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A b s t r a c t  

The shortest path problem is considered from a computational point of view. 
Eight algorithms which solve the shortest path tree problem on directed graphs are 
presented, together with the results of wide-ranging experimentation designed to 
compare their relative performances on different graph topologies. The focus of this 
paper is on the implementation of the different data structures used in the algorithms. 
A "Pidgin Pascal" description of the algorithms is given, containing enough details 
to allow for almost direct implementation in any programming language. In addition, 
Fortran codes of the algorithms and of the graph generators used in the experi- 
mentation are provided on the diskette. 

1. I n t r o d u c t i o n  

In this paper, we deal with the shortest path problem from a computational 
point of  view. As is well known, this problem is a fundamental component in real-life 
large-scale network models. This explains why, although the problem itself is quite 
simple and widely studied, new contributions keep appearing in the scientific literature 
(see, for one example, the paper by Glover et al. [20] ). 

For an extended survey on the subject, we refer to Gallo and Pallottino [16], 
where the shortest path methods are presented in a unified framework. There, all the 
algorithms are shown to derive from a single prototype procedure, the main difference 
between them being in the particular data structures used to implement the set of  
candidate nodes. Here, from among the ones presented there, we have selected eight 
algorithms which solve the shortest path tree problem on directed graphs. In this 
selection, we followed three main criteria: historical importance, practical computa- 
tional relevance and simplicity of  implementation. Thus, we have left out a certain 
number of  important algorithms, either because their interest is more theoretical 
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than practical (see, for instance, Johnson [25] ) or because their use implies rather 
complex implementation such as some of the algorithms presented in Denardo and 
Fox [5]. 

The focus of the paper is on the implementation of  the different data struc- 
tures used in the algorithms. Although Fortran codes are provided on the diskette, 
the "'Pidgin Pascal" description of the algorithms contains enough details to allow 
for almost direct implementation in any other language. In fact, there is a one-to-one 
correspondence between Fortran codes and Pascal descriptions of the algorithms. 

The results of wide-ranging experimentation with a large number of types of 
graphs are reported. The source codes of the graph generators used in the experi- 
mentation are contained on the diskette. 

Although the aim of  the paper is to provide well tested and efficient algorithms 
for the shortest path tree problem, some attention has also been reserved for the all 
pairs problem. In sect. 9, an efficient algorithm for this problem is described, in such 
a way that its implementation can easily be obtained making use of the shortest path 
tree algorithms on the diskette as subroutines. 

2. Definitions and notation 

Let us state the main assumptions and the notation we shall use throughout. 
G = (N, A; l) is a directed graph with n = I NI nodes, m = I AI arcs and a length 
function l:A -~ R. We shall denote the length of arc (i, ] ) b y  lq. The length of a path 
(respectively, of  a cycle) is the sum of  the lengths of  its arcs. The arc lengths may be 
either positive or negative; the only assumptions we need to make is that there is no 
directed cycle with negative length in G. A further possible assumption is that G is 
strictly connected, i.e. for each pair on nodes u and o, a directed path exists from u 
to o. Note that this assumption is not binding; in fact, the connection can always be 
achieved by the insertion of arcs with a very high length (+ o~). In the following, 
instead of  directed path (directed cycle), we shall simply use path (cycle). 

Given a node r, which we call the origin, a shortest path tree (spt), T*(r), is a 
spanning directed tree of G, rooted at r, which, for each o E N, contains a shortest 
path from r to v (see Lawler [30] ). We shall be dealing with the problem of finding 
a shortest path tree. 

We sha~ assume that the graph be given in the form of arc-lists. That is, for 
each node u,  the list is given of  those arcs (u , j )  which have u as the first node. The 
set of such arcs, FS(u) = I(u, ])  E A}, is called the forward star of node u. When 
the graph is sparse, which is often the case in applications, it is much better to use 
this data structure than the matrix of arc lengths; this is because it requires less 
computer storage and usually allows the implementation of more efficient algorithms. 

G, then, is represented by n lists, one for each forward star (see fig. 1), accessed 
by one array of  pointers. 
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An efficient implementation of  the arc-lists is to put them consecutively in a 
pair of  arrays, ND[ . ]  and L N G T [ . ] .  The pointers are stored in array A[.  ] ; e a c h  
component  points to the first element of  the corresponding arc-list, i.e. A [u] = w if 
(u, o) is the first arc in the forward star of  u where o = ND [w] and luo = LNGT [w]. 
By convention, we set A [u] := A [u + 1] when FS(u) = 0, and A [n + 1] := m + 1. 

Thus, the information relative to FS(u) is stored in ND [. ] and LNGT[. ], 
from position A [u] to A [u + 1] - 1 (see fig. 2). The storage requirement for this 
implementation is 2m + n + 1. An example of this technique of  representing graphs 
is given in fig. 3. 

The scanning of  FS(u) can be implemented as: 

if A[u] < A [ u + l ]  then 

f o r j : = A [ u ]  to A [ u + l ] - I  do 

begin 

v := ND[j]  ; 

luv := LNGT []];  

end; 

In the following, such a sequence of operations shall be denoted by the single 
compact statement 

foreach (u, v) E FS(v) d o . . .  

In order to represent a tree, we shall use the predecessor list, that is, a vector p,  
where Pv is the predecessor of  node v in the tree. The predecessor list p is implemented 
by means of an n-arrayP[ .  ] in such a way that: 

(i) P[ r ]  = 0 ~-~ r is the root of  T, 

(ii) P[]] = i ~ (i ,]) is an arc ofT.  

Together with the vectors defined so far, an n-array D [. ] is used, which will 
be returned by the algorithms as the shortest distance vector. 

3. A prototype shortest path tree algorithm 

Virtually all the shortest path tree algorithms can be viewed as performing 
the following operations: 
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1. Initialize a directed tree T rooted at r and, for each o E N, let d o be the 
length of  the path from r to u in T; 

2. Let (i, j )  E A be an arc for which d i + lij - d i < 0, then adjust the vector 
d by setting dj = d i + lij, and update the tree T by replacing the current 
arc incident into node j b~, the new arc (i, j ) ;  

3. Repeat step (2) until the optimality conditions 

di+ l . . ~  ,i dj, V(i,i) A 

are satisfied. 
Note that, during the execution of  the procedure, d o is greater than, or equal 

to, the distance on the current tree from r to o, o E N; only at termination is equality 
bound to hold. We shall call d o the label of node v. 

A crucial point in the implementation of  this procedure is how to select 
arcs at step 2. 

Since n ~< m, it seems quite reasonable to select nodes rather than arcs, then 
once a node u has been selected, the operations of  step 2 are performed on all arcs of 
FS(u). This choice has the further advantage of  being able to exploit reasonably well 
the arc-list representation of  the graph. 

Although a few algorithms have been developed in which only one arc of the 
forward star is considered for each selected node, in the large majority of the algo- 
rithms presented in the literature, when a node is selected the whole forward star is 
considered in one go. 

Algorithm SPT, which is given next, is a rather general implementation of the 
procedure, based on the exploration of complete forward stars. 

Procedure SPT(r); 
begin 

TINIT(r);  QINIT(r); 
repeat 

QOUT(u); 
foreach (u, o) E FS(u) do If D [u] + luo < D [v] then 

begin QIN(v); TUPDATE(u, o) end 
until Q=O 

end; 

Procedure TINIT(r); 
begin 

for i : = 1  to n do begin P[i] := r ;  D[i] := + ~  end; 
P[r]  : = 0 ; D [ r ]  :=0  

end; 
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Procedure QINIT(r); 
begin 

Q:={r}  
end; 

Procedure TUPDATE(u, v); 
begin 

e[v]  :=u ;  O[v] :=O[u]  +luo 
end; 

Procedure QOUT(u); 
begin 

select u E  Q; Q : = Q - { u } ;  update Q 
end; 

Procedure QIN(v); 
begin 

if v ~ Q  then Q : : Q U { v } ;  
update Q 

end; 

The initial tree in TINIT is a star-shaped tree, with one dummy arc (r, v) for 
each v E N -  {r}; these dummy arcs are assigned a length equal to +o~. 

At this point, no assumption is made about how, in QOUT, a node u is selected 
from the set of candidate nodes Q. This is crucial. In fact, almost all the spt-algorithms 
of practical interest are derived from SPT by properly defining the operation of 
selection and, consequently, the particular data structure which is used to implement 
the set Q. 

In the following section, different selection rules and different data structures 
for Q are described. For each implementation of SPT, the storage requirements and 
the time complexity are given. As a theoretical measure of time complexity, the 
worst-case running time on a random-access machine is used (Tarjan [43] ). 

We now give a general expression of the complexity of SPT. Here, the com- 
plexity is given as a function of the operations performed: from this expression, we 
shall derive the complexity of the different implementations of SPT as a function of 
n and m. Let qo, ql and q2 denote the complexity of QINIT, QOUT and QIN, 
respectively. Let cx and c2 denote the number of times QOUT and QIN are performed, 
respectively. 

Let ~" be the maximum number of selections of a single node. Then we may state 
the complexity ofSPTas O(qo + ql .c l  + q2-c2).Note that ~ 1> 1, n ~< cl ~< n .~', 
m ~< c2 ~< min{n .ci,  m .~}, and hence cl ~< c2 (GaUo and Pallottino [16]). 
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4. S e l e c t i o n  rules  

The choice of the selection rule in QOUT affects the way in which the graph G 
is explored to check whether the optimality conditions are satisfied: each selection 
rule induces a particular search strategy on G. Three of the most commonly .used 
search strategies are the breadth-first search, the depth-first search and the best-first 
search (Aho et al. [1], Tarjan [42]). 

In the breadth-first search (also known as FIFO, First-In-First-Out), at each 
iteration the oldest element in Q is selected, i.e. the element which was inserted first, 

remove remove 

I 7 , -  ] 
add add 

head tail 

Fig. 4. A list. 

whereas in the depth-first search (or LIFO, Last-In-First-Out), the element of Q 
which is selected is the newest one, i.e. the element which was inserted last. 

A characteristic common to the breadth-first search, the depth-first search and 
all search strategies derived from them, is that to implement them properly, lists need 
to be used. A list is a sequence of  elements; the first element is its head and the last 
element is its tail. 

Typical operations on a list are: adding an element to form the new head of 
the list (making the old head the second element); adding an element to form the new 
tail; removing (retrieving and deleting) the head of the list; removing the taft of the list. 

Other list operations include: concatenating two lists (making the tail of  the 
first list point to the head of  the second one), inserting an element after an element 
whose location in the list is known, and deleting an element whose location in the list 
is known (Tarjan [42] ). 

In the best-first search, we assume that a real valued label is associated with 
each element, and the element to be selected is the minimum label element currently 
in Q. Although a list might also be used to implement this search strategy, an efficient 
implementation calls for more sophisticated data structures. The data structure most  
commonly used in this case is the priority queue. A priority queue is a collection of 
elements, each with an associated numerical value (label), on which the following 
operations are efficiently performed: adding a new element, removing the minimum 
value element and correcting the label of  an element whose location is known. 

In the following section, we shall call list-search algorithms the spt algorithms 
which make use of  either a breadth-first or a depth-first search (or any other search 
strategy derived from them). We shall call shortest-first search algorithms those spt 
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algorithms which make use of a search strategy derived from the best-first one. The 
name of the latter class of  algorithms comes from the fact that the label of  node v, 
do, represents the distance of  a path from r to o in G at each iteration. Then the best 
label element is the one, out of  those of  Q, which is at the shortest distance from r, 
at least as far as we can ascertain at that stage of the computations. 

5. List  i m p l e m e n t a t i o n  

The two simplest and most common types of lists are the queue and the stack. 
A queue is a list in which additions are allowed only at the tail and deletions are 
allowed only at the head; the queue is used to implement the breadth-first search 
strategy. A stack is a list with addition and deletion allowed only at the head; it is 
used to implement the depth-first search strategy. 

Two other types of lists which are relevant in the implementation of shortest 
path algorithms are the deque and the 2queue (Horowitz and Sahni [21 ],  Knuth [28], 
Pallottino [35] ). 

remove 

~ stack Q' [ queue Q" k 

add add 

Fig. 5. Deque Q. 

A deque, or double-ended queue, is a list in which additions and deletions 
are possible at either end. In the deque Q, used in the following, additions are made 
at both ends, while deletions are made at the head. Deque can be interpreted as a 
stack Q' and a queue Q" connected in series, in such a way that the tail of  the stack 
points to the head of the queue. 

remove 

[ queue Q' [ queue Q" L 

t 1 
add add 

Fig. 6.2queue Q. 

2queue differs from deque in that the elements are inserted into Q' at the tail 
instead of being inserted at the head; thus, Q can be interpreted as two queues, Q' and 
Q", connected in series. 

Queues, stacks, deques and 2queues are efficiently implemented by means of 
linked -lists. 
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5.1. LINKED LIST 

The linked-list we deal with is a sequence of elements, l l ,  12 . . . . .  In, each of 
which is one of the nodes in the graph (l i E N) .  

Each element is linked by means of a pointer to the next one. Two special 
elements, frst  and last ( frs t  = l l ,  last = ln) , are used for quick retrieval of the head 
and the tail of the list, respectively. 

last 

Fig. 7. Linked-list. 

In practice, it is advantageous to implement the linked-list in a circular fashion, 
making the last element l n point to the dummy element frst. The general structure of 
this kind of list is depicted in fig. 7. 

Since the nodes are represented by the first n integers, the linked-list is 
efficiently implemented by means of  an n + 1 array Q[ .  ] ,  where: 

Q[i] 

0 
-- j 

n + l  

i f i ~ Q ,  

(0 < / "  ~< n) if i precedes ] in Q, 

if i is the last element; 

Q [n + 1 ] = frst  = the head of  Q. 

An additional element, last, is needed so that the total storage requirement is 
n + 2 .  

The single vector Q[ .  ] can be used to represent two (or more)linked-lists 
connected in series, such as deque and 2queue, provided that these lists are disjoint. 

In particular, the general implementation described above can be used for 
deque, with the following proviso that the last element of  queue Q" points to n + 1 
and Q [n + 1] contains the first element (the head) of stack Qt. 

Note that there is no need to know the connection point between the stack 
and the queue. On the other hand, this point must be known in order to perform the 
insertion operation (at the tail of  the queue Q~) in 2queue; so, in this case an addi- 
tional pointer, pntr, is used. 

Since v E Q if and onlyi f  Q [o] 4 0, and Q = ¢ if and onlyi f  Q [n + 1] = n + 1, 
the questions "is o in Q?" and "is Q empty?" can be answered in constant time. 
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The complexity of procedure QINIT is O(n): 

Procedure QINIT(r); 
begin 

for i : = 1  to n do Q[i] :=0;  
a [ n  + 1] :=r ;  a i r ]  :=n  + 1; last := r; 
pntr := n + 1 ; comment: only for 2queue 

end; 

Procedure QOUT, described next, is common to all the lists consiedered; it 
runs in constant time. 

Procedure QOUT(u); 
begin 

u : = Q [ n + l ] ;  Q [ n +  1] : - - -a [u] ;  Q[u] :=0;  
if last = u then last : = n + l ; 
if pntr = u then pntr := n + 1; comment: only for 2queue 

end; 

As for the addition of a new element, Q := Q u Iv}, we must distinguish 
between the case of addition at the head and the case of addition at the tail: 

addition at the head 

a[v] := a [ n +  1]; 
a [ n +  1] :=v;  
if last = n + l  then last :=v; 
if pntr = 17 + 1 then pntr : = v; 

comment: only for 2queue; 

addition at the tail 

Q[last] := v; 
Q[v] : = n + l ;  
last := v; 

Hence, procedure QIN is different for each of the four lists considered. In 
deque and 2queue, the choice of the list to which the new element v must be added 
is commanded by a logical variable, cond, which can assume either of  two values: true 
or false. All these procedures run in constant time. 

Procedure QIN(v); 
begin comment: version for queue; 

if Q[o] = 0 then begin Q[last] := o; Q [o] := n + 1; last := v end 
end; 

Procedure QIN(v); 
begin comment: version for stack; 

if a [o]  =0  then begin a [o ]  := Q[n + 1]; Q[n + 1] := o end 
end; 
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Procedure QIN(v); 
begin comment: version for deque; 

ff Q[v] =0  then ff cond 
then 

begin comment: taft insertion; 
O[last] :=v;  Q[v] : = n + l ;  last:=v 

end 

else 
begin comment: head insertion; 

Q[v] : = a [ n +  1]; Q[n+ l l : = v ;  
if last = n + 1 then last : = v 

end 
end; 

Procedure QIN(v); 
begin comment: version for 2queue; 

if Q [v] = 0 then if cond 
then 

begin comment: tail insertion in Q"; 
Q[last] := v; a[v] : = n  + 1; last:= v 

end 
else 

begin comment: tail insertion in Q'; 
a [v] := a [pntr] ; Q [pntr] := v; 
if last= pntr then last:= v; 
pntr := O 

end 
end; 

5.2. TWO-WAY LINKED-LIST 

Two-way linked-lists are used when elements are either deleted from, or 
inserted into, the list at an arbitrary position. In this case, two n + 1 arrays are used, 
UP[. ] and DOWN[. ] ,  where: 

UP[i] = DOWN[i] = 0 
UP[DOWN[i]] = DOWN[UP[i]] = i 
DOWN[n + I] = fist = the head of Q, 
UP[n + 1] = last = the tail of Q. 

i f /  ~ 0 ,  
i f i E Q ,  

DOWN[i] points to the element following i in the list, while UP[i] points 
to the preceding element. Note that, since a two-way linked-list has an inherent 
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symmetry,  it is just a matter of convention to call one of  the two ends of  the list 
head and the other one tail: the roles of  tail and head can be interchanged. 

