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Abstract

The shortest path problem is considered from a computational point of view.
Eight algorithms which solve the shortest path tree problem on directed graphs are
presented, together with the results of wide-ranging experimentation designed to
compare their relative performances on different graph topologies. The focus of this
paper is on the implementation of the different data structures used in the algorithms.
A "Pidgin Pascal” description of the algorithms is given, containing enough details
to allow for almost direct implementation in any programming language. In addition,
Fortran codes of the algorithms and of the graph generators used in the experi-
mentation are provided on the diskette.

1. Introduction

In this paper, we deal with the shortest path problem from a computational
point of view. As is well known, this problem is a fundamental component in real-life
large-scale network models. This explains why, although the problem itself is quite
simple and widely studied, new contributions keep appearing in the scientific literature
(see, for one example, the paper by Glover et al. [20]).

For an extended survey on the subject, we refer to Gallo and Pallottino [16],
where the shortest path methods are presented in a unified framework. There, all the
algorithms are shown to derive from a single prototype procedure, the main difference
between them being in the particular data structures used to implement the set of
candidate nodes. Here, from among the ones presented there, we have selected eight
algorithms which solve the shortest path tree problem on directed graphs. In this
selection, we followed three main criteria: historical importance, practical computa-
tional relevance and simplicity of implementation. Thus, we have left out a certain
number of important algorithms, either because their interest is more theoretical
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than practical (see, for instance, Johnson [25]) or because their use implies rather
complex implementation such as some of the algorithms presented in Denardo and
Fox [5].

The focus of the paper is on the implementation of the different data struc-
tures used in the algorithms. Although Fortran codes are provided on the diskette,
the “Pidgin Pascal” description of the algorithms contains enough details to allow
for almost direct implementation in any other language. In fact, there is a one-to-one
correspondence between Fortran codes and Pascal descriptions of the algorithms.

The results of wide-ranging experimentation with a large number of types of
graphs are reported. The source codes of the graph generators used in the experi-
mentation are contained on the diskette.

Although the aim of the paper is to provide well tested and efficient algorithms
for the shortest path tree problem, some attention has also been reserved for the all
pairs problem. In sect. 9, an efficient algorithm for this problem is described, in such
a way that its implementation can easily be obtained making use of the shortest path
tree algorithms on the diskette as subroutines.

2. Definitions and notation

Let us state the main assumptions and the notation we shall use throughout.
G = (N, A; 1) is a directed graph with n = |N| nodes, m = | A| arcs and a length
function 1:A > R. We shall denote the length of arc (i, j) by l:}.. The length of a path
(respectively, of a cycle) is the sum of the lengths of its arcs. The arc lengths may be
either positive or negative; the only assumptions we need to make is that there is no
directed cycle with negative length in G. A further possible assumption is that G is
strictly connected, i.e. for each pair on nodes u and v, a directed path exists from u
to v. Note that this assumption is not binding; in fact, the connection can always be
achieved by the insertion of arcs with a very high length (+<°). In the following,
instead of directed path (directed cycle), we shall simply use path (cycle).

Given a node r, which we call the origin, a shortest path tree (spt), T*(r),is a
spanning directed tree of G, rooted at 7, which, for each v € N, contains a shortest
path from r to v (see Lawler [30]). We shall be dealing with the problem of finding
a shortest path tree.

We shall assume that the graph be given in the form of arc-lists. That is, for
each node u, the list is given of those arcs (u,j) which have u as the first node. The
set of such arcs, FS(u) = {(u, j) € A}, is called the forward star of node u. When
the graph is sparse, which is often the case in applications, it is much better to use
this data structure than the matrix of arc lengths; this is because it requires less
computer storage and usually allows the implementation of more efficient algorithms.

G, then, is represented by n lists, one for each forward star (see fig. 1), accessed
by one array of pointers.
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An efficient implementation of the arc-lists is to put them consecutively in a
pair of arrays, ND[.] and LNGT[.]. The pointers are stored in array A4[.]; each
component points to the first element of the corresponding arc-list, i.e. A[u] =w if
(u, v) is the first arc in the forward star of ¥ where v =ND[w] and /,, = LNGT [w].
By convention, we set 4 [u] := A[u + 1] when FS(u)=0,and A[n+1] :=m + 1.

Thus, the information relative to FS(u) is stored in ND[.] and LNGT{.],
from position 4[u] to A[u + 1] — 1 (see fig. 2). The storage requirement for this
implementation is 2m + n + 1. An example of this technique of representing graphs
is given in fig. 3.

The scanning of FS(«) can be implemented as:

if A[u] < A[u+1] then
for j:=A[u] to Alu+1] -1 do
begin
v :=ND[j];
1, := LNGT[/];

end;

In the following, such a sequence of operations shall be denoted by the single
compact statement

foreach (1, v) € FS(v) do ...

In order to represent a tree, we shall use the predecessor list, that is, a vector p,
where p,, is the predecessor of node v in the tree. The predecessor list p isimplemented
by means of an n-array P[.] in such a way that:

(i) P[r] =0 <« ristherootof 7,
(ii) P[{j]=i < (i,j)isanarcof T.

Together with the vectors defined so far, an n-array D|[.] is used, which will
be returned by the algorithms as the shortest distance vector.

3. A prototype shortest path tree algorithm

Virtually all the shortest path tree algorithms can be viewed as performing
the following operations:
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1. Initialize a directed tree T rooted at r and, for each v € N, let d,, be the
length of the path from r to vin T;

2. Let (i, j) € A be an arc for which d; + I;; = d; < 0, then adjust the vector
d by setting d; = d; + I;, and update the tree T by replacing the current

¢
arc incident into node j by the new arc (i, j);

3. Repeat step (2) until the optimality conditions
d,+ li].> d]., V(@i j)eA

are satisfied.

Note that, during the execution of the procedure, d, is greater than, or equal
to, the distance on the current tree from r to v, v € N; only at termination is equality
bound to hold. We shall call d,, the label of node v.

A crucial point in the implementation of this procedure is how to select
arcs at step 2.

Since n < m, it seems quite reasonable to select nodes rather than arcs, then
once a node u has been selected, the operations of step 2 are performed on all arcs of
FS(u). This choice has the further advantage of being able to exploit reasonably well
the arc-list representation of the graph.

Although a few algorithms have been developed in which only one arc of the
forward star is considered for each selected node, in the large majority of the algo-
rithms presented in the literature, when a node is selected the whole forward star is
considered in one go.

Algorithm SPT, which is given next, is a rather general implementation of the
procedure, based on the exploration of complete forward stars.

Procedure SPT(r);
begin
TINIT(7); QINIT(r);
repeat
QOUT (u);
foreach (u, v) € FS(u) do if D[u] +1,, < D[v] then
begin QIN(v); TUPDATE (u, v) end
until Q=0
end;

Procedure TINIT(r);
begin
for i:=1 to n do begin P[i] :=r; D[i] := +oo end;
P[r] :=0; D[r] :=0
end;
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Procedure QINIT(r);
begin
Q :={r}

end;

Procedure TUPDATE (u, v);
begin
Plv] :=u; Dv} :=D[u] +1,
end;

Procedure QOUT (u);
begin
select u € Q; Q := Q0 —{u}; update Q
end;

Procedure QIN(v);
begin
if v Q then @ :=QU {v};
update Q
end;

The initial tree in TINIT is a star-shaped tree, with one dummy arc (7, v) for
each v € N—{r}; these dummy arcs are assigned a length equal to +oe.

At this point, no assumption is made about how, in QOUT, a node u is selected
from the set of candidate nodes Q. This is crucial. In fact, almost all the spt-algorithms
of practical interest are derived from SPT by properly defining the operation of
selection and, consequently, the particular data structure which is used to implement
the set Q.

In the following section, different selection rules and different data structures
for Q are described. For each implementation of SPT, the storage requirements and
the time complexity are given. As a theoretical measure of time complexity, the
worst- case running time on a random-access machine is used (Tarjan [43]).

We now give a general expression of the complexity of SPT. Here, the com-
plexity is given as a function of the operations performed: from this expression, we
shall derive the complexity of the different implementations of SPT as a function of
n and m. Let g4, q; and g, denote the complexity of QINIT, QOUT and QIN,
respectively. Let ¢, and ¢, denote the number of times QOUT and QIN are performed,
respectively.

Let ¢ be the maximum number of selections of a single node. Then we may state
the complexity of SPTas O(qo + q;.¢1 + g2.c,). Notethat ¢ = 1, n< ¢, < n.C,
m< ¢, < min{n .c;, m .2}, and hence ¢, < ¢, (Gallo and Pallottino [16]).
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4. Selection rules

The choice of the selection rule in QOUT affects the way in which the graph G
is explored to check whether the optimality conditions are satisfied: each selection
rule induces a particular search strategy on G. Three of the most commonly used
search strategies are the breadth-first search, the depth-first search and the best-first
search (Aho et al. [1], Tarjan [42]).

In the breadth-first search (also known as FIFO, First-In-First-Out), at each
iteration the oldest element in Q is selected, i.e. the element which was inserted first,

remove remove

LIST

add add
head tail

Fig. 4. A list.

whereas in the depth-first search (or LIFO, Last-In-First-Out), the element of Q
which is selected is the newest one, i.e. the element which was inserted last.

A characteristic common to the breadth-first search, the depth-first search and
all search strategies derived from them, is that to implement them properly, lists need
to be used. A Iist is a sequence of elements; the first element is its head and the last
element is its tail.

Typical operations on a list are: adding an element to form the new head of
the list (making the old head the second element); adding an element to form the new
tail; removing (retrieving and deleting) the head of the list; removing the tail of the list.

Other list operations include: concatenating two lists (making the tail of the
first list point to the head of the second one), inserting an element after an element
whose location in the list is known, and deleting an element whose location in the list
is known (Tarjan [42]).

In the best-first search, we assume that a real valued label is associated with
each element, and the element to be selected is the minimum label element currently
in Q. Although a list might also be used to implement this search strategy, an efficient
implementation calls for more sophisticated data structures. The data structure most
commonly used in this case is the priority queue. A priority queue is a collection of
elements, each with an associated numerical value (label), on which the following
operations are efficiently performed: adding a new element, removing the minimum
value element and correcting the label of an element whose location is known.

In the following section, we shall call list-search algorithms the spt algorithms
which make use of either a breadth-first or a depth-first search (or any other search
strategy derived from them). We shall call shortest-first search algorithms those spt
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algorithms which make use of a search strategy derived from the best-first one. The
name of the latter class of algorithms comes from the fact that the label of node v,
d,, represents the distance of a path from 7 to vin G at each iteration. Then the best
label element is the one, out of those of Q, which is at the shortest distance from r,
at least as far as we can ascertain at that stage of the computations.

5. List implementation

The two simplest and most common types of lists are the queue and the stack.
A queue is a list in which additions are allowed only at the tail and deletions are
allowed only at the head; the queue is used to implement the breadth-first search
strategy. A stack is a list with addition and deletion allowed only at the head; it is
used to implement the depth-first search strategy.

Two other types of lists which are relevant in the implementation of shortest
path algorithms are the deque and the 2queue (Horowitz and Sahni [21],Knuth [28],
Pallottino [35]).

remove

A ——————————

stack Q' queue Q"

add add

Fig. 5. Deque Q.

A deque, or double-ended queue, is a list in which additions and deletions
are possible at either end. In the deque Q, used in the following, additions are made
at both ends, while deletions are made at the head. Deque can be interpreted as a
stack Q' and a queue Q" connected in series, in such a way that the tail of the stack
points to the head of the queue.

remove

queue Q' queue Q" ‘*‘

add add

Fig. 6. 2queue Q.

2queue differs from deque in that the elements are inserted into Q' at the tail
instead of being inserted at the head; thus, Q can be interpreted as two queues, Q' and
Q", connected in series.

Queues, stacks, deques and 2queues are efficiently implemented by means of
linked-lists.
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5.1. LINKED LIST

The linked-list we deal with is a sequence of elements, [,, [, ..., ,,each of
which is one of the nodes in the graph (; € N).

Each element is linked by means of a pointer to the next one. Two special
elements, frst and last (frst =1, last = 1,)), are used for quick retrieval of the head
and the tail of the list, respectively.

Fig. 7. Linked-list.

In practice, it is advantageous to implement the linked-list in a circular fashion,
making the last element /, point to the dummy element frsz. The general structure of
this kind of list is depicted in fig. 7.

Since the nodes are represented by the first n integers, the linked-list is
efficiently implemented by means of an n + 1 array Q[.], where:

0 if i €0,
ol =1/ (0 <j < n) if i precedes jin Q,

n+1 if iisthe last element;

Qn+1] = frst = the head of Q.

An additional element, last, is needed so that the total storage requirement is
n+2.

The single vector Q[.] can be used to represent two (or more) linked-lists
connected in series, such as deque and 2queue, provided that these lists are disjoint.

In particular, the general implementation described above can be used for
deque, with the following proviso that the last element of queue Q" points to n +1
and Q[n + 1] contains the first element (the head) of stack Q'.

Note that there is no need to know the connection point between the stack
and the queue. On the other hand, this point must be known in order to perform the
insertion operation (at the tail of the queue Q') in 2queue; so, in this case an addi-
tional pointer, pntr, is used.

Since v € Qifandonlyif Q[v] #0,and Q=@ ifandonlyif Q[n+1] =n+1,
the questions "is vin Q7" and “is Q empty?” can be answered in constant time.
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The complexity of procedure QINIT is O(n):

Procedure QINIT(r);
begin
for i :=1 to n do Q[i] :=0;
Qln+1):=r; Qlr] :=n+1; last:=r;
pntr :=n +1; comment: only for 2queue
end;

Procedure QOUT, described next, is common to all the lists consiedered; it
runs in constant time.

Procedure QOUT(u);

begin
u:=Q[n+1]; Qn+1] :=Qlu]; Qlu] :=0;
if last =u then last :=n+1;
if pntr =u then pntr:=n+1; comment: only for 2queue

end;

As for the addition of a new element, Q:=Q U {v}, we must distinguish
between the case of addition at the head and the case of addition at the tail:

addition at the head addition at the tail
Qlv] :=Q[n+1]; Q [last] := v,
Qln+1] :=v; Qlv] :=n+1;
if last =n+1 then last :=v; last :=v;

if pntr=n+1 then pntr:=v;
comment: only for 2queue;

Hence, procedure QIN is different for each of the four lists considered. In
deque and 2queue, the choice of the list to which the new element v must be added
is commanded by a logical variable, cond, which can assume either of two values: true
or false. All these procedures run in constant time.

Procedure QIN(v);
begin comment: version for queue;
if Q[v] =0 then begin Q[last] :=v; Q[v] :=n+1; last :=v end
end;

Procedure QIN(v);
begin comment: version for stack;
if Q[v] =0 then begin Q[v] :=Q[n+1]; @Q[n+1]:=v end
end;
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Procedure QIN(v);
begin comment: version for deque;
if @[v] =0 then if cond
then
begin comment: tail insertion;
Qllast] :=v; Qv] :=n+1; last:=v
end
else
begin comment: head insertion;
Qv]:=Qln+1]; Qln+1] :=v;
if last=n+1 then last:=v
end
end;

Procedure QIN(v);
begin comment: version for 2queue;
if Q[v] =0 then if cond
then
begin comment: tail insertionin Q";
Qllast] :=v; Q[v] :=n+1; last:=v
end
else
begin comment: tail insertionin Q';
Q[v] := Q[pntr]; Q[pntr] :=v;
if last = pntr then last := v;
pntr:=v
end
end;

TWO-WAY LINKED-LIST

13

Two-way linked-lists are used when elements are either deleted from, or
inserted into, the list at an arbitrary position. In this case, two n + 1 arrays are used,
UP[.] and DOWN{.], where:

UP[i] = DOWNJi] = 0 ifi &0,
UP[DOWNI[i]] = DOWN[UP[i]] =i ifi € Q,
DOWN|[n + 1] = frst = the head of Q,

UP[n + 1] = last = the tail of Q.

DOWN[i] points to the element following i in the list, while UP[/] points
to the preceding element. Note that, since a two-way linked-list has an inherent
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symmetry, it is just a matter of convention to call one of the two ends of the list
head and the other one fail: the roles of tail and head can be interchanged.

The initialization of the two arrays UP[.] and DOWN].] is similar to the
initialization of the array Q[.] described above.

Characteristic of the two-way linked-lists are the following elementary opera-
tions:

Procedure DELETE(x);
begin
comment: deletion of element x from g;
UP[DOWN|[x]] := UP[x]; DOWN[UP[x]] := DOWN[x];
DOWN|[x] := UP[x] :=0
end;

Procedure INSERT(x, y);
begin
comment: insertion of element x to Q immediately after y;
DOWN(x] := DOWN[y]; UP[DOWN[x]] := x;
DOWN|[y] :=x;UP[x] ;= »
end;

5.3. MULTIPLE LISTS

A multiple list is a collection of & disjoint linked-lists (one or two ways)
Li,Ly,....L,.

A single array Q[.] (or, in the case of two ways, a pair of arrays UP[.] and
DOWN].]) can be used to implement a multiple list. Since each list needs two pointers
frst and last, two additional arrays of / elements FRST[.] and LAST[.] are needed.
Thus, the overall storage requirement is n + 24 for multiple linked-lists and 2n + 2A
for multiple two-way linked-lists.

Two-way linked-lists and multiple lists will be used to implement priority
queues (see sect. 7).

6. List search algorithms

We now present four spt algorithms which make use of linked-lists in order
to implement the set Q.

