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Abstract. Modern imaging techniques can provide se- 
quences of images giving signals proportional to the con- 
centrations of tracers (by emission tomography), of X- 
ray-absorbing contrast materials (fast CT or perhaps 
NMR contrast), or of native chemical substances (NMR) 
in tissue regions at identifiable locations in 3D space. 
Methods for the analysis of the concentration-time 
curves with mathematical models describing the physio- 
logical processes and the appropriate anatomy are now 
available to give a quantitative portrayal of both struc- 
ture and function: such is the approach to metabolic 
or functional imaging. One formulates a model first by 
defining what it should represent: this is the hypothesis. 
When translated into a self-consistent set of differential 
equations, the model becomes a mathematical model, 
a quantitative version of the hypothesis. This is what 
one would like to test against data. However, the next 
step is to reduce the mathematical model to a comput- 
able form; anatomically and physiologically realistic 
models account of the spatial gradients in concentrations 
within blood-tissue exchange units, while compartmental 
models simplify the equations by using the average con- 
centrations. The former are known as distributed models 
and the latter as lumped compartmental or mixing 
chamber models. Since both are derived from the same 
ideas, the parameters are usually the same; their differ- 
ences are in their ability to represent the hypothesis cor- 
rectly, quantitatively, and sometimes in their computabi- 
lity. In this essay we review the philosophical and practi- 
cal aspects of such modelling analysis for translating im- 
age sequences into physiological terms. 
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I n t r o d u c t i o n  

As procedures used in nuclear medicine become increas- 
ingly elaborate and expensive in terms of time, space 
and personnel, it behooves us to ask how we can improve 
the yield of information from each test. Mathematical 
analysis of image sequences is a powerful tool, for it 
is a method of image enhancement that is designed to 
yield insight based on an understanding of the physiolog- 
ical processes underlying the raw observations. While 
the approach is most simply applicable to selected re- 
gions of interest in images from positron emission to- 
mography (PET) and single-photon emission computed 
tomography (SPET), and X-ray computed tomography 
(CT), it can also be applied to magnetic resonance imag- 
ing. The physician's objective in examining images from 
these various modalities is to ascertain the state of the 
tissue in anatomic or pathophysiologic terms. The virtue 
of analysing image sequences in terms of models is that 
it allows a translation from a set of single images related 
only be the observer's eye and mind into an image (or 
a few images) representing the function or feature that 
one desires to identify. In this case "system identifica- 
tion" means that the display is expressed in terms of 
useful specifics, e.g. blood volume per millilitre tissue, 
flow per unit volume of tissue, or metabolic transforma- 
tion rate in moles per gram tissue (Fleming and Goddard 
1974; Peters et al. 1987; Andersen et al. 1988; Gambhir 
et al. 1989). Modeling is to construct an analogue that 
behaves like the real system (Berman 1963; Brownell 
1968; Kein/inen and Kuikka 1980; Bassingthwaighte and 
Goresky 1984). In the analysis of experimental data, the 
goal is to depict the dynamic behaviour of an organ 
or tissue under study. A model can be considered as 
a hypothesis to be tested against data; when data are 
of high quality, with good spatial and temporal resolu- 
tion, then the hypothesis can be tested, evaluated and 
improved, an example of scientific evaluation. When data 
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are low resolution, as in PET studies, one can use the 
models to estimate parameters, but not usually to test 
the model. 

The objective is to derive dynamic information on 
flow and/or metabolic reactions and to interpret these 
data in physiological sense. An initial step is the formula- 
tion of the mathematical model (Fig. 1). The most critical 
step in model evaluation is the comparison of the re- 
sponse of the model, as represented by its mathematical 
formalism, with experimental data. If satisfactory agree- 
ment is obtained, then the model cannot be rejected. 
When different models are equally acceptable by the 
same criteria, one cannot choose between them from the 
particular data but must use other criteria. More discri- 
minatory tests of the models must be devised. When 
model solutions differ systematically from high-resolu- 
tion data, then the model (the hypothesis) is rejected; 
the next model is then devised, tested, and the process 
of evaluation repeated. 

A good fit of model to data is a failure to reject the 
hypothesis but a success is providing estimates of param- 
eters such a flow, permeability or metabolic rate. The 
estimates are only as good as the model and are obtained 
from the best fit. 

There is no such thing as true uniqueness in modeling: 
there is neither a "unique" model (because one can al- 
most always find an alternative or a more detailed one) 
nor a "unique" fit of the model to the data (because 
the presence of noise or inexactness of fit always allows 
some range of confidence in the values of the parameter 
estimates). What Berman (1963) meant by "unique" was 
that there was some preferred model or parameter set, 
hopefully definable by specific criteria. 

