I. A. Mal'tsev UDC 517.11

Let \mathcal{P}_{κ} be the collection of all functions defined on the set $\mathcal{E}_{\kappa} = \{0,1,\dots,\kappa-1\}$ with values in this set, let $\mathcal{R}_{\kappa} = \langle \mathcal{P}_{\kappa}; \zeta, \mathcal{T}, \Delta, \nabla, * \rangle$ be the Post algebra of finite rank k [2], and let \mathcal{C} be a subalgebra of the algebra \mathcal{R}_{κ} . It will be assumed throughout that $\kappa \geq 3$. We denote by \mathcal{C}^{ℓ} , $t \neq 0$, the set of all functions of \mathcal{C} dependent on precisely ℓ variables, and by $\mathcal{C}^{(s)}(\ell \leq s \neq \kappa)$ the set of all functions of \mathcal{C} , taking not more than s values. We denote by \mathcal{L} the algebra generated by the set of all the functions of \mathcal{R}_{κ} , which are expressible in the form $f(f_{\ell}(x_{\ell}) \oplus \dots \oplus f_{n}(x_{n}))$, where \oplus denotes addition mod 2, and the functions $f(f_{\ell}, \dots, f_{n})$ belong to \mathcal{R}_{κ} . Given any function $f \in \mathcal{R}_{\kappa}$ we write $f^{(s)}$ to denote that $f \in \mathcal{R}_{\kappa}^{(s)}$ and write ∂f for the set of values of the function f. We shall call the algebras $\mathcal{L}^{(2)}, \mathcal{R}_{\kappa}^{(2)}, \mathcal{R}_{\kappa}^{(3)}, \dots, \mathcal{R}_{\kappa}^{(\kappa-1)}$ cells of the algebra \mathcal{R}_{κ} .

We introduce into $\mathcal{Z}^{(2)}$ the equivalence relation x_{ρ} putting functions f_1 and f_2 in the same class if one of the following conditions is satisfied:

- 1) the functions f_1 and f_2 are identical,
- 2) the functions f_1 and f_2 belong to $\mathcal{X}_{\kappa}^{(1)}$ and depend on the same number of variables,
- 3) $\partial f_1 = \partial f_2$, while there exists a function $h \in \mathcal{F}_{\kappa}^{\prime}$, taking two values in the set ∂f_2 and such that $f_1 = h(f_2)$.

The functions f_1 and f_2 will be called dual if $f_1 =_{x_0} f_2$.

The relation \mathscr{L}_{ρ} is clearly stable with respect to the operations ζ , \mathcal{L} . A ∇ . Let $g_i^* = g_i * h_i$, $g_2^* = g_2 * h_2$, $g_1 = g_2 * h_2$, $g_1 = g_2 * h_2$. If the functions g_i and g_2 belong to $\mathcal{L}^{(2)}$, then

$$q_{1}^{*}(x_{1},...,x_{m+n-1}) = f_{10}(f_{1}(h_{1}(x_{1},...,x_{m})) \oplus f_{12}(x_{m+1}) \oplus ... \oplus f_{1m+n-1}(x_{n+m-1})),$$

$$q_{1}^{*}(x_{1},...,x_{m+n-1}) = f_{10}(f_{21}(h_{1}(x_{1},...,x_{m})) \oplus f_{12}(x_{m+1}) \oplus ... \oplus f_{2m+n-1}(x_{n+m-1})).$$
(1)

It can easily be seen that, if \mathcal{J}_1 , \mathcal{J}_2 and h_1 , h_2 are each a pair of dual functions, then it follows from Eqs. (1) that g_1^* , g_2^* is a pair of dual functions. Hence the relation \boldsymbol{x}_ρ is also stable with respect to the operation \boldsymbol{x} , i.e., \boldsymbol{x}_ρ is a congruence in $\boldsymbol{\mathcal{L}}^{(2)}$.

It was shown by A. I. Mal'tsev in [2] that there are three congruences in any subalgebra of the algebra \mathcal{R}_{κ} , namely, \varkappa_{o} , which is the same as the equality relation, \varkappa_{1} , which is the same as the identically true relation, and \varkappa_{a} , under which two functions are put in the same class if they depend on the same number of variables. It was also shown in [2] that there are no other congruences in the algebra \mathcal{R}_{κ} . We shall show that this is likewise true for cells of the algebra \mathcal{R}_{κ} , other than $\chi^{(2)}$, and that there are just four congruences in $\chi^{(2)}$.

