V. V. Bludov UDC 519.46

The subgroup $H \subset G$ is said to be strictly isolated in the group if $gx_i^{-1}gx_i \dots x_n^{-1}gx_n \in H$, $g \in G$, $x_i \in G$, $i=1,\dots,n$. implies that $g \in H$. We know that the strict isolation of the identity element is a necessary condition for a group to be ordered. For nilpotent, bigrade, solvable groups, and also for the extension of an Abelian group by a nilpotent group and for a group with nilpotent commutator group, the strict isolation of the identity element is also a sufficient criterion for the group to be ordered [1].

The following questions were posed at the First All-Union Symposium on Group Theory in 1965: Are there groups with strictly isolated identity elements which are not ordered groups, and can a linearly ordered Abelian strictly isolated normal subgroup of a group with a strictly isolated identity element be such that its order is preserved under internal isomorphisms of the whole group [1, 2]?

The example constructed in this article gives a positive answer to the first question and a negative one to the second.

Let $F_1 = \{x_1, x_2\}$, $F_2 = \{y_1, y_2\}$ be free groups with two generators and $F = F_1 \times F_2$ their direct product. For elements of F_1 , in the same way as for words \forall of the alphabet $\langle x_1, x_2, x_1^{-1}, x_2^{-1} \rangle$, we introduce the following numerical characteristics:

 ℓ (V) is the length of the word V. The length of the unit ϵ (the empty word) is assumed to be zero.

$$m(v) = \begin{cases} \ell(v) - i & \text{if } v = x_{i} v', i = 1, 2; \\ \ell(v) & \text{if } v = x_{i}^{-1} v, i = 1, 2; \\ 0 & \text{if } v = e. \end{cases}$$

Here the symbol ϖ denotes the graphic equality of words and is only used between words in reduced (abbreviated) form. If now $f \in F$ and f = vu, where $v \in F_1$, $u \in F_2$, we put $\ell(f) = \ell(v)$, m(f) = m(v). Let Z denote the set of integers, $Z_+(F)$ the subset of elements of an integer ring over F with strictly positive coefficients. The notations $Z_+(F_1)$ and $Z_+(F_2)$ are defined similarly. If $o \in Z_+(F)$, $o = n_i f_i + ... + n_K f_K$, we put $\ell(o) = max \ell(f_i)$, $m(o) = max m(f_i)$, i = 1, ..., K. In F_2 we introduce a linear order relation ω so that for the generators we have $Y_i > \ell$, $Y_2 > \ell$.

Now we consider the free Abelian group M with the following basis elements: a_{α} , b_{α}^{β} , $\alpha \in F_2$, $\beta \in F_1$. We construct the semi-direct product of M and F, using an additive representation for the operation in M and a multiplicative representation for the action of F on M. We specify the operation of F on M by the following relations:

$$a_{\alpha} \cdot x_{i} = -a_{\alpha} + (-i)^{i} (b_{\alpha}^{e} + b_{y,\alpha}^{e}); \tag{1}$$

$$a_{\alpha} \cdot \forall_{i} = a_{\alpha} \gamma_{i} ; \qquad (2)$$

Translated from Algebra i Logika, Vol. 11, No. 6, pp. 619-632, November-December, 1972. Original article submitted October 18, 1972.

• 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

$$b_{\alpha}^{\beta} \cdot x_{i} = b_{\alpha}^{\beta x_{l}};$$

$$b_{\alpha}^{\beta} \cdot Y_{i} = b_{\alpha}^{\beta} Y_{i}, \quad i = 1, 2.$$

$$(3)$$

$$b_{\alpha}^{\beta} \cdot Y_{i} = b_{\alpha Y_{i}}^{\beta}, \quad i = 1, 2. \tag{4}$$

We denote the group thus constructed by G. Let A denote the subgroup of M generated by the elements a_{α} , and let β denote the subgroup generated by the elements b_{α}^{β} . If now $c \in M$ and $b \in Z_{+}(F)$, $6 = \eta_1 f_1 + \ldots + \eta_K f_K$, then C6 denotes $\eta_1 c \cdot f_1 + \ldots + \eta_K c \cdot f_K$.

To prove that the identity element of $\,\mathcal{G}\,$ is strictly isolated we need some auxiliary propositions.

<u>LEMMA 1.</u> Let $a \in A$, $a \neq 0$, $a \in \mathbb{Z}_+(\mathcal{F}_2)$. Then $a \in A$, $a \in A$.

<u>Proof.</u> It follows directly from (2) that $ao \in A$. Now let $\alpha = n_i a_{\alpha_i} + ... + n_{\kappa} a_{\alpha_{\kappa}}$, and, for the sake of definiteness, $\alpha_i > \alpha_{\hat{i}}$, $\hat{i} = 2,...,K$, $n_i \neq 0$, $\delta = p_i u_i + ... + p_N u_N$, $u_i > u_{\hat{j}}$ for $\hat{j} = 2,...,N$. Then

$$\begin{split} &\alpha_{\delta} = n_{i}\alpha_{\alpha_{i}} \cdot \rho_{i}u_{i} + n_{i}\alpha_{\alpha_{j}} \cdot \sum_{j=2}^{N} \rho_{j}u_{j} + \sum_{i=2}^{K} n_{i}\alpha_{\alpha_{i}} \cdot \delta = \\ &= n_{i}\rho_{i}\alpha_{\alpha_{i}u_{i}} + \sum_{j=2}^{N} n_{i}\rho_{j}\alpha_{\alpha_{i}u_{j}} + \sum_{i=2}^{K} \sum_{j=1}^{N} n_{i}\rho_{j}\alpha_{\alpha_{i}u_{j}} \;. \end{split}$$

Since $\rho_1 n_1 \neq 0$ and $\alpha_1 u_1 > \alpha_1 u_j$ for j=2,...,N, and $\alpha_2 u_1 > \alpha_2 u_j$ for i=2,...,K, j=1,...,N, we have $\alpha o \neq 0$ and the lemma is proved.