Remembering the general complexity bound presented in sect. 3,
O(go + c1q91 + ¢2q3), where ¢, 2 ¢, 2 n, it is easy to verify that these algorithms
run in O(c, ); in fact, g, is O(n), g, and g, are constant.
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Algorithm L-queue

The queue seems to be a very natural choice when implementing SPT. We shall
call such an algorithm L-queue. It represents an efficient implementation of a well-
known shortest path method which is often credited to Bellman [3], Ford [12] and
Moore [32].

Procedure LQUEUE(r);
begin
comment: TINIT and QINIT,;
for i :=1 to n do begin P[i] :=r; D[i] :=+; Q[i] :=0 end;
Plr} :=D[r} :=0; Q[n+ 1] :=last:=r; Q[r} :=n+1;
repeat
comment: QOUT;
u:=Q[n+1]; Qn+1] :=Q[u}; Q[u] :=0;
if last =u then last:=n+1;
comment: scan FS(u);
foreach (u,v) € FS(u) do if D[u] +1,<D[v] then
begin
comment: QIN;
if Q[v] =0 then begin Q[last] :=last:=v; Q[v] :=n+1 end;
comment: TUPDATE;
Plv} :=u; D[v] :=D[u] +1,
end
until Qn+1]=n+1
end,

Since each node cannot be inserted in the queue more than n times (Lawler
[30]), © < n and, as ¢, < m<, the complexity of L-queue is O(nm) (O(n®) for
complete graphs).

The space requirement is 4n + 2m: n + 2m for the input data, n for the
queue, and 2n for the arrays P[.] and D[.].

Algorithm L-deque

A deque is used in the well-known D’Esopo— Pape algorithm (see Pape [36 —38]),
where the insertion policy is the following:

the first time a node is to be inserted into Q, it is added to Q" at the
tail; this corresponds to a breadth-first search strategy. When, later on,
the same node, after being removed from @, again becomes a candidate
for insertion, it is added to Q' at the head: from now on the node is
processed on the basis of a depth-first search strategy.
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The rationale for using this rather peculiar policy is that every time a label d,,
is updated (decreased), except the first time, it is worth trying to decrease the labels
of the successors of u in the current tree as well: this is the aim of the depth-first

search phase.
We call this algorithm L-deque.

Procedure LDEQUE(r);
begin
comment: TINIT and QINIT;
for i :=1 to n do begin P[i] :=r; D[i] := +o0; Q[i] :=0 end;
Pir] :=D[r] :=0; Q[n+1] :=last:=r; Q[r] :=n+1;
repeat
comment: QOUT;
u:=Qn+1}; @Qn+1] :=Q[u}; Qu] :=0;
if last =u then last:=n+1;
comment: scan FS(u);
foreach (u,v) € FS(u) do if D[u] +1,<D[v] then
begin
comment: QIN;
if Q[v] =0 then if D[v] = +eo
then begin Q[last] :=last:=v; Q[v] :=n+1 end
else begin Q[v] :=Q[n+1]; Q[n+1] :=v;
if last=n+1 then last:= v end;
comment: TUPDATE;
P[v] :=u; D[v]:=D[u] + 1,
end
until Q[n+1]l=n+1
end;

In this case, ¢ and ¢, are bounded by O(2") and, as ¢, < nc,, the complexity
of L-deque is O(7-2") (Kershenbaum [27], Shier and Witzgall [39]).

Although characterized by a rather high worst-case complexity, the algorithm
L-deque is very efficient in practice, mainly when dealing with sparse, almost planar,
graphs (Dial et al. [7], Gallo et al. {17], Van Vliet [44] ). An interesting experimental
finding is that, for sparse graphs, ¢ is independent of n (¢ = 1.5) (see table 5 in

sect. 10),
The space requirement is 4n + 2m, as for L-queue.

Algorithm L-2queue

L-2queue is the algorithm obtained when Q is implemented by means of a
2queue and the insertion policy is similar to the one used in L-deque.
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Procedure L2QUEUE(r);
begin
comment: TINIT and QINIT;
for i:=1 to. n do begin P[i] :=r; D[i] := +o0; Q[i] :=0 end;
P[r] :=D[r]) :=0; Q[n+1] :=last:=r; Q[r] :=pntr:=n+1;
repeat
comment: QOUT;
u:=Qn+1}]; Qln+1}:=Qlul; Qlu] :=0;
if pntr=u then pntr.=n+1;
if last =u then last :=n+1;
comment: scan FS(u);
foreach (u, v) € FS(u) do if D[u] + 1, < Dv] then
begin
comment: QIN;
if Q[v] =0 then if D[v] = +o0
then begin Q[last] :=last:=v; Q[v] :=n+1 end
else begin Q[v] := Q[pntr]; Q[pntr] :=v;
if last = pntr then last:=v;
pntr:=vu end;
comment: TUPDATE;
Plv] :=u; D[v] :=DJ[u] + 1,
end
until @{n+1]=n+1
end;

The main difference between L-deque and L-2queue is in the worst-case
computational complexity; in fact, as ¢ = 0 (n?), the complexity for L 2queue is
O(n%m) (Pallottino [34,35]). In practice, the two algorithms behave quite similarly.

Since L-2queue (at least in our experimentation) has always proved to be
almost as good as L-deque without the risk of bad behavior in pathological cases, it
can be recommended to risk-averse users.

The space requirement of L-2queue is the same as for L-queue.

Algorithm L-threshold

The interesting idea behind L-deque and L-2queue is the partitioning of the
set of nodes into two subsets and the different processing of the nodes according to
which of the two subsets they belong to. The partitioning is dynamically updated
at each iteration.

In the papers by Glover et al. [19, 20], the use of the threshold value s is
suggested for partitioning Q into two subsets, Q' and Q": deletions are made at the
head of @', which contains only nodes with labels less than, or equal to, s. Many
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different algorithms can be obtained, depending on the choice of: the threshold, the
policy for updating its value, the implementation of Q' and Q", and the way elements
are moved from Q' to Q".

The algorithm L-threshold is derived from the threshold algorithm proposed
by Glover et al. [19]. The set of candidate nodes Q is partitioned into two subsets
Q' and Q", where Q' is a queue and Q" is a linked-list. Note that, while in L-deque
and in L-2queue Q' and Q" were implemented as two sections of a single list, here
Q' and Q" are two distinct linked-lists.

The queue Q' contains all the nodes of Q whose labels are less than, or equal
to, the current threshold value Ars; the remaining nodes are maintained in Q".

The procedure QOUT removes the head of Q'if Q' # @; when Q' is emptied,
the threshold value thrs is updated (increased) and Q" is scanned to move all the
nodes with label < thrs to Q' and then the new head of Q' is removed. A node v
is inserted in Q', at the tail, only if d, < thrs. When a node v currently belonging to
Q" is assigned a new label d, < thrs, vis moved to Q. In practice it has been proved
to be computationally advantageous to leave a copy of vin Q"; when Q" is scanned
to refresh Q', all the copies are deleted.

To evaluate and update the threshold value, two parameters are computed
in procedure QINIT (Glover et al. [19] ):

s = min{m/n, 35},

x2.lmax ifs <7,

7.x2.lmax/s otherwise;

where Imax is the maximum arc length and where the value of x2 is chosen on the
basis of the topology of the graph: Glover et al. suggest x2 = 1.5 for grid graphs and
x2 =0.25 for random graphs.

Procedure LTHRESHOLD(7);
begin
comment: TINIT and QINIT;
for i := to n do begin P[i] :=r; D[i] := +o; Q1[i] := Q2[i] :=0 end;
P[r] :=D[r] :=0; Ql[n+ 1] :=last:=r; Q2[n+ 1] :=Ql[r] :=n+1;
s := MIN(m/n,35); t := x2 » Imax; if s> 7 then t:=t* 7/s; thrs:= —1;
repeat
comment: QOUT;
if Ql[n+1]=n+1 then
begin
min:=+oo; tli=thrs+t+1;i:=n+1;j:=Q2[i];
comment: scan Q2[.], compute min, remove copies of nodes
already removed, and move nodes from Q2[.] to Q1[.];
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while j# n+1 do if D[j] > tl
then begin comment: update min;
if D[j] < min then min:=DIj];
i:=j;j:=Q2[i] end
else begin comment: remove j from Q2[.];
Q2[i] := Q2[j]; Q2[j] :=0;
if D[j] < thrs then begin Q1[last] :=last:=7;
Q1{j] :=n+1 end;
j:=Q2[i] end;
if Ql[n+1]# n+1 then thrs:=t1 else
begin comment: if 02 =9 STOP;
if Q2[n+1] =n+1 then stop;
thrs :=min+t; i:=n+1; j:= Q2[i];
while j#n+1 do if D[j] > thrs
then begin i:=j; j := Q2[i] end
else begin Q2[i] := Q2[j]; Q2[j] :=0;
Qlllast] :=last:=j; Q1[j] :=n+1;
j:=02[i] end
end
end;
u:=Qln+1]; Ql[n+1] :=Q1[u]; Q1[u] :=0;
if last =u then last:=n+1;
comment: scan FS(u);
foreach (u,v) € FS(u) do if Dfu] +1,,< D[v] then
begin
comment: QIN;
if D[u] +1,< thrs
then if Q1{v] =0 then begin Q1[last] := last := v;
Ql[v] :=n+1 end
else if Q2[v] =0 then begin Q2[v] :=Q2[n+1];
Q2[n+1] :=v end,;
comment: TUPDATE;
Plv] :=u; D[v] :=D[u] +1,,
end
until Ql[n+1]=QR2n+1]=n+1
end;

19

In QINIT we set thrs = —1, and in QOUT, when needed, the threshold value

is updated on the basis of

thrs +1t+1 if dmin < thrs + t+1,

dmin + t otherwise,

thrs =

where dmin = min{d,:v€ Q"}.
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As for complexity, qo is O(n) and g, is constant; q,, the cost of QOUT, is
a constant if Q' is not empty, otherwise it is O(n) since the linked-list Q" must be
scanned. Note that, since thrs cannot decrease and the node labels cannot increase,
when a label d,, goes below thrs its node v can no longer be inserted in Q". Then
the number of times that Q" is scanned to refresh Q' is bounded by n, and hence
the total cost of “‘refreshing” operations is bounded by n?.

Between two successive refreshing operations, L-threshold behaves like L-queue
on a smaller graph, the partial graph (N, 4"), with 4" = {(i, /) € 4 : d;< thrs}. Hence,
the number of extractions from Q' for each node is bounded by n; then ¢ < n? and
the overall cost of QOUT is O(n?).

The total cost of QIN is O(m¢ ) = O(n*m). We may conclude that the com-
plexity of L-threshold is O(n*m).

Since to implement Q' and Q" we need two distinct n-arrays, the space
requirement for L-threshold is 5n + 2m.

7. Priority queues implementation

As mentioned in sect. 4, a priority queue Q is a collection of elements with
each of which is associated a real valued label. We shall denote the label of element
i € Q by D[i]. The procedure QOUT returns a minimum label element out of the
one currently in the priority queue Q.

The elements of Q can be maintained either in order (ordered priority queue)
or out of order (unordered priority queue). This choice is crucial to the complexity
of the algorithms; in fact, when an ordering of the elements is maintained, any opera-
tion involving individual elements (change of the label values, insertion or deletion)
requires, at least in principle, the updating of the whole priority queue.

For the sake of computational efficiency, we shall consider only implementa-
tions of priority queues in which the questions “is v in @?" and “is Q empty?” can
be answered in constant time”.

7.1. UNORDERED LINKED-LIST

The simplest way to implement a priority queue is the linked-list (see sect. 5),
in which the insertion is made at the head so that only one pointer frst is needed.
With this implementation, all operations performed on Q but QOUT are the same as
the corresponding operations described for the stacks.

QOUT, described next, requires the full scanning of Q in order to select the
minimum label element wu.

*After the writing of this paper was completed, the paper by M.L. Fredman and R.E. Tarjan,
Fibonacci heaps and their uses in improved network optimization algorithms (J. ACM 34(1987)
596) has been brought to our attention. In this paper, a new data structure is described which
allows a very efficient implementation of priority queues for shortest path algorithms.
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Procedure QOUT(u);
begin
min:=+o9;ji:=n+1; x:=1i;
while Q[i] #n+1 do

begin
if D[Q[i]] < min then begin x :=i; min:=D[Q[i]] end;
i:=Q[i]
end;
u:=Q[x]; Qlx] :=Q[u]; Qu] :=0

end;

For a better understanding of the procedure, note that to remove an element u,
the element x preceding u in the list must be known.
Let n, be the maximum cardinality of Q; then QOUT runs in O(nq) time.

7.2. ORDERED LINKED-LIST

Q can easily be implemented by means of a two-way linked-list UP[.] end
DOWN/.], where the elements are sorted on the basis of a non-decreasing order of
the label values:

Dlj] = D{i] if j = DOWNI{],
and

D{frst] = min{dj:je Q}, where frst = DOWN|[n +1].

QINIT runs in O(n) time and elementary operations DELETE and INSERT
have constant cost (see sect. 5.2).

Procedure QOUT, which is described next, has constant complexity.

Procedure QOUT (u);
begin
u :=DOWN|[n + 1]; DELETE(u)
end;

Much more expensive is procedure QIN, since we have to determine the posi-
tion at which the new element is to be inserted.



22 G. Gallo and S. Pallottino, Shortest path algorithms

Procedure QIN(v);
begin
if DOWN[v] =0 then pntr:=UP[n + 1}
else begin pntr:= UP[v]; DELETE(v) end;
while D [pntr] > D[v] and pntr+# n+1 do pntr:=UP[pntr];
INSERT (u, pntr)
end;

If n, < n is an upper bound on the cardinality of @, then QIN runs in O(ny)
time.

7.3. BUCKETS

Let f be a monotonic non-decreasing integer function which maps the set of
labels onto the set of integers 1,. .., K. We shall assume that the function f(d,) can
be evaluated in unit time.

The kth bucket is defined to be the subset of all the nodes v € @ such that
f(d,) = k (Denardo and Fox [5],Knuth [29], Tarjan [42]).

A priority queue structured by buckets can be implemented by means of a
K-array of pointers Q[.], where Q[k] points to the kth bucket. Each bucket is

Q DOWN up
1 L~ —_— —
2
3
1] 1 h
1 1 - ]
K—1 (.
K

Fig. 8. A buckets data structure.

implemented as an unordered two-way linked-list; since the buckets are disjoint, they
can be implemented as just one multiple list by means of a pair of n-arrays UP[. ]
and DOWNJ.]. Note that Q[.] plays the role of the array FRST[.] described in
sect. 5.3, while the array LAST[.] is not needed since the additions in our imple-
mentation are performed only at the heads of the lists. An additional pointer pntr
is used, which contains the index of the first non-empty bucket. The overall storage
requirement is K + 2n + 1.
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Procedure QINIT runs in O(K + n) time:

Procedure QINIT(r);
begin
for i:=1to K do Q[i]:=n+1;
for i:=1 to n do UP[{] :=DOWN[i}] :=0;
pntr = f(0); Q[pntr] :=r; UP[r] := DOWN[r] :=n+1
end;

In the procedure QOUT, we update pntr by scanning the array Q[.] to find
the first non-empty bucket; then the bucket is scanned to retrieve and remove the
minimum label element. Since the algorithms using buckets are intended for graphs
with non-negative lengths, we may assume that the minimum labels are monotonically
non-decreasing and hence that pntr cannot decrease from one iteration to the next
in the algorithm. The complexity of QOUT can be split into two parts: the cost of
updating pntr, plus the cost of retrieving the minimum label element in the bucket.

Procedure QOUT (u);

begin
while Q[pntr] =n+1 and pntr < K do pnir:.=pntr+1;
u:=Qlpntr]; min:=Dlu]; i := DOWN[u];
while i#n+1 do

begin if D[i] < min then begin min :=D[i]; u:=i end;
i:= DOWN[i] end;

DELETE («)

end;

Procedure QIN runs in constant time.

Procedure QIN(v);
begin
if UP[v] # O then DELETE(v);
k := (D [v]); INSERT(v, k)
end;

Note that DELETE and INSERT are the operations described in sect. 5.2 with
only minor modifications due to the fact that here we deal with multiple linked-lists.

74. BINARY HEAPS

The binary heap (Williams [46]) is a balanced binary tree where each node
points to one of the elements of a set of labeled elements, in such a way that the
label of the element pointed to by node i is less than, or equal to, the labels of the
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#P [3 127 6 13 ¥ 2 7 B 5 9]
2 3 4 5 6 7 8 9 10

9 3 T 8 10 O O 2 L
7 10 B 10 8 1 ©®© ® 5 7
5 6 7 8 9 10 11 112 13

Fig. 9. The binary heap HP[.] and its dictionary Q[.].

elements pointed to by its descendants. Clearly, the root of the tree, node 1, points
to a minimum label element.

Binary heaps can be implemented as a pair of n-arrays HP[.] and Q[.],
where HP[i] is the element pointed to by node i and Q [v] is the index of the node
which points to the element v; if v € Q, then Q[v] =0. An additional integer,
nhp = | Q|,is used. The storage requirement is 2n + 1.

As usual, the nodes of the heap are numbered in such a way that the two sons
of anode 7 are nodes 27 and 2/ + 1 (see fig. 9).

Procedure QINIT(7);
begin for i:=1 to n do Q[i] :=HP[i] :=0;
Q[r] :=1; HP[1] :=r; nhp:=1
end;

Procedure QINIT runs in O(n) time.

The two procedures QOUT and QIN run in O(log n,) time, where n, is the
maximum cardinality of Q.