THEOREM 1. If α is a cell of the algebra \mathcal{H}_{κ} , different from $\mathcal{L}^{(2)}$, then there are just three congruences in it: α_0 , α_1 , α_2 . In the cell $\mathcal{L}^{(2)}$ there are just four congruences: α_0 , α_1 , α_2 , α_2 , α_3 , α_4 , α_4 , α_5 .

Theorem 1 is a consequence of the following three lemmas.

Translated from Algebra i Logika, Vol. 11, No. 6, pp. 666-672, November-December, 1972. Original article submitted November 14, 1972.

© 1974 Consultants Burcau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

LEMMA 1. Let α be a congruence in the algebra $\mathcal{S} \subseteq \mathcal{F}_{\kappa}$, containing the cell $\mathcal{C} \neq \mathcal{L}^{(2)}$. If there exist in \mathcal{S} two distinct α -congruent functions $f_1 \cdot f_2$ dependent on the same number of variables, then any two functions of \mathcal{C} , which depend on the same number of variables, are α -congruent.

By hypothesis, there exist in E_{κ} numbers $a_1,...,a_n$, b_1 , b_2 such that $b_1 \neq b_2$ and

$$f_1(a_1,...,a_n)=b_1$$
, $f_2(a_1,...,a_n)=b_2$.

We denote by C_{ℓ} $(x_{\ell}, \dots, x_{n}) (\ell = Q_{\ell}, k - \ell)$ the function identically equal to ℓ . Obviously,

$$C_{\xi_{i}}(x) = f_{i}\left(c_{a_{i}}(x), \dots, c_{a_{n}}(x)\right), C_{\xi_{2}}(x) = f_{2}\left(c_{a_{i}}(x), \dots, c_{a_{n}}(x)\right).$$

Since $\alpha \supset \mathcal{R}_{\kappa}^{(1)}$, we have $c_{\xi_1} = c_{\xi_2}$. The following functions belong to the algebra α :

$$t_{uzv}(x) = \begin{cases} Z & \text{if } x = u, \\ v & \text{if } x \neq u. \end{cases}$$

Since, for any numbers α , β on \mathcal{E}_{κ} we have $(t_{\ell_{1}\alpha\delta}(\mathcal{C}_{\ell_{1}}(x))) =_{\alpha} t_{\ell_{1}\alpha\delta}(\mathcal{C}_{\ell_{2}}(x))$, i.e., $c_{\alpha}(x) =_{\alpha} \mathcal{C}_{\delta}(x)$, all the functions of $\mathcal{R}_{\kappa}^{(1)}$, which depend on the same number of variables, are α -congruent.

Let g be an arbitrary n-place function of α , $g \notin \mathcal{R}_{\kappa}^{(1)}$. We shall show that g is α -congruent with an n-place function of $\mathcal{R}_{\kappa}^{(1)}$. Let α and α be fixed numbers from the set δg . We introduce the functions

$$Q(x,y) = \begin{cases} y & \text{if } x \neq \alpha \text{ and } y \in \delta q : \\ \alpha & \text{otherwise,} \end{cases}$$

$$\rho(x) = \begin{cases} x, & \text{if } x \in \partial g, \\ d, & \text{otherwise.} \end{cases}$$

These functions obviously belong to the algebra $\mathcal{O}(x)$. Since $\mathcal{C}_d(x) = \mathcal{C}_h(x)$, we have $g(x, \mathcal{C}_d(x)) = \mathcal{C}_d(x)$, i.e., $\mathcal{C}_d(x) = \mathcal{C}_d(x)$; hence

$$g(C_{d}(x), x) \equiv_{\alpha} g(t_{ddh}(\alpha), x),$$

$$C_{d}(x) \equiv_{\alpha} \rho(x),$$

and consequently,

$$p(g(x_1,...,x_n)) = c_d(g(x_1,...,x_n)),$$

$$g(x_1,...,x_n) = c_d(x_1,...,x_n).$$

LEMMA 2. Let α be a congruence in the algebra $\mathcal{L}^{(2)}$. If there exist in $\mathcal{L}^{(2)}$ two distinct α -congruent functions f_1 , f_2 , dependent on the same number of variables, then $\alpha \geq \alpha_p$ if the functions f_1 and f_2 are dual; or $\alpha \geq \alpha_p$, otherwise.