LEMMA 2. Let $\alpha \in A$, $\alpha \in Z_+$ (F) and suppose the expansion of the expression $\alpha \delta$ in the basis elements contains the basis element b_{α}^{β} with nonzero coefficient. Then for b_{α}^{β} we must have $\ell(\beta) \leq$

<u>Proof.</u> Let $\sigma = \rho_i f_i + \dots + \rho_N f_N$. For arbitrary $j = 1, \dots, N$ consider $\alpha \cdot \rho_j f_j = \rho_j \alpha \cdot u_j \vee_j - \alpha' \vee_j$, where $u_j \in F_2$, $v_j \in F_j$, $u_j v_j = f_j$, $\alpha' \in A$ by Lemma 1. The proof is by induction on the length of v_j . The lemma is true for $\ell(v_i) = 0$. Suppose it is true for v_i such that $\ell(v_i) < L$, $L \ge \ell$ and if now $\ell(v_i) = L$, we write v_i as $V_j = W V_j'$ so that $\ell(W) = \ell$; then $\ell(V_j') < L$. Putting $\alpha' = \sum_{i=1}^{K} n_i \alpha_{\alpha'i}$, we obtain, by (1),

$$\alpha' \cdot \mathbf{v}_{j} = (\alpha' \mathbf{w}) \cdot \mathbf{v}_{j}' = -\alpha' \mathbf{v}_{j}' + (-i)^{\varepsilon} \sum_{i=1}^{K} n_{i} \left(b_{\alpha_{i}}^{\beta \mathbf{v}_{j}'} + b_{\mathbf{v}_{\varepsilon} \alpha_{i}}^{\beta \mathbf{v}_{j}'} \right),$$

where $\beta = W$, if $W = x_{\varepsilon}^{-1}$ and $\beta = \ell$ if $W = x_{\varepsilon}$ $(\varepsilon = 1, 2)$, from which $\ell(\beta V_{j}') \neq m(W V_{j}') = m(V_{j}) \neq m(6)$. For $\alpha' v_j'$ we have $\ell(v_j') < L$ and the induction hypothesis comes into force. Thus, since $\alpha \cdot p_j \cdot f_j$ is arbitrary, the lemma is proved.

LEMMA 3. Let $a \in A$, $a \in Z_+(F)$ and suppose the expansion of aa in the basis elements contains the basis element b_{α}^{ρ} with nonzero coefficient and such that $\ell(\rho) = m(o)$.

Then 1) if $\beta = x_{\varepsilon} \beta'$ ($\varepsilon = 1, 2$), we have $\delta = V \delta_1 + \delta_2$, where $V \in \mathcal{F}_1$, $V = x_{\delta} \beta$ ($\delta = 1, 2$), $\delta_1 \in \mathbb{Z}_+$ (\mathcal{F}_2), $o_{i} \in Z_{+}(F)$;

2) if $\beta = x_{\varepsilon}^{-1} \beta'$ ($\varepsilon = 1, 2$), we have $\delta = V\delta_1 + \delta_2$, where $V \in F_1$, $V = \beta$ or $V = x_{\delta} \beta$ ($\delta = 1, 2, \delta \neq \varepsilon$), $\delta_1 \in S$ $Z_{+}(F)$, $\sigma_{r} \in Z_{+}(F)$.

<u>Proof.</u> Let $a = n_1 a_{\alpha_1} + ... + n_N a_{\alpha_N}, \sigma = \rho_1 f_1 + ... + \rho_M f_M$; then

$$\alpha 6 = (n_i \alpha_{\alpha_i} + \ldots + n_N \alpha_{\alpha_N})(\rho_i f_i + \ldots + \rho_M f_M) = \sum_{i=1}^N \sum_{j=1}^M n_i \rho_j \alpha_{\alpha_i} \cdot f_j.$$

Consider an arbitrary term of the sum $n_i p_j a_{\alpha_i} f_j = n_i p_j a_{\alpha_i} u_j v_j = a' v_j$, where $v_j \in F_j$, $u_j \in F_j$, $u_j v_j = f_j$. By Lemma 1, $\alpha' \in A$, we put $\alpha' = n_i \alpha_i + ... + n_k \alpha_i$. If $\ell(v_j) = 0$, the lemma holds, otherwise we write v_i as $v_i = w v'$, where $\ell(w) = \ell$.

Consider b_{α}^{β} such that $\ell(\beta) = m(\delta)$ and $\beta = x_{\varepsilon} \beta'(\beta = x_{\varepsilon}^{-1}\beta')$, $\varepsilon = 12$, and assume that $v_{j} \neq x_{\delta} \beta$ and $v_{j} \neq x_{\delta} \beta$, $\delta \neq \varepsilon$), $\delta = 1.2$; we can show that in this case b_{α}^{β} does not occur in the expansion of $a'v_{j}$ in basis elements.

By (1) we have

$$a'v_{j} = (a'w)v'_{j} = -a'v' + (-i)^{\frac{1}{2}} \sum_{i=1}^{\kappa} n'_{i} \left(b_{j_{i}}^{\omega v'} + b_{\gamma_{i} j_{i}}^{\omega v'}\right),$$

where $\omega=w$ if $w=x_{\frac{1}{5}}^{-1}$ and $\omega=\ell$, if $w=x_{\frac{1}{5}}$, $\xi=1,2$. Since $\omega v'\neq\beta$, b_{∞}^{β} does not occur in the second term of the above sum. For the first term of $\alpha'v'$ we have: either $m(v')< m(\delta)=\ell(\beta)$ and then b_{∞}^{β} does not occur in the expansion of $\alpha'v'$ in the basis elements, by Lemma 2; or $m(v')=m(\delta)$, but since $\ell(v')<\ell(\delta)$, we have $v'=x_{\frac{1}{5}}^{-1}v''$, $\delta=1,2$, and again, by (1), we obtain

$$\alpha' v' = -\alpha' v'' + (-i)^{\delta} \sum_{i=1}^{\kappa} \alpha'_{i} \left(b_{j_{i}}^{v'} + b_{j_{\delta}, j_{i}}^{v'} \right).$$

Again, b_{∞}^{β} does not occur in the second term since $\beta \neq \gamma'$ and for the first term we have $m(\gamma'') < m(\gamma') = m(\beta) = \ell(\beta)$, from which, by Lemma 2, b_{∞}^{β} does not occur in the expansion of $\alpha'\gamma''$ in basis elements. In view of the above contradiction and the arbitrary choice of the term $\eta_j \rho_j a_{\gamma_j} f_j$, the lemma is proved.