The study of living organs is sufficiently difficult that 
one is usually forced into making some assumptions, 
basing these wherever possible on previous physiological 
or anatomical observations. Moreover, the data ob- 
tained even by PET and other external detection tech- 
niques are degraded by scatter and reconstruction errors, 
giving rise to spillover from one region to another (par- 
tial volume effects). There is also dispersion or intravas- 
cular smearing of the tracers which may need to be cor- 
rected to find the "true" blood concentration-time curve 
at the input and which is needed to analyse the tissue 
(the residue) tracer concentrations (Budinger and Hues- 
man 1985). When the input to the organ is known, the 
impulse response to the organ can be determined from 
the time course of tracer content within the organ by 
numerical deconvolution (Zierler 1965). Unfortunately, 
most deconvolution routines have inherent computa- 
tional difficulties with noisy data and are not easy to 
implement. The usual strategy is to use the known input 
as input to the model (numeric or analytic) representing 
the impulse response function and thereby to convert 
a deconvolution problem to an initial value problem 
(Huang etal. 1980; Carson etal. 1983; Foster etal. 
1988). 

Tracers 

Tracers must be chosen for specific purposes such as 
the estimation of tissue blood flow or rates of biochemi- 
cal reactions (Feinendegen et al. 1981). The choice of ra- 
dionuclides depends on capabilities for synthesis of spe- 
cific compounds, the length of imaging time required 
and on availability. The selected radionuclides must be 
placed on to the substrates in such manner that there 
will be no interference with biochemical reactions to be 
observed. The biochemical fate of the tracers has to be 
known completely, and the effects of reactions which 
cannot be included in the model should be minimal. 

Regional heterogeneities in tissue properties 
and functions 

Spatial variation in regional blood flow within organs 
has been found whenever examined, e.g. King et al. 
(1985) and modern methods of analysis are beginning 
to account for this. We need also to look for heterogene- 
ity in permeability, distribution volumes and metabolic 
rates (Cargill et al. 1988; Bassingthwaighte et al. 1990; 
Gonzalez and Bassingthwaighte 1990; Nelson 1990). We 
use the relative dispersion (which is the standard devia- 
tion divided by the mean and which is the coefficient 
of variation used by statisticians to describe the spread 
of the distribution of an observed property or function). 
Bassingthwaighte and Goresky (1984) have previously 
shown that if the spatial relative dispersion of regional 
flows is 40%, the myocardial capillary permeability-sur- 
face area products (PSs) for sugars are underestimated 
by over 30%. Flow heterogeneity can be approximated 
by dividing the region of interest into small voxels (sized 
from few millilitres down to tens of microlitres), thus 
estimating relative dispersion (i.e. standard deviation di- 
vided by the mean) at each of several "tissue" sample 
sizes. This allows characterization of the flow and distri- 
bution volume heterogeneity over a wide range of voxel 
sizes and, by a fractal analysis, approximation of the 
heterogeneity to be observed at the level of the functional 
exchange unit (Cargill et al. 1988; Bassingthwaighte et al. 
1989a, b). 

The input function 

In modelling analysis the determination of the input 
function is most critical (Budinger and Huesman 1985; 
Bellina et al. 1990). The input may be in numerical form 
and need not be explicitly described in terms of a mathe- 
matical function. Usually the tracer bolus is given intra- 
venously and not directly into the organ studied. Tracer 
particles travel slowly at the vessel wall and faster in 
midstream, causing intravascular dispersion and smear- 
ing of the bolus. Spreading of the bolus in an artery 
results in a standard deviation around the mean transit 



time of 20% (Bassingthwaighte 1966). In the lung the 
dispersion is twice this (Knopp and Bassingthwaighte 
1969). Even if the input curve is measured from the arteri- 
al or heated venous blood samples, the external smearing 
due to the tracer dispersion in the limb vessels, in the 
catheter, and in the sampling system must be accounted 
for in the model analysis, a difficult deconvolution task 
(Dhawan et al. 1987; Iida et al. 1988). Moreover, the in- 
put function has to be corrected for recirculating metab- 
olites and, in some cases multiple chemical species must 
be modelled simultaneously (Shields et al. 1990). 

Impulse response of the model system for the 
organ 

To permit applications of the model to experimental 
data, the impulse response function of the model system 
for the organ (frequency function of transit times), h(t), 
must be modelled so that the investigator could examine 
the whole system response to any form of input (Fig. 2). 
Assuming mathematical linearity and stationarity, the 
relationship between inflow and outflow is completely 
defined when h(t) is known by the convolution integral 
(Zierler 1965): 

t 

Co(t) = Ci(t)* h( t )= S Ci(s) h ( t - s )  ds (1) 
0 

where the asterisk denotes the process of convolution 
and s is a dummy variable for integration. 

There are more important properties of h(t) which 
have useful physiological information. If no tracer is lost, 
utilized or recirculated the areas of Ci and Co are equal, 
and F times the area equals the dose injected. The first 
moments after injection give the mean transit times 
which are the average times of the tracer particles spent 
in a given part of the system: 

th = to -- ti = Vdist/ F (2) 

where to and h are the mean transit times for Co and 
C~ and Va~st is the volume of distribution for the tracer 
in the system. These operational equations can be used 
independently of any model. 