In the former, the element ¥ = HP[1] is removed and the heap is updated:
the last element HP[nhp] is placed at the root and is then moved down to restore the
order of the labels.

In the latter, first we check if v is not already in Q, in which case v is placed
in the first available position nhp + 1, then v is moved up until it reaches its correct
position in the heap.

Procedure QOUT (u);
begin
u:=HP[1]; Q[u] :=0; h:=HP[nhp]; nhp :=nhp—1;
if nAip > 0 then
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begin
k:=1;
repeat
k2:=2xk;
if k2<nhp then
begin
if k2< nhp and D[HP[k2 + 1]] < D[HP[k2]}
then k2 :=k2+1;
i:=HP[k2];
if D[i] < D[h] then begin HP[X] :=7; Q[i] :=k;
k:=k2 end
end
until k¥ #k2;
HP[k] :=h; Q[h] :=k
end
end;

Procedure QIN(v);
begin
if Q[v] =0 then begin nhp := nhp + 1; HP[nhp] :=v; Q[v] :=nhp end;
k:=Q[vl; k2 := INT(k/2);
while k2> 0 and D[v] < D[HP[k2]] do
begin HP[k] :=HP[k2]; Q[HP[k2]] :=k;
k:=k2; k2 :=INT(k/2) end;
HP[k] :=v; Q[v] :=k
end;

8. Shortest-first search algorithms

The first algorithm to use a shortest-first search strategy can be credited both
to Dijkstra [8] and to Moore [32], although it was the former who stated formally
its properties; actually, any algorithm which uses this strategy can be considered a
particular implementation of Dijkstra’s original method.

The basic property of these algorithms is the following:

Proposition 1. If /; > 0, Y (i, j) € A, then each node is removed from (and
hence inserted into) @ exactly once.

This is due to the fact that, at each step, if u is a minimum label element
of Q, then d,, is the shortest distance from r to u, provided that no arc has a negative
length. In this case, we have ¢ =1, ¢, = O(n) and ¢, = O(m).



26 G. Gallo and S. Pallottino, Shortest path algorithms

So, the complexity for the shortest-first algorithms when the lengths are non-
negative is O(qq + ngq, + mq,).

Unfortunately, such a nice property no longer holds when the arc lengths are
not restricted to being non-negative. In this case, it can be shown (Johnson [24])
that the algorithm might pass through step 2 exponentially many times, and then
¢; =0@2")and ¢, =0(n-27).

In the following, we shall restrict ourselves to the case of non-negative lengths.

Algorithm S-Dijkstra

S-Dijkstra represents the simplest implementation of Dijkstra’s original idea.

Q is an unordered linked-list. As shown in sects. 5.1 and 7.1, q, is O(n),
q, is O(n;) < O(n) and g, is constant. In this case, the algorithm runs in 0(n?)
time.

Its space requirement is 4n + 2m.

Procedure SDIJKSTRA(?);
begin
comment: TINIT and QINIT;
for i:=1 to n do begin P[i] :=r; D[i] := +o0; Q[i] :=0 end,;
Plr] :=D[r] :=0; Q[n+1] :=r; Q[r] :=n+1;
repeat
comment: QOUT;
min:=+0%; {:=n+1; x:=1i;
while Q[i] #n+1 do

begin
if D[Q[i]] < min then begin x :=i; min:=D[Q[i]] end;
i:=Qli]

end;

u:=Q[x]; Qfx] :=Qlul; Qlu] :=0;
comment: scan FS(u);
foreach (u, v)€ FS(u) do if D[u] + 1, < D[v] then
begin
comment: QIN;
if Q[v] =0 then begin Q[v] :=Q[n+1]; Q[n+1] :=v end;
comment: TUPDATE;
P[] :=u; D[v] :=Du] + 1,
end
until @[n+1]l =n+1
end;



G. Gallo and S. Pallottino, Shortest path algorithms 27

Algorithm S-ord

The algorithm S-ord makes use of an ordered two-way linked-list. To improve
its efficiency, a pre-processing phase is performed where the forward stars are sorted
in decreasing order of arc lengths (Simeone [40]). In doing so, we obtain the two
following advantages:

(i) to perform the operations QIN on the ending nodes of the arcs in FS(u),
the list must be scanned only once from the tail (highest label element)
to the head;

(ii) let (u, v) and (u, w) be successive arcs in FS(u), and assume that, after
having performed operation QIN(v) we also update the label of node w
from the old value d,, to the new value d,, = d,, + l,,,. Then, since
FS(u) has been sorted, d,, < min{d,, d,,}.

These facts can be exploited to “skip” uninteresting portions of the list when
QIN(w) is performed.

The complexity of the pre-processing phase is O(mn); in fact, in our imple-
mentation each forward star is sorted by means of a bubble-sort algorithm.

Now we derive the complexity of the algorithm without considering the pre-
processing phase. This is of interest when the algorithm must be used many times on
the same set of data. The cost g, is O(n) and g, is constant. Since all the QIN opera-
tions relative to the same forward star cost O(n) because of (i), the overall cost due
to QIN is O(n?). Hence, the complexity of S-ord is O(n?).

The space requirement is 5» + 2m.

Procedure SORD(7);
begin
comment: TINIT and QINIT;
for i:=1 to n do begin P[i] :=r; D[i] := too;
UP{i] := DOWN[i] :=0 end;
Plr] :=D[r] :=0; UP[n+1] :=DOWN[n +1] :=r;
UP{r] :=DOWN[r] :=n +1;
Dn+1] .= ~oo;
repeat
comment: QOUT,;
u:=DOWN|[n +1];
UP[DOWN[u]] :=n+1; DOWN[n + 1] := DOWN|u];
DOWN|[u] :=UP[u] :=0; pntr:= UP[n + 1];
comment: scan FS(u);
foreach (u,v)€ FS(u) do if D[u] +1,< D[v] then
begin
comment: QIN;
if DOWN[v] # O then
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begin UP[DOWN|[v]] :=UP[v]; DOWN[UP[v]] := DOWN|[v];
if D{v] < D[pntr] then pntr:=UP[v] end;
delta:= D[u] +1,,;
while D {[pntr] > delta do pntr:=UP|[pntr];
DOWN{[v] := DOWN(pntr]; UP[DOWN|[v]] := v;
DOWN(pntr] :=v; UP[v] := pntr;
comment: TUPDATE;
Plv] :=u; D[v] :=delta
end
until DOWN[n +1] =n+1
end;

Algorithm S-Dial

The algorithm S-Dial (Dial [6]) makes use of the buckets to implement Q.
Without loss of generality, we can consider the arc-length (non-negative) integers.
Let Imax =max{l;; : (i,/) € A},

The function f(d,) is: f(d,) = d, + 1, so that the first non-empty bucket
contains only minimum label nodes; hence, in operation QOUT, the scanning of the
bucket is not necessary.

Moreover, the dimension of the vector Qf.], which is crucial to the storage
requirement of the algorithm, can be reduced by means of the following con-
sideration: if # is a minimum label element of @, then, for each v € g,
d, < d,< d, + Imax. Hence, the function f introduced can be replaced by the new
function f' = f.mod(Imax + 1), which is implemented by means of:

< |0 if £(d,)+ L, < Imax + 1,
-

f'd,)+1, —Imax—1 otherwise;

and the dimension of Q[.] is reduced to K = Imax + 1. The effect of using the latter
function f is that each bucket is used several times.

The overall complexity of QOUT is O(dmax), where dmax = max{d,: v € N}
< n.lmax.

As g, = O(n + Imax) and gq, is constant, the complexity of S-Dial is
O(m + n.lmax).

The space requirement is 5n + 2m + Imax.
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Procedure SDIAL(r);
begin
comment: TINIT and QINIT;
for i:=1 to n do begin P[i] :=r; D[i]:= +oo;
UP[i] :=DOWN[i] :=0 end,
for i:=1 to Imax+1 do Q[i] :=n+1;
P[r] :=DJ[r] :=0; Q[1] :=r; UP[r] := —1; DOWN][r] :=n+1;
centr .= pntr:= 1,
repeat
comment: QOUT;
while Q[pntr] =n+1 do if pntr> Imax then pntr:.=1
else pntr:=pntr+1;
u:=Q[pntr]; Q[pntr] := DOWN[u];
UP[DOWNI[u]] := —pntr; UP[u] := DOWN[u] :=0; cntr:=cntr—1;
comment: scan FS(u);
foreach (u, v)€ FS(u) do if D[u] +1, < D[v] then
begin
comment: QIN;
if DOWN[v] :=0 then cntr:=cntr+1

else
begin
if UP[v] > O then DOWN([UP[v]] := DOWN]|v]
else Q[ —UP[v]] :=DOWN|[v];
UP[DOWN{v] ] := UP[v]
end;
X =pntr+l,,;

if x> Ilmax+1 then x:=x—Imax—1;
DOWN([v] := @[x]; UP[DOWN[v]] :=v;
Q[x] :=v; UP[v] := —x;
comment: TUPDATE;
Plv) :=u; D[v] :=D[u] +1,
end
until cntr=0
end;

Algorithm S-heap

In S-heap, the priority queue is a partially ordered set implemented by means
of a binary heap (see sect. 7.4). The operations QOUT and QIN run in O(log nq). Then
the complexity of S-heap is O(m .log n) (D.B. Johnson [25] and E.L. Johnson [26]).
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Procedure SHEAP (7);
begin
comment: TINIT and QINIT;
for i:=1 to n do begin P[i] :=r; D[i] := +0s;
HP[i] := @[i] :=0 end;

P[r] :=D[r] :=0; Q[r] :=nhp:=1; HP[1] :=r;

repeat
comment: QOUT;
u:=HP[1]; Q[u] :=0; h:=HP[nhp]; nhp := nhp—1;
if nhp > 0 then

begin
k:=1;
repeat
k2:=2x+k;
if k2 < nhp then
begin
if k2< nhp and D[HP[k2 +1]] < D[HP[k2]]
then k2:=k2 + 1;
i:=HP[k2];
if D[i] < D[h] then
begin HP[k] :=i; Q[i] :=k; k:=k2 end
end
until £ # k2;
HP[k] :=h; Q[h] :=k
end;

comment: scan FS(u);
foreach (u,v)€ FS(u) do if D[u] +1, < D[v] then
begin
comment: QIN;
if Q[v] =0 then begin nhp :=nhp + 1; HP[nhp] :=v;
Q[v] :=nhp end;
k:=Q[v]; k2 :=INT(k/2);
while k2> 0 and D[v] < D[HP[%,2]] do
begin HP[k] :=HP[k2]; Q[HP[k2]] :=k;
k:=k2; k2 :=INT(k/2) end;
HP[k] :=v; Q[v] :=k;
comment: TUPDATE;
Plv] :=u; D[v] :=DJu] +1,,
end
until nhp =0
end;
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Note that quite often in sparse graphs, m is O(n), and the complexity becomes
O(n .log n).
The space requirement is Sn + 2m.

9.  The all pairs problem

In most real-life models, the requirement is to find the shortest distances
between all pairs of nodes. Algorithms exist which solve this problem directly. One
of them, very ingenious indeed, is due to Floyd [11] and is based on a result by
Warshall [45]. The underlying idea is rather simple: let dig”) be the length of the
shortest path from i to j, subject to the condition that the path does not pass through
any of the nodes #, h +1,...,n (i and j except); then we have

L, i GL])E A4,
d}}}): 0, if i=j,

+ oo,  otherwise;

(h+1) - . (h (h h
di; mm{dt’j ), dih) + d;ﬁj)} .

The array of predecessor nodes, where p; is the predecessor of node j in the
shortest path from i to 7,is (Hu [22]):

o 2 if (i, /)€ 4,
D = .
4 0, otherwise;

p if gl = gh)
(h+1) = 4 Y v v
P

(h) i
Ppi’s otherwise.

Clearly, d;.(’,-" *1) is the shortest distance between nodes  and j- The complexity
of this algorithm is O(n®), whatever the density of the graph.
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Procedure FLOYD(n);
begin
comment: initialization;
fori:=1ton do forj:=1 to n do
if (1,/)€ A then begin D[i, ] :=1;; P[i,j]:=1 end
else begin D[i, j] := +e; P[i,j] :=0 end,
for i:=1 to n do D[i, ] :=0;
comment: paths computation;
for h:=1to n do for i:=1 to n do for j:=1 to n do
if D[i,j1> D[i, h] + D[h,j] then
begin D[i,j] :=D[i,h] + D[h,j}; P[i,j] :=P[h,j] end
end,

A major drawback of this algorithm is its high storage requirement, O(n?),
which prevents it being used in large-scale models. The need for a storage space of the
order of n? is a characteristic shared by all direct approaches to the all-pairs shortest
path problem (Dantzig [4], Tabourier [41]).

This explains why the approach most often used in practice consists of carrying
out a sequence of n distinct spt computations. This sequential approach may seem
rather redundant, but can in fact be implemented efficiently (Bazaraa and Langley [2]).

The problem of finding the spt rooted at s # r, T*(s), once T™(7) is known, is
simply a particular reoptimization problem, as shown in the paper by Gallo [13]. An
efficient sequential solution procedure can be devised making use of the transformation

~

Io=1,+d,-d >0, (L)€L

where d,; is the shortest distance from the old root » to node i.

It is easy to see that such a transformation does not affect the shortest path
tree T'(s), since its effect is to change the length of each path by a constant (Edmonds
and Karp [9], Gallo [14], Nemhauser [33]). Once the shortest distances with trans-
formed lengths have been found, the true distances are determined by means of the
inverse transformation

d =d —-d_+d _, vEN,

U rs rv

SV s

where c?w is the shortest distance from s to v with the transformed lengths 1
The resulting procedure is:

Procedure SA (Sequential All pairs) (Gallo and Pallottino [15])

Step1. Find T*(1) and d
k=1.

v € N, making use of any list-search algorithm. Set

1v»
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Step2.  Set I =l +dy;—dy;, (i, )JE 4; setk=k+ 1.

Step3. Find T*(k) and Ekv, v € N, making use of any shortest-first search algo-
rithm.

Step4. Setdkv=£iku—d(k_l)k+d(k_l)v, vVE N.
If k < n, then go to step 2; else STOP.

Unlike the Floyd—Warshall method, this procedure needs a storage space
linear with m and n. If L-queue and S-heap are used at step 1 and at step 3, respectively,
the complexity of SA is O(m+n-logn) (Lawler [31]), which for sparse graphs can be
less than the complexity of the Floyd —Warshall method. Moreover, while the actual
number of operations for this method is always of the order of n?, this is not the case
for SA for which, in practical problems, the complexity is often far below its worst-
case figure.

Note that at step 3, an spt problem is solved where the distribution of the arc
lengths is very peculiar indeed. In fact, a large number of arcs have zero length (at
least all the n — 1 arcs of T*(k — 1) since for such arcs -1y ~Ax-1)i = li]-),whjle
some others may have rather large lengths depending on the relative value of d(; _ ,y;
and d(, _,y;. These facts can be exploited to speed up the algorithm.

Moreover, a bound to the longest shortest path can easily be determined:

Proposition 2 (Gallo [13])

D, = max{d, :v€ N} =Beie-1) = Degie-1) T -1y -

D, , at least for graphs without zero length cycles, is a norm and can be con-
sidered as a measure of the “distance” between the kth and (k — 1)th problems. Then,
the computational complexity of step 3 is O(m + D, ).

Similar results, although slightly more intricate, can be obtained with the
other shortest-first search algorithms.

From these considerations, it follows that the ordering of the nodes (origins)
is not immaterial to the computational complexity of SA.

To maximize the efficiency of SA, one should try to order the nodes in such
a way that nodes k — 1 and k be as close as possible. This can be done either with an
“apriori” ordering, or in an “adaptive” way, i.e. by selecting at each step, on the
basis of the current shortest distances, the node to be considered next. An “apriori”
ordering calls for a pre-processing of the graph, which can be done by means of any
heuristic algorithm for the travelling saleman problem; this is particularly advantageous
when many all-pairs problems are to be solved on the same graph.

In the following, an implementation of SA is described (Gallo and Pallottino

[1s]).
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Algorithm PSA (Primal Sequential All pairs)

This algorithm is based on two facts which derive from the considerations
developed before and in proposition 2:

(i) in the execution of algorithm SPT, at step 3 of SA, it is likely that more
than one element with a minimum label exists in Q (this happens, for instance, when a
node u is selected, whose forward star contains more than one arc with zero trans-
formed length);

(i) anode v € Q with label d, > D, cannot be a candidate for selection at
step 2 of SPT.

"t

Then we may partition Q into three sets @', Q" and Q"', and the insertion of
a node v at step 3 of SPT is carried out according to the following rule, where D is an
estimate of D, :

(1) ifd,=d, (ie.1, = 0), thenvis inserted into Q' (and deleted from Q"
or from Q"' if already in Q);

(2) if d, < d, < D, then v is inserted into Q" (and deleted from Q"' if
necessary);

(3) ifd, > D, thenvis inserted into Q"".

The sets Q' and Q"' are implemented as linked-lists, whereas the set Q" is imple-
mented as a priority queue. Each time the set Q' is empty, all the minimum label
elements of Q" are moved into Q'. When Q' and Q" are empty and Q"' is not, D is
increased and all the elements v € Q"' with d,, less than, or equal to, the new esti-
mate D are moved into Q' orinto Q". A reasonable initial estimate of D, is 2d; - 1)k
(Gallo [13], Gallo and Pallottino [15]).