LEMMA 4. Let $a \in A$, $a = n_1 \alpha_{\alpha_1} + ... + n_N \alpha_{\alpha_N}$ and, for the sake of definiteness, $\alpha_1 > \alpha_2$, i = 2, ..., N, $n_1 \neq 0$. Let

$$o = \sum_{j=1}^{M} \rho_{j} v_{i} u_{j} + \delta_{2}, \ \rho_{j} \in \mathbb{Z}, \ \rho_{j} > 0, \ v_{i} \in \mathbb{F}_{i}, \ m(v_{i}) = m(\sigma) =$$

$$= \ell(\sigma), \quad v_{i} = x_{\varepsilon}^{-1} v_{i}', \quad \varepsilon = 1, 2, \quad u_{j} \in \mathbb{F}_{2}$$

and, for the sake of definiteness, $u_1 > u_j$, $j = 2, \dots, M$, $o_2 \in \mathbb{Z}_+(F)$, where V_1 occurs in the expansion of o_2 in terms of the basis. Then the expansion of $o_2 \in \mathbb{Z}_+(F)$, where $v_1 \in \mathbb{Z}_+(F)$, where $v_2 \in \mathbb{Z}_+(F)$, where $v_3 \in \mathbb{Z}_+(F)$, where $v_4 \in \mathbb{Z}_+(F)$ in terms of the basis contains the element $v_4 \in \mathbb{Z}_+(F)$, with coefficient $v_4 \in \mathbb{Z}_+(F)$, and for all other basis elements in $v_4 \in \mathbb{Z}_+(F)$, of this expansion we have $v_4 \in \mathbb{Z}_+(F)$.

 $\frac{\text{Proof.}}{\sum_{j=2}^{m} \rho_{j} \vee_{i} u_{j}} \text{ Put } \delta_{j} = \sum_{j=2}^{m} \rho_{j} \vee_{i} u_{j}, \ \alpha_{j} = \sum_{l=2}^{m} \rho_{l} \alpha_{\alpha_{l}} \text{ ; then } \alpha_{0} = \rho_{i} \rho_{j} \alpha_{\alpha_{l}} \vee_{i} u_{i} + \alpha_{i} \rho_{i} \vee_{i} u_{i} + \alpha_{0} \rho_{i} + \alpha_{0} \rho_{i}$

$$\begin{split} \alpha\sigma &= -n, \rho, \alpha_{\alpha_i} \bigvee_{j}' u_j + \left(-i\right)^{\varepsilon} n, \rho, b_{\alpha_i, u_j}^{\gamma_i} + \left(-i\right)^{\varepsilon} n, \rho, b_{\gamma_i, \alpha_i, u_j}^{\gamma_i} - \\ &- \alpha \bigvee_{j=2}^{M} \rho_j u_j + \left(-i\right)^{\varepsilon} \sum_{i=1}^{N} \sum_{j=2}^{M} n_{i r_j} b_{\alpha_i u_j}^{\gamma_i} + \left(-i\right)^{\varepsilon} \sum_{i=1}^{N} \sum_{j=2}^{M} n_{i \rho_j} b_{\gamma_i \alpha_i, u_j}^{\gamma_i} + \alpha \delta_2 \,. \end{split}$$

Consider the first and fourth terms:

$$-n_i \rho_i a_{\alpha_i} v_i' u_i - \alpha v_i' \sum_{j=2}^{M} \rho_j u_j = \alpha' v_i'.$$

By Lemma 1, $\alpha' \in A$ and since $m(v_i') < m(v_i) = \ell(v_i)$, by Lemma 2, b_{α}^{β} does not occur in the expansion of $\alpha' v_i'$ in terms of the basis. Consider the last term $\alpha \sigma_2$; using Lemma 3 we find that $b_{\alpha}^{\gamma_i}$ can occur in the expansion of $\alpha \sigma_2$ in terms of the basis, only if either v_i or $x_{\delta} v_i$ ($\delta = i, 2$, $\delta \neq \varepsilon$) occurs in the expansion of σ_2 , but the first is impossible, by hypothesis, and the second is impossible since $\ell(x_{\delta}, v_i) = \ell(v_i) + i > \ell(\sigma) \ge \ell(\sigma_2)$.

Consider the second, fifth, and sixth terms:

$$(-t)^{\varepsilon} \left[\sum_{i=t}^{N} \sum_{j=t}^{M} n_{i} \rho_{j} b_{\alpha_{i}}^{V_{i}} + \sum_{i=t}^{N} \sum_{j=2}^{M} n_{i} \rho_{j} b_{\gamma_{\varepsilon} \alpha_{i} U_{j}}^{V_{i}} \right] ,$$

since $\alpha_i u_j \leq \alpha_i u_i \leq \gamma_i u_i$, for all $i=1,\ldots,N$; $j=1,\ldots,M$ and $\forall_{\epsilon} \alpha_i u_j \leq \forall_{\epsilon} \alpha_i u_i \leq \forall_{\epsilon} \alpha_i u_i$, for all $i=1,\ldots,N$; $j=2,\ldots,M$, we find that $b_{\chi_{\epsilon}\alpha_i u_i}^{\gamma_i}$ does not occur in these sums and for all other $b_{\alpha}^{\gamma_i}$ from this expression we have $\alpha < \forall_{\epsilon} \alpha_i u_i$.

Thus, $b_{\ell_{\ell}^{\alpha},\mathcal{U}_{\ell}}^{\gamma}$ occurs only in the third term $(-1)^{\ell}n_{\ell}p_{\ell}b_{\ell_{\ell}^{\alpha},\mathcal{U}_{\ell}}^{\gamma}$ with coefficient $(-1)^{\ell}n_{\ell}p_{\ell}\neq0$ and the lemma is proved.