The initialization of  the two arrays LIP[. ] and DOWN[. ] is similar to the 
initialization of  the array Q [. ] described above. 

Characteristic of the two-way linked-lists are the following elementary opera- 
tions: 

Procedure DELETE(x); 
begin 

comment:  deletion of  element x from Q; 
UP[DOWN[x] ] := UP[x] ; DOWN[UP[x] ] := DOWN[x]; 
DOWN[x] := UP[x] : = 0 

end; 

Procedure INSERT(x, y) ;  
begin 

comment:  insertion of element x to Q immediately after y;  
DOWN[x] := DOWN[y] ; UP[DOWN[x] ] := x; 
DOWN[y] : :  x ;UP[x]  : = y  

end; 

5.3. MULTIPLE LISTS 

A multiple list is a collection of h disjoint linked-lists (one or two ways) 
L 1, L2 . . . . .  L h . 

A single array Q [. ] (or, in the case of two ways, a pair of arrays UP[. ] and 
DOWN [. ] ) can be used to implement a multiple list. Since each list needs two pointers 
frst and last, two additional arrays of  h elements FRST[.  ] and LAST [. ] are needed. 
Thus, the overall storage requirement is n + 2h for multiple linked-lists and 2n + 2h 
for multiple two-way linked-lists. 

Two-way linked-lists and multiple lists will be used to implement priority 
queues (see sect. 7). 

6. Lis t  sea rch  a l g o r i t h m s  

We now present four spt algorithms which make use of  linked-lists in order 
to implement the set Q. 

Remembering the general complexity bound presented in sect. 3, 
O(qo + ci ql + c2q2), where c2 i> cl >i n, it is easy to verify that these algorithms 
run in O(c2);in fact, qo is O(n), ql and q2 are constant. 
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Algorithm L-queue 

The queue seems to be a very natural choice when implementing SPT. We shall 
call such an algorithm L-queue. It represents an efficient implementation of a well- 
known shortest path method which is often credited to Bellman [3], Ford [12] and 
Moore [32]. 

Procedure LQUEUE(r); 
begin 

comment:  TINIT and QINIT; 
for i : = 1  to n do begin P[i] :=r;  D[i] :=+oo;  Q[i] :=0 end; 
P[r] :=D[r ]  :=0; Q[n+ l] :=last:=r; a[r] :=n+ l; 
repeat 

comment: QOUT; 
u : = a [ n + l ] ;  Q[n+ 1] := Q[u];  Q[u] :=0;  
if last = u then last : = n + 1; 
comment: scan FS(u); 
foreach (u, v) E FS(u) do if D [u] + luo < D [o] then 

begin 
comment: QIN; 
if Q[v] =0 then begin a[last] := last:= v; Q[v] := n + 1 end; 
comment: TUPDATE; 
/'[o] :=u; D[o] :=D[u] + l.o 

end 
until Q [ n + l ]  = n + l  

end; 

Since each node cannot be inserted in the queue more than n times (Lawler 
[30]), ~" ~< n and, as c2 ~< m~', the complexity of L-queue is O(nm) (O(n a) for 
complete graphs). 

The space requirement is 4n + 2m: n + 2m for the input data, n for the 
queue, and 2n for the arrays P[ .  ] and D [. ].  

Algorithm L-deque 

A deque is used in the well-known D'Esopo- Pape algorithm (see Pape [36-38]  ), 
where the insertion policy is the following: 

the first time a node is to be inserted into Q, it is added to Q" at the 
tail; this corresponds to a breadth-first search strategy. When, later on, 
the same node, after being removed from Q, again becomes a candidate 
for insertion, it is added to Q' at the head: from now on the node is 
processed on the basis of a depth-first search strategy. 
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The rationale for using this rather peculiar policy is that every time a label du 
is updated (decreased), except the first time, it is worth trying to decrease the labels 
of the successors of u in the current tree as well: this is the aim of the depth-first 
search phase. 

We caU this algorithm L-deque. 

Procedure LDEQUE(r); 
begin 

comment: TINIT and QINIT; 
for i :=  1 to n do begin P[i] : = r ; D [ i ]  :=+o~; Q[i] :=0  end; 
P[r] :=D[r]  :=0;  Q[n+ 1] :=last:=r; a[r] : = n + l ;  
repeat 

comment: QOUT; 
u : = a [ n + l ] ;  a [ n + l ]  := Q[u]; Q[u] :=0;  
if last = u then last : = n + 1 ; 
comment: scan FS(u); 
foreach (u, v) E FS(u) do if D [u] + luo < D [v] then 

begin 
comment: QIN; 

if Q[v] =0 then i fD[v]  = +  
then begin Q[last] :=last:=v; Q[v] : = n + l  end 
else begin Q[v] : = a [ n + l ] ;  Q[n+ 1] :=v; 

if last=n+ 1 then last:= v end; 
comment: TUPDATE; 
P[v] := u; D[v] :=O[u] + luv 

end 
until Q In + 1 ] : n + 1 

end; 

In this case, ~" and cl are bounded by 0(2 n) and, as c2 <<- ncl ,  the complexity 
of L-deque is O(n. 2 n) (Kershenbaum [27], Shier and WitzgaU [39] ). 

Although characterized by a rather high worst-case complexity, the algorithm 
L-deque is very efficient in practice, mainly when dealing with sparse, almost planar, 
graphs (Dial et al. [7], Gallo et al. [17], Van Vliet [44] ). An interesting experimental 
finding is that, for sparse graphs, ~ is independent of n (~" ~ 1.5) (see table 5 in 
sect. 10). 

The space requirement is 4n + 2m, as for L-queue. 

Algorithm L-2queue 

L-2queue is the algorithm obtained when Q is implemented by means of a 
2queue and the insertion policy is similar to the one used in L-deque. 
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Procedure L2QUEUE(r); 
begin 

comment: TINIT and QINIT; 
for i : = 1  t o n  do begin P[i] :=r ;  D[i]  := +o0; Q[i] :=0 end; 
P[r] :=D[r ]  :=0; Q[n+ l] :=last:=r; Q[r] : = p n t r : = n +  l; 
repeat 

comment: QOUT; 
u : = Q [ n + l ] ;  Q [ n + l ]  : = Q [ u ] ;  Q[u] :=0;  
if pntr = u then pntr := n + 1; 
if last = u then last : = n + 1 ; 
comment: scan FS(u); 
foreaeh (u, o) E FS(u) do if D [u] + luo < D [o] then 

begin 
comment: QIN; 

if Q[o] =0 then i fD[o]  = +oo 
then begin Q [last] := last := o; Q [o] := n + 1 end 
else begin Q[o] := a [pntr] ; Q [pntr] := v; 

if last = pntr then last : = o; 
pntr := o end; 

comment: TUPDATE; 
e[o] :=u; D[o] :=D[u] + luo 

end 
until Q[n + 1] =n + 1 

end; 

The main difference between L-deque and L-2queue is in the worst-case 
computational complexity; in fact, as ~" = 0 (n2), the complexity for L 2queue is 
O(n2m) (Pallottino [34,35] ). In practice, the two algorithms behave quite similarly. 

Since L-2queue (at least in our experimentation) has always proved to be 
almost as good as L-deque without the risk of bad behavior in pathological cases, it 
can be recommended to risk-averse users. 

The space requirement of L-2queue is the same as for L-queue. 

Algorithm L-threshold 

The interesting idea behind L-deque and L-2queue is the partitioning of the 
set of nodes into two subsets and the different processing of the nodes according to 
which of the two subsets they belong to. The partitioning is dynamically updated 
at each iteration. 

In the papers by Glover et al. [19, 20], the use of the threshold value s is 
suggested for partitioning Q into two subsets, Q' and Q": deletions are made at the 
head of Q', which contains only nodes with labels less than, or equal to, s. Many 



18 G. Gallo and S. Pallottino, Shortest path algorithms 

different algorithms can be obtained, depending on the choice of: the threshold, the 
policy for updating its value, the implementation of  Qt and Q", and the way elements 
are moved from Q' to Q". 

The algorithm L-threshold is derived from the threshold algorithm proposed 
by Glover et al. [19]. The set of candidate nodes Q is partitioned into two subsets 
Q' and Q", where Q'  is a queue and Q" is a linked-list. Note that, while in L-deque 
and in L-2queue Q' and Q" were implemented as two sections of a single list, here 
Q' and Q" are two distinct linked-lists. 

The queue Q' contains all the nodes of  Q whose labels are less than, or equal 
to, the current threshold value thrs; the remaining nodes are maintained in Q". 

The procedure QOUT removes the head of  Q'  if Q' :~ 0; when Q' is emptied, 
the threshold value thrs is updated (increased) and Q" is scanned to move all the 
nodes with label ~< thrs to Q' and then the new head of Q' is removed. A node v 
is inserted in Q' ,  at the tail, only if d u (.  thrs. When anode  o currently belonging to 
Q" is assigned a new label d o <~ thrs, v is moved to Q'. In practice it has been proved 
to be computationally advantageous to leave a copy of o in Q"; when Q" is scanned 
to refresh Q',  all the copies are deleted. 

To evaluate and update the threshold value, two parameters are computed 
in procedure QINIT (Glover et al. [19] ): 

s = rain{rain, 35}, 

I x2. lmax if s ~< 7, 
t / 7.x2.  lmax/s otherwise; 

where lmax is the maximum arc length and where the value of x 2 is chosen on the 
basis of  the topology of  the graph: Glover et al. suggest x2 -- 1.5 for grid graphs and 
x2 = 0.25 for random graphs. 

Procedure LTHRESHOLD(r); 
begin 

comment:  TINIT and QINIT; 
for i : =  to n do begin P[i] := r ;  D[i] := +oo; QI [ i ]  := Q2[i] :=0  end; 
P[r] : = D [ r ]  :=0;  Ql[n  + 1] :=last:=r; Q2[n+  1] := Ql[ r ]  : = n + l ;  
s := MIN(m/n,35);  t := x2  • Imax; if s > 7 then t := t • 7/s; thrs := - 1; 
repeat 

comment:  QOUT; 
if Q l [ n + l ]  = n + l  then 

begin 
min := +~o; t l  := thrs+ t+ 1; i :=n  + 1; 1" := Q2[i]  ; 
comment:  scan Q2[ . ] ,  compute min, remove copies of  nodes 

akeady removed, and move nodes from Q2 [. ] to Q 1 [. ] ; 
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while ]4= n +  l do i f D [ ] ] > t l  
then begin comment: update min; 

if D[]] < min then min:=D[]] ;  
i : = ] ; j : = Q 2 [ i ]  end 

else begin comment: remove ] from Q2[.] ; 
Q2[i] := Q2[/] ; Q2[j]  := 0; 
if D []] <~ thrs then begin Ql [ last ] := last : = j ; 

Q1 []] := n + 1 end; 
] := Q2[i] end; 

if Q l [ n + l ]  4 = n + l  then thrs:=t l  else 
begin comment: if Q2 = ~ STOP; 

if Q2[n+l]  = n + l  then stop; 
thrs := rain + t; i := n + 1; ] := Q2[i] ; 
while ] =~ n + 

then begin 
else begin 

end 
end; 

1 do if D[]]  > thrs 
i : = ] ;  j := Q2[i] end 
a2[ i ]  := Q2[ j ] ;  Q2[]] := 0; 
al[last] :=last:=j;  a l [ j ]  : = n +  1; 
j : =  a2[ i ]  end 

u : = Q l [ n + l ] ;  Q l [ n +  1] := Ql [u] ;  Ql[u] :=0 ;  
if last = u then last := n + 1 ; 
comment: scan FS(u); 
foreach (u, v) ~ FS(u) do if D [u] + luo < D [v] then 

begin 
comment: QIN, 
if D [u] + luv ~< thrs 

then if Q1 [o] = 0 then begin Q1 [last] := last := o; 
Ql[o] : = n + l  end 

else if Q2[v] =0  then begin Q2[v] : = Q 2 [ n + l ] ;  
Q 2 [ n + l ]  :=v  end; 

comment: TUPDATE; 
P[v] :=u ;  O[v] :=D[u]  + luv 

end 
until Q l [ n + l ]  = Q 2 [ n + I ]  = n + l  

end; 

In QINIT we set thrs = - 1 ,  and in QOUT, when needed, the threshold value 
is updated on the basis of 

J thrs + t + l  if dmin ~< thrs + t + l, 
thrs 

I dmin + t otherwise, 

where dmin = min{d o :v E Q"}. 
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As for complexity, q0 is O(n) and q2 is constant; q l ,  the cost of  QOUT, is 
a constant if Qt is not empty, otherwise it is O(n) since the linked-list Q" must be 
scanned. Note that, since thrs cannot decrease and the node labels cannot increase, 
when a label d o goes below thrs its node o can no longer be inserted in Q". Then 
the number of times that Q" is scanned to refresh Q' is bounded by n, and hence 
the total cost of  "refreshing" operations is bounded by n 2 . 

Between two successive refreshing operations, L-threshold behaves like L-queue 
on a smaller graph, the partial graph (N, A '), with A '  = { (i, j )  E A : d i ~< thrs }. Hence, 
the number of extractions from Q~ for each node is bounded by n; then ? ~< n 2 and 
the overall cost of  QOUT is O(n 3 ). 

The total cost of  QIN is O(m~') = O(n2m). We may conclude that the com- 
plexity of  L-threshold is O (n 2 m). 

Since to implement Q' and Q" we need two distinct n-arrays, the space 
requirement for L-threshold is 5n + 2m. 

7. P r io r i t y  q u e u e s  i m p l e m e n t a t i o n  

As mentioned in sect. 4, a priority queue Q is a collection of elements with 
each of  which is associated a real valued label. We shall denote the label of  element 
i E Q by D [ i ] .  The procedure QOUT retums a minimum label element out of  the 
one currently in the priority queue Q. 

The elements of Q can be maintained either in order (ordered priority queue) 
or out of  order (unordered priority queue). This choice is crucial to the complexity 
of the algorithms; in fact, when an ordering of the elements is maintained, any opera- 
tion involving individual elements (change of the label values, insertion or deletion) 
requires, at least in principle, the updating of the whole priority queue. 

For the sake of computational efficiency, we shall consider only implementa- 
tions of  priority queues in which the questions "is o in Q?" and "is Q empty?" can 
be answered in constant time*. 

7.1. UNORDERED LINKED-LIST 

The simplest way to implement a priority queue is the linked-list (see sect. 5), 
in which the insertion is made at the head so that only one pointer frst is needed. 
With this implementation, all operations performed on Q but QOUT are the same as 
the corresponding operations described for the stacks. 

QOUT, described next, requires the full scanning of Q in order to select the 
minimum label element u. 

*After the writing of this paper was completed, the paper by M.L. Fredman and R.E. Tarjan, 
Fibonacci heaps and their uses in improved network optimization algorithms (J. ACM 34(1987) 
596) has been brought to our attention. In this paper, a new data structure is described which 
allows a very efficient implementation of priority queues for shortest path algorithms. 



G. Gallo and S. Pallottino, Shortest path algorithms 21 

Procedure QOUT(u); 
begin 

min := +~o; i :=  n + 1; x := i; 
while Q[ i ]  C n + l  do 

begin 
if D [Q [i] ] < min then begin x := i; rain := D [Q [i] ] end; 
i : =  a [i] 

end; 
u : = a [ x ] ;  a [ x ]  : = a [ u ] ;  a [ u ]  : = 0  

end; 

For a better understanding of the procedure, note that to remove an element u, 
the element x preceding u in the list must be known. 

Let nq be the maximum cardinality of  Q; then QOUT runs in O(nq) time. 

7.2. ORDERED LINKED-LIST 

Q can easily be implemented by means of a two-way linked-list UP[. ] end 
DOWN [. ] ,  where the elements are sorted on the basis of a non-decreasing order of 
the label values: 

D[]] >t D[i] if ] = DOWN[i],  

and 

D[frst] = m i n { d / : j E  Q}, where fist = DOWN[n + 1]. 

QINIT runs in O(n) time and elementary operations DELETE and INSERT 
have constant cost (see sect. 5.2). 

Procedure QOUT, which is described next, has constant complexity. 

Procedure QOUT(u); 
begin 

u := DOWN[n + I] ; DELETE(u) 
end; 

Much more expensive is procedure QIN, since we have to determine the posi- 
tion at which the new element is to be inserted. 
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Procedure QIN(o); 
begin 

if DOWN[w] = 0 then pntr := UP[n + 1] 
else begin pntr := UP[w]; DELETE(w) end; 

while D [pntr] > D [o] and pntr ~ n + 1 do pntr := UP[pntr] ; 
INSERT (v, pntr) 

end; 

If nq <<. n is an upper bound on the cardinality of Q, then QIN runs in O(nq) 
time. 

7.3. BUCKETS 

Let f be a monotonic non-decreasing integer function which maps the set of 
labels onto the set of  integers 1 , . . . ,  K. We shall assume that the function f (do)  can 
be evaluated in unit time. 

The kth bucket is defined to be the subset of all the nodes o E Q such that 
f(do) = k (Denardo and Fox [5], Knuth [29], Tarjan [42]). 

A priority queue structured by buckets can be implemented by means of a 
K-array of pointers Q [ . ] ,  where Q [k] points to the kth bucket. Each bucket is 

Q DOWN 

2 
3 

t i 

K 1 t , 

i 
i J 

] 
] 

¢ 
Fig. 8. A buckets data structure. 