Note that when node k — 1 (the previous origin) is inserted into Q’, the explora-
tion of Q can be interrupted. In fact, any node v not yet inserted into Q' can be
reached from k — 1 at zero (transformed) distance, and a shortest path from % to
v passes through node k — 1. Hence, provided that additional bookkeeping is carried
out to update the predecessor vector, it is easy to determine the new spt T *(k). The
main advantage of this fact is that each shortest path tree computation in SA (except
for the first one) does not necessarily pass through the examination of all the arcs;
thus, its complexity is §£2(n) and not £2(m) as in the general case.

The computational complexity of this implementation of SA depends on
the particular data structure chosen to implement the priority queue, and in any case
it can be bounded by O(n?).

The application of PSA and an analogous algorithm based on a dual approach
(Florian et al. [10]) to some real urban transportation problems has shown that
about 10% of the nodes and arcs do not need to be examined at each iteration; more-
over, up to 90% of the examined nodes are inserted directly into Q'. The solution was
attained with computer times from 20% to 35% lower than the times needed by
L-deque or by S-Dial.
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10. Numerical experimentation

Now we describe the experimentation performed on a rather broad set of
test problems, in order to achieve a deeper understanding of the algorithms’ behavior
and to assess their relative efficiency.

The experimentation reported refers to the spt algorithms described in sects. 6
and 8 and is part of wider ranging experimentation illustrated in Gallo et al. [17].

The codes we used are an almost “one-to-one” FORTRAN-ANSI implementa-
tion of the pidgin Pascal description of the algorithms. The only modifications, which
regard minor points in the implementation of the data structures, were made for
reasons of computational efficiency. For this reason, we do not include in the text
the source lists, which of course can be obtained together with the test problem
generators from the enclosed diskette.

The graphs used in the experimentation can be partitioned into two major
classes: complete and sparse graphs.

Due to the high growth rate of the storage requirement, only relatively small-
size (up to a maximum of 175 nodes) complete graphs were generated.

Three types of sparse graphs were considered: random graphs, k-linear graphs
and grid graphs. Graphs going from 1000 of nodes and 10 000 arcs up to 3000 and
30 000 arcs were generated.

In random graphs, the arcs were generated randomly, without repetitions, in
order to achieve assigned density values.

k-linear graphs (see sect. 10.3) are particularly structured sparse graphs which
represent real-life models quite well, such as a large class of transportation networks.

The grid graphs, which have been widely used in previous experimentations
(Gilsinn and Witzgall [18], Dial et al. [7]), can be regarded as a particular case of
k-linear graphs.

Integer arc lengths were generated randomly, with a uniform distribution
between O and an assigned maximum positive value Imax.

As expected, the only algorithm whose behavior is noticeably affected by the
arc-length range is S-Dial which, out of the shortest-first algorithms, is the fastest
for small values of /max (100 in our experimentation). When Imax increases, S-Dial
slows down strongly.

Out of the list-search algorithms, L-threshold turns out to be the fastest. Out
of the other algorithms in this class, L-deque and L-2queue, which behave very much
alike, out-perform L-queue for well structured graphs, k-linear and grid graphs, while
L-queue is usually faster for complete and random graphs. It can be noted that these
experimental findings go against what is suggested by the worst-case computational
complexity.

The efficiency of L-threshold is mainly due to the choice of the parameters s,
t and x2 (see sect. 6), determined by the authors (Glover et al. [19]) by means of a
very great deal of experimentation. Since the parameter values depend on the particular
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topology of the graph and on Imax, a tuning-up phase might be needed in some
applications to achieve the maximum efficiency of the algorithm.

Although slower, L-deque and L-2queue, whose behavior is quite stable with
respect to the input data, are fast enough to be considered a good choice in most
applications. Qut of the two, risk-averse users might prefer the latter, which is poly-
nomially bounded.

Strong points for some users are the simplicity of implementation and the
storage requirement.

L-queue, L-deque and L-2queue, which are based on linked lists with simple
handling operations, are easy toc implement with a small number of statements. More
complicated are S-Dijkstra and S-ord because of the operations performed on the
linked-lists.

S-heap, S-Dial and L-threshold require more sophisticated data structures
and are the most complex to implement out of the spt algorithms described in this
paper. Hence, their implementations are characterized by a rather large number of
statements.

Table 1

Memory requirement

Storage requirement Algorithms
4n+2m S-Dijkstra, L-queue, L-deque, L-2queue
Sn+2m S-ord, S-heap, L-threshold
Sn+2m +Imax §-Dial

In table 1, the storage requirement of the different algorithms is summarized.
Remember that in assessing overall memory occupation one should consider, in
addition to the space for the data, given in the table, the in-core memory needed
by the program itself, which usually increases with the number of statements.

We now give a detailed description of the experimentation. In the tests, two
ranges, from which the arc lengths have been uniformly drawn, were used: [0 + 100]
and [0 + 10 000]. Since all the algorithms but S-Dial are unaffected by Imax, we
report only the results obtained with Imax = 100 except for S-Dial, for which we
fully report on all the tests performed.

The CPU times in sec.10™% given in the tables and in the figures are the
mean values over ten runs, each differing from the others only as far as the origin
of the paths is concerned.

The computer used was an IBM 3033 NO8 under VM/CMS Operating System
and a FORTGI compiler.
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10.1. COMPLETE GRAPHS

Four different complete graphs were generated with n =25,75, 125 and 175.
We ran L-threshold with different values of x, obtaining the CPU time reported
in table 2, which suggests that x = 0.25 is a good choice for complete graphs.

Table 2
CPU times for n =175

x2 0.25 0.50 075 1.00 1.2§ 1.50 1.7 2.00
time 72 90 100 104 108 109 112 113

Table 3
Complete graphs

Algorithms n =125 n=175 n=125 n=175
S-Dijkstra 2.2 20 55 167
S-ord 2 52 217 573
S-heap 2 14 37 71
S-Dial (imax = 10*) 2 14 37 71
S-Dial (Imax = 10*) 20.8 31 54 89
L-queue 2.2 23 62 125
L-deque 24 32 83 186
L-2queue 24 31 81 179
L-threshold (Imax = 10?) 1.8 14 38 72
(x2 =0.25)

L-threshold (Imax = 10*) 1.8 15 40 94
(x2=0.25)

The results of the experimentation reported in table 3 show that (only) in
this case the fastest algorithm is S-heap.

The behavior of the algorithms on the basis of the data of table 3 is sum-
marized in fig. 10.

The relatively disappointing performance of the list-search algorithms (except
L-threshold) can be credited to the following fact: the number of label updates per-
formed in these algorithms increases with the number of alternative paths with dif-
ferent lengths from the root to each node. A large number of such paths may produce
too many trials before hitting on the right label. Of course, it is in complete graphs
that we have a maximum number of alternative paths.
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Fig. 10. Complete graphs.
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Table 4

Complete graphs: Imax = n*

Algorithms n=25 n=175 n=125 n=175
S-Dijkstra 24 20 55 108
S-ord 22 53 219 576
S-heap 2.2 15 39 72
S-Dial 3 24 64 123
L-queue 2.2 29 73 162
L-deque 24 40 109 284
L-2queue 26 39 105 258
L-threshold (x2 = 0.25) 18 15 40 94

These considerations are backed up by the experimental findings reported in
table 4, where we ran the same problems as before with increasing Imax values,
namely Imax = n*. Clearly, the effect of increasing the arc-length range is to increase
the probability of distinct paths having different lengths. In any case, the effect of the
arc-length range on the behavior of list-search algorithms is relatively small.

10.2. RANDOM GRAPHS

Four different random graphs were generated with n = 1000, 3000 and
m = 10 000, 30 000; (Imax = 100 for all the algorithms except for S-Dial, for which
the value 10 000 was also used).

Table 5
Random graphs

leorith n= 1000 n= 1000 n= 3000 n= 3000
Algorithms _ 16000 m=30000 m=10000 m =30000

S-Dijkstra 1180 1420 6017 9506
S-ord 163 333 597 1106
S-heap 72 121 171 226
S-Dial (Imax = 10?) 39 88 64 112
S-Dial (Imax = 10%) 76 238 153 163
L-queue 55 161 70 183
L-deque 57 186 65 193
L-2queue 58 186 64 193

L-threshold (x2 = 0.25) 36 83 64 105
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From the results reported in table S, the following considerations derive:

— as anticipated, L-threshold is the fastest algorithm;

— the behavior of algorithms S-Dijkstra and S-ord is more affected by the
number of the nodes than by the number of the arcs, which is reasonable
since their theoretical complexity is O(n?);

— the other algorithms are more affected by the number of the arcs; this is
particularly true for the list-search algorithms.

103. k-LINEAR GRAPHS

k-linear graphs are layered graphs where the nodes are partitioned into k sub-
sets, Ny, V,, . .., N, with arcs connecting either nodes of the same subset or nodes
belonging to adjacent subsets.

In the experimentation, we always chose

2INi1 = IN;l = ... = IN,_ | = 2IN| = n/(k-1).

As for arcs, which were randomly generated, two types of k-linear graphs
were used:

(i) the stable ones, where no arc exists between nodes in the same subset;
(ii) the unstable ones, where such arcs are allowed.

More details on the way these arcs were generated can be obtained from the
comments of the generators source lists in the diskette.

For each of these two types of graphs, four different topologies were generated
with 2500 nodes, 30 000 arcsand k = 10, 50, 100, 200. Again, we have set Imax = 100,
and Imax =10 000 only for S-Dial.

From the results reported in table 6, one can observe that:

—  L-threshold strictly dominates all the other algorithms;

— except for L-queue, the list-search algorithms are unaffected by k;

— as backed up also be experimental findings not reported here, L-queue
slows down when the diameter of the graph increases, which in this case
is bounded from below by k—1;

— except for S-Dial, the effect of increasing k is to decrease (although only
slightly) the running times of the shortest-first search algorithms; this is
due to the fact that as the diameter increases, the maximum number of
elements currently in the priority queue decreases (for a given size of
graphs);

— the behavior of S-Dial is explained by that fact that, as reported in sect. 8,
the number of operations performed linearly increases with dmax, which
in turn increases with k.
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Table 6
k-linear graphs: n = 2500, m = 30000

Algorithms k=10 k=50 k=100 k=200
S-Dijkstra 6145 1282 649 349
S-ord 734 243 186 160
S-heap 206 176 164 152
S-Dial (Imax = 10?%) 113 106 105 107
S-Dial (Imax = 10%) 157 185 243 371
L-queue (stable graphs) 194 241 297 292
L-queue (unstable graphs) 196 434 360 1208
L-deque 159 117 110 105
L-2queue 159 118 111 106
L-threshold (x2 = 0.25) 104 98 97 97
t y ! L-queue

| {(unstable graphs)

500 1 !

/
LoO L
300 ¢ L—queue

(stable graphs)
200 +
100 4 .>\\L L-deque and L-2queue
L-threshold
4 -+ +— + o
10 50 100 200 k

Fig. 11. k-linear graphs.



42 G. Gallo and S. Pallottino, Shortest path algorithms

Table 7
CPU times for n = 2500, m = 30 000, Iimax = 10 000, x = 200

x2 025 050 0.75 1.00 1.25 1.50 175 2.00
time 98 103 111 122 130 142 142 149

In table 6, the results on unstable graphs have been listed only for L-queue
because all others are almost unaffected by the stability of the graph.

The behavior of the list-search algorithms is summarized in fig. 11. In table 7,
the experimentation which led to the choice of the table value of x2 is reported.

104. GRID GRAPHS

Four grid graphs with 2500 nodes and about 10 000 arcs were generated by
varying the number of rows (n+) and columns (nc) of the grid.

7 '// - ///\\\‘\ -
// // // //\\\\\ \\
Edobhhb
\\\\\ N /‘2 //////
\\\\\\53/ *‘::///
MO LAY

Tig. 12. A grid graph.

The results (see table 8) are consistent with the results obtained with k-linear
graphs. In fact, as illustrated by fig. 12, a grid is a particularly stable k-linear graph,
where k increases with max{nc, nr}.

In addition to the considerations of the previous section, we only note that:

— the effect of Imax on the behavior of S-Dial is particularly evident;
— the behavior of L-deque, L-2queue and L-threshold is almost indistinguish-
able.

Here, the value of x2 in L-threshold has been set equal to 1, according to
the experimental results of table 9.
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Table 8
Grid graphs: n = 2500

. nr=150 nr= 25 nr= 10 nr= 5
Algorithms nc =50 ne =100 ne =250 ne =500
S-Dijkstra 582 407 176 108
S-ord 111 92 67 59
S-heap 110 104 88 75
S-Dial (Imax = 10%) 53 53 57 67
S-Dial (imax = 10%) 348 464 1054 2094
L-queue 95 146 336 557
L-deque 43 46 48 45
L-2queue 44 46 49 44
L-threshold (x2=1) 48 47 45 42
Table 9
CPU times for n= 2500
x2 0.25 050 0.75 100 1.25 1.50 1.75 2.00

nr=50,nc= 50 50 47 47 48 48 47 49 50
nr= 5,nc=500 47 44 43 42 43 43 43 44
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Appendix

BRkkrky SAMPLE CALLLING FROGRAM FOR SUBROUTINE LOUEUE ¥kkd¥xx

LS8 (SHORTEST FATH FROBLEM) L8
doxk ¥k
L XS] THE FROGRAM 15 RASED ON THE FAFER kxk
ok k G. BALLO, 5. PALLOTTIND "SHORTEST FATH ALGO- ES 23
0k RITHMS", KK
L3 %4 ANNALS OF OPERATIONS RESEARCH, THIS VOLUME EX
XXk L2 2
XEF ALL THE SUBROUTINES ARE WRITTENM IN AMERICAM £ 2.2
LX§S STAMDARD FORTRAM AMND ARE ACCEFTED BY THE L2 2 4
Kk FFORT VERIFIER. LEE
LS ¥4 L2 3
YRR QUESTIONS AMD COMMENTS SHOWLD BE DIRECTED TO L2 |
L& S 5. PALLOTTING ANMD . RUGGBERI L2 % 3
AR C.N.R.-I.A.C., ROMA, ITALY. L2 33

R A AOR S HOR R ROK R KOOR R AOIOR KOO 300K ORI OO R
MEAMNING OF THE MAIN FARAMETERS NOT EXFLAINED IN THE SUBROUTINMNE:
RAD(I) = I-TH NODE ORIGIM, I=1,2,...,MR
ALL THE PARAMETERS ARE INTEGER
AT FRESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A(.), DL FlL),

MMAY =21000 FOR 5523), LNGT ()
RMAX =100 FOR RAD(.)
THE ONLY MACHINE DEFEMDENT CONSTANT USED IS IMF: MUST BE SET TO A
LARGE INTEGER VALUE

THE INITIALIZATION OF 0(.) AND F(.) ARRAYS IS MADE IN THE MAIN
FROGRAM, (THE SUBROUTINMNE RESETS THEM AT THE ENMD OF EACH ITERATIOM)

EXTERMALS:
READ
I-QUEUE

DonNnNOoOoooOoOnNooONoonOOOoooaoonNoonnNoOnoannaonn

bl

THIS WORK WAS SUFFORTED BY C.N.R., ITALY.
C
CHRRKIRRA KKK KRR KR AR KK KR OO RO KKK KKK KKK
DIMENSION A(3I001) ,ND(I1000) ,LNGT(31000) ,RAD(100) ,D(3001) ,F(3001),
1R (3001)
INTEGER A,D,P,0,FK,RAD, RMAX
DATA NMAX/3001/,MMAX/31000/,RMAX/ 100/, INF/999999999/
CALL READ (N,M,NR,LMAX,A,ND,LNGT,RAD, NMAX , MMAX , RMAX)
DO 10 I=1,N
@Iy = o
P(I) = O
10 CONTINUE
DO 20 I=1,NR
R = RAD(I)
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CALL LOUEUE (A,ND,LNGT,D,P,Q,NMAX,MMAX,N, INF,R)

WRITE(6,30IR, (J,P(J),D{J),J=1,N)
CONTINUE
sTOP
30 FORMAT (/7H ROOT
END

20

e

c
€

14//5H NODE,4X, 1HP,7X,1HD/ (2I5,19))

SUBROUTINE LRUEUE(A,ND,LNBT,D,P,0,NMAX,MMAX N, INF.R)
SRR ROR RO RIS OR KR KRR KKK ROR KKk R kb ok ok ko Rk ok kR Kk koK kR kK kKK kX

™
ol

C
C ROUTINE LRUEUE

C

C 1) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST
c DISTANCES

C 2) IS BASED ON THE FORD-EELLMAN-MOORE METHOD, WITH THE SET @

C IMFLEMENTED AS A QUEUE ©(¢.)

C

C MEANING OF THE INFUT FARAMETERS:

C

C ACD = FOINTER TQ ARC-LIST OF NODE I, I=1,2,...,N+1

C ND(J) = ENDING NODE OF ARC J, J=1,2,....M

C LNBT(J) = LENBTH OF ARC J, J=1,2¢...,M

C NMAX = DIMENSION OF ARRAYS A(.), D(.), F(.), @(.)

C MMAX = DIMENSION OF ARRAYS ND(.), LNGT(.)