LEMMA 5. Let

$$b = \sum_{i=1}^{N} \eta_i b_{\alpha_i}^{\beta_i} + b_2$$

and, for the sake of definiteness, $\alpha_i > \alpha_i$, i=2,...,N, $n_i \neq 0$. Suppose for all b_{α}^{β} in the expansion of b_2 in terms of the basis we have $\beta \neq \beta_i$, and $\ell(\beta) \neq \ell(\beta_i)$. Let $\delta \in \mathbb{Z}_+(F)$, $\delta = \sum_{j=1}^{N} p_j v_j u_j + \delta_2$, $p_j \in \mathbb{Z}_+(P_j) > 0$, $v_i \in \mathbb{Z}_+(P_j)$, and for the sake of definiteness, $u_i > u_j$, i=2,...,M. Let v_i not occur in the expansion of δ_i in terms of the basis $\ell(v_i) \geq m(\delta)$, $\ell(\beta_i, v_j) = \ell(\beta_i) + \ell(v_i)$ and for all v_i in the expansion of δ_i in terms of the basis let $\ell(\beta_i, v_j) \geq \ell(\beta_i, v_j)$ for all i=1,...,N. Then the element $b_{\alpha_i}^{\beta_i, v_i}$ occurs and only with coefficient $v_i, v_i \neq 0$, in the expansion of δ_i in terms of the basis and for all other $b_{\alpha_i}^{\beta_i, v_i}$ in this expansion we have $\alpha_i < \alpha_i, u_i$.

Proof. Put

$$\delta_{i} = \sum_{j=2}^{M} \rho_{j} \vee_{i} u_{j} \quad , \quad \dot{b}_{i} - \sum_{l=2}^{N} \eta_{l} b_{\alpha_{l}}^{\beta_{l}} \quad ,$$

then $b_0 = \eta_i \rho_i b_{\alpha_i, \mathcal{U}_i}^{\beta_i, \mathcal{V}_i} + \eta_i b_{\alpha_i}^{\beta_i} (\sigma_i + \sigma_2) + b_i (\rho_i, \mathcal{V}_i, \mathcal{U}_i + \sigma_i) + b_i (\rho_i, \mathcal{V}_i, \mathcal{V}_i + \sigma_i) + (b_i + b_i) \sigma_i$. We transform this using the earlier expressions

$$\begin{split} b\boldsymbol{\sigma} &= n_{1}\boldsymbol{\rho}_{1}\,\boldsymbol{b}_{\alpha_{1}\,u_{1}}^{\beta_{1}\,v_{1}} + n_{1}\sum_{j=2}^{M}\,\boldsymbol{\rho}_{j}\,\boldsymbol{b}_{\alpha_{1}\,u_{j}}^{\beta_{2}\,v_{1}} + \\ &+ \sum_{i=2}^{N}\sum_{j=i}^{M}\,n_{i}\,\boldsymbol{\rho}_{j}\,\boldsymbol{b}_{\alpha_{i}\,u_{j}}^{\beta_{1}\,v_{1}} + \boldsymbol{b}_{2}\cdot\sum_{j=i}^{M}\,\boldsymbol{\rho}_{j}\,\boldsymbol{V}_{i}\,\boldsymbol{u}_{j} + \boldsymbol{b}_{2}\boldsymbol{\sigma}_{2} + \sum_{i=i}^{N}\,\boldsymbol{b}_{\alpha_{i}}^{\beta_{i}}\cdot\boldsymbol{\sigma}_{2}\,, \end{split}$$

from which we see that $b_{\alpha,U_1}^{\beta_1V_1}$ occurs in the first term with coefficient $n_iP_i \neq 0$. We can show that in the expansion of the remaining terms in elements of the basis this element does not occur and for all other $b_{\alpha}^{A_iV_i}$, we have $\alpha < \alpha_i U_i$.

Consider the fourth term

$$b_2 \cdot \sum_{j=1}^{M} P_j V_i u_j$$
;

the basis elements in the expansion of this expression have the form $b_{\alpha u_j}^{\beta v_i}$, where b_{α}^{β} is in the expansion of b_2 in the basis elements and since, by hypothesis, for all such b_{α}^{β} we have $\beta \neq \beta_1$, then $b_{\alpha}^{\beta_1 v_i}$ does not occur in the expansion of the fourth term.

Similarly, for the sixth term $\sum_{i=1}^{N} b_{\alpha_{i}}^{\beta_{i}} \cdot G_{i}$ the basis elements have the form $b^{\beta_{i}V}$, where $V \neq V_{i}$ by hypothesis and this means that $b_{\alpha_{i}}^{\beta_{i}V}$ does not occur in the expansion of this expression in terms of the basis.

 $\ell(\beta, V_1)$, from which the equation $\beta_t V_5 = \beta_1 V_1$ is impossible; or $\ell(\beta_t V_5) = \ell(\gamma_t) + \ell(V_5)$, and in this case, we use the fact that $\ell(\beta_{\ell}) \leq \ell(\beta_{\ell})$. When $\ell(\beta_{\ell}) = \ell(\beta_{\ell})$, we find that $\beta_{\ell} = \beta_{\ell}$, which is impossible. Thus, $\ell(\beta_{\ell}) < \ell(\beta_{\ell})$, but then $\ell(V_s) > \ell(V_t)$; however, $\ell(V_t) \ge m(\delta) \ge m(V_s) \ge \ell(V_s) - \ell$ and this means that $\ell(V_t) = m(\delta) \ge m(V_s) \ge \ell(V_s) - \ell$ $\ell(V_s)-1=m(V_s)$, so from the second equation we find that $V_s=x_{\delta}V_s'$ $(\delta-1,2)$. By hypothesis $\ell(\beta,V_s)\geq$ $\ell(\beta, V_S)$, and since $\ell(V_S) > \ell(V_I)$, we have $\ell(\beta, V_S) < \ell(\beta, V_S)$, which means that there is a contraction when β_r and V_s are multiplied, i.e., $\beta_r = \beta_1' x_{\delta}^{-1}$ (with the same δ as in $V_s = x_{\delta} V_s'$). Now we see that in the $\ell(V_1) + 1$ -th place on the right in the element $\beta_1 V_1$ there can be found an element x_A^{-1} and in the $\ell(V_1) + 1$ -th place on the right in the element $\beta_t V_s$ there can be found an \mathcal{I}_{θ} which shows that the equation $\beta_t V_s = \beta_t V_s$ is impossible and this means that $b_{\alpha}^{\beta,\gamma}$ does not occur in the expansion of $b_2 o_2$ in terms of the basis.