As in Lemma 1, it is easily shown that any two functions of $\mathcal{L}^{(\ell)}$, dependent on the same number of variables, are α -congruent. It follows from the truth of the congruence

$$g(x_1,...,x_n) \oplus c_a(x_1,...,x_n) \equiv_{\boldsymbol{x}} g(x_1,...,x_n) \oplus c_o(x_1,...,x_n) \left(\delta g = \{0,1\}\right)$$

that, if $g_1'' = g_2'' \oplus c_a''$ and $\partial g_2 = \{0,1\}$, then $g_2 = g_1$. Let h be an arbitrary function of $\mathcal{L}^{(2)}$, $h \notin \mathcal{R}_{\kappa}^{(1)}$, and $\partial h = \{a_1, a_2\}$. We introduce the three functions

$$f(x_1,...,x_n) = \begin{cases} 0, & \text{if } h(x_1,...,x_n) = a_1; \\ 1, & \text{if } h(x_1,...,x_n) = a_2; \end{cases}$$

$$g(x_1,...,x_n) = f(x_1,...,x_n) \oplus i;$$

$$U(x) = \begin{cases} a_1, & \text{if } x = 0; \\ a_2 & \text{otherwise.} \end{cases}$$

Since u(f) = h, the function u(q) is dual to the function h and distinct from h, and $u(f(x_1,...,x_n)) = u(g(x_1,...,x_n))$, so that $x \ge x_p$.

Assume now that the functions f_1 and f_2 are not dual. Let f_1 , $f_2 \in \mathcal{R}_{\kappa}^n$. The fact that f_1 and f_2 are not dual implies that one of them does not belong to $\mathcal{R}_{\kappa}^{(f)}$, and also, that one of the following conditions is satisfied:

- a) $\mathcal{O}_{f_s} \notin \mathcal{O}_{f_s}$ and $\mathcal{O}_{f_s} \notin \mathcal{O}_{f_s}$;
- b) $\delta f_1 \subseteq \delta f_2$ or $\delta f_2 \subseteq \delta f_1$ and there exist in \mathcal{E}_K numbers $\alpha_{H_1,\dots,A_{2n}}, \alpha_{H_1}, \alpha_{21}, \dots, \alpha_{2n}$ such that $f_1(\alpha_{H_1,\dots,A_{2n}}) = f_2(\alpha_{H_1,\dots,A_{2n}}), f_1(\alpha_{21},\dots,\alpha_{2n}) \neq f_2(\alpha_{21},\dots,\alpha_{2n}).$

We shall show that case a) reduces to case b). Assume that $f_1 \notin \mathcal{R}_{\kappa}^{(f)}$ and let $\partial f_1 = \{\alpha_1, \alpha_2\}$, $\partial f_1 \cap \partial f_2 = \alpha_2$ or alternatively, $\partial f_1 \cap \partial f_2 = \phi$. We choose in $\mathcal{R}_{\kappa}^{(f(2))}$ a function g such that $g(\alpha_1) = \alpha_1$, $g(\alpha_2) = \alpha_2$ if $\alpha_1 \neq \alpha_2$. Obviously, the functions $g(f_1)$, $g(f_2)$ are not dual, and they satisfy condition b).

Take the case b). Let $f_1(a_{f_1},...,a_{f_n}) \neq f_1(a_{2f_1},...,a_{2f_n})$ (if not, then this is true for f_2). We choose in $\mathcal{I}^{(2)}_n$ the functions

$$u_{i}(x) = \begin{cases} a_{ii}, & \text{if } x=0, \\ a_{2i}, & \text{if } x\neq0, \end{cases}$$

and let

$$t_1(x) = f_1(u_1(x),...,u_n(x)), t_2(x) = f_2(u_1(x),...,u_n(x))$$

The functions t_1, t_2 are not dual, $t_2 \in \mathcal{R}_{\kappa}^{(i)}$, $\partial t_1 = \partial f_1$, and $t_4 = 2t_2$.