UP 

........ ! 

implemented as an unordered two-way linked-list; since the buckets are disjoint, they 
can be implemented as just one multiple list by means of a pair of n-arrays UP[. ] 
and DOWN[.]. Note that Q[ . ]  plays the role of  the array FRST[.]  described in 
sect. 5.3, while the array LAST[. ] is not needed since the additions in our imple- 
mentation are performed only at the heads of the tists. An additional pointer pntr 
is used, which contains the index of the first non-empty bucket. The overall storage 
requirement is K + 2n + 1. 
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Procedure QINIT runs in O(K + n) time: 

Procedure QINIT(r); 
begin 

for i : = 1  to K do Q[i] : = n + l ;  
for i : = l  to n do UP[i] : = D O W N [ i ] : = 0 ;  
pntr:=f(O); Q[pntr] :=r ;  UP[r] := DOWN[r] :=n  + 1 

end; 

In the procedure QOUT, we update pntr by scanning the array Q [. ] to find 
the first non-empty bucket; then the bucket is scanned to retrieve and remove the 
minimum label dement.  Since the algorithms using buckets are intended for graphs 
with non-negative lengths, we may assume that the minimum labels are monotonically 
non-decreasing and hence that pntr cannot decrease from one iteration to the next 
in the algorithm. The complexity of QOUT can be split into two parts: the cost of 
updating pntr, plus the cost of retrieving the minimum label element in the bucket. 

Procedure QOUT(u); 
begin 

while Q [pntr ] = n + 1 and pntr < K do pntr : = pntr + 1; 
u := Q [pntr] ; min := D [u] ; i := DOWN[u] ; 
while i ¢ n + l  do 

begin if D [i] < rain then begin min := D [i] ; u := i end; 
i :=  DOWN[i] end; 

DELETE(u) 
end; 

Procedure QIN runs in constant time. 

Procedure QIN(o); 
begin 

if UP[o] :/: 0 then DELETE(o); 
k := f (D [o] ); INSERT(o, k) 

end; 

Note that DELETE and INSERT are the operations described in sect. 5.2 with 
only minor modifications due to the fact that here we deal with multiple linked-lists. 

7.4. BINARY HEAPS 

The binary heap (Williams [46]) is a balanced binary tree where each node 
points to one of the elements of a set of labeled elements, in such a way that the 
label of the element pointed to by node i is less than, or equal to, the labels of the 
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Fig. 9. The binary heap HP[. ] and its dictionary Q [. ]. 

elements pointed to by its descendants. Clearly, the root of  the tree, node 1, points 
to a minimum label element. 

Binary heaps can be implemented as a pair of  n-arrays HP[.]  and Q[.  ], 
where liP[i] is the element pointed to by node i and Q [o] is the index of the node 
which points to the element o; if v ~ Q, then Q[v] = 0. An additional integer, 
nhp = I QI,is used. The storage requirement is 2n + 1. 

As usual, the nodes of the heap are numbered in such a way that the two sons 
of a node i are nodes 2i and 2i + 1 (see fig. 9). 

Procedure QINIT(r); 
begin for  i : =  1 to  n do Q [ i ]  :=I-IP[i]  := O; 

Q[r] :=1;  HP[1] := r ;  nhp:= 1 
end; 

Procedure QINIT runs in O(n) time. 
The two procedures QOUT and QIN run in O(log nq) time, where net is the 

maximum cardinality of Q. 
In the former, the element u = HP[1] is removed and the heap is updated: 

the last element HP[nhp] is placed at the root and is then moved down to restore the 
order of  the labels. 

In the latter, first we check if o is not already in Q, in which case v is placed 
in the first available position nhp 4- 1, then v is moved up until it reaches its correct 
position in the heap. 

Procedure QOUT(u); 
begin 

u : =  HP[1]; Q[u] :=0 ;  h:=I-IP[nhp]; nhp:=nhp-1; 
if nhp > 0 then 
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begin 
k := 1; 
repeat 

k 2 : =  2 *  k; 
if k2 ~< nhp then 

begin 
if k 2 <  nhp and D[HP[k2 + 1]] < D[HP[k2] ] 

then k2 := k2 + 1; 
i :  = HP[k2] ; 
if D [i] < D [h] then begin HP[k] := i; Q [i] := k; 

k := k2 end 
end 

until k # k2; 
HP[k] := h; Q[h] := k 

end 
end; 

Procedure QIN(v); 
begin 

if Q [v] = 0 then begin nhp := nhp + 1; HP[nhp] := v; Q [v] : = nhp end; 
k : =  Q [v]; k 2 : =  INT(k/2); 
while k2 > 0 and D [o] < D [HP[k2] ] do 

b e ~  I ~ [ k ]  := m'[k2]  ; Q [UP[k2] ] := k; 
k := k2; k2 := INT(k/2)  end; 

riP[k] :=o; Q Iv] := k 
end; 

8. S h o r t e s t - f i r s t  sea rch  a l g o r i t h m s  

The first algorithm to use a shortest-first search strategy can be credited both 
to Dijkstra [8] and to Moore [32],  although it was the former who stated formally 
its properties; actually, any algorithm which uses this strategy can be considered a 
particular implementation of  Dijkstra's original method.  

The basic property of  these algorithms is the following: 

Proposition 1. I f  lij >1 0, V ( i , / )  E A, then each node is removed from (and 
hence inserted into) Q exactly once. 

This is due to the fact that,  at each step, if u is a minimum label element 
of Q, then d u is the shortest distance from r to u, provided that no arc has a negative 
length. In this case, we have ~" = 1, Cl = O(n) and c2 = O(m). 
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So, the complexity for the shortest-first algorithms when the lengths are non- 
negative is O(q0 + nqx + mq2). 

Unfortunately, such a nice property no longer holds when the arc lengths are 
not restricted to being non-negative. In this case, it can be shown (Johnson [24] ) 
that the algorithm might pass through step 2 exponentially many times, and then 
ci = O(2 n) and c2 = O(n. 2n). 

In the following, we shall restrict ourselves to the case of non-negative lengths. 

Algorithm S-Dijkstra 

S-Dijkstra represents the simplest implementation of Dijkstra's original idea. 

Q is an unordered linked-fist. As shown in sects. 5.1 and 7.1, qo is O(n), 
ql is O(nq) ~ O(n) and q2 is constant. In this case, the algorithm runs in O(n 2) 
time. 

Its space requirement is 4n + 2m. 

Procedure SDIJKSTRA(r); 
begin 

comment: TINIT and QINIT; 
for i : = I  to n do begin P[i] : = r ; D [ i ]  :=+oo;  Q[i] :=0 end; 
P[r] :=O[r ]  :=0; Q[n+ 1] :=r;  air] : = n + l ;  
repeat 

comment: QOUT; 
min := +oo; i : = n + l ; x : = i ;  
while Q[i] 4: n + 1 do 

begin 
if D [Q [i] ] < min then begin x := i; min := D [Q [i] ] end; 
i:=Q[i] 

end; 
u:=Q[x]; Q[x] := Q[u]; Q[u] : : 0 ;  
comment: scan FS(u); 
foreaeh (u, v) E FS(u) do if D [u] + luo < D [v] then 

begin 
comment: QIN; 
i fQ[v]  =0 then begin Q[v] : = Q [ n + l ] ; Q [ n + l ]  :=vend ;  
comment: TUPDATE; 
P[v] :=u;  D[v] :=D[u]  + luv 

end 
until a[n + 1] =n + 1 

end; 
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Algorithm S-ord 

The algorithm S-ord makes use of an ordered two-way linked-list. To improve 
its efficiency, a pre-processing phase is performed where the forward stars are sorted 
in decreasing order of arc lengths (Simeone [40]). In doing so, we obtain the two 
following advantages: 

(i) to perform the operations QIN on the ending nodes of the arcs in FS(u), 
the list must be scanned only once from the tail (highest label element) 
to the head; 

(ii) let (u, v) and (u, w) be successive arcs in FS(u), and assume that, after 
having performed operation QIN(v) we also update the label of node w 

I from the old value d w to the new value d w = d u + luw. Then, since 
FS(u) has been sorted, d"  ~< min{do, d w }. 

These facts can be exploited to "skip" uninteresting portions of the list when 
QIN(w) is performed. 

The complexity of the pre-processing phase is O(mn); in fact, in our imple- 
mentation each forward star is sorted by means of a bubble-sort algorithm. 

Now we derive the complexity of the algorithm without considering the pre- 
processing phase. This is of interest when the algorithm must be used many times on 
the same set of data. The cost qo is O(n) and ql is constant. Since all the QIN opera- 
tions relative to the same forward star cost O(n) because of (i), the overall cost due 
to QIN is O(n 2). Hence, the complexity of S-ord is O(n 2). 

The space requirement is 5n + 2m. 

Procedure SORD(r); 
begin 

comment: TINIT and QINIT; 
for i :=1  to n do begin P[i] :=r; D[i] : = + ~ ;  

UP[i] := DOWN[i] := 0 end; 
e[r]  :=D[r] :=0;  UP[n+ 1] :=DOWN[n+ 1] :=r; 

UP[r] :=DOWN[r] : = n +  1; 
O [n + 1] := -oo; 
repeat 

comment: QOUT; 
u := DOWN[n + 1] ; 
UP[DOWN[u]] := n + 1; DOWN[n + 1] :=DOWN[u]; 
DOWN[u] :=UP[u] :=0; pntr:= UP[n + 1]; 
comment: scan FS(u); 
foreach (u, v) E FS(u) do if D [u] + luv < D [v] then 

begin 
comment: QIN; 
if DOWN[v] :~ 0 then 
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begin UP[DOWN[v] ] := UP[v] ; DOWN[UP[v] ] := DOWN[v]; 
if D[v] < D[pntr] then pntr:=UP[v] end; 

delta := D [u] + luo; 
while D [pntr] > delta do pntr := UP[pntr] ; 
DOWN[o] := DOWN[pntr] ; UP[DOWN[v] ] := v; 
DOwN[pntr] :=v; UP[o] := pntr; 
comment: TUPDATE; 
e[v] := u; D [v] := delta 

end 
until DOWN[n + 1] = n + 1 

end; 

Algorithm S-Dial 

The algorithm S-Dial (Dial [6] ) makes use of the buckets to implement Q. 
Without loss of generality, we can consider the arc-length (non-negative) integers. 
Let lmax =max{lil : ( i , ] )E  A}. 

The function f (do)  is: f (do)  = d o + 1, so that the first non-empty bucket 
contains only minimum label nodes; hence, in operation QOUT, the scanning of the 
bucket is not necessary. 

Moreover, the dimension of  the vector Q [. ] ,  which is crucial to the storage 
requirement of the algorithm, can be reduced by means of the following con- 
sideration: if u is a minimum label element of Q, then, for each v E Q, 
d u <<. d o <~ d u + tmax. Hence, the function f introduced can be replaced by the new 

• t " 1 -  " " " function f = f .mod(Imax 1), which is implemented by means of: 

f ' (do)  = 
f ' (du)  + luv 

f ' (du)  + luo - Imax - 1 

if f ' (du)  + luo < lmax + 1, 

otherwise; 

and the dimension of  Q[ . ]  is reduced to K = lmax + 1. The effect of  using the latter 
function f '  is that each bucket is used several times. 

The overall complexity of  QOUT is O(dmax), where dmax = maxId o : v E N} 
<~ n. lmax. 

As qo = O(n + Imax) and qz is constant, the complexity of  S-Dial is 
O(m + n.lmax). 

The space requirement is 5n + 2m + lmax. 
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Procedure SDIAL(r); 
begin 

comment: TINIT and QINIT; 
for i :=  1 to n do begin P[i] := r ;  D [ i ] : =  +oo; 

UP[i] :=DOWN[i] :=0  end; 
for i : = 1  to lmax+l do Q[i] : = n + l ;  
e[r] : = D [ r ]  :=0 ;  Q[1] := r ;  UP[r] := - I ;  DOWN[r] : = n +  1; 
cntr:= pntr:= 1; 
repeat 

comment: QOUT; 
while Q [pntr] = n + 1 do if pntr > lmax then pntr := 1 

else pntr:=pntr+ 1; 
u := Q[pntr]; Q[pntr] := DOWN[u]; 
UP[DOWN[u] ] := -pntr; UP[u] := DOWN[u] := 0; cntr :=cntr- 1; 
comment: scan FS(u); 
foreach (u, o) E FS(u) do if D [u] + luo < D [v] then 

begin 
comment: QIN; 
if DOWN[v] := 0 then cntr := cntr + 1 

else 
begin 

if UP[v] > 0 then DOWN[UP[o]] := DOWN[v] 
else a [ - UP Iv] ] : = DOWN [v] ; 

UP[DOWN[v] ] := UP[v] 
end; 

x := pntr + Luv; 
if x >  lmax+ 1 then x : = x - l m a x - 1 ;  
DOWN[v] := a [x] ; UP[DOWN[v] ] := v; 
a[x] :=v; UP[v] := - x ;  
comment: TUPDATE; 
P[o] := u; D[v] : = D [ u ]  + luo 

end 
until cntr = 0 

end; 

Algorithm S-heap 

In S-heap, the priority queue is a partially ordered set implemented by means 
of a binary heap (see sect. 7.4). The operations QOUT and QIN run in O(log nq). Then 
the complexity of S-heap is O(m. log n) (D.B. Johnson [25] and E.L. Johnson [26] ). 
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Procedure SHEAP (r); 
begin 

comment: TINIT and QINIT; 
for i : = 1  to n do begin P[i] :=r ;  D[i] := +c,,; 

HP[i] := Q[i] :=0 end; 
P[r] :=D[r ]  :=0; Q[r] :=nhp:=l; HP[1] :=r;  
repeat 

comment: QOUT; 
u :=HP[1]; Q[u] :=0; h:=HP[nhp]; nhp:=nhp-1; 
if nhp > 0 then 

begin 
k : = l ;  
repeat 

k2 := 2 * k; 
if k2 < nhp then 

begin 
if k 2 <  nhp and D[I-[P[k2 + 1]] < D[HP[k2]] 

then k2 := k2 + 1; 
i := I-IP[k2] ; 
i f O [ i ]  < O [ h ]  then 

begin HP[k] := i; Q[i] := k; k :=  k2 end 
end 

until k ¢ k2; 
HP[k] := h; Q[h] := k 

end; 
comment: scan FS(u); 
foreaeh (u, v) E FS(u) do if D [u] + luv < D Iv] then 

begin 
comment: QIN; 
if Q[o] =0 then begin nhp := nhp + 1; HP[nhp] :=v; 

Q [v] := nhp end; 
k := Q [v] ; k2 := INT(k/2); 
while k 2 >  0 and D[v] < D[HP[k2]] do 

begin HP[k] := HP[k2] ; Q [HP[k2]] := k; 
k := k2; k2 := INT(k/2) end; 

HP[k] :=o; Q[o] := k; 
comment: TI~DATE; 
P[v] :=u;  D[v] :=D[u]  + luo 

end 
until nhp = 0 

end; 
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Note that quite often in sparse graphs, m is O(n), and the complexity becomes 
O(n.log n). 

The space requirement is 5n + 2m. 

9. The  all pairs problem 

In most real-life models, the requirement is to f'md the shortest distances 
between all pairs of nodes. Algorithms exist which solve this problem directly. One 
of them, very ingenious indeed, is due to Floyd [11] and is based on a result by 
Warshall [45]. The underlying idea is rather simple: let db n) be the length of the 
shortest path from i to j, subject to the condition that the path does not pass through 
any of the nodes h, h + 1 . . . . .  n (i and j except); then we have 

d/(/1 ) = 
lq, if (i, j )  E A, 

O, if i =j,  

+ ~,  otherwise; 

The array of predecessor nodes, where pq is the predecessor of node j in the 
shortest path from i to j, is (Hu [22] ): 

i, if (i, j )  E A, 

p~l) = 0, otherwise; 

p(n+l) q 
p(n) hj ' 

if d:? +1) = d/~ h), 

otherwise. 

Clearly, d~ n + I) is the shortest distance between nodes i and ]. The complexity 
of this algorithm is O(n 3), whatever the density of the graph. 
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Procedure FLOYD(n); 
begin 

comment: initialization; 
for i : = l  to n do f o r j : = l  to n do 

if ( i , j ) E A  then begin D[i,j] :=lij; P[i,j] := i  end 
else begin D[i,j] := + o o ; p [ i , j ]  :=0 end; 

for i : = 1  to n do D[ i , i ]  :=0;  
comment: paths computation; 
for h : = l  to n do for i :=1  to n do for j : = l  to n do 

if O[i,j] >O[i ,h]  + O [ h , / ]  then 
begin D[i,j] :=D[i,h] + D[h,j]; P[i,j] :=P[h,j] end 

end; 

A major drawback of this algorithm is its high storage requirement, O(n2), 
which prevents it being used in large-scale models. The need for a storage space of the 
order of n 2 is a characteristic shared by all direct approaches to the all-pairs shortest 
path problem (Dantzig [4], Tabourier [41] ). 

This explains why the approach most often used in practice consists of carrying 
out a sequence of n distinct spt computations. This sequential approach may seem 
rather redundant, but can in fact be implemented efficiently (Bazaraa and Langley [2] ). 

The problem of finding the spt rooted at s ~ r, T*(s), once T*(r) is known, is 
simply a particular reoptirnization problem, as shown in the paper by GaUo [13]. An 
efficient sequential solution procedure can be devised making use of the transformation 

lij = lij + dri -dr j  >1 0, (i, j) E A; 

where dri is the shortest distance from the old root r to node i. 
It is easy to see that such a transformation does not affect the shortest path 

tree T(s), since its effect is to change the length of each path by a constant (Edmonds 
and Karp [9], GaUo [14], Nemhauser [33] ). Once the shortest distances with trans- 
formed lengths have been found, the true distances are determined by means of the 
inverse transformation 

= - + d  v ~ N ,  dso ~o drs to' 

where dso is the shortest distance from s to v with the transformed lengths l. 
The resulting procedure is: 

Procedure SA (Sequential All pairs) (Gallo and Pallottino [15] ) 

Step 1. Find T*(1) and dlo, o E N, making use of any list-search algorithm. Set 
k = l .  
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Step 2. S e t l ' i i = l q + d k i - d x / , ( i , / ) E A ;  set k = k +  t. 