Consider the second and third terms:

$$n, \sum_{j=1}^{M} \rho_{j} b_{\alpha_{i}, \mathcal{U}_{j}}^{\beta, \mathbf{v}_{i}} + \sum_{i=1}^{N} \sum_{j=1}^{M} \rho_{j} b_{\alpha_{i}, \mathcal{U}_{j}}^{\beta, \mathbf{v}_{i}}.$$

In this case $\alpha_i u_j < \alpha_i u_i$, for j = 2, ..., M $\alpha_i u_j < \alpha_i u_i < \alpha_i u_j$ for i = 2, ..., N, j = 1, ..., M, and for all $b_{\alpha_i}^{\beta_i v_i}$ in this expansion $\alpha_i < \alpha_i u_j$. Thus the lemma is proved.

LEMMA 6. Let $b_i \in \mathcal{B}$, $b_i = \sum_{i=1}^{N} n_i \left(b_{\alpha_i}^{\beta_i} + b_{\gamma_i}^{\beta_i} \right)$, $\varepsilon = 1, 2$, $b_i \in \mathcal{B}$, $b_i = \sum_{j=1}^{N} m_j \left(b_{\gamma_j}^{\beta_j} + b_{\gamma_i}^{\beta_i} \right)$,

 $\delta = 1, 2, \ \delta \neq \varepsilon$ and $b_1 + b_2 = 0$. Then

$$\sum_{i=1}^{N} n_i a_{\alpha_i} = 0, \quad \sum_{j=1}^{M} m_j a_{j_j} = 0.$$

<u>Proof.</u> Assume the contrary and suppose, for the sake of definiteness, that $\sum_{i=1}^{n} n_i a_{\alpha_i} \neq 0$; then after cancelling like terms (if necessary), there remain coefficients $n_{l} \neq 0$ for some $i=1,\ldots,N$. Assume that $\ell_1 = \max_{n_i \neq 0} [\ell(\alpha_i), \ell(\gamma_{\alpha_i})]$. We proceed for the second sum and assume that $\ell_1 = \max_{m_i \neq 0} [\ell(j_i), \ell(\gamma_{\alpha_i})]$ $\mathcal{L}(Y_{g,j})$, while if

$$\sum_{j=1}^{M} m_j a_{\gamma_j} - 0,$$

then $\ell_j = 0$. Here $\ell(\alpha)$ denotes the length of the word α , just as when $\gamma \in \mathcal{F}_j$, $\ell(\gamma)$ denotes the length of the word V.

Let $\alpha_{\mathcal{S}}$ denote one of the indices α_{ℓ} , $i=\ell,\ldots,N$, such that $\ell(\alpha_{\mathcal{S}})=\ell_{\ell}$; then $\alpha_{\mathcal{S}}=Y_{\mathcal{E}}\alpha'$ or $\alpha_{\mathcal{S}}$ $= y_{\ell}^{-1} \alpha'$. In the same way, y_{ℓ} denotes one of the indices y_{j} and $\ell(y_{\ell}) = \ell_{\ell}$; and in this case $y_{\ell} = y_{\ell} y'$ or $y = Y_a^{-1}y'$.

Since $\mathcal{E} \neq \delta$, we have $\alpha_{g} \neq \gamma_{e}$.

In b_i we choose a basis element $b_{\alpha_8}^{\beta}$ with nonzero coefficient and if $\ell_i > \ell_2$, then $b_{\alpha_4}^{\beta}$ does not occur in the expansion of b_2 in terms of the basis and $b_1 + b_2 \neq 0$. This is a contradiction. If $\ell_1 > \ell_1$, then $b_2 \neq 0$ and in the expansion of b_2 there can be found an element b_{i}^{β} with nonzero coefficient and $\ell(f_t) = \ell_t$ and this element does not occur in the expansion of b_t , in terms of the basis; again $b_t + b_t \neq 0$. This contradiction proves the assertion.

THEOREM. There is an unordered group with strictly isolated identity element.

Proof. We choose the group G described above and show that it is unordered and that it has a strictly isolated identity element. From (1)-(4) we obtain relations for the elements $a_{\rho}, b_{e} \in M$:

$$\alpha_e + \alpha_e \cdot x_1 = -b_e^e - b_e^e \cdot Y_1,$$

$$\alpha_e + \alpha_e \cdot x_2 = b_e^e + b_e^e \cdot Y_2.$$

From which, if $\alpha_e > 0$, then $b_e^e > 0$ or if $\alpha_e < 0$, then $b_e^e < 0$. We obtain a contradiction with the first of these relations. If $\alpha_e > 0$, then $b_e^e < 0$, or if $\alpha_e < 0$, we have $b_e^e > 0$. We obtain a contradiction with the second relation. Consequently, G does not have any linear orderings.

Since $G/M \cong F$ and F has a strictly isolated identity element, M is strictly isolated in G. This means that it is sufficient to show that if $C \in M$. $G \in Z_+(F)$ and CG = O, then C = O. Consider two cases:

1) $C = \alpha \in A$. Let $\alpha \circ = 0$; we write 6 as follows: $\delta = \circ_i V_i + \delta_2$, where $V_i \in F_i$, $\ell(V_i) = \ell(\delta)$, $m(V_i) = m(\delta)$, $\delta_i \in Z_+(F_2)$, $\delta_2 \in Z_+(F)$ and V_i does not occur in the expansion of δ_2 in terms of the basis. If $\ell(V_i) = 0$, then $\ell(\delta) = 0$ and $\delta \in Z_+(F_2)$; then by Lemma 1, $\alpha \circ = 0$ implies that $\alpha = 0$. Let $\ell(V_i) > 0$. Put $V_i = W_i$, if $W_i = x_{\ell}$ ($\ell = 1, 2$) and $\ell = \ell$, if $\ell = 1, 2$ and $\ell = 1, 2$. By (1)-(2), we obtain

$$\alpha G = \alpha G, \forall_i + \alpha \sigma_{\underline{z}} = \alpha_i \forall_i + \alpha \sigma_{\underline{z}} = -\alpha_i \forall_i' + (-i)^{\varepsilon} \sum_{i=1}^N \eta_i \left(b_{\alpha_i}^{\omega \nu_i'} + b_{\gamma_{\varepsilon} \alpha_i}^{\omega \nu_i'} \right) + \alpha \sigma_{\underline{z}}.$$