There are several simple models to study transcapil- 
lary passage and capillary tissue exchange of tracer. A 
general approach to describe intravascular transport of 
a tracer through the organ is based on the Stewart-Ha- 
milton principle (Stewart 1897; Hamilton et al. 1931). 
A brief bolus of tracer of amount qo is injected into 
the arterial inflow and the concentration time curve re- 
sulting in the outflow is C(t). Given that it all emerges, 
then the impulse response of the organ to this tracer, 
h(t), is approximated by: 

h (t) = F/q  o C (t). (3) 

The time integral of impulse response function is un- 
ity, and thus the time activity curve, can be used to 
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calculate the flow F: 

F = qo /~  C (t) dt. (4) 
0 

Time activity curves of tracers which remain intravas- 
cular (e.g. albumin) are widely used to calculate organ 
blood flow (Donato et al. 1962; Mullani and Gould 
1983; Britton et al. 1985; Peters et al. 1987), but do not 
give direct information on exchange rates or metabolism. 

Fick (1870) developed an equation which can be used 
to calculate the amount of a substance transported from 
the circulation to the tissue in steady state: 

dQ/d t = - V [ C i -  Co], (5) 

where Ci and C o are the tracer concentrations at the 
input and output ends of the studied organ. 

The net flux of tracer across the capillary wall between 
blood and tissue is given by the steady-state fractional 
extraction E = ( C i - C o ) / C i  times flow times the input 
concentration: flux, m o l e s / s e c o n d = E F C  i. Since this is 
a net flux, the difference between two unidirectional 
fluxes, from blood to tissue and vice versa, and provides 
a measure of the rate of utilization or trapping of the 
tracer. It measures what does not come back, and so 
is useful for trapped or metabolized tracers, but this flux 
does not give a measure of permeability or of the clear- 
ance via metabolic reaction. These require measurements 
of unidirectional fluxes, which are necessarily equal to 
or greater than net fluxes. 

Consequently, the technique introduced by Crone 
(1963), based on the use of tracer transients, has special 
utility. Two tracers are injected simultaneously; their 
characteristics are chosen so that one serves as a refer- 
ence for the other: a solute of large size serves as a 
marker of the intravascular transport since it cannot es- 
cape, and a molecule of metabolic interest which can 
permeate the capillary wall can be assessed relative to 
it. This led to the expression for the instantaneous extrac- 
tion, 

E (t) = [Cref (t)-- Ca (t)]/Cref (t) (6) 

where the extraction, E(t), can be used a measure of 
the unidirectional flux from blood to tissue at early mo- 
ments before there is any return flux from the tissue 
to the blood. Cref(t) is the outflow concentration for the 
intravascular reference and Ca(t) is that for the permeant 
solute. From this Crone estimated the capillary perme- 
ability-surface area product (PS) 

PS = - F  ln(1-E) .  (7) 

The validity of this approach is greatest when the 
organ has uniform flows and other characteristics (Bass- 
ingthwaighte 1974; Rahimian et al. 1981; Paulson and 
Hertz 1983), and more advanced techniques have 
evolved since to account for organ flow heterogeneity 
and for both capillary and cell membranes (Rose et al. 
1977; Kuikka et al. 1986). 
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The residue function 

In theory, outflow detection and residue detection tech- 
niques provide equivalent information (Zierler 1965), but 
the two techniques have different degrees of accuracy 
for different parts of the system studied. One can more 
accurately correct external smearing of tracer in outflow 
tubing than to find the "true" attenuation, spillover and 
partial volume corrections of the external gamma detec- 
tion. There are several possibilities to correct these, both 
theoretical and true measurements (Budinger and Hues- 
man 1985; Brown et al. 1988). Counting statistics, N, 
is a limiting factor in residue detection, and with recon- 
struction error is about 4N -1/2. Outflow samples can 
be counted with long time intervals to give statistical 
error less than 1% for the sample with the lowest radio- 
activity (Kuikka et al. 1986). However, residue detection 
and especially PET and SPET have the advantage that 
data can be obtained for multiple regions of the tissue, 
which permits examining regional heterogeneity of flow 
and/or metabolism. 