CN = NUMBER OF NODES

C INF = VERY LARBE INTEGER VALUE (INFINITY)

C R = ROOT

C

C MEANING OF THE OUTPUT FARAMETERS:

C

C D(D) = SHORTEST DISTANCE FROM R TO I, I=1,2,...,N

C P = PREDECESSOR NODE OF I IN THE SHORTEST FATH TREE, I=1,2,...,N
c

C MEANING OF THE MAIN INTERNAL FARAMETERS:

c

C @41) = LIST OF THE CANDIDATE NODES; ©(Id= 0 IF I IS NOT IN @

C = J IF I PRECEDES NODE J IN @
C NN = N+t

cu = CURRENT NODE

cwv = ENDING NODE OF THE CURRENT ARC

C INIT = START-FDINTER TO THE ARC-LIST OF THE CURRENT NODE

C IFIN = END-FOINTER TO THE ARC-LIST OF THE CURRENT NODE

C DV = TENTATIVE LABEL FOR NODE V

C LAST = FOINTER TO THE LAST NODE OF 9(.)

C

C ALL THE FARAMETERS ARE INTEGER

CoA 0K AOK IR A8 KOKIOKROK K KKK KKK 0KOKOK KK 300K 30Kk 380K K 30K 0K 0K K %040k K 0K 30RO KO K IOk K ok k X

INTEGER A,D,P,Q,R,U,V,DV

DIMENSION D (NMAX) ,F (NMAX) @ (NMAX) , A (NMAX) L ND (MMAX) , LNGT (MMAX)

c
C INITIALIZE
Cc
DO 10 I=1,N
D(I) = INF

10 CONTINUE



Do

20

ono

Oonn

=0

Mmoo

40

ana

ot}
40

fin)

CHECK. WHETHER
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D(F)
P(R) = O
NN = N + 1
O(NN) = NN
LAST = NN
g =R

O

Z 0

INIT
IFIN

AL

EXPLORE THE FORWARD STAR OF U

AU+ - 1

IF ( INIT .GT. IFIN ) GO TO 4q
DO 30 J=INIT,IFIN

Vo= ND(J)
DV = DL

IF ¢ D(W)
DV

D (V)
F V)

u

IF { @)
GLABT) =
@4v)y = NN

LAST = V
CONTINUE

U = (NN

G{NM)Y = B

QU = 0

+ LNGT(J3)

CHEK WHETHER THE LABEL OF ¥ CAN BE IMPROVED

LLE. DV ) GO TO 30

IF V I8 NOT IN &, IT IS INSERTED AT THE TAIL OF @

LB6T. &) BO 7O 20
v

REMOVE THE NEW CURRENT NODE U

IF ( LAST .EG. U ) LAST = NN

IF (U .LE.
RETURN
END

THE QUEUE IS EMFTY

N ) B0 TO 20

SURROUTINE READ (N,MNFR,LMAX,A,ND, LNGT,RAD,NMAX, MMAX , RMAX)

Cookofok ok 30k 80K KORI0K HOKK KK 30K R0 KOk 0K R KR 0K KR ook R ok ok ¥OR Rk Kok Kook 0k R Kk KR Kook ok ok
C READS THE GRAFH DATA {(STORED AS AN ADJACENCE L.IST) AND THE ORIGINS
C LIGT.
Cradoiiok ok ook R ok ok ook koonok ook R ook koo ook ok kR ok ko ok
INTEGER A,RAD,RMAX

DIMENSION A (MMAX) ,ND (MMAX) ,LNGT (MMAX) . RAD (RMAX)

READ (T,
ML = N + 1
READ (5,40)
READ (5,50)
READ (5, 40)
RETURN

FORMAT (414)

FORMAT (1016)
FORMAT (1216)

END

M, M, MR, LMAX

(ALT) , I=1,N1)
(ND(T)Y ,LMBT(I), I=1,M)
(RADCI) , I=1,NR)
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c kkkkkxk SAMFLE CALLING FROGRAM FOR SUBROUTINE LDERUE XXK¥X4k
c X KX (SHORTEST PATH FRORLEM) XAk
[ Xk X XXk
C L3 3 THE FROBRAM IS BASED ON THE FAFER ¥R ¥
C k& G. GALLO, S. FPALLOTTING "SHORTEST FATH ALGO~ E2 % 8
c kX RITHMS", k¥
C L3 3 ANNALS OF OPERATIONS RESEARCH, THIS VOLUME k¥
c b 8.8 L3¢ 4
c XXk ALL THE SUBROUTINES ARE WRITTEN IN AMERICAN ¥k
C K%K STANDARD FORTRAN AND ARE ACCEFTED RY THE ¥k K
c L% 3 FFORT VERIFIER. XK
C Xk ¥Rk
[ L2 8 4 QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO K¥k
C *EXK S. PALLOTTIND AND C. RUGBERI E2 % 4
C KKK C.N.R.-1.A.C., ROMA, ITALY. LR %
[ 2222220322232 3200320ttt t T s+ 3023 ¢8R R L
C
C MEANING OF THE MAIN FARAMETERS NOT EXFLAINED IN THE SUBROUTINE:
C
C RADC(I) = I-TH NODE ORIGIM, I=1,2,...,NR
c
C ALL THE FARAMETERS ARE INTEGER
AT FRESENT THE SIZE DIMENSIONS ARE NMAX = 2001 FOR A, DALY. FLL),
2.
MMAX =31000 FOR ND.)Y, LNGT{.)
RMAX = 100 FOR RAD{(.)

THE ONLY MACHINE DEFENDENT CONSTANT USED IS5 INF: MUST BE SET TO A
LARGE INTEGER VALUE

THE INITIALIZATION OF F{.) ARRAY IS5 MADE IN THE MAIN FROGRAM, (THE
C SUBROUTINE RESETS IT AT THE EMD OF EACH ITERATION)

c
C EXTERNALS:
C  READ

€ LDEQUE

THIS WORE WAS SUFFORTED BY C.N.R., TTALY.

R R ROR R KR AR Kok Kk 30K R OK R R K RO KR KO K ACHK SOK ROKOR R R R R KRR kR R KOO VR ok K
DIMENSION A(Z001) ,ND(3I1000) (LNGT (Z1000) (RAD(100) ,DA300OL) (F {3001,
1B{3Z0010)
INTEGER A,D,FP,0,FR,RAD,RMAX
DATA NMAX/Z001/ MMAX/I1000/ ,RMAY/ 100/, INF /999999999 /
CALL READ(N,M,NR, LMAX, A, ND,LNGT,RAD, NMAX , MMAY , RMAX)
DO 10 I=1.M
FCIY = O
1o COMTINUE
Do 20 I=1,NR
R o= RAD(I)
CALL LDEQUE (A, ND,LNGT, D, P, 0, MMAX, MMAX N, INF, )
WRITE(S,30)R, (J,F(J),DWI), =1,
20 CONTINUE
STOF
30 FORMAT(/7H ROOT =,14//5H NODE,4X, 1HF,7X.1HD/ (215,19))
END



c
c

SUBROUTINE LDEGUE (A,ND,LNGT,D,F,d, NMAX,MMAX N, INF,R)
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R R K0KK R KK KRRk Kk Ok doKoRR R ook ook ok ook X dkook kol koo ok kookook kxR okok

C
c
Cc
C
Cc
C
c
c

o

oooQoooOoOnDnDoonNoOooOOoOoanNoooOnNOOo0onoan

c

C INITIALIZE
c

ROUTINE LDEQUE

1) FINDS A SHORTEST FATH TREE ROOTED AT NODE R AND THE SHORTEST
DISTANCES
2) 15 BASED ON THE D"ESOFPO-PAFE METHOD, WITH THE SET £ IMPLEMENTED AS

DOUBLE~

ENMDED-QUEUE Q(.)

MEAMING OF THE INPUT PARAMETERS:

ACD

ND (J7
LMNGT (J)
NMAX
MMAX

N

INF

R

BB o o# B o#oH

POINTER TO ARC-LIST OF NODE. I, I=1,2,...,MN+1
ENDING NODE OF ARC J, J=1,2,...,M

LENGTH OF ARC J, J=1,24¢...M

DIMENSION OF ARRAYS A(.), D(.), F(.), 0(.)
DIMENSION OF ARRAYS ND{(.), LNGT(.)

NUMEER OF NODES

VERY LARGE INTEGER VALUE (INFINITY)

ROOT

MEANING OF THE OUTPUT FARAMETERS:

Dan
PO

L

OF THE MAI

il

G{17

NN

u

v
INIT
IFIN
pv
LAST

N+1

L | | T B

ALL THE PARAMETERS ARE INTEGER

SHORTEST DISTANCE FROM R TQ I, I=1,2,....N

FREDECESSOR MODE OF I IM THE SHORTEST FATH TREE,

N INTERNAL FARAMETERS:

I=1,2,...,4N

LIST OF CANDIDATE NODES;

CURRENT NODE

ENDING NODE OF THE CURRENT ARC
START-FOINTER TO THE ARC~LIST OF THE CURRENT NODE
END-FOINTER TO THE ARC-LIST OF THE CURRENT NODE
TENTATIVE LABEL OF NODE V

FOINTER TO THE LAST NODE OF 0(.)

= =1 IF I I8 NOT IN @ AND IT HAS

ALREADY BEEN SCANNED
Q IF I IS NOT IM & AND IT HAS
NOT BEEN SCANMED
J IF I PRECEDES NODE J IN THE
LIST

KK KKK KKK K KKK R KK K KK HOK HOK 30K KK KKK 3 K K K 0K KKK 0K 0K KKK KK 330K KR KR XK Ok
INTEGER A,D,P,0,R,U,V,DV

DIMENSION D(NMAX) ,P(NMAX) .2 (NMAX) ,A(NMAX) , ND(MMAX) , LNBT (MMAX)

DO 10
Qan
DI

I=1,N
= {3
= INF
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CONT INUE
QR = - 1
D(R)=0
P(R) = O
NN = N + 1
B{(NN) = NN
LAST = NN
FNTR = NN
U=~rR

EXPLORE THE FORWARD STAR OF U

20

INIT AL
IFIN AU+ - 1
IF ( INIT .6T. IFIN ) GO TGO 40
DO SO J=INIT,IFIN
V = ND{I)
DV = D(U) + LNGT(J)

CHECK WHETHER THE LAEREL OF Y CAN BE IMFROVED

IF v IS NOT IN @ AND IT HAS ALREADY BEEN SCANNED,

THE

30

IF ( D(V) .LE. DV ) GO TO 50
D(V) = DV

P(V) = U

IF ( 8(¥) ) 30,40,50

FOSITION FOINTED EBY FNTR

Q{V) = B(PNTR)

OF @

40

B(FNTR) = V
IF ( LAST .E@. FNTR ) LAST=VY
ENTR = V
GO TO 30
IF vV IS NOT IN @ AND IT WAS MEVER SCANNED, IT IS INSERTED AT THE TAIL
@D(LAST) = V
@(Y) = NN
LAST = V
CONTINUE

S0

REMOVE THE NEW CURRENT NODE U

&0

U = BNN)

RINN) = @)

Ry = - 1

IF ( LAST .E@. U ) LAST = NN
IF ( PNTR .EB. U ) PNTR = NN

CHECK WHETHER THE LIST IS EMPTY

IF (U .LE. N GO 7O 20
RETURN
END

SUBROUTINE READ(N,M,NR, MAX,A,ND,LNGT,RAD, NMAX, MMAX, RMAX)

IT IS INSERTED

AT
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AR R KKK KoK O KR KKK KK K KK K K 3K K KK KK 0k K 30O KO KO KK KR KK KK
C READS THE GRAFH DATA (STORED AS AN ADJACENCE LIST) AMD THE ORIGINS
C LIST.
CREEKRAKEE KRR EEE KR AR KA RRA KA R RKE R A KRR KA R ER A RRA KRR R KL KKK KK
INTEGER @&, RAD, RMAX
DIMENSION A (NMAX) , MD (MMAX) , LNGT (MMAX) , RAD (RMAX)
READ (S,30) N, M, NR, LMAX
Nl =N + 1
READ (5,40) (A, I=1,NI)
FEAD (5,50) (ND{I),LNGT(I),I=1,M)
READ (5, 40) (RAD(I),I=1,NR)
RETURM
30 FORMAT (416)
40 FORMAT (1016)
S50 FORMAT (1216)
£ND
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XEk¥kxxk SAMFLE CALLING FROGRAM FOR SUEBROUTINE LZ2EUE  X¥xkkxx

LS8 3 (SHORTEST FPATH FPROBLEM) Xk
Xkx LE 2
k% THE FPROGRAM IS BASED ON THE FAFPER kKK
L 2 G. GALLO, S. PALLOTTINGO "SHORTEST FATH ALGO- k%
*KX RITHMS", XXX
*:: ANNALS OF OPERATIONS RESEARCH, THIS VOLUME :::
¥

LEE ALL THE SUBROUTINES ARE WRITTEN IN AMERICAN k¥
XXk STANDARD FORTRAN AND ARE ACCEFTED BY THE XK x
L2 8 3 FFORT VERIFIER. kK
LS8 E2 8§
¥k ok GQUESTIONS AND COMMENTS SHOULD EE DIRECTED TO ¥k¥
KKk 8. FPALLOTTINO AND C. RUGGERI *kx
LR 3 C.N.R.-I1.A.C., ROMA, ITALY. ¥ X

KR ok K KOk 3OR SO KKK RO EIOR K KR ROk R RO RO KRR OO KOO RO R R R KRR KKK KRR K
MEANING OF THE MAIN FARAMETERS NOT EXFLAINED IN THE SUEBROUTINE:
RAD{(I} = I-TH NODE ORIGIM, I=1,2,...,NR
ALL THE FARAMETERS ARE INTEGER
AT FRESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR Ad(.), D). F(),

MMAX =31000 FORQ&éi.), LNGT (.}
RMAX = 100 FOR RAD(.)

THE ONLY PMACHINE DEFENDENT CONSTANT USED IS INF: MUET BE SET TO A
LARGE INTEBER VALUE

THE INITIALIZATION QF F{.) ARRAY IS5 MADE IN THE MAIN FROGRAM, (THE
SUBROUTINE RESETS IT AT THE END OF EACH ITERATION).

EXTERNALS:
READ
L2euE

OaONaoOOOoOoOonN OO o OO oOcoOMOoOONOoODNooooOnNooong

THIS WORK WAS SUFFORTED BY C.N.R., ITALY.
¢
CREREEER RN R R R R KRR R R R KK KKK KK E KKK KA K
INTEGER A,D,F,0,R,RAD, RMAX
DIMENSION A(I001) ,ND(I1000) , LNGT (I1000) ,RAD (100 ,D(Ian1) , F (3001,
10 (Z001)
DATA NMAX/I001/, MMAX/ 1000/, RMAX 7100/, INF /9999999997
CALL READ (M, M, NR, LMAX, &, ND, LNGT, RAD, NMAX , MMAX , RMAX)
DO 10 I=1,N
FOIY = 0
10 CONTINUE
Do 20 I=1,MR
R o= RAD{(I)
CALL LZQUE(A,ND, LNST,D,F, @, NMAX, MMAY, M, TNF, R)
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WRITE(6,30)R, (J,P{J),D(J),J=1,N)
20 CONTINUE
sTOP
30 FORMAT(/7H ROOT =,14//5SH NODE,4X,1HP,7X, 1HD/ (21I5,1I9))
END

SUBROUTINE L2GUE (A, ND,LNGT,D,F, 0, NMAX,MMAX, N, INF,R)

CaoK oK KKK KOK koK ok ok ok K 0K 9k K0k Kk 30Kk 30K K kK Kk 3ok KOk ek 0K o 0KKOK koK K kKKK K K K Kok Kk ok ok ok k

c
e
cC
c
[
c
C
c
C
C
C
c
c
C
c
c
c
c
c
c
c
€
c
c
c
C
c
C
C
>
Cc
C
C
C
C
C
[
W
C
(
C

c
C
C
C

ROUTINE L2QUE

1) FINDS A SHORTEST FATH TREE ROOTED AT NODE R AND THE SHORTEST
DISTANCES

2) 18 BASED ON THE D"ESOFO-PAPE METHOD WITH THE SET @ IMPLEMENTED
AS A DOUBLE QUEUE 0(.)

MEANING OF THE INFUT FARAMETERS:

A = FOINTER TO ARC-LIST OF NODE I, I=1,2,...,N+1
ND(J) = ENDING NODE OF ARC J, J=1,%,....M

LNBT(J) = LENBTH OF ARC J, J=1,2,...,M

NMAX = DIMENSION OF ARRAYS A(.), D(.), P{(.), @(.)
MMAX = DIMENSION OF ARRAYS ND(.), LNGT(.)

N = NUMEER OF NODES

INF = VERY LARGE INTEGER VALUE (INFINITY)

R = ROOT

MEANING OF THE OUTPUT PARAMETERS:

D{D)
F{1)

SHORTESBT DISTANCE FROM R 70 I, I=1,2,...,N
FREDECESSOR NODE OF I IN THE SHORTEST PATH TREE, I=1,2,...,N

OF THE MAIN INTERNAL FARAMETERS:

@4(1) = LIST OF CANDIDATE NODES; ©@4(I) = -1 IF I IS NOT IN @ AND IT HAS
ALREADY BEEN SCANNED

O IF 1 IS NOT IN @ AND IT HAS

NOT BEEN SCANNED

J IF I PRECEDES NODE J IN THE

It

LIST
NN = N+1
U = CURRENT NODE
v = ENDING NODE OF THE CURRENT ARC
INIT = START-POINTER TO THE ARC~LIST OF THE CURRENT NODE
IFIN = END-FPOINTER TO THE ARC-LIST OF THE CURRENT NODE
DV = TENTATIVE LAREL OF NODE V
LAST = FOINTER TO THE ILAST NODE OF @(.)
FNTR = FOINTER TO THE LAST NODE OF THE FIRST QUEUE OF @(.)