Step 3. Find T*(k) and dkv, o E N, making use of any shortest-first search algo- 
rithm. 

S tep4 .  S e t d k o = d k v - d ( k _ l ) x  + d(k_l)v, v ~ N .  
If k < n,  then go to step 2; else STOP. 

Unlike the Floyd-Warshall  method,  this procedure needs a storage space 
linear with m and n. If L-queue and S-heap are used at step I and at step 3, respectively, 
the complexity of  SA is O(m- n .  log n) (Lawler [31 ] ), which for sparse graphs can be 
less than the complexity of  the Floyd-Warshall  method.  Moreover, while the actual 
number of  operations for this method is always of the order of  n 3 , this is not the case 
for SA for which, in practical problems, the complexity is often far below its worst- 
case figure. 

Note that at step 3, an spt problem is solved where the distribution of  the arc 
lengths is very peculiar indeed. In fact, a large number of  arcs have zero length (at 
least all the n - 1 arcs of  T*(k - I) since for such arcs d(k _ 1)i - d(k_ t)i = lq), while 
some others may have rather large lengths depending on the relative value of d(k_ t)i 
and d(k_ ~)]. These facts can be exploited to speed up the algorithm. 

Moreover, a bound to the longest shortest path can easily be determined: 

Proposition 2 (Gallo [13] ) 

Dk = max{dko "rE N} = ~(k -1 )  = dk(~- l) + d(k-1)k " 

D k, at least for graphs without zero length cycles, is a norm and can be con- 
sidered as a measure of the "distance" between the kth  and (k - 1)th problems. Then, 
the computational complexity of step 3 is O(m + Dk). 

Similar results, although slightly more intricate, can be obtained with the 
other shortest-first search algorithms. 

From these considerations, it follows that the ordering of  the nodes (origins) 
is not immaterial to the computational complexity of SA. 

To maximize the efficiency of  SA, one should try to order the nodes in such 
a way that nodes k - 1 and k be as close as possible. This can be done either with an 
"apriori" ordering, or in an "adaptive" way, i.e. by selecting at each step, on the 
basis of  the current shortest distances, the node to be considered next. An "apriori" 
ordering calls for a pre-processing of the graph, which can be done by means of any 
heuristic algorithm for the travelling saleman problem; this is particularly advantageous 
when many all-pairs problems are to be solved on the same graph. 

In the following, an implementation of SA is described (Gallo and Pailottino 
[15]). 
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Algorithm PSA (Primal Sequential All pairs) 

This algorithm is based on two facts which derive from the considerations 
developed before and in proposition 2: 

(i) in the execution of algorithm SPT, at step 3 of SA, it is likely that more 
than one element with a minimum label exists in Q (this happens, for instance, when a 
node u is selected, whose forward star contains more than one arc with zero trans- 
formed length); 

(ii) a node v E Q with label d v > D k cannot be a candidate for selection at 
step 2 of SPT. 

Then we may partition Q into three sets Q', Q" and Q"', and the insertion of 
a node v at step 3 of SPT is carried out according to the following rule, where D is an 
estimate of Dk: 

(1) if d o = d u (i.e. ~{uo = 0), then v is inserted into Q' (and deleted from Q" 
or from Q"' if already in Q); 

(2) if d u < d o <<. D, then o is inserted into Q" (and deleted from Q"' if 
necessary); 

(3) if d o > D, then v is inserted into Q"'. 

The sets Q' and Q" '  are implemented as linked-lists, whereas the set Q" is imple- 
mented as a priority queue. Each time the set Q' is empty, all the minimum label 
elements of Q" are moved into Q'. When Q' and Q" are empty and Q"' is not, D is 
increased and all the elements v E Q"' with d o less than, or equal to, the new esti- 
mate D are moved into Q' or into Q". A reasonable initial estimate of D k is 2d(k_ 1)k 
(GaUo [13], GaUo and Pallottino [15] ). 

Note that when node k - 1 (the previous origin) is inserted into Q', the explora- 
tion of Q can be interrupted. In fact, any node v not yet inserted into Q' can be 
reached from k - 1 at zero (transformed) distance, and a shortest path from k to 
v passes through node k - 1. Hence, provided that additional bookkeeping is carried 
out to update the predecessor vector, it is easy to determine the new spt T*(k) .  The 
main advantage of this fact is that each shortest path tree computation in SA (except 
for the first one) does not necessarily pass through the examination of all the arcs; 
thus, its complexity is ~2(n) and not £Z(m) as in the general case. 

The computational complexity of this implementation of SA depends on 
the particular data structure chosen to implement the priority queue, and in any case 
it can be bounded by O(n3). 

The application of  PSA and an analogous algorithm based on a dual approach 
(Florian et al. [10]) to some real urban transportation problems has shown that 
about 10% of  the nodes and arcs do not need to be examined at each iteration; more- 
over, up to 90% of  the examined nodes are inserted directly into Q'. The solution was 
attained with computer times from 20% to 35% lower than the times needed by 
L-deque or by S-Dial. 
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10. Numer ica l  e x p e r i m e n t a t i o n  

Now we describe the experimentation performed on a rather broad set of 
test problems, in order to achieve a deeper understanding of the algorithms' behavior 
and to assess their relative efficiency. 

The experimentation reported refers to the spt algorithms described in sects. 6 
and 8 and is part of wider ranging experimentation illustrated in Gallo et al. [ 17]. 

The codes we used are an almost "one-to-one" FORTRAN-ANSI implementa- 
tion of the pidgin Pascal description of the algorithms. The only modifications, which 
regard minor points in the implementation of the data structures, were made for 
reasons of computational efficiency. For this reason, we do not include in the text 
the source lists, which of course can be obtained together with the test problem 
generators from the enclosed diskette. 

The graphs used in the experimentation can be partitioned into two major 
classes: complete and sparse graphs. 

Due to the high growth rate of the storage requirement, only relatively small- 
size (up to a maximum of 175 nodes) complete graphs were generated. 

Three types of sparse graphs were considered: random graphs, k-lineargraphs 
and grid graphs. Graphs going from i000 of nodes and 10 000 arcs up to 3000 and 
30 000 arcs were generated. 

In random graphs, the arcs were generated randomly, without repetitions, in 
order to achieve assigned density values. 

k-linear graphs (see sect. I0.3) are particularly structured sparse graphs which 
represent real-life models quite well, such as a large class of transportation networks. 

The grid graphs, which have been widely used in previous experimentations 
(Gilsinn and Witzgall [18], Dial et al. [7]), can be regarded as a particular case of 
k-linear graphs. 

Integer arc lengths were generated randomly, with a uniform distribution 
between 0 and an assigned maximum positive value lmax. 

As expected, the only algorithm whose behavior is noticeably affected by the 
arc-length range is S-Dial which, out of the shortest-first algorithms, is the fastest 
for small values of Imax (100 in our experimentation). When tmax increases, S-Dial 
slows down strongly. 

Out of the list-search algorithms, L-threshold turns out to be the fastest. Out 
of the other algorithms in this class, L-deque and L-2queue, which behave very much 
alike, out-perform L-queue for well structured graphs, k-linear and grid graphs, while 
L-queue is usually faster for complete and random graphs. It can be noted that these 
experimental findings go against what is suggested by the worst-case computational 
complexity. 

The efficiency of L-threshold is mainly due to the choice of the parameters s, 
t and x2 (see sect. 6), determined by the authors (Glover et al. [19]) by means of a 
very great deal of experimentation. Since the parameter values depend on the particular 
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topology of the graph and on lmax, a tuning-up phase might be needed in some 
applications to achieve the maximum efficiency of the algorithm. 

Although slower, L-deque and L-2queue, whose behavior is quite stable with 
respect to the input data, are fast enough to be considered a good choice in most 
applications. Out of the two, risk-averse users might prefer the latter, which is poly- 
nomiatly bounded. 

Strong points for some users are the simplicity of implementation and the 
storage requirement. 

L-queue, L-deque and L-2queue, which are based on linked lists with simple 
handling operations, are easy to implement with a small number of statements. More 
complicated are S-Dijkstra and S-ord because of the operations performed on the 
linked-lists. 

S-heap, S-Dial and L-threshold require more sophisticated data structures 
and are the most complex to implement out of the spt algorithms described in this 
paper. Hence, their implementations are characterized by a rather large number of 
statements. 

Table 1 

Memory requirement 

Storage requirement Algorithms 

4n + 2m S-Dijkstra, L-queue, L-deque, L-2queue 
5 n + 2m S-ord, S-heap, L-threshold 
5n  + 2 m  + lmax S-Dial 

In table 1, the storage requirement of the different algorithms is summarized. 
Remember that in assessing overall memory occupation one should consider, in 
addition to the space for the data, given in the table, the in-core memory needed 
by the program itself, which usually increases with the number of statements. 

We now give a detailed description of the experimentation. In the tests, two 
ranges, from which the arc lengths have been uniformly drawn, were used: [0 + 100] 
and [0 + 10 000]. Since all the algorithms but S-Dial are unaffected by lmax, we 
report only the results obtained with lmax = 100 except for S-Dial, for which we 
fully report on all the tests performed. 

The CPU times in sec. 10 -3 given in the tables and in the figures are the 
mean values over ten runs, each differing from the others only as far as the origin 
of the paths is concerned. 

The computer used was an IBM 3033 N08 under VM/CMS Operating System 
and a FORTGI compiler. 



G. Gallo and S. Pallottino, Shortest path algorithms 37 

10.1. COMPLETE GRAPHS 

Four  different complete graphs were generated with n = 25, 7 5 , 1 2 5  and 175. 
We ran L-threshold with different  values o f  x ,  obtaining the CPU time reported 

in table 2, which suggests that x = 0.25 is a good choice for complete graphs. 

Table 2 

CPU times for n = 175 

x2 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
time 72 90 100 104 108 109 112 113 

Table 3 

Complete graphs 

Algorithms n = 25 n = 75 n = 125 n = 175 

S-Dijkstra 2.2 20 55 107 
S-ord 2 52 217 573 
S-heap 2 14 37 71 
S-Dial (lmax = 102) 2 14 37 71 
S-Dial (hnax = 104) 20.8 31 54 89 

L-queue 2.2 23 62 125 
L-deque 2.4 32 83 186 
L-2queue 2.4 31 81 179 
L-threshold (trnax = 102) 1.8 14 38 72 
(x2 = 0.25) 
L-threshold (lmax = 104 ) 1.8 15 40 94 
(x2 = 0.25) 

The results o f  the experimentat ion reported in table 3 show that (only) in 
this case the fastest algorithm is S-heap. 

The behavior of  the algorithms on the basis o f  the data o f  table 3 is sum- 
marized in fig. 10. 

The relatively disappointing performance o f  the list-search algorithms (except 
L-threshold) can be credited to the following fact: the number  o f  label updates per- 
formed in these algorithms increases with the number  o f  alternative paths with dif- 
ferent lengths f rom the root  to each node.  A large number  o f  such paths may  produce 
too many trials before hitting on the right label. Of  course, it is in complete graphs 
that we have a maximum number  o f  alternative paths. 
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Table 4 

Complete graphs: lmax = n a 

Algorithms n = 25 n = 75 n = 125 n = 175 

S-Dijkstra 2.4 20 55 108 
S-ord 2.2 53 219 576 
S-heap 2.2 15 39 72 
S-Dial 3 24 64 123 

L-queue 2.2 29 73 162 
L-deque 2.4 40 109 284 
L-2queue 2.6 39 105 258 
L-threshold (x2 = 0.25) 1.8 15 40 94 

These considerations are backed up by the experimental findings reported in 

table 4,  where we ran the same problems as before with increasing l m a x  values, 

namely l m a x  = n 2 . Clearly, the effect of  increasing the arc-length range is to increase 

the probability o f  distinct paths having different lengths. In any case, the effect o f  the 

arc-length range on the behavior o f  list-search algorithms is relatively small. 

10.2. RANDOM GRAPHS 

Four different random graphs were generated with n -- 1000, 3000 and 

m - 10 000, 30 000; ( l m a x  = 100 for all the algorithms except for S-Dial, for which 
the value 10 000 was also used). 

Table 5 

Random graphs 

n = 1000 n = 1000 n = 3000 n = 3000 
Algorithms m = 10 000 m = 30 000 m = 10 000 m = 30 000 

S-Dijkstra 1180 1420 6017 9506 
S-ord 163 333 597 1106 
S-heap 72 121 171 226 
S-Dial (lmax = 102) 39 88 64 112 
S-Dial (lmax = 10 ~) 76 238 153 163 

L-queue 55 161 70 183 
L-deque 57 186 65 193 
L-2queue 58 186 64 193 
L-threshold (x2 = 0.25) 36 83 64 105 
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From the results reported in table 5, the following considerations derive: 

- as anticipated, L-threshold is the fastest algorithm; 
- the behavior of  algorithms S-Dijkstra and S-oral is more affected by the 

number of the nodes than by the number of  the arcs, which is reasonable 
since their theoretical complexity is O(n 2 ); 

- the other algorithms are more affected by the number of the arcs; this is 
particularly true for the list-search algorithms. 

10.3. k-LINEAR GRAPHS 

k-linear graphs are layered graphs where the nodes are partitioned into k sub- 
sets, N1, N2 . . . . .  N k, with arcs connecting either nodes of the same subset or nodes 
belonging to adjacent subsets. 

In the experimentation, we always chose 

2tN~I = IN=t = . . .  = INk_~t = 21N~I = n/(k-1).  

As for arcs, which were randomly generated, two types of  k-linear graphs 
were used: 

(i) the stable ones, where no arc exists between nodes in the same subset; 
(ii) the unstable ones, where such arcs are allowed. 

More details on the way these arcs were generated can be obtained from the 
comments of  the generators source lists in the diskette. 

For each of these two types of graphs, four different topologies were generated 
with 2500 nodes, 30 000 arcs and k = 10, 50,100, 200. Again,we have set lmax = 100, 
and lmax = 10 000 only for S-Dial. 

From the results reported in table 6, one can observe that: 

- L-threshold strictly dominates all the other algorithms; 
- except for L-queue, the list-search algorithms are unaffected by k; 
- as backed up also be experimental findings not reported here, L-queue 

slows down when the diameter of  the graph increases, which in this case 
is bounded from below by k - 1; 

- except for S-Dial, the effect of  increasing k is to decrease (although only 
slightly) the running times of the shortest-first search algorithms; this is 
due to the fact that as the diameter increases, the maximum number of 
elements currently in the priority queue decreases (for a given size of 
graphs); 

- the behavior of S-Dial is explained by that fact that, as reported in sect. 8, 
the number of operations performed linearly increases with dmax, which 
in turn increases with k. 
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Table 6 

k-linear graphs: n = 2500, m = 30 000 

Algorithms k = 10 k = 50 k -- 100 k = 200 

S-Dijkstra 6145 1282 649 349 
S-ord 734 243 186 160 
S-heap 206 176 164 152 
S-Dial (lmax = 102) 113 106 105 107 
S-Dial (tmax = 104) 157 185 243 371 

L-queue (stable graphs) 194 241 297 292 
L-queue (unstable graphs) 196 434 360 1208 
L-deque 159 117 110 105 
L-2queue 159 118 111 106 
L-threshold (x2 = 0.25) 104 98 97 97 
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Fig. 11. k-linear graphs. 
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Table 7 

CPU times for n = 2500, m = 30 000, lmax = 10 000, k = 200 

x2 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
time 98 103 111 122 130 142 142 149 

In table 6,  the results on unstable graphs have been listed only for L-queue 
because all others are almost unaffected by the stability of  the graph. 

The behavior of  the list-search algorithms is summarized in fig. 11. In table 7, 
the experimentation which led to the choice of the table value of x2 is reported. 

1 0 . 4 ,  G R I D  G R A P H S  

Four grid graphs with 2500 nodes and about 10 000 arcs were generated by 
varying the number of  rows (nr)  and columns (nc) of the grid. 
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Fig. 12. A grid graph. 

) 

The results (see table 8) are consistent with the results obtained with k-linear 
graphs. In fact, as illustrated by fig. 12, a grid is a particularly stable k-linear graph, 
where k increases with maxlnc, nrt. 

In addition to the considerations of the previous section, we only note that: 

- the effect of  lmax on the behavior of  S-Dial is particularly evident; 
- the behavior of  L-deque, L-2queue and L-threshold is almost indistinguish- 

able. 