The formal residue function, R(t),  is the integral of 
the Q(t) in Eq. (5), i.e. when diffusible/permeable tracers 
are used, the substance is exchanged between the capil- 
lary and the adjacent tissue, and the residue content Q(t) 
in the tissue is the integral of the difference between the 
amount entering and leaving: 

Q (t) = F i [Ci(s) - Co (s)] d s. (8) 
0 

After a short bolus injection and at any time before 
tracer recirculation the residue function is directly calcu- 
lated from the system impulse response, h(t): 

t 
R(t )  = 1 - S h(s) ds. (9) 

o 

However, in practice any delay and dispersion be- 
tween the organ and the input distorts this relationship. 
The implicit assumptions to use the residue function such 
as in Eq. (8) in the study of capillary tissue exchange 
are that all of the tracer is in the organ at time zero, 
a moment after the injection, none having escaped, and 
that the time required to achieve the peak is negligible 
compared to the time course of washout. Under special 
circumstances one can estimate the intracapillary extrac- 
tion from the residue function alone. The idea is that 
the intravascular unextracted component undergoes rel- 
atively little dispersion and delay, while the fraction 
which permeated the capillary wall washes out smoothly 
in pure monoexponential form. By fitting the tail with 
a single exponential and back-extrapolating to the time 
of the initial peak, the expectation is that the fractional 
height at that moment is the extraction, E (Sejrsen 1970; 
Hercovitch et al. 1987; Cherry et al. 1990; Herrero et al. 
1990). This is a good idea only in special circumstances 
if the system consists of a capillary and ISF alone, as 
in the models of Sangren and Sheppard (1953) and Bass- 

ingthwaighte (1974); if the capillary PS is so low that 
washout becomes almost monoexponential, then reason- 
able estimates of PS may be obtained. However, this 
technique has not been shown in organs with flow heter- 
ogeneity to give good estimates of PS even at low PS. 

Translating model equations into computational 
models 

From the idealized expression of the "quantitative hy- 
pothesis" defining the "goal" in Fig. 1, the next stage 
is to formulate computable model equations in order 
to explore its behaviour. For any set of equations there 
are various ways in which they can be computed: exam- 
ples are to use analytic solutions versus numerical solu- 
tions. For each analytic solution, there are usually sever- 
al different ways of obtaining the string of values that 
describes the function; for a single exponential the an- 
swer can be obtained by performing the exponentiation 
at each time step, but an alternative is to calculate the 
first time step only, then calculate the ratio of one step 
to the next for evenly spaced time intervals and then 
to multiply by this ratio repeatedly to obtain the whole 
curve. In a similar way, to account for the input function, 
one can obtain the model impulse response (by whatever 
means) and then convolute this solution with the input 
function to obtain an estimate to the output function; 
the alternative is to use the input function in the compu- 
tation of the model solution at each time step and there- 

THE M O D E L L I N G  P R O C E S S  

Define the Goal  

Develop a 
...- Quantitative 

.. " Hypothesis  
Design the ~ ~ Formulate  Model  
Experiment  and Explore its 

. "~' " - , . ~  Behaviour  
Acquire bad] fit 

Data ~ Compare  J 
Model  to Data 

good,fit 

Estimate Parameters 
andAppraiseThem 

Conclude: 
The Model  Is the 

WorkingDefinit ion 
of  the System 

Fig. 1. Diagrammatic presentation of the various features of model 
building. The objective is to determine the properties of the system 
under the study 
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C 
6(t) F h ( t )  

Fig. 2. The multicapillary model is composed of a set of parallel, 
independent capillary tissue units, each of which has an impulse 
response hl(t ) to the input 6(t) and relative plasma flow fl. The 
residue content of a tracer in the tissue is the integral of the differ- 
ence between the amount of a tracer entering and leaving, and 
in this illustrative case in which the input is a delta function: R(t) 

t 

= 1 -- ~ h (s) d s. A = artery, C = capillary, and V= venula; and h (t) 
o 

is the summarized impulse response at the venous end 

by completely avoid the extra computation of the convo- 
lution. 

All of these models are simplifications of reality. In 
formulating whole-organ models, one considers the ob- 
served data signal to be a weighted sum of several capil- 
lary-tissue units in parallel, as in Fig. 2. Interactions be- 
tween the units are usually ignored. By this approach 
one accounts for flow heterogeneity, as if an observed 
pixel were a composite of grey and white matter in the 
brain, for example. Even seemingly homogeneous organs 
have normally a broad dispersion in regional flows; in 
animal studies this can be measured independently using 
the microsphere technique and the results used to define 
the flow heterogeneity in the model, thereby avoiding 
biased and often large errors in parameter estimates. We 
have not yet learned how to account for independent 
heterogeneities in other features of the tissue. 

A generic model of a capillary tissue unit is shown 
in Fig. 3, from which erythrocytes have been omitted 
for the sake of simplicity. The viewpoint suggests a route 
for solute permeation (PSg) through the interendothelial 
clefts, the route for small hydrophilic solutes, but which 
is effectively closed to albumin and larger proteins. Per- 
meation through both sides of the endothelial cell is an- 
other possibility; from the interstitium the conductance 
into the parenchymal cells is given by PSpo. The volumes 
are not free parameters, but are anatomic volumes modi- 
fied to account for asymmetrical transport  across the 
membranes and by intracellular binding and so become 
virtual volumes of distribution. The Ds represent disper- 
sion or diffusion coefficients; in the compartmental  form 
these are all set at infinity so that there is uniformity 

of concentration along the length. The Gs represent gu- 
losities or clearances by transformation or consumption, 
and have identical units to the flow F or the PSs. 