If $\omega = x_{\varepsilon}^{-1}$, then $m(v_i') < \ell(\omega v_i')$ and, by Lemma 2, $b_{\infty_i}^{\omega v_i'}$ does not occur in the expansion of $a_i v_i'$ in terms of the basis. By Lemma 3, $b_{\infty_i}^{\omega v_i'}$ may occur in the expansion of $a c_2$ only when $c_2 = v_2 c_3 + c_4$, where $c_3 \in Z_+(F_2)$, $c_4 \in Z_+(F)$ and $v_2 = v_1$, or $v_2 = x_0 v_1$, $\delta = i$, 2 = i, but the first is impossible since v_i does not occur in the expansion of c_2 in terms of the basis by hypothesis, and the second is impossible since $\ell(x_0, v_i) > \ell(v_i) = \ell(c)$. Hence $a c_2 = 0$ implies that

$$\sum_{i=1}^{N} n_{i} \left(b_{\alpha_{i}}^{\omega V_{i}'} + b_{\gamma_{i} \alpha_{i}}^{\omega V_{i}'} \right) = 0,$$

from which, by Lemma 6, $\alpha_j = 0$ and hence $\alpha = 0$. Suppose now that $\omega = \ell$. If $m(v_1') < \ell(v_1')$, then $\ell(\omega v_1') = \ell(v_1') > m(v_1')$ and, by Lemma 2, $b_{\alpha_i'}^{\omega v_1'}$ does not occur in the expansion of $\alpha_i v_1'$ in terms of the basis. Suppose $b_{\alpha_i'}^{\omega v_1'}$ occurs in the expansion of $\alpha \sigma_2$, in terms of the basis. Then, by Lemma 3, $\sigma_2 = v_2 \sigma_3 + \sigma_4$, where $v_2 \in \mathcal{F}_1$ and either $v_2 = v_1$ or $v_2 = x_\delta v_1'$, $\delta = \ell, 2$, $\delta \neq \varepsilon$, $\sigma_3 \in Z_+(\mathcal{F}_2)$, $\sigma_4 \in Z_+(\mathcal{F})$, and suppose v_2 does not occur in the expansion of σ_2 in terms of the basis. Since v_1 does not occur in the expansion of σ_2 in terms of the basis. Since v_1 does not occur in the expansion of σ_2 in terms of the basis, $v_2 \neq v_1$, consequently, $v_2 = x_\delta v_1'$. We have $\alpha \sigma_2 = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_2 v_3$, where

$$a_1 = a a_3 = \sum_{\kappa=1}^{M} m_{\kappa} a_{j\kappa}.$$

Further, from (1)-(2), we obtain

$$a_{\delta} = -a_{1}v'_{1} - a_{2}v'_{1} + (-i)^{\varepsilon} \sum_{i=1}^{N} n_{i} \left(b_{\alpha_{i}}^{v'_{1}} + b'_{\gamma_{e}\alpha_{i}}\right) + (-i)^{\delta} \sum_{\kappa=1}^{M} rn_{\kappa} \left(b_{\gamma_{k}}^{v'_{1}} + b'_{\gamma_{e}\beta_{k}}\right) + a_{\delta_{4}},$$

and since $b_{\alpha}^{V_1'}$ does not occur in the expansion of $(a_1+a_2)V_1'+a_{\alpha}$ in terms of the basis, by Lemmas 2 and 3, $a_{\alpha}=0$ implies that

$$(-1)^{\mathcal{E}} \sum_{i=1}^{N} n_{i} \left(b_{\alpha_{i}}^{\mathbf{v}_{i}'} + b_{\mathbf{v}_{e}\alpha_{i}}^{\mathbf{v}_{i}'} \right) + (-1)^{\partial} \sum_{\kappa=1}^{M} m_{\kappa} \left(b_{\mathbf{v}_{\kappa}}^{\mathbf{v}_{i}'} + b_{\mathbf{v}_{o}\mathbf{v}_{\kappa}}^{\mathbf{v}_{i}'} \right) = 0,$$

but then, by Lemma 6, $Q_1 = 0$ and $Q_2 = 0$, and so $\alpha = 0$.

If $\ell(v') = 0$, by Lemma 1, $b_{\alpha_{\ell}}^{v'_{\ell}}$ does not occur in the expansion of $\alpha_{\ell}v'_{\ell} = \alpha_{\ell}$ and, as in the preceding case, $\alpha_{\ell} = 0$ implies that $\alpha = 0$. Finally, let $\ell(v'_{\ell}) = m(v'_{\ell}) > 0$.

Then $v_1'=x_{\partial}^{-1}v_1''$ and $\partial + \varepsilon$. By Lemma 3, $b_{\alpha_L}^{V_1'}$ occurs in the expansion of $\alpha \delta_2$ in terms of the basis if $\delta_2 - \delta_3 \cdot V_2 + \delta_{4\varepsilon}$, where $V_2 = V_1'$ or $V_2 = x_{\varepsilon} V_1'$ ($\varepsilon \neq \delta$); but then $V_2 = V_1$ and this is impossible. Let δ_3 and δ_4 be chosen as in the above case. We have $\alpha \delta = \alpha_1 V_1 + \alpha_2 V_2 + \alpha \delta_4$, where $\alpha_2 = \alpha \delta_1$,

$$\alpha_i \vee_i + \alpha_{\underline{i}} \vee_{\underline{i}} = (\alpha_{\underline{i}} - \alpha_i) \vee_i' + (-i)^{\varepsilon} \sum_{i=1}^N \eta_i \left(b_{\alpha_i}^{\vee_i'} + b_{\gamma_{\underline{i}} \alpha_i}^{\vee_i'} \right).$$

Put

$$a_2 - a_1 = a_3 - \sum_{\kappa=1}^{M} m_{\kappa} a_{\gamma_{\kappa}},$$

then

$$a_{i} \vee_{i} + a_{i} \vee_{j} - a_{j} \vee_{i}'' + (-i)^{\delta} \sum_{k=1}^{M} m_{k} \left(b_{i'k}^{\vee_{i'}} + b_{i'k}^{\vee_{i'}} \right) + (-i)^{\varepsilon} \sum_{j=1}^{M} \gamma_{j} \left(b_{\alpha_{j}}^{\vee_{i}} + b_{i'k\alpha_{j}}^{\vee_{i'}} \right),$$

and since $m(v_i'') < \ell(v_i')$, by Lemma 2, $b_{\alpha}^{v_i'}$ does not occur in the expansion of $a_j v_i''$ in terms of the basis. Again, using Lemma 6, we find that a = 0 implies that a = 0. Thus, the case $a \in A$ has been fully considered.