Here, the value of  x2 in L-threshold has been set equal to I, according to 
the experimental results of  table 9. 
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Table 8 

Grid graphs: n = 2500 

n r = 5 0  n r =  25 n r =  10 n r =  5 
Algorithms n o = 5 0  n c  = 100 n c  = 250 n c  = 500 

S-D~kstra 582 407 176 108 
S-ord 111 92 67 59 
S-heap 110 104 88 75 
S - D i a l ( l m a x  = 10 a ) 53 53 57 67 
S - D i a l ( l m a x  = 10 ' )  348 464 1054 2094 

L-queue 95 146 336 557 
L-deque 43 46 48 45 
L-2queue 44 46 49 44 
L-threshold (x2 = 1) 48 47 45 42 

Table 9 

CPU times for n = 2500 

x2 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
n r = 5 0 ,  n c =  50 50 47 47 48 48 47 49 50 
n r  = 5 , n c =  500 47 44 43 42 43 43 43 44 
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Appendix 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

* * * * * * *  SAMPLE CAI_LING PROGRAM FOR SUBROUTINE LQUEUE * * * * * * *  
* * *  (SHORTEST PATH PROBLEM) * * *  
* * *  * * *  

* * *  THE PROGRAM I S  BASED ON THE F'APER * * *  
* * *  G. GALLO,  S.  P A L L O T T I N O  "SHOIt;TEST PATH ALGO-  * * *  
* * *  R I T H M S " ,  * * *  
* * * ANNALS OF OPERATIONS RESEARCH, THIS VOLUME * * * 
* * *  * $ *  

* * *  ALL  THE SLJBROUTINES ARE WP, ITTEI',.I I N  AMERICAN * * *  
* * *  STANDARD FORTRAIq AND ARE ACCEPTED BY THE * * *  
* * *  PFORT V E R I F I E R .  * * *  
* * *  * * *  

* * *  QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO * * *  
* * *  S. P A L L O T T I N O  AND C. RUGGERI * * *  
* * *  ( ] . N . R . - I . A . C . ,  ROMA, I T A L Y .  * * *  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C MEANIIqG OF THE MAIN PARAMETERS blOT EXPLAINED IN THE SUBROUTINE: 
C 
C RAD(I) = I-TH NODE ORIGIIq, I=J,2,...,NR 
C 
C ALL_ TI-IE F'ARAMETERS ARE INTEGER 
C 
C AT F'RESENT THE SIZE DIMENSIONS ARE NMAX = 30Ol FOR A(.), D(.). P(.), 
C Q(.) 

C MMAX =31000 FOR ND(.), LNGT(.) 
C RMAX =100 FOR RAD(.) 
C 
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET TO A 
C LARGE INTEGER VALUE 
C 
C 
C THE INITIALIZATION OF Q(.) AND P(.) ARRAYS IS MADE ]IN THE MAIN 
C PROGRAM, (THE SUBROUTINE RESETS THEM AT THE END OF EACH ITERATION) 
C 
C EXTERIqALS : 
C READ 
C LQUEUE 
C 
C 

C THIS WORK biAS SUPPORTED BY C.N.R., ITALY. 
C 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

DIMENSION A(3001),ND(31000),LNGT(31000),RAD(IOO),D(3001),P(3001), 
IQ (30(]i) 
INTEGER A,D,P,Q,R,RAD,RMAX 
DATA NMAX/3001/, MMAX/31000/, RMAX / 100/, I NF/999999999/ 
CALL READ(N,M,NR,LMAX,A,ND,LNGT,RAD,NMAX,MMAX,RMAX) 
DO 10 I=I,N 

Q(I) = 0 
P ( I )  = 0 

10 CONTINUE 
DO 20 I=I,NR 

R = RAD(I) 
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CALL LQUEUE(A,ND~LNGT, D,P,Q~NMAX~MMAX,N, INF,R) 
W R I T E ( & ~ 3 0 > R , ( ~ P ( O ) , D ( d ) ~ = I ~ N >  

20 CONTINUE 
STOP 

30 FORMAT(/7H ROOT = , I 4 / / 5 H  NODE,4X,1HP~7X~IHD/(215, I 9 ) )  
END 

C 
C 

SUBROUTINE LQUEUE(A~ND~LNGT~D,P~Q,NMAX,MMAX,N~INF~R) 
C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
C 
C ROUTINE LQUEUE 
C 
C 1) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST 
C DISTANCES 

C 2) IS BASED ON THE FORD-BELLMAN-MOORE METHOD, WITH THE SET Q 
C IMPLEMENTED AS A QUEUE Q(.) 
C 
C MEANING OF THE INPUT PARAMETERS: 
C 
C A(1) = POINTER TO ARC-LIST OF NODE I, l=i, 9 .N+I 
C ND(3) = ENDING NODE OF ARC 3~ ~=I ~ M 
C LNGT(3) = LENGTH OF ARC ~ d=l~ ~ M 
C NMAX = DIMENSION OF ARRAYS A(.)~ D(.), P(.>, Q(.) 
C MMAX = DIMENSION OF ARRAYS ND<.), LNGT(.) 
C N = NUMBER OF NODES 
C INF = VERY LARGE INTEGER VALUE (INFINITY) 
C R = ROOT 
C 
C MEANING OF THE OUTPUT PARAMETERS: 
C 
C D<I) = SHORTEST DISTANCE FROM R TO I, I=I,2,...,N 
C P(1) = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE, I = i ,  ~, ,N 
C 
C MEANING OF THE MAIN INTERNAL PARAMETERS: 
C 
C Q ( I )  = LIST OF THE CANDIDATE NODES; Q(1)= 0 IF  I IS NOT IN Q 
C = ~ IF  I PRECEDES NODE ~ IN Q 
C NN = N+I 
C U = CURRENT NODE 
C V = ENDING NODE OF THE CURRENT ARC 
C IN IT  = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
C I F I N  = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
C DV = TENTATIVE LABEL FOR NODE V 
C LAST = POINTER TO THE LAST NODE OF Q(.) 
C 
C ALL THE PARAMETERS ARE INTEGER 
C 
C ~ l i ~ i ~ i ~ ~ ~ ~ i ~ i ~ ~ i ~ i ~ i ~ ~  

INTEGER A,D,P,Q~R,U~V, DV 

DIMENSION D(NMAX),P<NMAX),Q(NMAX)~A(NMAX),ND(MMAX),LNGT(MMAX) 
C 
C INITIALIZE 
C 

DO 10 I=I,N 
D(I) = INF 

10 CONTINUE 
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D (R) = 0 

P (R) = 0 
NN = N + 1 

Q(NN) = NN 
LAST = NN 
'J = R 

C 
C EXPLORE THE FORWARD STAR OF U 

C 
20 INIT = A(U) 

IFIN = A(U+I) - 1 
IF ( INIT .GT. IFIN ) GO TO 40 
DO 30 J=INIT~ IFIN 

V = ND(J) 
DV = D(U) + LNGT(J) 

C 
C CHEK WHETHER THE LABEL OF V CAN BE IMPROVED 

C 
IF ( D(V) .LE. DV ) GO TO 30 
D (V) = DV 
P(V) = U 

C 
C IF V IS NOT IN Q~ IT IS INSERTED AT THE TAIL OF Q 

C 
IF ( Q(V) .GT. 0 ) GO TO 30 
Q (LAST) = V 
Q(V) = NN 
LAST = V 

30 CONTINUE 

C 
C REMOVE THE NEW CURRENT NODE U 

C 
40 U = Q(NN) 

Q(NN) = Q(U) 
Q ( U )  = 0 
]IF ( LAST .EQ.  U ) LAST = NN 

C 
C CHECK WHETHER TIdE QUEUE IS EMPTY 
C 

IF ( U .LE. N ) GO TO 20 
RETURN 
END 

SUBROUTINE READ(N,M,NR,LMAX,A,ND,LNGT~RAD, NMAX,MMAX,RMAX) 
C******************************************************************** 
C READS TIdE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS 
C LIST. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

INTEGER A, RAD~RMAX 
D IMENSION A ( N M A X ) , N D ( M M A X ) , L N G T ( M M A X ) , R A D ( R M A X )  
READ ( 5 ,  3 0 )  N~ M, NR, LMAX 
N I = I\I + i 
READ (5,40) (A(1),I=I,NI) 
READ (5,50) (ND(I),LNGT(I), I=I,M) 
READ (5~40) (RAD(I), I=I~NR) 

RETURN 
30 FORMAT (416) 
40 FORMAT (1016) 

50 FORMAT (1216) 

END 
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C 
C 
C 
C 
C 
C- 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

* * * * * * *  SAMPLE C A L L I N G  PROGRAM FOR SUBROUTINE LDEQUE * * * * * * *  
* * *  (SHORTEST PATH PROBLEM) * * *  
* * *  * * *  

* * *  THE PROGRAM IS BASED ON THE PAPER * * *  
*** G. GALLO, S. PALLOTTINO "SHORTEST PATH ALGO- *** 
* * *  RITHMS", * * *  
* * *  ANNALS OF OPERATIONS RESEARCH, THIS VOLUME * * *  
* * *  * * *  

* * *  ALL  THE SUBROUTINES ARE WRITTEN IN  AMERI'CAN * * *  
* * *  STANDARD FORTRAN AND ARE ACCEPTED BY THE * * *  
* * *  PFORT VERIFIER. * * *  
* * *  * * *  

* * *  QUESTIONS AND COMMENTS SHOULD BE D IRECTED TO * * *  
* * *  S.  P A L L O T T I N O  AND C. RUGGERI * * *  
* * *  C . N . R . - I . A . C . ,  ROMA, I T A L Y .  * * *  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C MEANING OF THE MAIN PARAMETERS NOT EXPLAINED IN THE SUBROUTINE: 
C 
C RAD(I} = I-TH NODE ORIGIN, I=I,2,...,NR 
C 
C ALL TIdE PARAMETERS ARE INTEGER 
C 
C AT PRESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A<.), D(.). P<. ~, 
C Q(.) 
C MMAX =31000 FOR ND(.), LNGT(.) 
C RMAX = 100 FOR RAD(.) 
C 
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET TO A 
C LARGE INTEGER VALUE 
C 
C 
C THE INITIALIZATION OF F'(.) ARRAY IS MADE IN TIdE MAIN PROGRAM, (THE 
C SUBROUTINE RESETS IT AT THE END OF EACH ITERATION) 
C 
C EXTERNALS: 
C READ 
C LDEQUE 
C 
C 
C THIS WORK WAS SUPPORTED BY C.N.R., ITALY. 
C 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

DIMENSION A('3c]OI),ND(31000) ~LNGT(31000),RAD(100),D(300I>,F'(30c~I ), 
IQ (3001) 
INTEGER A, D, P, Q, R, RAD, RMAX 
DATA NMAX / 3001/, MMAX / 31000/, RMA X / ! O0/, I NF/999999999/ 
CALL READ(N,M,NR,LMAX,A,ND,LNGT,RAD,NMAX,MMAX,RMAX 
DO 10 I=I,N 

P(I) = 0 
10 CONTINUE 

DO 20 I=I,NR 
R = RAD(I) 
CALL_ LDEQUE (A, ND, LNGT, D, P, Q, NMA X, MMA X ~ N, I NF, R ) 

WRITE(6,30)R, (J,P(J),D(J),J=I,N) 
20 CONTINUE 

STOP 
30 FORMAT(/7H ROOT =, I4//5H NODE,4X, IHP,7X, IHD/(215, 19)) 

END 
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C 
C 

SUBROUTINE LDEQUE(A,ND,LNGT,D,P,Q,NMAX,MMAX,N, INF,R) 

C 
C ROUTINE LDEQUE 

C 
C I) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST 
C DISTANCES 
C 2) IS BASED ON THE D'ESOPO-PAPE METHOD, WITH THE SET Q IMPLEMENTED AS 
C DOUBLE-ENDED-QUEUE Q(.) 
C 
C MEANING OF THE INPUT PARAMETERS: 
C 
C A(I) = POINTER TO ARC-LIST OF NODE I, I=I,2,...,N+I 
C ND(J) = ENDING NODE OF ARC J, O=I,2,...,M 
C LNGT(O) = LENGTH OF ARC J, D=I,2,...,M 
C NMAX = DIMENSION OF ARRAYS A(.), D(.), P(.), Q(.) 
C MMAX = DIMENSION OF ARRAYS ND(.), LNGT(.) 
C N = NUMBER OF NODES 
C INP = VERY LARGE INTEGER VALUE (INFINITY) 
C R = ROOT 
C 
C MEANING OF THE OUTPUT PARAMETERS: 
C 
C D(I) = SHORTEST DISTANCE FROM R TO I, I=l, °~,...,N 

C P(1) = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE, I=I,2,...,N 
C 
C OF THE MAIN INTERNAL PARAMETERS: 
C 
C Q(I) = LIST OF CANDIDATE NODES; Q(I)= -I IF I IS NOT IN Q AND IT HAS 
C ALREADY BEEN SCANNED 
C = 0 IF I IS NOT IN Q AND IT HAS 

C NOT BEEN SCANNED 
C = J IF I PRECEDES NODE J IN THE 
C LIST 
C NN = N+I 
C U = CURRENT NODE 
C V = ENDING NODE OF THE CURRENT ARC 
C INIT = START-POINTER TO THE ARC~LIST OF THE CURRENT NODE 
C IFIN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
C DV = TENTATIVE LABEL OF NODE V 
C LAST = POINTER TO THE LAST NODE OF Q(.) 
C 
C ALL THE PARAMETERS ARE INTEGER 
C 
C**********g************g**g**************gg~*g*g*******~,$,g**g**g***g* 

INTEGER A,D,P,Q,R,U,V,DV 
DIMENSION D(NMA×),P(NMAX),Q(NMAX),A(NMAX),ND(MMAX),LNGT(MMAX) 

C 
C INITIALIZE 
C 

DO 10 I=I,N 
Q(I) = 0 
D(1) = INF 
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10 CONTINUE 
Q(R) = -  1 
D(R)=O 
P (R) = 0 
NN = N  + 1 
Q(NN) = NN 
LAST = NN 
PNTR = NN 
U = R  

C 
C EXPLORE THE FORWARD STAR OF U 
C 

20 I N I T  = A(U) 
I F I N  = A'(U+I) - i 
IF  ( IN IT  .GT. I F I N  ) GO TO 60 
DO 50 J = I N I T ,  I F I N  

V = ND(J) 
DV = D(U) + LNGT(J) 

C 
C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED 
C 

IF  ( D ( V )  ..LE. DV ) GO TO 50 
D (V) = DV 
P(V) = Q 
IF  ( Q ( V )  ) 3 0 , 4 0 , 5 0  

C 
C IF V IS NOT IN Q AND IT HAS ALREADY BEEN SCANNED, IT  IS INSERTED AT 
C THE POSITION POINTED BY PNTR 
C 

30 Q(V) = Q(PNTR) 
Q(PNTR) = V 
IF  ( LAST .EQ. PNTR ) LAST=V 
PNTR = V 
GO TO 50 

C 
C IF  V IS NOT IN Q AND IT WAS NEVER SCANNED., IT  IS INSERTED AT THE TAIL 
C OF Q 
C 

40 Q(LAST) = V 
Q (V) = NN 
LAST = V 

50 CONTINUE 
C 
C REMOVE THE NEW CURRENT NODE U 
C 

6O U = Q(NN) 
Q(NN) = Q(U) 
Q (U) = - I 
IF ( LAST .EQ. U ) LAST = NN 
IF ( PNTR .EQ. U ) PNTR = NN 

C 
C CHECK WHETHER THE LIST IS EMPTY 
C 

IF < U .LE. N > GO TO 20 
RETURN 
END 

SUBROUTINE READ(N,M,NR,UMAX,A~ND~LNGT,RAD,NMAX~MMAX,RMAX) 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C READS THE GRAPH DATA (STORED AS AN ADaACENCE LIST) AND THE ORIGINS 
C LIST. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

INTEGER A,RAD~RMAX 
DIMENSION A(MMAX),ND(MMAX),LNGT(MMAX),RAD(RMAX) 
READ (5~30) N~ M, NR, LMAX 
NI=N+I 
READ (5,40) (A(I)~I=I,NI) 
READ (5,50) (ND(I),LNGT(I),I=I,M) 
READ (5,40) (RAD(I),I=I~NR) 
RETURN 

30 FORMAT(416) 
40 FORMAT(1016) 
50 FORMAT(1216) 

END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

***~*** SAMPLE CALLING PROGRAM FOR SUBROUTINE L2QUE *~***** 
*** <SHORTEST PATH PROBLEM) *** 

*** THE PROGRAM IS BASED ON THE PAPER **~ 
*** G. GALLO, S. PALLOTTINO "SHORTEST PATH ALGO- *** 
*** RITHMS", *** 

* * *  A N N A L S  OF OPERATIONS RESEARCH, THIS VOLUME * * *  

*** ALL THE SUBROUTINES ARE WRITTEN IN AMERICAN *** 
***  STANDARD FORTRAN AND ARE ACCEPTED BY THE ***  
* * *  PFORT VERIFIER. * * *  

* * *  QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO * * *  
* * *  S. PALLOTTINO AND C. RUGGERI * * t  
* * *  C.N.R.-I.A.C., ROMA, ITALY. * * *  

C MEANING OF THE MAIN PARAMETERS NOT EXPLAINED IN THE SUBROUTINE: 
C 
C RAD(I) = I-TH NODE ORIGIN, I=I,2,...,NR 
C 
C ALL THE PARAMETERS ARE INTEGER 
C 
C AT PRESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A(.), D(.). P(.), 
C Q(.) 
C MMAX =31000 FOR ND(.), LNGT(.) 
C RMAX = 100 FOR RAD<.) 
C 
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET TO A 
C LARGE INTEGER VALUE 
C 
C 
C THE INITIALIZATION OF P(.) ARRAY IS MADE IN THE MAIN PROGRAM, (THE 
C SUBROUTINE RESETS IT AT THE END OF EACH ITERATION). 
C 
C EXTERNALS: 
C READ 
C L2QUE 
C 
C 
C THIS WORK WAS SUPPORTED BY C.N.R., ITALY. 
C 
************************************************************************* 

INTEGER A, D, P, Q, R, RAD, RMAX 
DIMENSION A(3001),I\ID(31000),LNGT(31000),RAD(100),D(3001),F'(3001), 

IQ (3001) 
DATA NMAX/300I/,MMAX/31000/,RMA×/100/, INF/999999999/ 
CALL READ < N, M, NR, LMAX, A, ND, LNGT, RAD, NMAX, MMAX, RMA X ) 
DO IQ I=I,N 

P(I) = 0 
10 CONTINUE 

DO 20 I=I,NR 
R = RAD(I) 
CALL L2QUE (A, ND, I_NGT, D, P, Q, NMAX,MMAX,N, INF,R) 
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WRITE(6,30)R, (J,P(J),D(d)~O=I,N) 
20 CONTINUE 