For  the convection-diffusion-reaction models used for 
image analysis, the standard approaches to obtaining 
solutions have been classed into two groups: distributed 
models and compartmental  models. These are simply 
two different methods for getting numerical solutions. 
Having different methods of solution should not matter  
if the resultant forms of the model function are not differ- 
ent. For  example, the sliding fluid element numerical 
method of Bassingthwaighte et al. (1989b) produces so- 
lutions within a small fraction of 1% different from the 
analytic solution of the analytic technique used by Rose 
et al. (1977), but is up to one million times faster for 
runs to fit data acquired over 3 rain or longer, the trick 
was in using larger internal time steps and avoiding con- 
volution integrations. Likewise, it would not matter if 
one computed exponents by repeated multiplies or by 
exponentiation, except for the time required. What  does 
matter is whether or not the numerical representation 
does give the waveform defined in the "quantitat ive hy- 
pothesis". 

In the physiological literature, the use of compart- 
mental models for flow and exchange problems has all 
but disappeared since the work of Sangren and Sheppard 
(1953), Renkin (1969), Zierler (1965, 1981), Crone (1963), 
Goresky et al. (1973) and Bassingthwaighte (1966). The 
reasons are two. Firstly, high resolution data cannot be 
fitted by compartmental  models proving that they are 
inadequate when you can test them against data. Second- 
ly, they are based on the assumption of complete mixing 
along the length of blood vessels between the inflow and 
the outflow, an assumption that is proven incorrect by 
observations of the flow of radio contrast media through 
hearts or kidneys. The reasons for their persistence are 
basically that one cannot see from the time course of 
low-resolution residue functions obtained by SPET or 
PET or gamma imaging that the model solution is a 
poor  fit and, secondly, that apparently useful results can 
be obtained with their computationally simple forms. 

What  is not commonly appreciated is that: compart- 
mental models are merely mathematically poor representa- 
tions of the same systems for which distributed models 
are used, and the numbers of independent parameters are 
exactly the same. (It is true that the users of distributed 
models to tend to use more complex models, for example 
accounting for both capillary and cell membranes rather 
than just the composite barrier, but this represents a 
more detailed hypothesis, and is a separate issue.) 

Distributed and compartmental models 
compared 
The basic difference between the distributed and com- 
partmental models is that the former are designed to 
account for gradients in concentration along the length 
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of the capillary and in the surrounding tissue. In the 
compartmental stirred tank model, the assumption of 
complete internal mixing has the corollary that there 
is a sharp discontinuity between the inflow concentration 
and the immediately adjacent capillary concentration, 
but there is no gradient within the tissue or at the out- 
flow where the venous concentration is identical to that 
throughout the capillary. This sharp inflow discontinuity 
is intellectually offensive because it contrasts with what 
occurs in nature but, more importantly, is mathemati- 
cally troubling because it distorts the waveform. This 
reduces the potential for considering the compartmental 
mathematics as adequate for the job of describing the 
anatomy and physiology. However, there is not a lot 
of documentation in the literature making this point; 
neither the Zierler article (1981) nor the Bassing- 
thwaighte and Goresky (1984) review were published in 
places obvious to investigators in nuclear medicine, and 
there is no doubt that there is a need for specific exam- 
ples of where such models succeed and fail. 

One tool for making such comparisons is a model 
form which is a variant of the sliding fluid element algo- 
rithm of Bassingthwaighte (1974); it is the CTEX or com- 
partmental capillary-tissue exchange version in which 
the capillary (and the surrounding tissue) is composed 
of a series of stirred tanks, accounting for the axial gra- 
dients in concentration and reducing the discontinuity 
at the inflow to a series of small discontinuities, one 
for each of the stirred tanks. Good numerical representa- 
tion of the situation is obtainable by using 20 or 30 
segments along the unit; comparison with the compart- 
mental model can be made simply by reducing the 
number of tanks in the series to 1, without making any 
changes in the parameters. What is found is that the 
fits of the models to the data become poorer as the 
number of segments is reduced, and the values of the 
membrane conductances, the PSs, and the volumes and 
the consumption rates all change. 

In real life some physiological parameters have gra- 
dients along the capillary length. Wiederhielm (1965) 
found that capillary permeability increased toward the 
venous end; accordingly, models have been devised to 
account for this (Bassingthwaighte 1974). Goresky et al. 
(1973) found in the liver that there were striking gra- 
dients along the hepatic sinusoid in trapped tracer galac- 
tose ... virtually none reached the centrilobular vein. 
Most models do not account for these secondary effects 
since the influences on the residue functions and on the 
outflow responses are not great. 