Let h(x) be any function of $\mathcal{L}^{(1)} \mathcal{F}_{\kappa}^{(1)}$ and $\delta h = \{ \ell_1, \ell_2 \}$. We introduce the functions

$$h_i(x) = \begin{cases} 0, & \text{if } h(x) = b_i, \\ i, & \text{otherwise,} \end{cases}$$

$$h_2(x) = \begin{cases} b_1, & \text{if } x = b_1(0), \\ b_2, & \text{otherwise.} \end{cases}$$

Obviously, $h_2(t_1(h_1)) = h_2(t_2(h_1))$. It can easily be seen that $h_2(t_1(h_1)) = h$, and for some $\alpha \in E_K$, we have $h_2(t_2(h_1)) = c_\alpha$, so that $h = c_\alpha$. Hence any two functions of $\mathcal{R}_K^{(1/2)}$ are α -congruent.

Now let q^n be an arbitrary essentially multi-place function of $\mathcal{Z}^{(2)}$. There exist in $\mathcal{Z}_{\kappa}^{\prime}$ functions $\rho, \rho_1, \ldots, \rho_n$ such that

$$q(x_1,...,x_n) = \rho(\rho_i(x_i) \oplus \cdots \oplus \rho_n(x_n)).$$

With each number i=1,...,n we associate the number 0, if the function $\rho_i(x)$ takes values of only one parity; otherwise, we associate with it two numbers ℓ_i^{ℓ} , ℓ_2^{ℓ} , such that the number $\rho_i(\ell_1^{\ell})$ is even, and the number $\rho_i(\ell_2^{\ell})$ odd. We introduce the functions $(\ell=1,...,n)$:

$$Q_{i}(x) = \begin{cases} 0, & \text{if } \rho_{i}(x) \text{ takes values of just one parity:} \\ \theta_{i}^{i}, & \text{if } \rho_{i}(x) \text{ is even:} \\ \theta_{2}^{i}, & \text{if } \rho_{i}(x) \text{ is odd.} \end{cases}$$

We have the congruences

$$P(P_1(q_1(x_1)) \oplus \cdots \oplus P_n(q_n(x_n))) =_{\mathcal{Z}} P(P_1(c_0(x_1)) \oplus \cdots \oplus P_n(c_0(x_n))) ,$$

$$q_1(x_1, ..., x_n) =_{\mathcal{Z}} c_{\alpha}(x_1, ..., x_n) ,$$

where $\alpha = q(0, ..., 0)$. Lemma 2 is proved.

LEMMA 3. Let α be a congruence in the algebra $\alpha \in \mathcal{H}_{\kappa}$ containing the cell α . If there exist in α two α -congruent functions α , dependent on different numbers of variables, then any two functions of α will be α -congruent.

Let $f \in \mathcal{R}_{\kappa}^{m}$, $f_{\ell} \in \mathcal{R}_{\kappa}^{n}$, $m \in n$ and $a \in E_{\kappa}$. We have the congruences

$$c_{\alpha}(f_1) = \mathcal{L}_{\alpha}(f_2) \quad , \quad \text{i.e.,} \quad c_{\alpha}^{m} = \mathcal{L}_{\alpha}^{n} \quad ,$$

$$\Delta^{n-2} c_{\alpha}^{m} = \mathcal{L}_{\alpha}^{n-2} c_{\alpha}^{n} \quad , \quad \text{i.e.,} \quad c_{\alpha}^{\prime} = \mathcal{L}_{\alpha}^{2} \quad . \tag{2}$$

We introduce the two-place function q:

$$g(x_1,x_2) = \begin{cases} 0, & \text{if } x_2 \text{ is even,} \\ 1, & \text{if } x_2 \text{ is odd.} \end{cases}$$

From (2) we obtain the congruence

$$(\mathcal{T}(q*c_{\alpha}^{\prime}))*c_{\alpha}^{\prime} \equiv_{\alpha} (\mathcal{T}(q*c_{\alpha}^{2}))*c_{\alpha}^{\prime}$$
.

We denote $(\mathcal{L}(q * c_a')) * c_a'$ by q_1 , and $(\mathcal{L}(q * c_a')) * c_a'$ by q_2 . Obviously, $q_1 \in \mathcal{P}_{\kappa}^{2(1)}$, $q_2 \in \mathcal{R}_{\kappa}^3$ and $q_2(x,y,z) = \begin{cases} 0, & \text{if } z \text{ is even,} \\ 1, & \text{if } z \text{ is odd} \end{cases}$

Notice that the functions $\Delta(\Delta q_1)$, $\Delta(\Delta q_2)$ belong to $\mathcal{L}^{(2)}$, that they are not dual and are one-place, and that

$$\Delta(\Delta q_1) \equiv_{\mathbf{z}} \Delta(\Delta q_2).$$

On applying Lemmas 1 and 2, we obtain the proof of Lemma 3.