ALl THE FARAMETERS ARE INTEGER

RRFK KR KRR AOR KRR KR RO AR KRR KRR KRR R KR KKK KRR ROk K K

INTEGER 4,D,F,0,R,U,V.DV,PNTR
DIMENSION D{(NMAX) ,F (NMAX) , G (NMAX) , A (NMAX) , ND (MMAX) , LNGT (MMAX)

INITIALIZE
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DO 1O I=1,N

QI = 0
D(I) = INF
10 CONTINUE

a(r)y = - 1
D(R) = O
FIR)Y = O
NN = N + 1
G{NN) = NN
LAST = NN
uUu=~r

EXFLORE THE FORWARD STAR OF U

20 INIT = AW
IFIN = AlU+1) ~ 1
IF ( INIT .GT. IFIN ) GO TO &G0
DO S0 J=INIT,IFIN
V = ND(J)
DV = DY)y + LNGT(J)

CHECE. WHETHER THE LAEBEL OF V CAN BE IMPROVED
IF ( D(V) .LE. DV ) 60O TO 50
DY) = DV
FV) = U
IF ( (V) ) 30,40,50
IF V IT NOT IN @ AND IT HAS ALREADY REEN SCANNED,
THE HEAD OF @
F0 QV) = QINN)
Q(NN) = V
IF ( LAST .EG. NN ) LAST = V
GO TQ SO
IF Vv IS NOT IN @ AND IT WAS NEVER SCANNED, IT IS INSERTED AT THE
TAIL OF @
40 SLAST) = V
(V) = NN
LAST = V
SO CONTINUE
REMOVE THE NEW CURRENT NODE U
&0 U = G (NN)
@ INN)Y = Q)
2 = - 1
IF ( LAST .EQ. U ) LAST = NN
CHECE WHETHER THE LIST IS EMFTY

IF (U .LE. N ) GO TO 20
RETURN
END

IT I8 INSBERTED AT
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SUBROUTINE READ (N, M, NR,LMAX,A8,ND, LNGT,RAD,NMAX, MMAX , RMAX)

CR¥ R KRR R R R R R ROk ROk AR ROk R OOk KRk R Rk Rk okdkokkkk &
C READS THE GRAFH DATA (STORED AS AM ADJACENCE LIST) AND THE ORIGINS
C LIST.
ook okt skokok ok kK ok R 0ROk ROCIOR KR ool ok SRk ok ook R ool R ok ol sookoR ok e R okokok
INTEGER A, RAD,RMAX

DIMENSION A NMAX) ,ND(MMAX) , LNGT (MMAX) , RAD (RMAX)

READ (5,30)
N1 = M + 1
READ (5, 40)
READ (5,20)
READ (5,40
RETURN
FORMAT (4161}
FORMAT (1016)
FORMAT (1216)
EMD

M, M. NR, LMAX

(ACI) , I=1,N1)
(ND{I)  LNBT (I, I=1,M)
(RAD (I}, I=1,NR)
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c XXXKXXX SAMFLE CALLING FPROGRAM FOR SUBROUTINE LTHRS XEXKEK¥
» XXX (SHORTEST PATH PROELEM) KKX
C (32 Kk
c KKX THE FROGRAM IS BASED ON THE FAFER XK%
C 133 G. GALLO, S. PALLOTTING "SHORTEST FATH ALGO- X ¥
» KEX RITHMS", KR¥
g ::: ANNALS OF OPERATIONS RESEARCH, THIS VOLUME :if
» KKk ALL THE SUBRDUTINES ARE WRITTEN IN AMERICAN LXK
> XXX STANDARD FORTRAM AND ARE ACCEFTED BY THE KA¥
C 123 FFORT VERIFIER. KKK
» R KX KKK
C kXX DUESTIONS AND COMMENTS SHOULD BE DIRECTED TO £33
C *R% S. FALLOTTIND AND C. RUBGERI £33

XE¥ C.N.R.-I.A.C., ROMA, ITALY. Kk K

AR KK K 0K KKK 08 KR KR ROR KoK Rk R XRROICE RO RO R R Rk ook ko R Rk kK Kk
MEANING OF THE MAIN FARAMETERS NOT EXFLAINED IN THE SUBROUTIME:
RAD(I) = I-TH NODE ORIGIN, I=1,2,...,NR
ALL THE FARAMETERS ARE INMTEGER
AT PRESENT THE SIZE DIMENSIONS ARE NMAXY = 3001 FOR Ad.), DLy, P,

[E3 QMR IR 1 =g S
MMAY =J1000 FOR ND(), LMET (L)
FMAY = 100 FOR RAD(.O
THE ONMLY MACHINE DEFEMDENT COMSTAMYT USED T8 1INF: MUST RBE SET TO A
LARGE INTEGER VALUE
THE INITIALIZATION OF @1(.),82{(.) AND F{.) ARRAYS IS MADE TN THE MAIN
FROGRAM, (THE SUBROUTINE RESETS THEM AT THE END OF EACH ITERATION
EXTERNALS:
READ

THINCR
LTHRS

THIS WORK WAS SUFFORTED BY C.N.R., ITALY.

NnooOOoo00O00000000000nNO0000N00o0nNo00

KKK R KORK RSIOK KK KK KOO RO K K OR300 8 30O KK RO RO R OK Ok ROk K

INTEGER #,D,F,01,08,T,R,RAD, RMAY

DIMENSION A {Z001) ,ND{IL00M) ,LNGT (31000) (RADCLO0) , DIZ0O0L) ,F(Z001) ,

101 (3001 , B2 (I001)

DATA NMAY /30017, MMAX/T1000/ ,RMAY/ 100/, INF /999999999 /

CALL READ (N,M,NR,LMAX,A, ND, LNGT, RAD, NMAX , MMAX , RMAX)

CALL THINCR (N,M,LMAX, T)

DO 10 I=1,N
F(I) = O
oLl = 0
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02(I) = O
10 CONTINUE
DO 20 I=1,NR
R = RAD(I)
CALL LTHRS(A,ND,LNGT,D,F,01,02,NMAX,MMAX, N, INF, T,R)
WRITE (6, 30)R, (J,F(J),D(I) ,I=1,N)
20 CONTINUE
STOF
20 FORMAT (/7H ROOT =,14//5H NODE,4X, 1HF,7X, IHD/ (215,19/))
END

SUBROUTINE LTHRS (A,ND,LNGT,D,F,81,02,NMAX,MMAX,N, INF,T,R)
SRR RORKOR KKK K KK KKK K3k KKK KK 3 K K KK 3R 0K K KKK 30K K 0K 0K KK 3 K0 30Kk KKK K K K X

ROUTINE LTHRS

1) FINDS A SHORTEST FATH TREE ROOTED AT NODE R AND THE SHORTEST
DISTANCES

2) 1S BASED ON THRESHOLD METHOD FROFOSED BY F.GLOVER, R.GLOVER AND D.
ELINGMAN, WITH INSERTION FOLICY DEFENDING ON A THRESHOLD VALUE
AND WITH @ IMFLEMENTED AS A PAIR OF LISTS: @1(.) AS A RQUEUE AND
02(¢.) AS A LINKED-LIST.

MEANING OF THE INFUT PARAMETERS:

AT = POINTER TO ARC-LIST OF NODE I, I=1,2,...,N+1
ND(J) = EMDING NODE OF ARC J

LNGT(J) = LENGTH OF ARC J, J=1,2,...,M W 2aeeesM
NMAX = DIMENSION DF ARRAYS A(.), D(.), F(.), @1(.), B2(.)

MMAX = DIMENSION OF ARRAYS ND(.), LNGT(.)

N = NUMBER OF NODES

INF = VERY LARGE INTEGER VALUE (INFINITY)

R = ROOT

T = INCREMENT FOR THE THRESHOLD

MEANING OF THE OUTFUT FARAMETERS:

D(I)
F(I)

SHORTEST DISTANCE FROM R TO I, I=1,2,...,N
FREDECESSOR NODE OF I IN THE SHORTEST FATH TREE, I=1,2,...,N

MEANING OF THE MAIN INTERNAL FARAMETERS:

(1(I) = LIST OF CANDIDATE NODES Q1(I) = & IF I IS NOT IN @21(.)
HAVING THEIR LABEL LESS THAN = J IF I FPRECEDES NODE J
OR EQUAL TO THE CURRENT IN THE LIST
THRESHOLD

R2(I) = LIST OF THE OTHER CANDIDATE Q2(I) = O IF I IS NOT IN @2(.)
NODES AND OLD COFIES OF NODES = J IF I FPRECEDES NODE J
INSERTED IN @1(.) IN THE LIST

NN N-+1

u CURRENT NODE

ENDING NODE OF THE CURRENT ARC

INIT START-FOINTER TO THE ARC-LIST OF THE CURRENT NODE
IFIN END-FOINTER TO THE ARC-LIST OF THE CURRENT NODE
DV TENTATIVE LABEL FOR NODE V

0OoooO0D0ONOOOnN0CoOo00o0oNoONooo0OGo00aNoO0D0N0o0NoaO00ono

[T (I I T [

LAST FOINTER TO THE LLAST NODE OF @1¢.)
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C THRS = CURRENT THRESHOLD VALUE
CT1 = TENTATIVE NEW THRESHOLD VALUE
C MIN = MINIMUM LAREL VALUE UF NODES IN Q2(.)

[
C ALL THE FARAMETERS ARE INTEGER
C
(23S 2222283228332 32¢3 33T 2232232 33330323033 8323233223 8823

DIMENSION A(NMAX) ,D{NMAX) P (MMAX) , 81 (NMAX) , 02 (NMAX) , ND (MMAX) , LMNGT ¢

*¥MMAX)

INTEGER A,D,F,@1,62,T,THRS,T1,U,V, DV, R
C
C INITIALIZE
C

DO 10 I=1,N

DCIY = INF
10 CONTINUE

D(R) = O

FIR) = O

MN = N + 1

01 (NN) = NN

Q2 (MN) = NN

THRS = -1

LAST = NN

U =R

EXFLORE THE FORWARD STAR OF U

oo

20 INIT AL
IFIM AlU+1) - 1
IF ¢ INIT .GT. IFIN ) GO TO &0
DO S0 J=INIT,IFIM
Vo= ND{I)
DV = D{U) + LNBT(I)

CHECE. WHETHER THE LAREL OF V CAN BE IMFROVED

Doon

IF ( D{Y) .LE. DV ) GO TO SO
IF ¢ DV .BT. THRS ) GO TO 30
IF ¢ @1(V) .6T. &) GO TO 40

INSERT V AT THE TAIL OF ©1(.)

nooo

Q1 (LAST) =V
214(V) = NN
LAST = V
GO TO 40
30 IF ( @2(v) .GT. ¢ ) GO TO 40

IF V I8 NOT IN @2(.), IT IS INSERTED AT THE HEAD OF Q2(.)

onn

Q2(Y) = @2 (NN)
2Z(NN) =V
40 D) = pv
PV = U
S50 CONTINUE

CHECK WHETHER @1¢(.) IS EMFTY

aooon

60 IF ( LAST .EG. NN )} GO TO 80
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FEMOVE THE NEW CURRENT NODE U FROM THE HEAD OF @1(.)

70U = 01 (NN
G1 (NNDY = B (L

Qi = a
IF ¢ ILAST .ER. U ) LAS
GO TO 20

CHECK WHETHER ALSO R2(.) I
8o IF { @ZNN)Y JEG. NN )

COMPUTE THE NEW TENTATIVE

MIN = IMF
Ti = THRS + 1| + T
I = NN
J o= Q240
SCANM @24.) IN ORDER TO COM

ALREADY REMOVED
P0  IF ( D{Jy JLE. TL ) 30
UFDATE MIN
MINM = MINO(MIN, D(J))
I = J
GO TO 110
REMOVE J FROM @2(.)

az43)
)

021

T = NN

5 EMPTY

RETURN

THRESHOLD VALUE T1

61

FUTE MIN AND TO REMOVE COFIES OF NODES

T0O 100

C CHECK WHETHER J MUST BE INSERTED IN @1 (.)

[

o000 oan

oo 0o0oon

IF ¢ D(J)Y .LE. THRSE )
Q1LAST) = 4

1 ¢3) = NN

LAST = J

110 3 = @821

IF ¢ J .NE. NN ) GO TO
UPDATE THE THRESHOLD VALUE
THR8 = T1
CHECK WHETHER Q1(.) IS 8TI
IF ( LAST .NE. NN ) GO
IF B82(.) WAS EMPTIED THEN

IF ( QZ2(NN) .EQ@. NN

INCREASE THE THRESHOLD VALUE THRS AND SCAN AGAIN QZ(.)

THRS = MIN + T
I = NN

GO TO t1a

0

LL EMPTY

TO 70

RETURN

RETURN
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J = @20
120 IF ( D(IY .BT. THRE » 6O 70 130

[
C MOVE J FROM Q2(.) TO Q1)
Cc

Q241 @2 4J)

@z 0

Q1 LAST) = J

@1 (J) = NM

LAST = J

50 70 140

CONTINUE THE SCANNING OF Q2{.)

non

130 I =
140 J = 02
IF ¢ J .NE. NN ) GO TO 120

SUBROUTINE THINCR (N, M, LMAX, T
DR RO KR HR KRR R KR KRR AR KO0 KON % K KR8 400K O KOk KRR KO KX KRR KX KKk
C COMPUTE THE INCREMENT OF THE THRESHOLD AS FROFOSED IN "F.GLOVER; R.
C GLOVER; D.KLINGMAN, CENTER FOR CYBERNETIC STUDIES, UNIVERSITY OF
C TEXAS, AUSTIN TX, USA. RESEARCH REFORT CCS 419, JUNE 1981.
CRKR KRR R KKK KK KKK KOO KR 3K KK KKK KO KKK K08 KK KRR OE KK KK 008Kk %k Kk KKk
INTERER T,S
READ (5, 100) X2
S = MINO(IZS,M/MN)
ALMAX = LMAX
T = X2 % ALMAX
AT = T
AS = 5
IF (8§ .6T. 70 T
IF ¢ T .LE. 0 » T
RETURN
100  FORMAT(F4.2)
END

AT % 7. / AS
1

o

c
SUBROUTINE READ (N, M, NR, LMAX, A ND, LNGT, RAD, NMAX , MMAX , RMAX)
CRAKFEFAORRH K KR A KR KO0 OK K 300K 0K KR KO0 R KK R 0K OO KRR K KKK K
C READS THE BRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS
C LIST.
TR A K AR E R KKK K OOK SO K KKK KOO KK K K0K K KKK K KK OE K K KR KKK K X
INTEGER A,RAD,RMAYX
DIMENSION A (NMAX) ,ND(MMAX) (LNGT (MMAX) , RAD (RMAX)
READ (5,30) N,M,NR,LMAX
Ni =N + 1
READ (5,400 (A(I),I=1,N1)
READ (5,50) (ND(I),LNGT(I),I=1,M
READ (5,40) (RAD(I),I=1,NR)
RETURN
0 FORMAT (416)
0 FORMAT (1016)
FORMAT (1216&)
END

b
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akxkxxk SAMPLE CALLING FROGRAM FOR SUBROUTINE SDESTR ¥kX¥kkx

AKX (SHORTEST FATH FROBLEM) LK
XX K KK
XX THE FROGRAM IS BASED ON THE PAFER XXX
EHX G. GALLO, S. PALLOTTIND "SHORTEST FATH ALGO- *EK
KKK RITHMS", EXK
KKK ANNALS OF OPERATIONS RESEARCH, THIS VOLUME 233
KKK KKK
$ KX ALL THE SUBRDUTINES ARE WRITTEN IN AMERICAN XX
EKK STANDARD FORTRAN AND ARE ACCEPTED BY THE XK
'3 FFORT VERIFIER. KEK
Ty KKK
AKX QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO KKK
XKX 5. PALLOTTINO AND C. RUGGERI XXX
XKk C.N.R.-I.A.C., ROMA, ITALY. XKK

KK KK KK KKK KK KKK OK A0 0 SR8 KR KK KK KKK KK KK KKK K HOK KK K K
MEANING OF THE MAIN FARAMETERS NOT EXPLAINED IN THE SUBROUTINE:
RAD(I) = I-TH ORIGIN NODE, I=1,2,...,NR

ALL THE PARAMETERS ARE INTEGER

AT PRESBENT THE SIZE DIMENSIONS ARE NMAX = J001 FOR A(.), D{.). P(.),
G(.)
MMAX =31000 FOR ND(.), LNGT(.)
RMAX = 100 FOR RAD(.)

