHER THE HEAP IS EMPTY

C

IF (NHP) 130,20,80
C

C UPDATE THE HEAP
C

80 HPI = HP(NHP+I)

DPI = D(HPI)
K = 1

90 K2 = 2~K

G. Gallo and S. Pallottino, Shortest path algorithms 79

HP2 = HF'(K2)
IF (K2-NHP) 100,110,120

100 HP3 = HP(K2+I)
IF (D(HP2) .I-T. D(HP3)) GO TO 110
HP2 = HP3
K2 = K2 + 1

110 IF (DPI .LE. D(HP2)) GO TO 120
HP(K) = HP2
Q(HP2) = K
K = K2
GO TO 90

120 HP(K)=HPI
Q(HPI) = K
GO TO 20

130 CONTINUE
RETURN
END

SUBROUTINE READ(N,M,NR,LMAX,A,ND,LNGT,RAD,NMAX,MMAX,RMAX)
*

C READS THE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS
C LIST..
*

INTEGER A,RAD,RMAX
DIMENSION A(NMAX),ND(MMAX),LNGT(MMAX),RAD(RMAX)
READ (5,30) N, M, NR, LMAX
N1 = N + i

READ (5,40) (A(I),I=I,NI)
READ (5,50) (ND(1),LNGT(I),I=I~M)
READ (5,40) (RAD(I),I=I,NR)
RETURN

30 FORMAT(416)
40 FORMAT(1016)
50 FORMAT(1216)

END