We denote by φ a one-to-one mapping of the set E_{κ} onto itself and with every function $f \in \mathcal{R}_{\kappa}$ we associate a function $f \in \mathcal{R}_{\kappa}$, such that

$$f^{\alpha}(x_1, \dots, x_n) = [f(x_1 \varphi^{-1}, \dots, x_n \varphi^{-1})] \varphi.$$
(3)

The mapping $\alpha: f \longrightarrow f^{\alpha}$ is an automorphism of the algebra \mathcal{K}_{κ} ; automorphisms of this kind, of subalgebras of the algebra \mathcal{K}_{κ} which are invariant under the mapping α , will be called internal automorphisms of these subalgebras [2]. A. I. Mal'tsev showed in [2] that all automorphisms of the algebra \mathcal{K}_{κ} are internal. The following theorem shows that all automorphisms of cells of the algebra \mathcal{K}_{κ} are likewise internal.

THEOREM 2. If the subalgebra \mathcal{O} of the algebra \mathscr{R}_{κ} contains the algebra $\mathscr{R}_{\kappa}^{(i)}$, then all its automorphisms are internal.

Let α be an automorphism of the algebra \mathcal{O} . Since duality of functions is invariant under isomorphisms, α is an automorphism of the semi-group \mathcal{O}' [2]. We shall show that here, corresponding to functions of $\mathcal{O}'^{(t)}$, we again have functions of $\mathcal{O}'^{(t)}$. For this, we only need to show that functions of $\mathcal{O}'^{(t)}$ do not map into functions of $\mathcal{O}'^{(t)}$. Assume the contrary, i.e., that there exists a function $f \in \mathcal{O}'$ such that $f \notin \mathcal{O}''$ and that for some α of \mathcal{E}_K we have $f^{\alpha} = c_{\alpha}$; then

$$(f * c_{\alpha})^{\alpha} = f^{\alpha} * c_{\alpha}^{\alpha}$$
,

i.e., for some ℓ we have $c_{\ell}^{\alpha} = c_a$, which is impossible.

There thus exists for every x of \mathcal{E}_{κ} a unique y of \mathcal{E}_{κ} such that $c_x^{\alpha} = c_y$, i.e., corresponding to the automorphism α we have a one-to-one mapping φ : $x \to y$ of the set \mathcal{E}_{κ} onto itself. In turn, the mapping φ generates an isomorphism of the type (3) of the algebra α . In order to show that α is the same as α_{φ} , we shall show that all functions in α remain invariant under the mapping $\gamma = \alpha \alpha_{\varphi}^{-1}$.

This is obvious for functions of $\alpha^{\prime\prime\prime}$. Let $f \in \alpha''$ and

$$[f(x_1,...,x_n)]^r = g(x_1,...,x_n)$$
.

In view of the invariance of the functions of $\sigma^{(1)}$, for arbitrary $a_1,...,a_n$ of E_{κ} we have

$$\begin{split} & \left[f\left(c_{a_{1}}(x), ..., c_{a_{n}}(x) \right) \right]^{r} = g(c_{a_{1}}(x), ..., c_{a_{n}}(x)), \\ & \left[f\left(c_{a_{1}}(x), ..., c_{a_{n}}(x) \right) \right]^{r} = f(c_{a_{1}}(x), ..., c_{a_{n}}(x)), \end{split}$$

so that the functions f and g are identical.

COROLLARY. If α is a cell of the algebra \mathcal{R}_{κ} , there exist precisely κ / distinct automorphisms of the algebra α , and all these automorphisms are internal.

LITERATURE CITED

- 1. A. I. Mal'tsev, Algebraic Systems [in Russian], Nauka (1970).
- 2. A. I. Mal'tsev, "Iterative algebras and Post manifolds," Algebra i Logika, 5, No. 2, 5-24 (1966).
- 3. S. V. Yablonskii, "Functional constructions in a k-valued logic," Trudy MIAN im. V. A. Steklova, 51, 5-142 (1958).