STOP 
30 FORMAT(/7H ROOT = ~ I 4 / / 5 H  NODE~4X,IHP~7X,1HD/(215~I9)) 

END 

C ND(J) 
C LNGT (d) 
C NMAX 
C MMAX 
C N 
C INF 
C R 
C 

C 
C 

SUBROUTINE L2QUE(A,ND,LNGT~D,P~Q,NMAX,MMAX,N, INF,R) 
C ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~  
C 
C ROUTINE L2QUE 
C 
C I) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST 
C DISTANCES 
C 2) IS BASED ON THE D'ESOPO-PAPE METHOD WITH THE SET Q IMPLEMENTED 
C AS A DOUBLE QUEUE Q(.) 
C 
C MEANING OF THE INPUT PARAMETERS: 
C 
C A(I) = POINTER TO ARC-LIST OF NODE I, I=I~2~...~N+I 

= ENDING NODE OF ARC ~ O=I,2~...~M 
= LENGTH OF ARC O~ J=I,2~...,M 
= DIMENSION OF ARRAYS A(.), D(.)~ P(.)~ Q(.) 
= DIMENSION OF ARRAYS ND(.)~ LNGT(.) 
= NUMBER OF NODES 
= VERY LARGE INTEGER VALUE (INFINITY) 
= ROOT 

C MEANING OF THE OUTPUT PARAMETERS: 
C 
C D ( 1 )  = SHORTEST DISTANCE FROM R TO I~ I = l ,  ~ . ~ . . . , N  
C P(1) = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE, I=1, ~ N 
C 
C OF THE MAIN INTERNAL PARAMETERS: 
C 
C Q ( I )  = LIST OF CANDIDATE NODES; Q ( I )  = -1 IF I IS NOT IN Q AND IT HAS 
C ALREADY BEEN SCANNED 
C = O IF I IS NOT IN Q AND IT HAS 
C NOT BEEN SCANNED 
C = d IF I PRECEDES NODE J IN THE 
C LIST 
C NN = N+I 
C U = CURRENT NODE 
C V = ENDING NODE OF THE CURRENT ARC 
C INIT = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
C IFIN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
C DV = TENTATIVE LABEL OF NODE V 
C LAST = POINTER TO THE LAST NODE OF Q(.) 
C PNTR = POINTER TO THE LAST NODE OF THE FIRST QUEUE OF Q(.) 
C 

C ALL THE PARAMETERS ARE INTEGER 
C 
C ~ i ~ ~ ~ i ~ i ~ i ~ l i ~ l i ~ ~ ~ ~ i ~  

INTEGER A~D,P~Q~R~U~V,DV,PNTR 
DIMENSION D(NMAX)~P(NMAX)~Q(NMAX)~A(NMAX),ND(MMAX)~LNGT(MMAX) 

C 

C INITIALIZE 
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DO 10 I=1, N 

Q(1) = 0 
D(1) = INF 

10 CONT I NUE 
Q(R) =- i 
D(R) = 0 
P(R) = 0 

NN = N + 1 
Q(NN) = NN 

LAST = NN 
U = R 

C 
C EXPLORE THE FORWARD STAR OF U 

C 
20 INIT = A<U) 

IFIN = A(U+I) - i 
IF ( INIT .GT. IFIN ) GO TO 60 

DO 50 J=INIT, IFIN 

V = ND(J) 

DV = D(U) + LNGT(J) 

C 
C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED 

C 
IF < D(V) .LE. DV ) GO TO 50 

D (V) = DV 

P (V) = U 
IF ( Q(V> ) 30,40,50 

C 
C IF V IT NOT IN Q AND IT HAS ALREADY BEEN SCANNED, IT IS INSERTED AT 

C THE HEAD OF Q 
C 

30 Q(V) = Q(NN) 

Q(NN) = V 

IF ( LAST .EQ. NN ) LAST = V 

GO TO 50 

C 
C IF V IS NOT IN Q AND IT WAS NEVER SCANNED, IT IS INSERTED AT THE 

C TAIL OF Q 
C 

40 Q(LAST) = V 

Q (V> = NN 
LAST = V 

50 CONTINUE 

C 

C REMOVE THE NEW CURRENT NODE U 

C 
60 U = Q<NN) 

Q(NN) = Q(U) 
Q(U) =- 1 

IF ( LAST .EQ. U ) LAST = NN 

C 

C CHECK WHETHER THE LIST IS EMPTY 
C 

IF ( U .LE. N ) GO TO 20 
RETURN 

END 
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SUBROUT I NE READ ( N ~, M, NR ~ LMA X, A ~ ND ~ LNGT, RAD ~ NMA X ~ MMA × ~, RMA X ) 

C READS THE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS 
C LIST. 

INTEGER A,RAD~RMA× 
DIMENSION A(NMAX),ND(MMAX),LNGT(MMAX) ,RAD(RMAX) 
READ (5,30) N~ M~ NR, LMAX 
N1 = N + 1 
READ (5~40) (A(I) ~ I=I,NI) 
READ (5,50) (ND(I),LNGT(I),I=I,M) 
READ (5,,40) (RAD(I)~, I=I~NR) 
RETURN 

30 FORMAT (416) 
40 FORMAT (1016) 
50 FORMAT(1216) 

END 
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C 
C * * *  
C * * *  
C * * *  
C * * *  
C * * *  
C * * *  
C * * *  
C * * *  
C * * *  
C * * *  
C * * *  
C * * *  
C *** 
C *** 
C 
C 

******* SAMPLE CALLING PROGRAM FOR SUBROUTINE LTHRS ******* 

(SHORTEST PATH PROBLEM) *** 
*** 

THE PROGRAM IS BASED ON THE PAPER *** 
G. GALLO, S. PALLOTTINO "SHORTEST PATH ALGO- *** 

RITHMS"~ *** 

ANNALS OF OPERATIONS RESEARCH, THIS VOLUME *** 
***  

ALL THE SUBROUTINES ARE WRITTEN IN AMERICAN *** 
STANDARD FORTRAN AND ARE ACCEPTED BY THE *** 
PFORT VERIFIER. *** 

*** 

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO *** 
S. PALLOTTINO AND C. RUGGERI *** 
C.N.R.-I.A.C., ROMA, ITALY. *** 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C MEANING OF THE MAIN PARAMETERS NOT EXPLAINED 
C 
C RAD(I) = I-TH NODE ORIGIN, I=I,2,...,NR 
C 
C ALL THE PARAMETERS ARE INTEGER 
C 
C 
C AT PRESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A(.), 

IN THE SUBROUTINE: 

D(.), P(.), 
C Q1 (.).Q2(.) 
C MMAX =31000 FOR ND(.), LNGT(.) 
C RMAX = 100 FOR RAD(.~ 
C 
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET TO A 
C LARGE INTEGER VALUE 
C 
C 
C THE INITIALIZATION OF Qt (.),Q2(.) AND P(.) ARRAYS IS MADE IN THE MAiN 
C PROGRAM, (THE SUBROUTINE RESETS THEM A]- THE END OF EACH ITERATION, 
C 
C EXTERNALS: 
C READ 
C THINCR 
C LTHRS 
C 
C 
C THIS WORK WAS SUPPORTED BY C.N.R., ]ITALY. 
C 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

INTEGER A , D , P , Q 1 , Q 2 , T , R ~ R A D , R M A X  
DIMENSION A(3001),ND(31000),LNGT(31000),RAD(100) ..D(3001),F'(3001).. 

IQI (3001),Q2(3001) 
DATA NMAX/300I/,MMAX/31000/,RMAX/100/~ INF/99999999~/ 
CALL READ(N,M,NR,LMAX,A, ND,LNGT,RAD,NMAX,MMAX,RMAX) 
CALL THINCR(N,Id+I_MAX,T) 
DO 10 I=l, N 

P(I) = 0 
Q1 (I) = 0 
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Q2(I) = 0 
10 CONTINUE 

DO 20 I=I,NR 
R = RAD(1) 
CALL LTHRS(A,ND,LNST,D,P,Q1,Q2, NMAX,MMAX,N, INF,T,R) 
WRITE(6,30)R, (J,P(J>,D(a),~=I~N) 

20 CONTINUE 
STOP 

30 FORMAT(/7H ROOT =,I4//5H NODE,4X~IHP,7X,IHD/(215, I9/)) 
END 

C MMAX 
C N 
C I NF 
C R 
C T 
C 

SUBROUTINE LTHRS (A,ND,LNST,D,P,QI~Q2~NMAX,MMAX,N, INF~T,R) 

C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
C 
C ROUTINE LTHRS 
C 
C i) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST 
C DISTANCES 
C 2) IS BASED ON THRESHOLD METHOD PROPOSED BY F.GLOVER, R. GLOVER AND D. 
C KLINGMAN, WITH INSERTION POLICY DEPENDING ON A THRESHOLD VALUE 
C AND WITH Q IMPLEMENTED AS A PAIR OF LISTS: QI<.) AS A QUEUE AND 
C Q2<.) AS A LINKED-LIST. 
C 
C MEANING OF THE INPUT PARAMETERS: 
C 

C A<I> = POINTER TO ARC-LIST OF NODE I~ I=I~2,...,N+I 
C ND<J) = ENDING NODE OF ARC a 
C LNGT<J) = LEIqGTH OF ARC J~ J=I~2,...,M ,2,...~M 
C NMAX = DIMENSION OF ARRAYS A(.), D(.>, P(.), QI(.), Q2(.> 

= DIMENSION OF ARRAYS ND(.), LNGT(.) 
= NUMBER OF NODES 

= VERY LARGE INTEGER VALUE (INFINITY) 
= ROOT 
= INCREMENT FOR THE THRESHOLD 

C MEANING OF THE OUTPUT PARAMETERS: 
C 

C D(1) = SHORTEST DISTANCE FROM R TO I, I=I,2~...,N 
C P(I) = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE, 
C 

C MEANING OF THE MAIN INTERNAL PARAMETERS: 
C 
C QI<I) = LIST OF CANDIDATE NODES QI(I) 

C HAVING THEIR LABEL LESS THAN 
C OR EQUAL TO THE CURRENT 
C THRESHOLD 
C 

C Q2<I) = LIST OF THE OTHER CANDIDATE Q2(I) 
C NODES AND OLD COPIES OF NODES 
C INSERTED IN QI(.) 
C 
C NN = N+I 
C U = CURRENT NODE 
C V = ENDING NODE OF THE CURRENT ARC 

C INIT = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
C IFIN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
C DV = TENTATIVE LABEL FOR NODE V 
C LAST = POINTER TO THE LAST NODE OF QI(.) 

I=I,2,...~N 

= 0 IF I IS NOT IN QI(.) 
= J IF I PRECEDES NODE a 

IN THE LIST 

= 0 IF I IS NOT IN Q2(.) 
= ~ IF I PRECEDES NODE O 

I~ THE LIST 



60 G. Gallo and E Pallottino, Shortest path algorithms 

C THRS = CURRENT THRESHOLD VALUE 
C T1 = TENTATIVE NEW THRESHOLD VALUE 

C MIN = MINIMUM LABEL VALUE OF NODES IN Q2(o) 

C 
C ALL THE PARAMETERS ARE INTEGER 
C 

DIMENSION A(NMAX),D(NMAX),P(NMAX),QI(NMAX),Q2(NMAX),ND(MMAX),LNGT( 

~MMAX) 

INTEGER A,D,F',QI,Q2,T,THRS,TI,U,V,DV,R 
C 
C INITIALIZE 

C 

DO 10 I=I,N 
D(I) = INF 

10 CONTINUE 

D(R) = 0 
P(R) = 0 

N N = N + I  
QI(NN) = NN 
Q2(NN) = NN 

THRS = -I 
LAST = NN 
U = R 

C 

C EXPLORE THE FORWARD STAR OF U 
C 

20 INIT = A(U) 

IFIN = A(U+I) - 1 
IF ( INIT .GT. IFIN ) GO TO 60 

DO 50 J=INIT, IFIN 
V = ND(J) 

DV = D(U) + LNGT(J) 
C 

C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED 
C 

IF (D(V) .LE. DV ) GO TO 50 
IF ( DV .GT. THRS ) GO TO 30 

IF (QI(V) .GT. 0,) GO TO 40 
C 

C INSERT V AT THE TAIL OF QI(.) 
C 

QI(LAST) = V 
QI(V) = NN 

LAST = V 

GO TO 40 

30 IF (Q2(V) .GT. 0 ) GO TO 40 
C 

C IF V IS NOT IN Q2(.), IT IS INSERTED AT THE HEAD OF Q2(.) 
C 

Q2(V) = Q2(NN) 

Q2(NN) = V 
40 D(V) = DV 

P(V) = U 
50 CONTINUE 

C 
C CH~CK WHETHER QI(.) IS EMPTY 
C 

60 IF ( LAST .EQ. NN ) GO TO 80 
C 
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C REMOVE THE NEW CURRENT NODE U FROM THE HEAD OF Q1 (.) 

C 
7F~ U = Q1 (NN) 

Q1 (NN) = Q1 (U) 

Q1 (U) = 0 
IF ( LAST .EQ. U ) LAST = NN 

GO TO 20 

C 
C CHECK WHETHER ALSO Q2(.) IS EMPTY 

C 
80 IF (Q2(NN) .EQ. NN ) RETURN 

C 
C COMPUTE THE NEW TENTATIVE THRESHOLD VALUE T1 

C 
M I N -- I I\IF 

T1 = THRS + 1 + T 

I = NN 
O = Q2(I) 

C 
C SCAN Q2(.) IN ORDER TO COMPUTE MIN AND TO REMOVE COPIES OF NODES 

C ALREADY REMOVED 

C 
90 IF ( D(J) .LE. T1 ) GO TO 100 

C 
C UPDATE MIN 
C 

MIN = MINO(MIN, D(J)) 

I = O 
GO TO I 10 

C 
C REMOVE 3 FROM Q2(.) 

C 
100 Q2(I) = Q2(O) 

Q2(O) = 0 
C 

C CHECK WHETHER J MUST BE INSERTED IN Q1 (.) 
[" 

IF (D(O) .LE. THRS ) GO TO 110 

Q1 (LAST) = J 

Q1 (J) = NN 
LAST = 0 

110 J = Q2(I) 

IF ( J .NE. NN ) GO TO 90 

C 
C UPDATE THE THRESHOLD VALUE 

C 
THRS = T I 

C 
C CHECK WHETHER Q1 (.) IS STILL EMPTY 

C 
IF ( LAST .NE. NN ) GO TO 70 

C 
C IF Q2(.) WAS EMPTIED THEN RETURN 

C 
IF ( Q2(NN) .EQ. NN ) RETURN 

C 

C INCREASE THE THRESHOLD VALUE THRS AND SCAN AGAIN Q2(.) 

C 

THRS = MIN + T 

I = NN 
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J = Q2(1) 
120 IF (D(J) .GT. THRS ) GO TO 130 

C 
C MOVE J FROM Q2(.) TO Q I (.) 

C 
Q2(1) = Q2(O) 
Q2(J) = 0 
Q1 (LAST) = J 
QI(J) = NN 
LAST = J 
GO TO 140 

C 
C CONTINUE TIdE SCANNING OF Q2(.) 
C 
130 I = J 
]40 J = Q2(I) 

IF ( J .NE. NN ) GO TO 120 
GO TO 70 
END 

SUBROUTINE THINCR(N,M,I_MAX,T) 
C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
C COMPUTE TIdE INCREMENT OF THE THRESHOLD AS PROPOSED IN "F.GLOVER; R. 
C GLOVER; D.KLINGMAN, CENTER FOR CYBERNETIC STUDIES, UNIVERSITY OF 
C TEXAS, AUSTIN TX, USA. RESEARCH REPORT CCS 419, JUNE 1981. 