There is an extensive body of literature on these tech- 
niques which give exemplary applications. Compartmen- 
tal approaches are covered by Berman et al. (1962), Shep- 
pard (1962), Brown (1980), Carson et al. (1983), Godfrey 
(1983) and in most comprehensive detail by Jacquez 
(1985). The applications in nuclear medicine to describe 
biological processes have been covered by Berman 
(1963), Sokoloff et al. (1977), Huang et al. (1980), Gjedde 
and Christiansen (1984), Gambhir et al. (1987), Iida et al. 

(1988) and Herrero et al. (1990). Distributed modelling 
is covered in the specific references given in the preceding 
paragraphs, in extensive papers by Goresky and col- 
leagues (1983), including those of Rose et al. (1977, i980), 
Bassingthwaighte and colleagues, and the reviews by 
Bassingthwaighte and Goresky (1984) and by Keingnen 
and Kuikka (1980). 

Limitations in modelling analysis 

All of these models are incomplete, inexact, or just wrong 
in one way or another. The biology is never so precisely 
ordered that any model can be correct. Consequently, 
there is no basis for debates between users of different 
models where each claims that he has the "right way". 
All models are compromises. The dicussion can then 
move to the higher plane, and centre on questions such 
as "Will this model formulation yield a correct, unbiased 
estimate of a metabolic transformation flux, within 5% 
error ?" 

In many studies, the purpose of estimating tracer up- 
take, or washout, is to estimate metabolic fluxes. Mea- 
surement of permeabilities of capillary and cell mem- 
branes is in such cases a secondary issue. When this 
is so, then it can be persuasively argued that the simplest 
and cheapest method of measuring metabolic flux is the 
method to choose. What one must then beware of is 
the temptation to think that the other parameters of 
the model solution are valid, even when the conditions 
for their validity are violated. An example is the use 
of fluorodeoxyglucose (FDG) for the estimation of the 
hexokinase-mediated phosphorylation of FDG. Because 
this reaction dominates the incorporation of the tracer 
fluorine-18 into a species pretty well retained in the tissue 
(at least in the brain the glucose-6-phosphatase is not 
highly active), the measurement of the flux is accurate 
within a few percent when using quite different models 
(compartmental or distributed types of various sub- 
forms). In the diagram of Fig. 3, this flux would be Gpc 

# l  II II :5 I} 
g P~ecl 

__c~S~_ 'Spc']PSeca ~.)Gis f ~Dis ~ Vrsf~TEn'~l,~t 

Fig. 3. Schematic diagram of the three-barrier, four-region capillary 
tissue model. The model is composed of plasma at flow Fp and 
surrounding capillary endothelial wall, interstital fluid space, and 
parenchymal cell. The Vs are the volumes of distribution, PSs are 
the permeability surface-area products, Ds are the axial dispersions, 
and Gs are the intraregional reactions or consumptions. Concentra- 
tions of tracer in different spaces are given by C 



times Cpc. The different models give very different esti: 
mates of Cpc and Gpc , because the intracellular concen- 
tration Cp¢ is highly dependent on model form and thus 
on the values of the membrane PSs. The result is that 
n o n e  of the parameters of the model are reliably estimat- 
ed, even though the flux is rather well estimated. The 
investigator however usually feels obliged to report the 
PSs and Gs since these are what the modelling provides 
and reporting the values gives a complete story about 
what the investigator has done. No one would say that 
this is an error, yet. The error comes next: the reader 
naturally tends to believe that the PSs and Gs are as 
valid as the fluxes, and the writer almost always fails 
to tell him that they are no good as physiological param- 
eters. Thus we see the rate constants of the compartmen- 
tal models, the ks which are mainly composites of PSs 
divided by Vs, reported and compared from one study 
to another. Here the case for multicapillary distributed 
models becomes stronger; the fact that these models can 
be fitted to high resolution data argues that the physical 
representation is more suitable, and raises one's confi- 
dence in the reliability of these PSs. However, the gener- 
ality remains that PSs and Vs are more model-dependent 
than simple fluxes which depend solely on mass balance. 

As a generality one can say that the compartmental 
models are less erroneous when the obvious deviations 
from reality are smaller. When the arteriovenous differ- 
ence for a solute is small, then the obnoxious discontin- 
uity in concentrations between the inflow and capillary 
is small, and so one expects less error. Do not be mislead 
by this: it is not the steady state A-V difference for non- 
tracer mother substance that counts here, but it is the 
instantaneous extraction of the tracer relative to an in- 
travascular reference solute that counts. The relevant 
concentration gradient that destroys the validity of the 
compartmental model is for tracer, not mother sub- 
stance. For glucose, the A-V difference across most or- 
gans is small, a few percent, because the net uptake is 
rather small. But the first pass tracer extraction in heart 
and brain is about 50%, a huge gradient, and so esti- 
mates of PSs and Ks by compartmental models tend 
to be much too high, sometimes by 2 to 4 times. Since 
the degree of overestimation depends on the actual con- 
ductances, the estimates are of limited utility and can 
be compared reliably for directional changes only when 
flows and metabolic fluxes are much the same. 