THE ONLY MACHINE DEFPENDENT CONSTANT USED IS INF: MUST BE SET TO A
LARGE INTEGER VALUE

THE INITIALIZATION OF @(.), AND P(.) ARRAYS IS MADE IN THE MAIN
PROGRAM, (THE SUBROUTINE RESETS THEM AT THE END OF EACH ITERATION)
EXTERNALS:

READ
SDESTR

THIS WORKE WAS SUPFORTED BY C.N.R., ITALY.

coOoOoo0oOoOOnNOoOoOOaOOooaGaOoOOoOOoOo0OoOonoOOMnNonNOOoO0nnn

XK AR AOKACKOAOK RO OR KKK KKK KR KKK KK 0K Kk 3K KKK R OK K K KKK o ok

INTEBER A,D,P,Q,R,HP,RAD, Y, X, T2, RMAX

DIMENSION A(3001),ND(31000) ,RAD(100),D(3001),P(3001),LNET(31000),

10(3001)

DATA NMAX/3001/,MMAX/31000/ ,RMAX/ 100/, INF/999999999/

CALL READ{M,M,NR,LMAX,A,ND,LNBT,RAD, NMAX , MMAX . RMAX)

DO 10 I=1,N
oIy = 0
P(I) = O

10 CONTINUE
DO 20 I=1,NR
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F = RAD(I)
CALL SDKSTR(A,ND,LNGT,D,F,Q,NMAY, MMAX, N, INF,R)
WRITE (6, 30)R, (J,P(I),D (1), J=1,N)
20 CONTINUE
sTOP
30 FORMAT (/7H ROOT =,I4//5SH NODE, 4X, 1HF, 7%, 1HD/ (215,19/))
END

C
C

SUEROUTINE SDESTR(A,ND,LNGT,D,F, &, NMAX, MMAX, N, INF, R)
LR KK KR Ok KR HOROK K KK K R KK K 3 KKK 30K 0K 3K 50K KK 3K K 0K JOK KO KK KK KO K XK KoK K

c
c ROUTINE SDKSTR

C 1) FINDS A SHORTEST FATH TREE ROOTED AT NODE R AND THE SHORTEST

C DISTANCES

C 2) IS BASED ON DIJKSTRA'S METHOD, WITH FRIORITY RUEUE @ IMPLEMENTED
C AS AN UNORDERED LIST

MEANING OF THE INFUT FPARAMETERS:

AL = POINTER TO ARC-LIST OF NODE I, I=1,37,...,N+1
ND(J)  =ENDING NODE OF ARC J, J=1,2,...,M

LNGT(J) = LENGTH OF ARC J, J=1,2,...,M

NMAY = DIMENSION OF ARRAYS A(.), D(.), F(.), B(.), HF(.)
MMAX = DIMENSION OF ARRAYS ND(.), LNBT(.)

M = NUMBER OF NODES

INF = VERY LARGE INTEGER VALUE (INFINITY)

R = ROOT

C MEANING OF THE OQUTFUT FPARAMETERS:

DCI)
F(I)

SHORTEST DISTANCE FROM R TO I, I=1,2,....N
FREDECESSOR NODE OF I IN THE SHORTEST FATH TREE, I=1,2,...,N

MEANING OF THE MAIN INTERNAL FARAMETERS:

C

Q@(I) = LIST OF THE CANDIDATE NODES: = O IF NODE I IS NOT IN @&
J IF NODE I FRECEDES NODE J IN &
NM = N+1
u = CURRENT NODE
v = ENDING NODE OF THE CURRENT ARC
INIT = START-FOINTER TO THE ARC-LIST OF THE CURRENT NODE
IFIN = END-FOINTER TQO THE ARC-LIST OF THE CURRENT NODE
DV = TENTATIVE LABEL OF NODE V

C
C
C
C
C
C
C
>
C
C
c
I
C
C
c
C
c
C
c
C
C
C
C
C
C
C
c
C ALL THE FARAMETERS ARE INTEGER
C
TR KK E KKK KKK AR 3K OK KKK 3K KR KKK KKK K KK KKK KK KKK KKK KKK K K Kok

INTEGER A,D,F,8,R,U,V,DV, VAL

DIMENSION A(NMAX),D(NMAX) ,F (NMAX) , @ (NMAX) , ND (MMAX) ,LNGT (MMAX)
C
C INITIALIZE
C

PO 10 I=1,N

D(I) = INF
10 CONTINUE
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D(R)
P(R)
NN =
G{NN) = NN
U==R

ZH
+
-

EXFLORE THE FORWARD STAR OF U

noo

20 INIT = A
IFIN = A(U+L) —
IF ( IFIN .LT. INIT ) GO TO 40
DO 30 J=INIT,IFIN
¥V = ND«J)
DV = DU + LNBT(I)

CHECK. WHETHER THE LABEL OF V CAN BE IMPROVED

aonn

IF ( D(VY .LE. DV ) BO TO Z0
DV} DV
F (V) u

IF ¥V IS NOT IN &, INSERT V AT THE HEAD OF @

mnoon

IF ¢ G(V) .NE. O ) BO TO 3G
Gvy = BNND
FNN) = W
FO CONTINUE

CHECK WHETHER THE LIST I8 EMFTY

nonn

40 IF ( Q(NN) _E@. NN ) GO TO 70

SEARCH THE MINIMUM LABEL NODE IN &

nnn

¥ =
1 =
vaL INF
=50 J3@ a1
IF ( D(JJm .GE. vAL )y 80 70O &0
VAL DIgey
o=
60 I = Q1)
IF ( @(I) .NE. NN ) GO TQ 50

N

(LI | =]

Dl

[
C REMOVE THE NEW CURRENT NODE U FROM @
C
U = a&)
Q) = QW
Q) =0
GO TO 20
70 CONTINUE
RETURN

SUBROUTINE READ (N,M,NR,LMAX, A, ND, LNGT,RAD, NMAX , MMAX , RMAX)
K HOK H0K KK K OK KR KKK KKK K 0K K KKK oK 508 38 3 K Ko %00 0 KoK K Ko KOk K
C READS THE GRAFH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS
C LIST.
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(2SS ECTE LTSI ETSESSTIEECTIRNSTILELISSSSERLECESESESEFCLEREETRES LT &

INTEGER #&,RAD, RMAX
DIMENSION ANMAX) ,ND{MMAX) , LNGT (MMAX) , RAD (RKMAX)
READ (5,30) N, M, NR, LMAX
ML = N + 1
READ {5,400 {(A(I)  I=1,.NL)
READ (S,30) (MDOI) LMGT (T}, I==1 M)
READ (5,40) {(RAD(T) ,I=1,NF)
RETURM

IO FORMAT (41&)

40 FORMAT(101&)

50 FORMAT (121&)
END



[
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#kdkRkkk BAMPLE CALLING FROGRAM FOR SUBRROUTINE SORDZ xXxdkkkEk

Rk (SHORTEST FATH FROERLEM) ok
dooh ¥k
¥Rk THE FROGRAM I8 BASED ON THE FAFER L3 2
EX 2 G. GALLO, 3. PALLOTTIMO "SHORTEST FATH ALGO- ok
(22 RITHMS", XKk
LER ANNALS OF OPERATIONS RESEARCH, THIS VOLUME *EX
LR 2] XXX
¥Rk Al THE SUBROUTINES ARE WRITTEN IM AMERICAN L2 3 ¢
¥ ux STANDARD FORTRAN AMD ARE ACCEFTED BY THE XKk
*F K FFORT VERIFIER. L 3.2 8
L2 2 L2 3
TEK GUESTIONS AND COMMENTS SHOULD BE DIRECTED TO FRK
LE R S. FALLOTTIND AND C. RUGGERI *EE
(223 CoM.F.~-I.A.C., ROMA, ITALY. kK

380K KKK RO RO 0RO R RO 0K RORIOK KR ok ook R Rk R ok Kok Ao oRR IO OR K OE KK

MEAMING OF THE MAINM PARAMETERS NOT EXFLAIMED IN THE SUBRDUTINE:

RAD(IY = I-TH ORIGIN NODE, I=1,2,...,NR
IVER = BUBBLE SORT FARAMETER; SET IVER = 1| FOR INCREASING ORDER AMD
IVER = -1 FOR DECREASIMG ORDER
ALL THE FARAMETERS ARE INTEGER
AT FRESENT THE SIZE DIMENSIONS ARE MMAX = Z001 FOR A(.), D{.Y. FP(.),
UFP(.), DOWNCS
MMAX =31000 FOR ND{.), LNBT(.)
RMAY = 100 FOR RAD(.)

THE ONLY MACHIMNE DEFEMDENT COMSTAMNT USED IS INF: MUST BE SET TO A
LARGE INTEGER VALUE

THE IMITIALIZATION OF UR{.), DOWNC.), AND F{.) ARRAYS IS5 MADE IN THE
MEIN FROGRAM, (THE SUEBROUTINE RESET THEM AT THE END OF EACH
ITERATION)

EXTERNALS:
READ
BURBLE
SORDZ

THIS WORK WAS SUPFORTED BY C.NM.R., ITALY.

223222222228 22228222 2223302323220 282848328233328 0222323533222 32223332332 4

DIMENSION & (Z001),ND(I1000) ,RAD(100) ,D(I001), F{3001) ,UP(3001),
1DOWN (F001) ,LNBT (Z1000)

INTEGER A,D,F,R,UF, RAD, DOWN, RMAX

DATA NMAX/Z001/,MMAX/31000/,RMAX/ 100/, INF /999999999 /

CALL READ{N,M.NR,LMAX,A,ND,LNGT,RAD, NMAX, MMAX , RMAX)

IVER = - 1

DO 10 I=1,N
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c
c

SORT THE FORWARD STAR OF NODE I

INIT = A(D)
IFIN = A(I+1) - 1
IF ¢ INIT .GE. IFIN ) GO TO 10
CALL BUBBLE(INIT, IFIN,LNGT,ND, IVER)
10 CONTINUE
DO 20 J=1,N
uP() = @
DOWN(J) = O
P(I) = 0
20 CONTINUE
DO 30 I=1,NR
R = RAD(I)
CALL SORDZ(A,ND,LNBT,D,P,UF, DOWN, NMAX, MMAX, N, INF,R)
WRITE (6,40)R, (J,P(J) ,D(J),J=1,N)
30 CONTINUE
STOP
40 FORMAT (/7H ROOT =, 14//5H NODE,4X, 1HF,7X, 1HD/(215,19))
END

SUBROUTINE SORDZ(A,ND,LNGT,D,F,UF, DOWN, NMAX , MMAX , N, INF, R)

(2302333228530 ¢8 3332000202323 332302 0228332233822 283 2223232332282 030%2$1

ooaoonoooonNOOooOOaoaonNOOonoooOnNoonOOnoOooOn

ROUTINE SORD2

1) FINDS A SHORTEST FATH TREE ROOTED AT NODE R AND THE SHORTEST
DISTANCES

2) IS5 BASED ON DJKSTRA™S METHOD, WITH THE FPRIORITY QUEUE O IMFLEMENTED

AS AN ORDERED TWO-WAY LINKED LIST

MEANING OF THE INPUT PARAMETERS:

AL = POINTER TO ARC-LIST OF NODE I, I=1,2,...,N+1
ND{(J) = ENDING NODE OF ARC J, J=1,2,...,M

LNGT(J) = LENGTH OF ARC J, J=1,2,...,M

NMAX = DIMENSION OF ARRAYS A(.), D(.), F(.), UP(.), DOWN(.)
MMAX = DIMENSION OF ARRAYS ND(.), LNGT(.)

N = NUMBER OF NODES

INF = VERY LARGE INTEGER VALUE (INFINITY)

R = ROOT

MEANING OF THE OUTPUT PARAMETERS:

D{I)
F(I)

SHORTEST DISTANCE FROM R TO I, I=1,Z,...,N

MEANING OF THE MAIN INTERNAL PARAMETERS:

UF(I)= & IF I DOES NOT BELONG TO THE LIST

= J IF J PRECEDES I IN THE LIST
DOWN(I)= O IF I DOES NOT BELONG TO THE LIST

J IF J FOLLOWS I IN THE LIST

NN = N+1
u = CURRENT NODE
Vv = ENDING NODE OF THE CURRENT ARC
INIT = START—~POINTER TD THE ARC-LIST OF THE CURRENT NODE

IFIN END—-FOINTER TO THE ARC-LIST OF THE CURRENT NODE

FREDECESSOR NODE OF I IN THE SHORTEST FATH TREE, I=1,2,...
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C PNTR = POINTER TO THE PORTION OF THE LIST TO BE SCANNED. IT MOVES

C BOTTOM~UP

C bV = TENTATIVE LAEBEL OF NODE ¥

c

C ALL THE PARAMETERS ARE INTEGER

Cc

Ckkkkok sk dok ok aolokok sk okkok sk ok ok sk aok kokokokokskok doiokokoksiok 3ok kkokokokok Sk sokokolokok Kok soiokokokokokok ook dokek

INTESER A,D,F.R,U,V,UF, DOWN, DV, PNTR
DIMENSION D(NMAX) P (NMAX) ,UF (NMAX) , DOWN (NMAX) , A (NMAX) , ND (MMAX) ,
1LNGT (MMAX)
c
£ INITIALIZE
C
DO 10 I=1,N
D(I) = INF
10 CONTINUE
D(R) = O
F(RY = O
NN = N + 1
D(NN) = - 1
UF (NNY = N
DOWN (NN) = NN
U=r

ZWhu

EXFLORE OF THE FORWARD STAR OF U

onn

20 INIT AU
IFIN AlU+1) - 1
IF ( INIT .BT. IFIN ) 60 TO 80

RESET PNTR TO THE BOTTOM OF THE LIST

ono

FNTR = UF (NK)
DD 70 J=INIT,IFIN
Y = ND(J)
DV = D) + LNBT(D)

CHECK. WHETHER THE LABEL OF ¥V CAN BE IMPROVED

o000

IF ¢ D(VY LE. DV ) GO TO 70

RESET THE FOINTER

oan

IF ¢ DY) JLT. DUCFNTR)Y .AND. UPV) .GT. O )} PNTR = V

FIND THE INSERTION POINT FOR V

Oo0n

0 IF ¢ D(PNTR) JLE. DV ) GO TO 40
FNTR = UF(FNTR)
G0 70O 20

40 IF ( DOWN(PNTR) .EQ. V ) 680 TO &0

C  REMOVE ¥ FROM UF(.) AND DOWN(.)}*IF NECESSARY

ooo

IF ¢ UP(Y) JE@. O ) GO TOQ S0
UV = Ur

IDV = DOWN (V)

DOWN(IUV) = IDV

UF(IDV) = IUV
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C INSBERT V¥V INTO UF(.) AND DOWN(.)

50 IDYV = DOWN(FNTR)
DOWN(V) = IDV
DOWN(PNTR) = V
UF(IDV) = V
UF (V) = FNTR

6O D(V) = DV
FV) = U

70 CONTINUE

REMOVE THE NEW CURRENT NODE U

oon

80 U = DOWN{(NN)
IDU = DOWN(L
DOWN(NN) = IDU
UFR(IDU) = NN
UF) = Q

CHECK WHETHER THE LIST I8 EMPTY

s

IF (U4 .LE. N ) GO TO 20
RETURN
END

C
Cc
SUBROUTINE BUBBLE(INIT,IFIN,IV1,IVZ,IVER)

(S22 2233223807222 22233 0008033228000 000 0322202333322 8233 2222022020293
C SORTS A FORTION OF THE ARRAYS IV1{(.) AND IV2(.) ACCORDING TO THE
C DECREASING (IVER=-1) OR INCREASING (IVER=1) ORDER OF THE ELEMENTS OF

C IV1(.). THE ELEMENTS TO EE SORTED HAVE INDEX J BETWEEN INIT AND IFIN.

C A BUBELE SORTING TECHNIRUE IS USED.

B2 8233222 220 ¢3¢ 28202ttt ss s e 8022222280200 8 3222222822228 8%

INTEBER FNTR
DIMENSION IVIC(IFIN), IVE(IFIN)

LAST = IFIN
10 PNTR = LAST - 1
LAST = 0
DO 20 J=INIT,.PNTR
IF ( (IV1{(3) - IYVLI(J+1))X%IVER .LE. © ) GO TO 20

IBUF = IV1(J)
IV1(J) = IV1(JI+1)
IV1(J+1) = IBUF
IBUF = IVZ2(J)
V() = IV2J+1)
IVZ2(J+1) = IBUF
LAST = J
20 CONTINUE

IF ( LAST .GT. 1 ) GO TO (&

RETURN

END

SUEROUTINE READ (N,M, NR,LMAX,A,ND,LNGT,RAD, NMAX, MMAX , RIMAX)

2222222320220 23202220220 0032022023320 223 2230222323278 2222832232222
C READS THE GRAFH DATA (STORED AE AN ADJACENCE LIST) AND THE ORIGING
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C LIBT.
(22322220 22022208222 0220083323 3822 3333323233233 228 ¢]
INTEGER A,RAD,RMAX

F0
40

50

DIMENSION ANMAX) (ND (MMAX) LLNGT (MMAX) , RAD (RMAX)

READ (5,30)
ML o= N o+ 1
READ (5, 40)
KEAD (5, 50)
READ (5,40)
RETURN
FORMAT (41&)
FORMAT (1018&)
FORMAT (1214&)
END

N, M, MR, LMAX

(ACI) , I=1,N1)
(ND(I) ,LNGT(I),I=1,M)
(RAD(I),I=1,NR)

71
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kkkkkkk SAMPLE CALLING PROGRAM FOR SUBROUTINE SDIAL  kXkkkkx¥

LS8 4 (SHORTEST FATH FROBLEM) LS 33
L2 3 S (2 ¢ 3
*EX THE FROGRAM 18 BASED ON THE PAFER L2 8
xRk G. GALLO, S. PALLOTTINO "SHORTEST FATH ALGO- k%
Xk ¥ RITHMS", kX
XXk ANNALS OF OPERATIONS RESEARCH, THIS VOLUME EE 8
LE 3 LR ¥ 3
X k¥ ALL THE SURROUTINES ARE WRITTEN IN AMERICAN LS % 3
LS § STANDARD FORTRAN AMD ARE ACCEFTED BY THE Kk
L8 % 4 FFORT VERIFIER. L8
*X% Kk¥
L 8 8 PDUESTIONS AND COMMENTS SHOULD BE DIRECTED 7O X¥x
*kx S. PALLOTTINDO AND C. RUGGERI L3 $
Kk C.N.R.-I.A.C., ROMA, ITALY. kX

KR KK oK 3OK kKKK K K K 3K ok O KKK KKK KK K ok R KK KK 0K K koK sk ok skoRok KOOk KoK Kok ok
MEANING OF THE MAIN FARAMETERS NOT EXFLAINED IN THE SUBROUTINE:
RAD(IY = I-TH NODE ORIGIN, I=1,2,...,NR
ALL THE FARAMETERS ARE INTEGER

AT FRESENT THE SIZE DIMENSIONS ARE NMAX = 2001 FOR A(.), D{(.). F{.),
WE(L), DOWNC.)
MMAX =31000 FOR ND{(.), LNGT(.}
RMAX = 100 FOR RAD{(.)
OMAX =10001 FOR (.}

THE ONLY MACHINE DEFENDENT CONSTANT USED IS INF: MUST EE SET TO A
LARGE INTEGER VALUE

THE INITIALIZATION OF @(.), UP(.), DOWNC(.}, AND F<(.) ARRAYS 15 MADE
IN THE MAIM FROGRAM, (THE SUBROUTINE RESETS THEM AT THE END OF EACH
ITERATION) .