C ~ ~ ~ ~ * ~ * ~ * ~ ~ ~ ~ ~  
INTEGER T,S 
READ (5,100) X2 
S = MINO(35,M/N) 
ALMAX = LMAX 
T = X2 ~ ALMAX 
AT = T 
AS = S 
IF ( S .GT. 7 ) T = AT ~ 7. / AS 
IF ( T .LE. 0 ) T = 1 
RETURN 

100 FORMAT(F4.2) 
END 

C 
SUBROUTINE READ(N,M,NR,LMAX,A,ND,LNGT,RAD,NMAX,MMAX,RMAX) 

C ~ ~ ~ ~ * ~ ~ ~ ~ * ~ ~ * ~ ~  
C READS THE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS 
C LIST. 
C ~ ~ ~ i ~ ~ ~ i ~ i ~ ~ ~ ~ i ~ i ~ ~  

INTEGER A,RAD,RMAX 

DIMENSION A(NMAX),ND(MMAX),LNGT(MMAX),RAD(RMAX) 
READ (5,30) N,M,NR,LMAX 
N I = N + I  
READ (5,40) (A(1),I=I,NI) 
READ (5,50) (ND(1),LNGT(1),I=I,M) 
READ (5,40) (RAD(I),I=I,NR) 
RETURN 

30 FORMAT(416) 
40 FORMAT(1016) 
50 FORMAT(1216) 

END 



G. Gallo and S. Pallottino, Shortest path algorithms 63 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

~i~i~ SAMPLE CALLING PROGRAM FOR SUBROUTINE SDKSTR ~ 
~ (SHORTEST PATH PROBLEM> ~ 

~ THE PROGRAM IS BASED ON THE PAPER ~ 
~ G. GALLO, S. PALLOTTINO "SHORTEST PATH ALGO- ~ 
~ RITHMS", ~ 

* ~  ANNALS O F  OPERATIONS RESEARCH,  THIS VOLUME ~**  

~$ ALL THE SUBROUTINES ARE WRITTEN IN AMERICAN ~ 
~ STANDARD FORTRAN AND ARE ACCEPTED BY THE ~ 
~ PFORT VERIFIER. ~ 

~ QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO ~ 
~ S. PALLOTTINO AND C. RUGGERI ~ 
~ C.N.R.-I.A.C., ROMA, ITALY. ~ 

C MEANING OF THE MAIN PARAMETERS NOT EXPLAINED IN THE SUBROUTINE: 
C 
C RAD(I) = I-TH ORIGIN NODE, I=I,2,...,NR 
C 
C ALL THE PARAMETERS ARE INTEGER 
C 
C 
C AT PRESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A(.), D(.). P(.), 
C Q(.) 
C MMAX =31000 FOR ND(.), LNGT(.) 
C RMAX = 100 FOR RAD(.) 
C 
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET TO A 
C LARGE INTEGER VALUE 
C 
C 
C THE INITIALIZATION OF Q(.), AND P(.> ARRAYS IS MADE IN THE MAIN 
C PROGRAM, (THE SUBROUTINE RESETS THEM AT THE END OF EACH ITERATION> 
C 
C EXTERNALS: 
C READ 
C SDKSTR 
C 
C 
C THIS WORK WAS SUPPORTED BY C.N.R., ITALY. 
C 
C ~ ~ ~ ~ ~ ~ ~ ~ ~  

INTEGER A,D,P,O,R,HP,RAD,Y,X,T2, RMAX 
DIMENSION A(300I),ND(31000),RAD(100),D(300I),P(300I),LNGT(31000), 

IQ(3001) 
DATA NMAX/300I/,MMAX/31000/,RMAX/100/,INF/999999999/ 
CALL READ(N,M,NR,LMAX,A,ND,LNGT,RAD,NMAX,MMAX,RMAX) 
DO I0 I=I,N 

Q(I) = 0 
P(I) = 0 

I0 CONTINUE 
DO 20 I=I,NR 
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R = RAD(I) 
CALL SDKSTR(A,ND,LNGT,D,P~Q,NMAX,MMAX~N, INF~R) 
WRITE(6~30)R~ (J,P(J>,D(~),~=I,N) 

2(i) CONTINUE 
STOP 

30 FORMAT(/7H ROOT =,I4//5H NODE,4X, IHP,7X, IHD/(215~I9/)) 
END 

C 
C 

SUBROUTINE SDKSTR(A~ND~LNGT~D,F',Q,NMAX~MMAX~N, INFER) 
C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
C 
C ROUTINE SDKSTR 
C 
C i) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST 
C DISTANCES 
C 2) IS BASED ON DIOKSTRA~S METHOD~ WITH PRIORITY QUEUE Q IMPLEMENTED 
C AS AN UNORDERED LIST 
C 
C MEANING OF THE INPUT PARAMETERS: 
C 
C A(I) = POINTER TO ARC-LIST OF NODE I, I=i~2 .... ,N+I 
C ND(~> =ENDING NODE OF ARC ~, J=I,2~...,M 
C LNGT(O) = LENGTH OF ARC d, J=I~2,...~M 
C NMAX = DIMENSION OF ARRAYS A(.), D(.>, P(.>, Q(.), HP(.) 
C MMAX = DIMENSION OF ARRAYS ND(.), LNGT(.) 
C N = NUMBER OF NODES 
C INF = VERY LARGE INTEGER VALUE (INFINITY) 
C R = ROOT 
C 
C MEANING OF THE OUTPUT PARAMETERS: 
C 
C D(I) = SHORTEST DISTANCE FROM R TO I, I=I,2,...,N 
C P(I) = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE, I=I,2,...,N 
C 
C MEANING OF THE MAIN INTERNAL PARAMETERS: 
C 
C Q(I) = LIST OF THE CANDIDATE NODES: = 0 IF NODE I IS NOT IN Q 
C ~ IF NODE I PRECEDES NODE ~ IN Q 

C NN = N+I 
C U = CURRENT NODE 
C V = ENDING NODE OF THE CURRENT ARC 
C INIT = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
C IFIN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
C DV = TENTATIVE LABEL OF NODE V 
C 
C ALL THE PARAMETERS ARE INTEGER 
C 
C ~ ~ ~ ~ ~ i ~ ~ ~ ~ ~ ~  

INTEGER A,D,P,Q,R,U,V, DV,VAL 
DIMENSION A(NMAX),D(NMAX),P(NMAX),Q(NMAX),ND(MMAX),LNGT(MMAX) 

C 
C INITIALIZE 
C 

DO 10 I=I,N 
D(I) = INF 

10 CONTINUE 



G. Gallo and S. Pallottino, Shortest path algorithms 65 

D(R) = 0 
P (R) = O 
NN = N + 1 

Q (NN) = NN 
U = R  

C 
C EXPLORE THE FORWARD STAR OF 
C 

C 

20 INIT : A(U> 
IFIN = A(U+I) - 1 
IF ( IFIN .LT. INIT ) GO TO 40 
DO 30 J=INIT, IFIN 

V : ND(J) 

DV = D(U> + LNGT(J) 

C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED 

C 
IF < D(V) .LE. DV ) GO TO 30 

D(V> = DV 

P <V) = U 

C 
C IF V IS NOT IN Q, INSERT V AT THE HEAD OF Q 

C 
IF < Q(V) .NE. 0 ) GO TO 30 

Q(V> = Q(NN) 

Q(NN) = V 

30 CONTINUE 

C 
C CHECK WHETHER THE LIST IS EMPTY 

C 
40 IF < Q(NN) .EQ. NN ) GO TO 70 

C 
C SEARCH THE MINIMUM LABEL NODE IN Q 

C 
K = 0 

I = NN 
VAL = INF 

50 JJQ = Q(I> 
IF (D(JJQ) .GE. VAL ) GO TO 60 

VAL = D(JJQ) 
K = I 

60 I = Q(I) 
IF (Q(I) .NE. NN ) GO TO 50 

C 

C REMOVE THE NEW CURRENT NODE U FROM Q 

C 
U = Q(K) 

Q(K) = Q(U) 
Q(U) = 0 
GO TO 20 

70 CONTINUE 

RETURN 
END 

SUBROUTINE READ(N,M,NR, LMAX~A~ND, LNGT,RAD,NMAX~MMAX~RMAX) 

C READS THE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS 
C LIST. 



66 G. Gallo and S. Pallottino, Shortest path algorithms 

INTEGER A,RAD~RMAX 
DIMENSION A(NMAX) ,IqD(MMAX) ~LNGT(MMAX),RAD(RMAX) 
READ (5~30) N~ M~ lqR~ LMAX 
N1 = N + 1 

READ (5,40) (A(I) ~I=I~NI) 
READ (5.,50) (ND(I),LNGT(I)~I=I~M) 
READ (5.~40) (RAD(~).~ I=I,NR) 
RETURN 

30 FORMAT','416) 
4~'~ FORMAT (1016) 
50 FORMAT (1216) 

END 
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******* SAMPLE CALLING PROGRAM FOR SUBROUTINE SORD2 ******* 
*** (SHORTEST PATH PROBI_EM) *** 
*** *** 

*** THE PROGRAM IS BASED ON THE PAPER *** 
*** G. GALL(]~ S. PALLOTTINO "SHORTEST PATH ALSO- *** 
* * * R I THMS" ~ *** 

* * * A N N A L S  O F  O P E R A T I O N S  R E S E A R C H ,  THIS  V O L U M E  * * *  
* * *  * * *  

* * *  ALl_ TIdE SUBROUTINES ARE WRITTEN IN AMERICAN * * *  
* * *  STANDARD FORTRAN AND ARE ACCEPTED BY THE * * *  
* * *  PFORT VERIFIER.. * * *  
* * *  * * *  

* * *  QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO * * *  
* * *  S. PALLOTTINO AND C. RUGGERI * * *  
~** C.N.R.-I.A.C., ROMA, ITALY. * * *  
************************************************************ 

C MEANING OF TIdE MAIN PARAMETERS NOT EXPLAINED IN THE SUBROUTINE: 
C 
C RADii) = I-TH ORIGIN NODE~ I=~,2....~NR 

C IVER = BUBBLE SORT PARAMETER; SET IVER = I FOR INCREASING ORDER AND 
C IVER = -J FOR DECREASING ORDER 
C 
C ALL TIdE PARAMETERS ARE INTEGER 
C 

C AT PRESENT TIdE SIZE DIMENSIONS ARE NMAX = 300J FOR A(.), D(.). P(.), 

C UP(.), DOWN(. ) 
C MMAX =31000 FOR ND(.), LNBT(.) 
C RMAX = 100 FOR RAD(.) 
C 
C TIdE ONLY MACHINE DEF'ENDENT CONSTANT USED IS INF: MUST BE SET TO A 
C LARGE II4TEGER VALUE 
C 

C THE INITIALIZATION OF UP(.), DOWN(.), AND P(.) ARRAYS IS MADE IN THE 
C MAIN PROGRAM~, (THE SUBROUTINE RESET THEM AT THE END OF EACH 
C ITERATION) 
C 
C EXTERNALS: 

C READ 
C BUBBLE 
C SORD2 
C 
C 
C THIS WORK WAS SUPPORTED BY C.N.R. ~ ITALY. 
C 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

DIMENSION A(300I),ND(3100~z~),RAD(100),D(300I),P(300I),UP(3001), 
IDOWN ','3001 ) , LNGT (31000) 
INTEGER A,D,P,R,UP,RAD,DOWN,RMAX 
DATA NMAX/3c~OI/,MMAX/31000/,RMAX/100/, INF/999999999/ 
CALL READ (N, M, NR, LMAX, A ~ ND, LNGT ~ RAD, NMAX, MMA X, RMAX ) 
IVER = - 1 
DO 10 I=I,N 
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SORT THE FORWARD STAR OF NODE I 

IN IT  = A ( I )  
IF IN  = A ( I + I )  - 1 
IF ( IN IT  .GE. IF IN  ) GO TO 10 
CALL BUBBLE(INIT~IFIN,LNGT, ND, IVER) 

10 CONTINUE 
DO 20 ~=I~N 

UP(J) = 0 
DOWN(O) = 0 
P(J)  = 0 

20 CONTINUE 
DO 30 I=I~NR 

R = RAD(1) 
CALL SORD2(A,ND,LNGT~D~P~UP~DOWN,NMAX,MMAX~N, INF,R) 
WRITE(6~40)R, ( J ~ P ( J ) , D ( J ) , J = I , N )  

30 CONTINUE 
STOP 

40 FORMAT(/7H ROOT = ~ 1 4 / / 5 H  NODE,4X, IHP~7X~IHD/<215~I9) )  
END 

SUBROUTINE SORD2(A~ND,LNGT,D,P~UP,DOWN,NMAX~MMAX,N~INF,R) 
C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
C 
C ROUTINE SORD2 
C 
C i> FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST 
C DISTANCES 
C 2) IS BASED ON DOKSTRA~S METHOD, WITH THE PRIORITY QUEUE Q IMPLEMENTED 
C AS AN ORDERED TWO-WAY LINKED LIST 
C 
C MEANING OF THE INPUT PARAMETERS: 
C 
C A<I) = POINTER TO ARC-LIST OF NODE I, I=I~2,...,N+I 
C NO(O) = ENDING NODE OF ARC J, J=I,2,...,M 
C LNGT(J) = LENGTH OF ARC O~ O=I,2~...~M 
C NMAX = DIMENSION OF ARRAYS A(.), D(.>, P(.), UP(.), DOWN<.> 
C MMAX = DIMENSION OF ARRAYS NO(.), LNGT<.) 
C N = NUMBER OF NODES 
C INF = VERY LARGE INTEGER VALUE (INFINITY) 
C R = ROOT 
C 
C MEANING OF THE OUTPUT PARAMETERS: 
C 
C D<I) = SHORTEST DISTANCE FROM R TO I, I=I,2,...,N 
C P(1) = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE, I=1,2~ .... N 
C 
C MEANING OF THE MAIN INTERNAL PARAMETERS: 
C 
C UP(1)= 0 IF I DOES NOT BELONG TO THE LIST 
C = O IF O PRECEDES I IN THE LIST 
C DOWN(I)= 0 IF I DOES NOT BELONG TO THE LIST 
C 0 IF ~ FOLLOWS I IN THE LIST 
C NN = N+I 
C U = CURRENT NODE 
C V = ENDING NODE OF THE CURRENT ARC 
C INIT  = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
C IF IN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
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C PNTR = POINTER TO THE PORTION OF THE LIST TO BE SCANNED. IT MOVES 
C BOTTOM-UP 

C DV = TENTATIVE LABEL OF NODE V 

C 
C ALL THE PARAMETERS ARE INTEGER 

C 

INTEGER A~D~P~R~U~V,UP~DOWN~DV~PNTR 

DIMENSION D(NMAX)~P(NMAX)~UP(NMAX)~DOWN(NMAX)~A(NMAX)~ND(MMAX)~ 

ILNGT(MMAX) 

INITIALIZE 

DO I(:) I=I~N 

D(I) = INF 

10 CONTINUE 
D(R) = 0 

P (R) = 0 
NN = N + 1 

D(NN) =- 1 

UP (NN) = NN 
DOWN(NN) = NN 

U = R 
C 
C EXPLORE OF THE FORWARD STAR OF U 

C 

20 INIT = A(U) 
IFIN = A(U+I) - 1 
IF ( INIT .GT. IFIN ) GO TO 80 

RESET PNTR TO THE BOTTOM OF THE LIST 

PNTR = UP(NN) 
DO 70 J=INIT~IFIN 

V = ND(J) 
DV = D(U) + LNGT(J) 

C 
C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED 
C 

IF ( D(V) .LE. DV ) GO TO 70 

C 

C RESET THE POINTER 
C 

IF ( D(V) .LT. D(PNTR) .AND. UP(V) .GT. 0 ) PNTR = V 

C 

C FIND THE INSERTION POINT FOR V 
C 

30 IF (D(PNTR) .LE. DV ) GO TO 40 

PNTR = UP(PNTR) 
GO TO 30 

40 IF (DOWN(PNTR) .EQ. V ) GO TO 60 

C 
C REMOVE V FROM UP(.) AND DOWN(.)" IF NECESSARY 
C 

IF (UP(V) .EQ. 0 ) GO TO 50 

IUV = UP(V) 

IDV = DOWN(V) 

DOWN(IUV) = IDV 

UP(IDV) = IUV 
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INSERT V INTO IJP(.) AND DOWN(.) 

50 IDV = DOWN(PNTR) 
DOWN(V) = IDV 
DOWN(PNTR) = V 
UP(IDV) = V 
UP(V) = PNTR 

60 D(V) = DV 
P(V)  = U 

70 CONTINUE 
C 
C REMOVE THE NEW CURRENT NODE U 
C 

80 U = DOWN(NN) 
IDU = DOWN(U) 
DOWN(NN) = IDU 
UP(IDU) = NN 
UP(U) = 0 

C 
C CHECK WHETHER THE LIST IS EMPTY 

C 
I F  ( U . L E .  N ) GO TO 20 
RETURN 
END 

C 
C 

SUBROUTINE BUBBLE(INIT~IFIN, IVI~IV2~IVER) 

C SORTS A PORTION OF THE ARRAYS IV1(.) AND IV2(.) ACCORDING TO THE 
C DECREASING (IVER=-I) OR INCREASING (IVER=I> ORDER OF THE ELEMENTS OF 
C IV1(.). THE ELEMENTS TO BE SORTED HAVE INDEX J BETWEEN INIT AND IFIN. 
C A BUBBLE SORTING TECHNIQUE IS USED. 
C ~ ~ i ~ ~ ~ ~ i ~ l i ~ ~ l i ~ i ~ l i ~ i ~ i  

INTEGER PNTR 
DIMENSION IVI(IFIN),IV2(IFIN) 
LAST = IFIN 

10 PNTR = LAST - 1 
LAST = 0 
DO 20 J=INIT~PNTR 

IF ( (IVI(J) - IVI(O+I))~IVER .LE. 0 ) GO TO 20 
IBUF = I V l ( J )  

I V I ( J )  = I V I ( ~ + I )  
I V I ( ~ + I )  = IBUF 
IBUF = I V 2 ( J )  
I V 2 ( ~ )  = I V 2 ( O + I )  
I V 2 ( ~ + 1 )  = IBUF 
LAST = 0 

20 CONTINUE 
IF  ( LAST .GT. 1 ) GO TO I 0  
RETURN 
END 

SUBROUTINE READ(N,M,NR,LMAX,A,ND~LNGT,RAD~NMAX,MMAX,RMAX) 
C $ ~ ~ $ ~ $ ~ $ ~ $ $ ~ $ ~ ~ $ ~ $ ~ $ ~ $ ~ I ~  
C READS THE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS 
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C L I S T .  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

INTEGER A,RAD,  RMAX 
DIMENSION A(NMAX),ND(MMAX),LNGT(MMAX),RAD(RMAX) 
READ (5,30) N, M, NR, LMAX 
N1 = N + 1 

READ (5,40) (A(I),I=I,NI) 
READ (5,50) (ND(I),LNGT(I),I=I,M) 
READ (5,40) ~RAD(I),I=I,NR) 
RETURN 

30 FORMAT (416) 
40 FORMAT (1016) 
50 FORMAT(1216) 

END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

******* SAMPLE CALLING PROGRAM FOR SUBROUTINE SDIAL **g*~ 
* * *  (SHORTEST PATH PROBLEM> ~*g 

*g* THE PROGRAM IS BASED ON THE PAPER ~* 
~ G. GALLO, S. PALLOTTINO "SHORTEST PATH ALGO- ~ 
*** RITHMS", ~* 

***  ANNALS OF OPERATIONS RESEARCH,  THIS VOLUME ***  

**~ ALL THE SUBROUTINES ARE WRITTEN IN AMERICAN *** 
*** STANDARD FORTRAN AND ARE ACCEPTED BY THE *g~ 
g** PFORT VERIFIER. *** 

*** QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO *** 
*** S. PALLOTTINO AND C. RUGGERI g** 
**~ C.N.R.-I.A,C., ROMA, ITALY. *** 

C MEANING OF THE MAIN PARAMETERS NOT EXPLAINED IN THE SUBROUTINE: 
C 
C RAD(I) = I-TH NODE ORIGIN, I=I,2,...,NR 
C 
C ALL THE PARAMETERS ARE INTEGER 
C 
C AT PRESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A(.), D(.). P(.), 
C UP(.>, DOWN(.) 
C MMAX =31000 FOR ND(.), LNGT(.) 
C RMAX = 100 FOR RAD(.) 
C QMAX =10001 FOR Q(.) 
C 
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET TO A 
C LARGE INTEGER VALUE 
C 
C 
C THE INITIALIZATION OF Q(.), UP(.), DOWN(.), AND P(.) ARRAYS IS MADE 
C IN THE MAIN PROGRAM, (THE SUBROUTINE RESETS THEM AT THE END OF EACH 
C ITERATION). 
C 
C EXTERNALS: 
C SDIAL 
C READ 
C 
C 
C THIS WORK WAS SUPPORTED BY C.N.R., ITALY. 
C 

DIMENSION A(300I),ND(31000>,RAD(100),D(300I),P<300I),UP(3001), 
IDOWN(300I),Q(1000I),LNGT(31000) 
INTEGER A.D,P,Q,R,UP,DOWN,RAD,QMAX~RMAX 
DATA NMAX/300I/,MMAX/31000/,RMAX/IOO/,INF/999999999/,QMAX/IO001/ 
CALL READ(N,M,NR,LMAX,A,ND, LNGT,RAD,NMAX,MMAX,RMAX) 
NN = N + I 

I_MAX = LMAX + I 
DO i0 I=I,LMAX 

Q(I) = NN 
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10 CONTINUE 
DO 20 J=I,N 

UP(J) = 0 
DOWN (J) = 0 
P(J) = 0 

20 CONTINUE 
DO 30 I=I ,NR 

R = RAD(I) 
CALL SDIAL(A,ND,LNGT,D,P,Q,UP~DOWN~NMAX,MMAX,QMAX,N, INF,R,LMAX) 
WRITE(6~40>R,(J,P(J),D<J),J=I~N) 

30 CONTINUE 
STOP 

40 FORMAT(/7H ROOT = ,14 / /5H NODE,4X,1HP,7X,1HD/(215,19)) 
END 

C 
C 

SUBROUTINE SDIAL(A,ND,LNGT,D,P,Q,UP,DOWN,NMAX,MMAX,QMAX,N, INF,R, 

*LMAX) 

C 
C ROUTINE SDIAL 
C 
C I) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST 
C DISTANCES 
C 2) IS BASED ON DIAL'S METHOD, WITH THE PRIORITY QUEUE Q IMPLEMENTED AS 
C AN ADDRESS ARRAY AND A TWO-WAY LINKED LIST 
C 
C MEANING OF THE INPUT PARAMETERS: 
C 
C A < I )  = POINTER TO ARC-LIST OF NODE I~ I = I , 2 , . . . , N + I  
C N D ( J )  = ENDING NODE OF ARC J~ J = I , 2 , . . . , M  
C LNGT(J) = LENGTH OF ARC J, J = I , 2 , . . . ~ M  
C NMAX = DIMENSION OF ARRAYS A(.), D(.), PC.), UP(.), DOWN(.) 
C MMAX = DIMENSION OF ARRAYS ND<.)~ LNGT(.) 
C QMAX = DIMENSION OF ARRAY Q(.) 
C N = NUMBER OF NODES 
C INF = VERY LARGE INTEGER VALUE (INFINITY) 
C R = ROOT 
C LMAX = LENGTH OF THE ACTIVE PART OF ARRAY Q(. )  
C 
C MEANING OF THE OUTPUT PARAMETERS: 
C 
C D(1) = SHORTEST DISTANCE FROM R TO I, I=I,2,...,N 
C P(I> = PREDECESSOR NODE OF I IN THE SHORTEST PATH TREE~ I=I,2,...,N 
C 
C MEANING OF THE MAIN INTERNAL PARAMETERS: 
C 
C Q(1) = J IF J IS THE FIRST ELEMENT OF THE I-TH LIST 
C = NN IF THE I-TH LIST IS EMPTY 
C UP(J)= 0 IF J DOES NOT BELONG TO ANY LIST 
C K IF K PRECEDES J IN THE SAME LIST 
C -I IF J IS THE FIRST ELEMENT OF THE I-TH LIST (Q(I)=J) 
C DOWN(J)= 0 IF J DOES NOT BELONG TO ANY LIST 
C K IF K FOLLOWS J IN THE SAME LIST 
C NN IF J IS THE LAST ELEMENT OF THE LIST 
C NN = N+I 
C U = CURRENT NODE 
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C V = ENDING NODE OF THE CURRENT ARC 

C INIT = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
C IFIN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE 

C DV = TENTATIVE LABEL OF NODE V 

C PNTR = POINTER TO THE LAST SCANNED POSITION OF Q(.) 
C PREC= POINTER FOR UP(.) AND DOWN(.) ARRAYS 
C IF PREC < 0 THEN -PREC IS A POINTER TO Q(.) ARRAY 
C SEG = POINTER FOR UP(. ) AND DOWN (.) ARRAYS 

C ADDR= POINTER TO THE LIST IN WHICH V MUST BE INSERTED 

C 
C ALL THE PARAMETERS ARE INTEGER 
C 
C*************************i********ii**********i**i********************* 

INTEGER A,D,P,Q,R,U~V,DV~SEG,PREC,ADDR~PNTR,UP, DOWN,QMAX 

DIMENSION A(NMAX),D(NMAX),P(NMAX),UP(NMAX),DOWN(NMAX),ND(MMAX>, 

1LNGT (MMAX) , Q (QMAX) 
C 
C INITIALIZE 

C 
DO 10 I=I,N 

D(I) = INF 

10 CONTINUE 

D (R) = 0 

P (R) = 0 
NN = N + 1 
UP(NN) = NN 

DOWN(NN) = NN 

PNTR = 1 

U = R 
C 

C EXPLORE THE FORWARD STAR OF U 

C 
20 INIT = A(U) 

IFIN = A(U+I> - 1 
IF ( IFIN .LT. INIT ) GO TO 60 

DO 50 J=INIT, IFIN 
V = ND(J) 

DV = D(U) + LNGT(J) 
C 

C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED 
C 

IF ( D(V) .LE. DV ) GO TO 50 
D ( V )  = DV 

P (V) = U 

IF (UP(V) .EQ. 0 ) GO TO 4(]) 
C 

C REMOVE V FROM UP(.) AND DOWN(.) IF NECESSARY 
C 

PREC = UP(V) 

SEG = DOWN(V) 

IF ( F'REC .LT. 0 ) GO TO 30 

DOWN(PREC) = SEG 
UP(SEG) = PREC 
GO TO 40 

30 I P = - PREC 

Q(IP) = SEG 

UP(SEG) = PREC 
C 

C COMPUTE THE POINTER TO TE LIST IN WHICH V MUST BE INSERTED 
C 
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40 ADDR = DV + 1 - DV/LMAX~LMAX 
SEG = Q(ADDR) 
DOWN(V) = SEG 
Q(ADDR) = V 
UP(V) = - ADDR 
UP(SEG) = V 

50 CONTINUE 
C 
C REMOVE THE NEW CURRENT NODE U 

C 
60 ADDR = PNTR 
70 IF (Q(PNTR) .EQ. NN ) GO TO 80 

U = Q (PNTR) 
IDU = DOWN(U) 
Q(PNTR) = IDU 
UP(IDU) = - PNTR 
UP(U) = 0 
GO TO 20 

80 PNTR = PNTR + 1 
IF ( PNTR .GT. LMAX ) PNTR = I 

C 
C CHECK WHETER Q(.) 
C 

IF ( PNTR .NE. 
RETURN 
IsND 

IS EMPTY 

ADDR ) GO TO 70 

SUBROUTINE READ(Iq,MrNR,LMAX,A,ND,LNGT,RAD,NMAX,MMAX,RMAX) 

C READS THE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS 
C LIST. 

INTEGER A,RAD,RMAX 
DIMENSION A(NMAX),ND(MMAX),LNGT(MMAX).,RAD(RMAX) 

READ (5~30) N, M, NR, LMAX 
N1 = N + 1 

READ (5,40) (A(I),I=I,NI) 
READ (5,50) (ND(I),LNGT(I), I=I,M) 
READ (5,40) (RAD(1), I=I,NR) 
RETURN 

30 FORMAT(416) 
40 FORMAT (1016) 
50 FORMAT (1216) 

END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

* * * * * * *  SAMPLE CALLING PROGRAM FOR SUBROUTINE SHEAP * * * * * * *  
* * *  (SHORTEST PATH PROBLEM) * * *  
* * *  * * *  

* * *  THE PROGRAM IS BASED ON THE PAPER * * *  
* * *  G. GALLO, S. PALLOTTINO "SHORTEST PATH ALGO- * * *  
*** RITHMS", *** 

* * *  ANNALS O F  OPERATIONS RESEARCH,  THIS VOLUME * * *  
* * *  * * *  

* * *  ALL THE SUBROUTINES AR~ WRITTEN IN AMERICAN * * *  
* * *  STANDARD FORTRAN AND ARE ACCEPTED BY THE * * *  
* * *  PFORT VERIFIER. * * *  

* * *  QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO * * *  
* * *  S. PALLOTTINO AND C. RUGGERI * * *  
* * *  C.N.R.-I.A.C., ROMA, ITALY. * * *  

C MEANING OF THE MAIN PARAMETERS NOT EXPLAINED IN THE SUBROUTINE: 
C 
C RAD(I) = I-TH ORIGIN NODE, I=I,2,...,NR 
C 
C ALL THE PARAMETERS ARE INTEGER 
C 
C 
C AT F'RESENT THE SIZE DIMENSIONS ARE NMAX = 3001 FOR A(.), D(.). F'(.), 
C HP(.), Q(.) 
C MMAX =31000 FOR NO(.), LNGT(.) 
C RMAX = 100 FOR RAD(.) 
C 
C THE ONLY MACHINE DEPENDENT CONSTANT USED IS INF: MUST BE SET T 
C 
C 
C THE INITIALIZATION OF Q(.), AND P(.) ARRAYS IS MADE IN THE MAIN 
C PROGRAM, (THE SUBROUTINE RESETS THEM AT THE END OF EACH ITERATION) 
C 
C EXTERNALS: 
C READ 
C SHEAP 
C 
C 
C THIS WORK WAS SUPPORTED BY C.N.R., ITALY. 
C 
C*********************************************************************** 

INTEGER A,D,P,Q,R,HP,RAD,Y,X,T2,RMAX 
DIMENSION A(300I),ND(31000),RAD(100),D(300I),P(300I),HP(3001), 

1LNGT(31000),Q(3001) 
DATA NMAX/3001/,MMAX/31000/,RMAX/IOO/,INF/999999999/ 
CALl_ READ(N,M,NR,LMAX,A,ND, LNGT,RAD,NMAX,MMAX,RMAX) 
DO 10 I=I,N 

Q(1) = 0 
P(I) = 0 

10 CONTINUE 
DO 20 I=I,NR 

R = RAD(I) 
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CALL SHEAP(A,ND,LNGT,D~P,Q,HP,NMAX~MMAX,N, INF,R) 
WRITE(6~30)R, (d,P(~)~D(d),~=I,N) 

20 CONTINUE 
STOP 

30 FORMAT(/7H ROOT =,I4//5H NODE~4X~IHP,7X,1HD/(215, I9)) 
END 

C 
C 

SUBROUTINE SHEAP(A,ND,LNGT,D,P,Q,HP, NMAX,MMAX,N, INF,R) 
C ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ ~  
C 
C ROUTINE SHEAP 
C 
C i) FINDS A SHORTEST PATH TREE ROOTED AT NODE R AND THE SHORTEST 
C DISTANCES 
C 2) IS BASED ON DIOKSTRA~S METHOD, WITH PRIORITY QUEUE Q IMPLEMENTED 
C AS A BINARY HEAP 
C 
C MEANING OF THE INPUT PARAMETERS: 
C 
C A(I) = POINTER TO ARC-LIST OF NODE I, I=I,2,...,N+I 
C ND(J) = ENDING NODE OF ARC ~, O=I,2,...,M 
C LNGT(J) = LENGTH OF ARC J, J=I,2,...,M 
C NMAX = DIMENSION OF ARRAYS A(.), D(.), P(.>, Q<.>, HP(.) 
C MMAX = DIMENSION OF ARRAYS ND(.), LNGT(.) 
C N = NUMBER OF NODES 
C INF = VERY LARGE INTEGER VALUE (INFINITY) 
C R = ROOT 
C 
C MEANING OF THE OUTPUT PARAMETERS: 
C 
C D(I) = SHORTEST DISTANCE FROM R TO I, I=I,2,...,N 
C I IN THE SHORTEST PATH TREE, I=I,2,...,N 
C 
C MEANING OF THE MAIN INTERNAL PARAMETERS: 
C 
C Q(I) = DICTIONARY OF THE HEAP: Q(I) GIVES THE POSITION OF NODE 
C I IN THE HEAP HP(.), I=I,2,...,N 
C HP(I)= I-TH NODE IN THE HEAP, I=I,2,...,NHP 
C NHP = NUMBER OF NODES IN THE HEAP (NHP<=N) 
C NN = N+I 
C U = CURRENT NODE 
C V = ENDING NODE OF THE CURRENT ARC 
C INIT = START-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
C IFIN = END-POINTER TO THE ARC-LIST OF THE CURRENT NODE 
C DV = TENTATIVE LABEL OF NODE V 
C 
C ALL THE PARAMETERS ARE INTEGER 
C 
C ~ l i ~ ~ ~ i ~ ~ ~ i ~ ~ l i i ~ i ~ ~  

INTEGER A,D,P,Q,R,U, V,DV,HP,DPI,HPI~HP2,HP3 
DIMENSION A(NM~X),D(NMAX),P(NMAX),Q(NMAX),HP(NMAX),ND(MMAX), 

1LNGT (MMAX) 
C 
C INITIALIZE 
C 

DO i0 I=I,N 
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D(I) = INF 
10 CONTINUE 

NHP = 0 
D (R) = 0 

P (R) = 0 

NN = N + 1 
U = R 

C 
C EXPLORE THE FORWARD STAR OF 

C 

20 INIT = A(U) 

IFIN = A(U+I) - 1 

IF ( IFIN .LT. INIT ) GO TO 70 

DO 60 J=INIT, IFIN 

V = ND(J) 

DV = D(U) + LNGT(J) 

C 
C CHECK WHETHER THE LABEL OF V CAN BE IMPROVED 

C 
IF ( D(V) .LE. DV > GO TO 60 
D (V) = DV 

P (V) = U 

IF ( Q(V) .NE. 0 ) GO TO 30 

C 
C INSERT NODE V INTO THE HEAP 

C 
NHP = NHP + 1 

Q(V) = NHP 

C 
C UPDATE THE HEAP 

C 
30 K = Q (V) 
40 K2 = K/2 

IF ( K2 .LE. 0 ) GO TO 50 

HP2 = HP(K2> 

IF ( DV .GE. D(HP2) ) GO TO 50 
HP(K) = HP2 

Q(HP2) = K 

K = K2 
GO TO 40 

50 HP (K) = V 
Q(V) = K 

60 CONTINUE 
C 

C REMOVE THE NEW CURRENT NODE U FROM THE HEAP 

C 

70 U -- HP(1) 

Q(U) = 0 
NHP = NHP - 1 

C 
C CHECK WHETHER THE HEAP IS EMPTY 

C 

IF ( NHP ) 130,20,80 
C 

C UPDATE THE HEAP 
C 

80 HPI = HP(NHP+I) 

DPI = D(HPI) 
K = 1 

90 K2 = 2~K 



G. Gallo and S. Pallottino, Shortest path algorithms 79 

HP2 = HF'(K2) 
IF ( K2-NHP ) 100,110,120 

100 HP3 = HP(K2+I) 
IF (D(HP2) .I-T. D(HP3) ) GO TO 110 
HP2 = HP3 
K2 = K2 + 1 

110 IF ( DPI .LE. D(HP2) ) GO TO 120 
HP(K) = HP2 
Q(HP2) = K 
K = K2 
GO TO 90 

120 HP(K)=HPI 
Q(HPI) = K 
GO TO 20 

130 CONTINUE 
RETURN 
END 

SUBROUTINE READ(N,M,NR,LMAX,A,ND,LNGT,RAD,NMAX,MMAX,RMAX) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C READS THE GRAPH DATA (STORED AS AN ADJACENCE LIST) AND THE ORIGINS 
C LIST.. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

INTEGER A,RAD,RMAX 
DIMENSION A(NMAX),ND(MMAX),LNGT(MMAX),RAD(RMAX) 
READ (5,30) N, M, NR, LMAX 
N1 = N + i 

READ (5,40) (A(I),I=I,NI) 
READ (5,50) (ND(1),LNGT(I),I=I~M) 
READ (5,40) (RAD(I),I=I,NR) 
RETURN 

30 FORMAT(416) 
40 FORMAT(1016) 
50 FORMAT(1216) 

END 