2) Now suppose that $c \in M$, c = a + b, $a \in A$, $b \in B$, $a \in Z_+(F)$. Again we assume that c = 0 and show that c = 0. Since we have already considered the case $c \in A$, we assume that $c \notin A$, i.e., $b \neq 0$.

When $\ell(6)=0$, we have $c6\neq 0$ if $c\neq 0$. The proof is by induction. Suppose for 6 such that $m(6)+\ell(6)< L$ we have proved that the identity element is strictly isolated. Choose 6 such that $m(6)+\ell(6)=L$, c6=0. Construct C_1 and C_2 such that $m(C_2)+\ell(C_2)< L$, $C_3=0$ when $C_4=0$ and $C_4=0$ if and only if C=0. Thus, we have shown completely that the identity element in the group is strictly isolated.

Thus, let $o \in Z_+(F)$, $\ell(o) > 0$ and let us write 6 as follows:

$$o = V_1 o_1 + o_2$$
, where $V_1 \in \mathcal{F}_1$, $m(V_1) = m(o)$, $o_1 \in \mathbb{Z}_+(\mathcal{F}_2)$, $o_2 \in \mathbb{Z}_+(\mathcal{F})$.

Let $c \in M$, c=a+b, $a \in A$, $b \in B$, $b \neq 0$. We write b as

$$b = \sum_{i=1}^{N} n_i b_{\alpha_i}^{\beta_i} + b_2$$

so that $b_{\alpha_i}^{\beta_i}$ does not occur in the expansion of b_2 in terms of the basis, $\ell(\beta_i) \geqslant \ell(\beta_K)$ for all β_K such that $b_{\alpha_i}^{\beta_K}$ occurs in the expansion of the element $b_{\alpha_i}^{\beta_i} \sim \alpha_i$ for $i=2,\ldots,N,\ n,\neq 0$. We write β_i as $\beta_i=\beta_i, \beta_i+\ldots+\beta_i$ $\beta_i=\beta_i$ so that $\beta_i=\beta_i$ for $\beta_i=\beta_i$. Further, let $\beta_i=\beta_i$ not occur in the expansion of $\beta_i=\beta_i$ in terms of the basis. Consider two cases:

1) $V_i = \mathcal{X}_{\mathcal{E}} V_i^{\ \prime}$. Then $\ell(V_i) = \ell(\mathcal{G}) = m(\mathcal{G}) - \ell$. If now $\ell(\beta_i, V_i) = \ell(\beta_i) + \ell(V_i)$, noting that $\ell(\beta_i) \geq \ell(\beta_i)$, $\ell(V_i) \geq \ell(V_i)$ for all β_K such that $b_{\alpha}^{\beta_K}$ occurs in the expansion of b, for all V_i in the expansion of b, we can use Lemma 5 and find a basis element $b_{\alpha}^{\beta_i V_i}$ in the expansion of b0 with nonzero coefficient. Then we have $\ell(\beta_i, V_i) = \ell(\beta_i) + \ell(V_i) = \ell(\beta_i) + m(V_i) + \ell(\delta_i)$, which means, by Lemma 2, that $b_{\alpha}^{\beta_i V_i}$ does not occur in the expansion of a_i 0 in terms of the basis, as a result of which (a + b) = 0.

This contradiction shows that $\ell(\beta, V_1) < \ell(\beta, 1) + \ell(V_1)$, i.e., $\beta_1 = \beta_1' x_{\ell}^{-1}$, which means that $\ell(\beta, 1) > 0$. We can show that for an arbitrary basis element b_{∞} in the expansion of the element b such that $\ell(\beta_K) = \ell(\beta_L)$ and for an arbitrary V_S in the expansion of 6 such that $\ell(V_S) = \ell(V_L)$, we must have $\ell(\beta_K V_S) < \ell(\beta_K) + \ell(V_S)$ since otherwise all the conditions of Lemma 5 would hold and the expansion of b_0 would

contain the basis element $b_{\infty}^{\beta_{\kappa} V_{S}}$ with nonzero coefficient. This element does not occur in the expansion of $\alpha_{\mathcal{G}}$, by Lemma 2, and then we obtain $(a+b)_{\mathcal{G}} \neq 0$. Hence for all such β_{κ} and V_{S} , we have $\ell(\beta_{\kappa} V_{S})_{\kappa} \ell(\beta_{\kappa}) + \ell(V_{S})_{\kappa}$, which means that $\beta_{\kappa} = \beta_{\kappa}^{\prime} x_{E}^{-\prime}$, $V_{S} = x_{E} V_{S}^{\prime}$.

Suppose the expansion of \mathcal{C} contains the element V_t such that $\ell(V_t) = \ell(\mathcal{C}) - \ell(\ell V_t) = m(\mathcal{C})$. For this element, we again must have $V_t = x_t V_t'$. Otherwise $\ell(\beta_t, V_t) = \ell(\beta_t) + \ell(V_t)$ and $\ell(\beta_t, V_t) \geq \ell(\beta_t, V_t)$ for all β_t in the expansion of b in terms of the basis $b_{\infty}^{\beta_t}$ and for all V_t in the expansion of \mathcal{C} . Indeed, $\ell(\beta_t, V_t) = \ell(\beta_t) + \ell(V_t) - \ell$. If $\ell(\beta_t) \leq \ell(\beta_t) - \ell$ or $\ell(V_t) \leq \ell(V_t) - \ell$, the inequality holds, but if $\ell(\beta_t) = \ell(\beta_t)$ and $\ell(V_t) = \ell(V_t)$, by what has been proved above, $\ell(\beta_t, V_t) < \ell(\beta_t) + \ell(V_t)$, from which $\ell(\beta_t, V_t) \leq \ell(\beta_t) + \ell(V_t) - \ell(\beta_t) + \ell(\delta_t) +$

We choose $C_1 = C \mathcal{X}_{\mathcal{E}}$, $C_2 = \mathcal{X}_{\mathcal{E}}^{-1} \mathcal{O}$; then $C_1 \mathcal{O}_2 = C \mathcal{O} = \mathcal{O}$, $C_2 = \mathcal{O}$ if and only if $C = \mathcal{O}$, $\ell(C_1) \leq m(C_2) \leq \ell(C_2) \leq m(C_2) \leq m(C_2)$

Thus, it remains to consider the case 2: $x_1 = x_{\varepsilon}^{-1} V_1'$. Again, suppose that $\sigma = V_1 \sigma_1 + \sigma_2$, $\sigma_1 \in Z_+(F_2)$; for V_1 we make the following assumption: V_2 does not occur in the expansion of σ_2 in terms of the basis and $\ell(V_1) = m(G)$; but then $m(V_2) = m(G)$.