The c l e a r a n c e  concept  for metabo l ic  t rapping 
of t racer  

A general concept concerning steady-state tracer uptake 
by an organ or clearance from the blood is diagramed 
in Fig. 4 for one- and two-barrier models, a modification 
of Renkin's diagram (1959). For  both, the situation dia- 
gramed assumes total retention of all tracer that enters 
the tissue region farthest from the plasma space. For 
the two-barrier model there is bidirectional flux across 
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Fig. 4. Clearance diagram for one- and two-barrier models with 
total absorption beyond the last barrier. Steady-state clearance 
CL=extraction x flow and can be given as CL= 1/(1/PS1 + 1/PS2). 
Note that for flow values greater than 1.0 ml/min per g there are 
smaller and smaller increases in clearance 

the capillary barrier and unidirectional loss into the cell 
region. At low flow the clearance =flow, i.e. it is flow- 
limited, and all the tracer that is delivered is cleared 
from blood into the tissue. At the highest flows, extrac- 
tion becomes a hyperbolic function of flow, flow x extrac- 
tion = constant, and the clearance is governed by the bar- 
rier conductances. In the mid-range of flows, both F 
and PSs infuence the uptake. The curvature in this inter- 
mediate regime depends on the model formulation. The 
physiology has an influence also, for recruitment will 
increase the PS. Therefore, different empirical equations 
are applied to define extraction for absolute quantifica- 
tion of flow (Mullani and Gould 1983; Herrero et al. 
1990). The clearance applies to all model forms and is 
particularly useful when the return flux is small, as for 
brain F D G  uptake or myocardial Rb uptake. 

For steady-state loss the compartmental models differ 
from the axially-distributed models. Traditionally in au- 
toradiography and in PET and SPET modelling analysis 
investigators have considered tissues to be composed of 
a single cell type with a single barrier or no barrier be- 
tween blood and tissue (Sokoloff et al. 1977; Gjedde and 
Christensen 1984; Herrera et al. 1990), but this oversim- 
plification will not be necessary when models such as 
that in Fig. 3 become generally available in multicapill- 
ary, whole organ form. The drawback that the solutions 
of the partial-differential equations are complicated 
(Rose et al. 1980) has been overcome by the use of 
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very fast numerical algorithms (Bassingthwaighte et al. 
1989b). 

A problem with PET and SPET data is that data 
are obtained from one tracer at a time. Since parameters 
are not so clearly identifiable with single tracer experi- 
ments, a series of runs with different tracers, characteriz- 
ing separately the vascular and extracellular spaces is 
useful in enhancing the accuracy of parameter estimation 
with either compartmental  or axially-distributed models. 

An important concept helps us to deal with the inade- 
quacy of single tracer data. It is to appreciate that other 
data on the same tissue must not be ignored when analysing 
the single tracer data. The data obtained from steady- 
state tracer experiments or from morphometry  on the 
anatomic volumes of cells and interstitium and capillary 
volumes should be used as constraints on the modeling. 
While the values from another study may not be exactly 
applicable to the PET study, one can use one's judge- 
ment of the physiological situation to allow directed de- 
viations from the anatomic data, and the constraints are 
very useful in increasing the accuracy of the estimates 
of the unknown parameters. Sometimes anatomic vol- 
umes are smaller than virtual volumes of distribution. 
For  rubidium, which is concentrated in cells by the sodi- 
um pump, the volume of distribution in the cell, Vp¢, 
will be approximately 30 times the anatomic volume. 
Thirty is the ratio of the intracellular to the extracellular 
potassium concentration and would apply if potassium 
and rubidium are handled identically by the pump. Ob- 
viously, such an assumption should be validated. When 
the sodium pump fails, for lack of ATP, then the volume 
of distribution must fall, but it cannot fall below the 
anatomic cell volume. Thus such ideas can be used in 
constraining the range of possible parameter values. The 
key principle is that when one cannot obtain all of the 
relevant data in the single experiment, it is vital to use 
what one knows of the anatomy and physiology from 
other studies. 

Tools for computer simulation and fitting 

Given the mathematical equations making up a model, 
it is essential that they are programmed and solved cor- 
rectly. Solutions for sets of analytic equations (linear or 
non-linear) can be tested directly: by substituting a solu- 
tion received back into the set of equations to see if 
they are satisfied. Solutions of differential or partial dif- 
ferential equations should be tested with smaller step 
sizes to see convergence or compared with other numeric 
methods. A valid model must have physiologically rea- 
sonable values for any parameters and have enough sen- 
sitivity, i.e. the model results must change when the pa- 
rameter value is changed. On the other hand, a small 
change in a parameter value should not cause very large 
changes in the model behaviour. Moreover, a desirable 
quality in a model is that all or most of its parameters 
be identifiable in the time range where experimental data 
is available (Bellman and ~s t r6m 1970; Cobelli and 
DiStefano 1980; Godfrey 1983; Jacquez and Perry 1990). 
Particularly important  is also the requirement that fun- 
damental physical or chemical laws are not broken. 