EXTERNALS:
SDIAL
READ

{

THIS WORK WAS SUFFORTED BY C.M.R., ITALY.

aocoOOoooOoOOOOooOooOONnNoOooooOOOOOoOoOOoOOONOoOaOnonooo

(2SS 2222253372338 2228330838382332 33332 3¢¢32220¢833822324333338 88833328881
DIMENSION A(3Z001) MD(Z1000) ,FAD(100) ,D(3001) ,F{3001) ,UF(3001),
1DOWN(Z001) (Q(10001) , LNGT {Z1000)
INTEGER A.D,P,0,R,UP,DOWN, RAD, BMAY, RMAX
DATA NMAX/Z001/, . MMAX/31000/ RMAX/ 100/, INF/99999999%9/,@MAX/ 10001/
CALL READ(N,M,NR,LMAX,A,ND,LNGT,RAD, NMAX, MMAX, RMAX)
NN = N + 1
LMAX = LMAX + 1
DO 10 I=1,LMAX
GQ(I) = NN
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10 CONTINUE
DO 20 J=1,N
UF() = O
DOWN(I) = ©
P(J) = O
20 CONTINUE
DO 30 I=1,NR
R = RAD(D)
CALL SDIAL (A,ND,LNGT,D,F,3,UF, DOWN, NMAX, MMAX , GMAX , N, INF, R, LMAX)
WRITE(6,400R, (3, P{1),D(I),d=1,M
30 CONTINUE
sSTOP
40 FORMAT (/7H ROOT =, 14//5H NODE,4X, 1HF,7X, 1HD/ (215,19))
END

SUEROUTINE SDIAL (A,ND,LNGT,D,F,d,UP, DOWN, NMAX , MMAX, @MAX, N, INF, R,
*LMAX)

Cookokdokokokok kokokokokokok sk ok okokok ok K sk siokok kok okl ok ko ciok oKokok ok koK ok skdokoksk ok ook oo ok kokk

OooooONOoooOooOooOoOoonoaooOoONoOononNonNOoaonnnon

ROUTINE SDIAL

1> FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST
DISTANCES

2) 15 BASED ON DIAL'S METHOD, WITH THE PRIORITY QUEUE @ IMPLEMENTED AS
AN ADDRESS aARRAY AND A TWO-WAY LINKED LIST

MEANING OF THE INFUT PARAMETERS:

AlD
ND(J)
LNGT (J)
MMAX
MMAX
GMAX

N

POINTER TO ARC-LIST OF NODE I, I=1,2,...,N+1
ENDING NODE OF ARC J, J=1,2,...,M

LENGTH OF ARC J, J=1,2,...,M

DIMENSION OF ARRAYS A(.), D(.), F{.), UF(.), DOWN(.)
DIMENSION OF ARRAYS ND(.), LNGT(.)

DIMENSION OF ARRAY G(.)

NUMEER OF NODES

W g o onn

INF VERY LARGE INTEGER VALUE (INFINITY)
R ROOT
LMAX LENGTH OF THE ACTIVE FART OF ARRAY G{(.)

MEANING OF THE QUTFUT FARAMETERS:

D)
FLD)

SHORTEST DISTANCE FROM R 7O I, I=1,2,...,N
FREDECESSOR NODE OF I IN THE SHORTEST FATH TREE, I=1,2,...,N

MEANING OF THE MAIN INTERNAL FPARAMETERS:
QI J IF J IS THE FIRST ELEMENT OF THE I-TH LIST
NN IF THE I-TH LIST IS EMFTY
© IF J DOES NOT BELONG TO ANY LIST
¥ IF K PRECEDES J IN THE SAME LIST
-1 IF J IS8 THE FIRST ELEMENT OF THE I-TH LIST (G(I)=J)
POWN(GI}= O IF J DDES NOT BELONG TO ANY LIST
K IF K FOLLOWS J IN THE SAME LIST
NN IF J IS THE LAST ELEMENT OF THE LIST
N+1
CURRENT NODE

%

UF (J)

it

NN
U

i
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Vv = ENDING NODE OF THE CURRENT ARC
INIT = START—-FOINTER TO THE ARC~LIST OF THE CURRENT NODE
IFIN = END-FOINTER TO THE ARC~LIST OF THE CURRENT NODE

DV = TENTATIVE LAREL OF NODE V
FNTR = POINTER TO THE LAST SCANNED FOSITION OF Q(.)
FREC= FOINTER FOR UF{.) AND DOWN(.) ARRAYS

IF FPREC < O THEN ~FREC I8 A FOINTER T0O @(.) ARRAY
SEG = FOINTER FOR UFR(.) AND DOWN (.) ARRAYS
ADDR= FOINTER TO THE LIST IN WHICH V MUST BE INSERTED

ALL THE FARAMETERS ARE INTEGER

EREREKEHARKEH R RO IO KRR K KRR O KO KK KRR KRR KKK KK
INTEGER A,D,F,Q,R,U,V,DV,SEG, FREC, ADDR, FNTR, UF, DOWN, GMAX
DIMENSION A(NMAX) ,D(NMAX) ,F (NMAX) , UF (NMAX) , DOWN (NMAX) , ND (MMAX) ,
ILNGT (MMAX) , @ (BMAX)

INITIALIZE
DO 10 I=1,N
D{I) = INF
10 CONTINUE
D(R) = O
FIRY = O
NN = Mo+ L
UF(NNY = NN
DOWNINMY = NN
FNTR = 1
U =R
EXFLORE THE FORWARD STAR OF U
20 INIT = AW
IFIN = A(U+1) - 1

IF ( IFIN JLT. INIT ) GO TO &0
DO S0 I=INIT,IFIN

Vo= ND{J)

DV = DD + LNGT(J)

CHECE WHETHER THE LAREL OF ¥ CAN BE IMPROVED

IF ¢ DYy JLE. DYV ) GO TO S0
Divy = DV

Fivy = U

IF ( UFR(Y) LER. 0 ) GO TO 40

REMOVE V FROM UF(.) AND DOWN{.) IF NECESSARY
FREC = UF{Y)

SEG = DOWN (V)
IF ¢ PREC .LT. O ) GO TO 20

DOWN (FREC) = SEG
U {SEG) = FREC
GO TO 40

0 I = — FREC

G{IF) = SEG
UF{SEGY = FREC

COMRUTE THE FOIMTER TQ TE LIST IN WHICH ¥ MUST BE INSERTED



C
C REMOVE THE NEW CURRENT NODE U
[

c
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40 ADDR =

DV + 1 - DV/LMAXXLMAX

SEG = Q(ADDR)}

DOWN (V)
£ {ADDR)

UF ) =

UF (SEG)
SO CONTINUE

SEG
Y
ADDR
Y

[

[}

&0 ADDR = PNTR

70 IF ( Q(PNTR) JER. NN ) GB TO 80
U = @FNTR)
IDU = DOWNLD

QIPNTR)
UF (1D
UFR ) = 0
GO TO 2O

1DU
- PNTR

80 FNTR = FNTR + 1

IF ¢ FNTR

LGT. LMAYX ) PNTR = 1

C CHECEK WHETER (¢.) IS EMFTY

[

IF { FNTR
RETURN
END

SUBRROUTINE READ (N, M, NR,LMAX, A, ND, LNGT,RAD,NMAX, MMAX  RMAX)

-NE. ADDR ) GO TO 70

75

CH K AR OR KKK A KR 3K KKK K 3 KR 30K 0K KK O KR KKK K00 K K KKK Kok
C READS THE GRAFH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS
C LIST.
EHRR KR KOROE K KR KR K KKK KR OR 30IOK KKK AR KKK KR KRR KR KA KKK KKK
INTEBER A, RAD, RMAX

DIMENSION A (NMAX) ,ND(MMAX) , LNGT (MMAX) , RAD (RMAX)
READ (5,30) N, M, NR, LMAX

NI =N + 1

READ (5,40 (A{I),I=1,N1)
READ (5,50 (ND(I),LNBT(I),I=1,M)
READ {5,40) (RAD(I),I=1,NR)

RETURN

30 FORMAT (416)
40 FORMAT (1016)
S0 FORMAT (12163

END
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KkkKkk¥ SAMPLE CALLING PROGRAM FOR SUBROUTINE SHEAF  KXkKkXX

XXX (SHORTEST PATH PROBLEM) 133
31 XK
X% ¥ THE FROGRAM IS BASED ON THE FAPER *RK
XKk G. GALLO, S. PALLOTTINO "SHORTEST PATH ALGO- 33
33 RITHMS", 33
23 ANNALS OF OPERATIONS RESEARCH, THIS VOLUME XXX
131 33
33 ALL THE SUEROUTINES ARE WRITTEN IN AMERICAN 33
*K% STANDARD FORTRAN AND ARE ACCEPTED BY THE XXX
33 PFORT VERIFIER. KX
XXX KKK
XXX QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO KKK
KX S. FALLOTTIND AND C. RUGGERI 33
KAK C.N.R.-I.A.C., ROMA, ITALY. K%

KKK K ROKOKOK KK K K oK K K KKK K KKK 0K0KOK K 30K0K K K K K K ROKOK KKK KOk 30Kk KK ok Kok ok ok k Kk
MEANING OF THE MAIN PARAMETERS NOT EXFLAINED IN THE SUBROUTINE:
RAD(I) = I-TH ORIGIN NODE, I=1,2,....,NR

ALL THE PARAMETERS ARE INTEGER

AT FRESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A(.), D{(.). F(.),
HP(.), B(.)
MMAX =31000 FOR ND(.), LNGT(.)
RMAX = 100 FOR RAD(.)

THE ONLY MACHINE DEFENDENT CONSTANT USED IS INF: MUST BE SET T

THE INITIALIZATION OF G<(.), AND F{(.) ARRAYS IS MADE IN THE MAIN
FROGRAM, (THE SUBROUTINE RESETS THEM AT THE END OF EACH ITERATION)

EXTERNALS:
READ
SHEAP

onoooooooOoOo00NOoo000aOoonNoOoOoonNOOooOooo0no

THIS WORE WAS SUFFORTED RY C.N.R., ITALY.

aonoononon

(223283222233 232 2802833223228 838023333233 383¢2383234332333882¢333323332334 1
INTEGER A,D,F,0,R,HF,RAD, Y, X, T2,RMAX
DIMENSION A (3 01) ND(~1UUU) RAD(iuU).D( 2001) ,FP(3001) ,HF (3001) ,
1LNGT (Z1000) , 0(~Dﬂl)
DATA NMAX/"HUl/‘MMAX/ZiODD/,RMAX/lOO/,INF/999999999/
CALL READ(N,M,NR,LMAX,A,.ND,LNGT,RAD, NMAX, MMAX , RMAYX)
DO 10 I=1,N
QI = O
F(I) = O
10 CONTINUE
DO 20 I=1i,NR
R = RAD(I)
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CALL SHEAP (A,ND,LNGT,D,F,Q,HF,NMAX,MMAX N, INF,R)
WRITE (6,30)R, (J,F(J),D(J),J=1,N)
20 CONTINUE
5TOP
30 FORMAT (/7H ROOT =,14//5H NODE,4X, 1HP,7X,1HD/ (215,19))
END

SUBROUTINE SHEAF{(A,ND,LNGT,D,F,2,HP NMAX, MMAX, N, INF,R)

Tk o 0K OK K 3K 0K KKK oK o K ok Ok Kok e K0k KKK K 0k ok ok K ok ok ok ok 0K Ok 0K K KK KK XOK KR R K KKKk Kk K

C
C
c

]
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C
c
c

ROUTINE SHEAF

1) FINDS A SHORTEST FATH TREE ROOTED AT NODE R AND THE SHORTEST

DISTAMCES
2) I8 BASED ON DIJKESTRA®S METHOD, WITH PRIORITY GUEUE @ IMPLEMENTED

AS A BINARY HEAP

MEAMING OF THE INPUT FARAMETERS:

aln = POINTER TO ARC-LIST OF NODE I, I=1,2,...,N+1
ND{J) = ENDING NODE OF ARC J, J=1,2,....M

LNBT(J) = LENGTH OF ARC J, J=1,2,...,M

NMAX = DIMENSION OF ARRAYS A(.), D(.), FL.), Q{.), HP()
MMAY = DIMENSION OF ARRAYS ND{(.), LNGT(.)

N = NUMEER OF MODES

INF = VERY LARGE INTEGER VALUE (INFINITY)

R ROOT
MEANING OF THE DUTFUT FARAMETERS:

D(I) = SHORTEST DISTANCE FROM R TO I, I=1,2,...,N
I IN THE SHORTEST FATH TREE, I=1,2,...,M

MEANING OF THE MAIN INTERNAL FARAMETERS:

@(I) = DICTIONARY OF THE HEAF: ©(I) GIVES THE POSITION OF NODE
I IN THE HEAF HE(.), I=1,2,...,N

HF(I)= I-TH NODE IN THE HEAP, I=1,2,....NHF

MHF = NUMBER OF NODES IN THE HEAF (NHF<=N)

MN = N1

u = CURRENT NODE

Y = ENDING NODE OF THE CURRENT ARC

INIT = START-FOINTER TO THE ARC-LIST OF THE CURRENT NODE

IFIN = END-FOINTER TQ THE ARC-LIST OF THE CURRENT NODE

DV = TENTATIVE LAEEL OF NODE V

ALL THE FARAMETERS ARE INTEGER

LSS S SIS S S Ee ettt s ettt s s e 2220322223292 ¢23 2% ¢

INTEGER A,D,F,0,R,U,V,DV,HF,DF1  HFL, HF2, HFS
DIMENSION A (NMAX) ,D(NMAX) ,F (NMAX) , @ (NMAX) , HF (NMAX) , ND (MMAX) ,
ILNGT (MMAX)
INITIALIZE

DO 10 I=1,N
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DiI) = INF

10 CONTINUE

NHF = O

D(R) = O

FR)Y =0

NN = N + 1

U=R
EXFLORE THE FORWARD STAR OF U
20 INIT = AW

IFIN = A(U+1) - 1

IF ¢ IFIN .LT. INIT)
DO &0 J=INIT, IFIN

YV = NDD)

DV = DYy + LNGT(D)

60 TO 70

CHECKE WHETHER THE LAREL OF V CAM BE

IF ¢ D(V) .LE. DV )
D(V) = DV
FiV) = U

G0 70O &0

IF ( @V) .NE. O ) GO TO Z0

INSERT NODE VY INTO THE HEAF

NHF = NHF + 1
B(V) = NHF

UFDATE THE HEAF

50

&0

HFZ = HP(K2)
IF ( DV .BE. D(HFPD)
HP(K) = HPZ2
B (HF2) = K
o= K2
G0 TO 40
HF(E) = V
V) = K
CONTINUE

F (K2 .LE. 0 ) GO TO 50

y 680 TO SO

IMPROVED

REMOVE THE NEW CURRENT NODE U FROM THE HEAF

70

U = HF )
QW = 0
NHF = NHF - 1

CHECK. WHETHER THE HEAP IS5 EMPTY

IF { NHF ) 130,20,80

UFPDATE THE HEAP

80

G0

HFP1
DF1
K =

K2 = 2%K

HP (NHFP+1)
D(HF1)

[l I |}
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HEZ = HF(KD)
IF ( K2-NHF ) 100,110,120

HES = HF (K2+1)

IF ( DOHFD) .LT. DHFE) ) 60 TO 110
HE2 = HF3

K2 = K2 + 1

IF ¢ DPF1 .LE. D(HFZ) ) GO TO 120

HE (K) = HF2

QUHFR) = K

Ko= K2

GO TO 90

HF (k) =HF 1

BIHFLY = K

GO TO 20

CONTINUE

RETURMN

END

SUBRGUTINE READ (N, M, NF,LMAX,A,ND,LNST, RAD, NMAX, MMAX , RMAX)

(9222222382322 0 0002003000002 222 0800080222220 2223022232020 ¢2228222222¢:3
C READS THE GRAFPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS
C LIBT.

3R OIOR AR EOROR 08 0RO 0K SOR JOKOROKOR 300 R Rk g0k 0ok kool dokoicioook ok koo ook ok ok Rk

ZO0
40

50

INTEGER A,RAD,RMAX

DIMENSION A(NMAX) ,NDMMAX) ,LNGT (MMAX)  RAD (RMAX)
READ (5,3F0) M, M, NR, LMAX

Nl =N + 1

READ (5,40) {(A(D) ,I=1,N1)

READ (S,30) (NDC(I) LNGT(I) , I=1,M
READ (5,40) (RADAI), I=1,NR)
RETURN

FORMAT (416)

FORMAT (10Q16)

FORMAT (121&)

END