We can show that $\ell(v_s) = \ell(o)$. If the expansion of σ in terms of the basis contains a v_s such that $\ell(v_s) > \ell(v_t)$, then, since $m(v_s) \leq m(o)$, we have $m(v_s) \leq \ell(v_s)$ and $v_s = x_\delta v_s'$ ($\delta = 1, 2$), from which, in view of the case considered above, the expansion of σ cannot contain an element v_s such that $\ell(v_s) = m(\sigma) = \ell(\sigma) - \ell$ and $v_s = x_\delta^{-1} v_s'$.

Suppose in the expansion of \mathcal{G} in terms of the basis there can be found an element $V_{\mathcal{S}}$ such that $\ell(v_{\mathcal{S}}) = \ell(v_{\mathcal{I}}) = m(\mathcal{G})$ and $v_{\mathcal{S}} = \mathcal{L}_{\mathcal{J}}^{-1} v_{\mathcal{C}}'$. We can show that then $\delta = \varepsilon$.

We have $m(\mathfrak{G}) = \ell(\mathfrak{G})$. Let c = a + b where b is as in the first case; then if $\ell(\beta, V_t) = \ell(\beta_t) + \ell(V_t)$ we have $\ell(\beta_t) + \ell(V_t) \geq \ell(\beta_t) + \ell(V_t)$ for all β_t such that $b_{\alpha}^{\beta_t}$ occurs in the expansion of b in terms of the basis and for all V_s in the expansion of b. Hence we can use Lemma 5 and find in the expansion of b an element $b_{\alpha}^{\beta_t V_t}$ with nonzero coefficient. By Lemma 2 the element $b_{\alpha}^{\beta_t V_t}$ occurs in the expansion of a provided $\ell(\beta_t, V_t) \leq m(\mathfrak{G})$ and this is possible only if $\ell(\beta_t) = 0$.

Now the element b can be written as follows: $b = r_1 b_{\alpha_1}^e + ... + r_N b_{\alpha_N}^e$.

The element a can be written as $\alpha = m_i \alpha_{j'_i} + \dots + m_k \alpha_{j'_k}$. We use Lemma 4 and find in the expansion of aa a basis element $b_{\alpha_i u_i}^{\nu_i}$ with nonzero coefficient. We use Lemma 5 and find in the expansion of ba a basis element $b_{\alpha_i u_i}^{\nu_i}$ with nonzero coefficient. Now, in view of these assertions, (a+b)a = 0 provided $y_{\epsilon_i j_i} u_i = \alpha_i u_i$ from which $\alpha_i = y_{\epsilon_i j_i} u_i$.

We write \mathcal{O} in the form $\mathcal{O}_5 \vee_S + \mathcal{O}_4$, where $\vee_S = x_\delta^{-1} \vee_S'$ and $\ell(\vee_S) = m(\mathcal{O})$. Again we use Lemmas 4 and 5 to find that $\propto_j = \bigvee_{\delta} y_i$ from which $\varepsilon = \delta$.

Now, again let $\ell(V_s) = m(\sigma)$, but $V_s = x_{\delta} V_s'$ ($\delta = 1, 2$); then, by Lemma 5 the basis element $b_{\alpha}^{V_s}$ occurs in the expansion of $b\sigma$.

By Lemma 3, the element $b_{\zeta}^{V_s}$ occurs in the expansion of $\alpha\sigma$, only if the expansion of σ contains an element V_t such that $V_t = x_{\dot{\xi}} V_s$ ($\dot{\xi}=1,2$) but this is impossible since then $\ell(V_t) > \ell(\sigma)$.

Consider the remaining case $\ell(\beta,V_t) < \ell(\beta,V_t) + \ell(V_t)$. But then $\beta_t = \beta' x_{\mathcal{E}}$; if the expansion of σ contains an element v_t such that $v_t \neq x_{\mathcal{E}}^{-1}v_t'$ and $\ell(v_t) = m(\sigma)$, we have $\ell(\beta,V_t) = \ell(\beta,t) + \ell(V_t)$ and $\ell(\beta,V_t) \geq \ell(\beta,V_t)$ for all β_i such that $b_{\infty}^{\beta_i}$ is in the expansion of δ and v_t is in the expansion of σ . By Lemma 5, b_{∞}^{β,V_t} is in the expansion of $\delta\sigma$ with nonzero coefficient, but since $\ell(\beta,V_t) > m(\sigma)$, by Lemma 2, b_{∞}^{β,V_t} does not occur in the expansion of $\sigma\sigma$.

This means that we can put $C_j = C \mathcal{X}_{\mathcal{E}}^{-1}$, $C_j = \mathcal{X}_{\mathcal{E}}^{C} \mathcal{C}$; then

$$\ell(6,) + m(6,) < \ell(6) + m(6) - L.$$

Consequently, we have proved that the identity element is strictly isolated.

<u>COROLLARY</u>. An Abelian, normal, strictly isolated subgroup of a group with a strictly isolated identity element cannot have any linear orderings which are preserved under internal isomorphisms of the whole group.

The proof follows directly from the construction of the group $\,{\cal G}\,$.

Note 1. In view of the above corollary the Mal'tsev-Podoeryugin-Riger condition [1] for orderability cannot be weakened.

Note 2. In an over-ordered group strict isolation and infra-invariance of its subgroups is a necessary and sufficient condition for convexity of a subgroup [1]. As our example shows, in the case of an ordered group this condition is no longer sufficient.

LITERATURE CITED

- 1. A. I. Kokorin and V. M. Kopytov, Linearly Ordered Groups [in Russian], Nauka (1972).
- 2. Kourovsk Notebook [in Russian], Novosibirsk (1965).