Table 1 shows a limited list of available non-commer- 
cial programs which have general utility. Some of these 
programs run relatively fast on modern microcomputers 
equipped with a sufficient amount  of memory (>  2 Mb), 
with a hard disk and with 80 386 + 80387 based proces- 
sors or similar ones. Some, like SIMCON, are designed 
for workstations but can be run at PCs. 

For which purpose does one use modelling ? 

Model analysis is a complex procedure. It involves not 
only formal mathematics but also the investigator's intu- 
ition (Kein~inen and Kuikka 1980). The modelling should 
be used to aid the intuition or to educate one to under- 

Table 1. Some flexible, non-commercial 
software packages for modelling purposes Program Comments Address for correspondence 

SCOP & SCOPFIT Needs TURBO C 

SAAM & CONSAM" 

BLD 

SIMCON 

but works even in 
a PC-8086 
A massive software 
package; needs a 
4 Mb memory. 
Runs under VAX, 
VMS or UNIX 
Specially designed 
for PET under 
VAX, VMS or 
UNIX 
Interface for inter- 
active modelling 
under UNIX using 
FORTRAN or C 

National Biomedical Simulation Resource, 
Duke University Medical Center, 
Durham, NC 27710, USA 
Resource Facility for Kinetic Analysis, 
Center for Bioengineering, FL-20, 
University of Washington, 
Seattle, WA 98195, USA 

Department of Nuclear Medicine 
NIH, Building 10, Room 1C-401, 
Bethesda, MD 20892, USA 

Simulation Resource Facility for 
Circulatory Transport and Exchange, 
University of Washington, WD-12, 
Seattle, WA 98195, USA 

" The recent version is also available for PCs 
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stand the dynamic behaviour of a system, which under- 
standing we then call "intuition".  PET provides a unique 
tool to measure regional blood flow or metabolic events 
in vivo. However, the use of single tracer, or of a single 
image of the distribution of tracer at a given time, may 
not give good accuracy in measurements of metabolism. 
Dynamic studies with multiple tracers are needed for 
absolute estimation. A good strategy is to use a vascular 
tracer, an extravascular tracer and one for estimating 
intracellular metabolism. The one-site availability of 
tracers and the long duration of a study (hours) are 
strongly limiting factors. More work needs to be done 
on determining the least amount  of data acquisition nec- 
essary for acceptable accuracy in estimating local tissue 
functions. 

Mathematical  modelling is used to interpret the data. 
Parametric imaging, the mapping of the regional esti- 
mates of particular parameters,  is most  useful in convey- 
ing a summary  of the results to the investigator (Schad 
et al. 1990). The parametric image can be interpreted 
as a possible pathological finding against normal  "land- 
marks" ,  as it "super imposes"  the dynamic behaviour 
on the anatomy. Parametric imaging (Fig. 5) is generally 
used in nuclear ventriculography (phase and amplitude 
images), as well as in PET studies Gjedde-Patlak or k- 
value plots (Patlak et al. 1983). One likes to provide an 
image of the physiologic function (Sokoloff et al. 1977; 
Lammer t sma  et al. 1981; Gjedde and Christensen 1984; 
Farde et al. 1986). An important  future approach will 
be the combining of the multiple indicator dilution meth- 
od (Kuikka et al. 1986; Bassingthwaighte et al. 1989b) 
simultaneously with the PET tracer study. Since the pres- 
ence of 7-emitting or fl-emitting tracers does not interfere 
with the PET signal reconstruction, one can perform 
such rather definitive studies whenever a sequence of 
samples can be obtained by catheter from the venous 
effluent from an organ. Combining the multiple tracer 
technique with PET and analysing with axially distrib- 
uted modelling is the ideal method, as it provides both 
high temporal  and spatial resolution, as well as physio- 
logically meaningful interpretation of data. 

Conclusions 

Mathematical  modelling and modern  imaging technique 
offer a unique possibility for insight into the physiologi- 
cal and biological properties of the tissue. The choice 
of mathematical  modelling depends on the rate of capil- 
lary tissue exchange, as much as on the investigator's 
intuition. It  remains fascinating, based on relatively sim- 
ple concepts, which allow both quantitative estimation 
of flow and metabolism and introduce "super imposed"  
images of the dynamic behaviour of the tissue. These 
estimates, when carefully used with a knowledge of the 
underlying assumptions of the model, give more useful 

information and may help to make decisions about the 
clinical progress of patients. 
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