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Abstract 

We consider the problem of scheduling tasks on flow shops when each task may also 
require the use of additional resources. It is assumed that all operations have unit lengths, the 
resource requirements are of 0-1 type and there is one type of the additional resource in the 
system. It is proved that when the number of machines is arbitrary, the problem of 
minimizing schedule length is NP-hard, even when only one unit of the additional resource is 
available in the system. On the other hand, when the number of machines is fixed, then the 
problem is solvable in polynomial time, even for an arbitrary number of resource units 
available. For the two machine case an O(n log22n) algorithm minimizing maximum lateness 
is also given. The presented results are also of importance in some message transmission 
systems. 
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I. Introduction 

The  paper  is concerned  with the problem of  nonpreempt ive  scheduling unit  
t ime opera t ions  on  flow-shops when each opera t ion  may  require addit ional  scarce 
resources. Three  essential d e m e n t s  of  the model  are: a set of  n tasks each 
consist ing o f  m operat ions,  a set o f  m machines  and a set of  s addit ional  
resource types required by opera t ions  in integer amounts .  Tasks may  s tand e.g. 
for programs,  ships, bui lding operat ions;  machines-for  processors,  dockyards ,  
bui lding machines,  and addit ional  resources m a y  represent p r imary  or  mass  
storage, channels,  man-power  or  addi t ional  tools, etc. One  of  the main  issues 
arising in the context  of  scheduling theory  is the complexi ty  analysis answering 
the ques t ion whether  or  not  a given p rob lem can be  solved in polynomial- t ime.  
(We refer the reader  to [7] where the NP-comple teness  theory is considered in 
detail.) The  complexi ty  investigation of  resource constra ined scheduling s tar ted in 
1975 with a paper  by  Garey  and Johnson  [6]. Then,  several papers  were devoted  
to this subject [1-5 ,5 ,9-12] .  However ,  p rob lem of  flow shop schedul ing under  
resource constraints  was considered in [5] and [9]. In  the first paper ,  the 
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NP-hardness of the problem was proved for two machines, arbitrary processing 
times of the tasks and one resource type available in one unit, when schedule 
length was to be minimized. The same problem but with unit processing times 
was solved in O(n) time. Several other results were presented in [9]. These 
include: an O(n log n) algorithm for two machines, unit processing time oper- 
ations, one resoUrce type and the schedule length criterion, and several NP-hard- 
ness proofs concerning unit time operations. Among them two problems of 
minimizing schedule length may be distinguished: scheduling on two machines 
with two resource types and scheduling on three machines with one resource type 
(in both cases resource requirements are arbitrary). Using the first of the two 
results and the theorem given in [4] one may also prove the NP-hardness of the 
same problem but with many resources each available in the amount of one unit. 

:'In [9] the problem of minimizing maximum lateness was also proved to be 
NP-hard for two machines and one resource type but with arbitrary resource 
requirements. Most of these results also hold for preemptive as well as no-wait 
cases. (The latter denotes an additional constraint on the way of task processing 
such that for any task whenever a processing of its operation on machine M i, 
i = 1, 2 . . . . .  m -  1, finishes, immediately a processing of its next operation on 
machine Mi÷ l starts.) At this point let us also mention an interesting application 
of a no-wait resource constrained flow-shop scheduling in message transmission 
systems. Clearly, the first problem with m machines, r units of an additional 
resource, a set ~-  of unit processing time tasks, and with schedule length 
criterion, corresponds to a problem of transmitting a set ~'- of m-bit words over a 
line which allows r bits equal to 1 to be sent in parallel only. 

Following the above overview we see that several problems still remain open. 
This is especiall37 true when considering scheduling problems with unit-time 
operations, one resource type and zero-one resource requirements (i.e. operations 
may require either zero or one unit of the additional resource). In the present 
paper, we address ourselves to some of these problems. In particular, we prove 
that the problem .of minimizing schedule length with an arbitrary number of 
machines is NP-hard even for the case when the additional resource is available 
in the amount  of one unit. This result holds also for any other scheduling 
criterion. On the other hand, when the number of machines becomes fixed, the 
above problem may be solved in polynomial time (via a dynamic programming 
approach) for an arbitrary amount  of resource units available. The presented 
approach has a more general meaning. Whenever the number of different task 
types (differing by processing times, resource requirements, etc.) is fixed, it will 
enable to solve the problem of minimizing schedule length. Finally, the problem 
of minimizing maximum lateness will be considered and an O(n log2n) algorithm 
for two machines and one unit of the additional resource will be given. The 
method is also more general and may be applied for some other unit-time task 
scheduling problems with the maximum lateness criterion. Before doing this we 
will set up the subject more precisely. 
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We are given a set of n tasks 3-= ( T 1, T 2 . . . . .  T n } each of which consists of m 
operations, i.e. task Tj consists of the set of operations t~j = { Olj , O2j . . . . .  O,,y}. 
Operations are to be processed on the set of m machines ~ = { M 1, M 2 . . . . .  M, ,  } 
such that for each j ,  Oij is processed on machine M i, i.= 1, 2 . . . . .  m. An 
additional resource R with limit r is also available in the system. Each operation 
Oij, i = 1, 2 . . . .  , m; j = 1, 2 . . . . .  n, requires for its processing machine M i and 
the additional resource in the amount specified by R(Oi j  ) (which may be equal to 
0 or to 1). A column vector describing the resource requirements of operations 
constituting task Tj will be denoted by R(Ty). Operations must be processed 
nonpreemptively, i.e. each operation once assigned to a processor must be 
processed without any break till its completion. If the same constraint is imposed 
on the way in which tasks are processed (i.e. each task once started must be 
processed till the completion of its last operation without any break) the schedule 
will be said to have the no-wait property. All the tasks are independent and the 
operations of a particular task Tj, j = 1, 2 . . . . .  n, are processed in such a way that 
Oij precedes O2j which precedes O3j and so on until Omj is completed. Each 
operation O;j is characterized by unit processing time p (  Oij ) = 1, i = 1, 2 . . . . .  m,  
j - 1, 2 . . . . .  n. Whenever maximum lateness is to be minimized, we will assume 
that each task Tj is assigned a due date d(Tj) ,  i.e. a time by which the last 
operation of the task (O,,j) is to be completed. 

A feasible schedule is a function s: t g ~  Z ( Z  is a set of nonnegative integers), 
which obeys the following conditions: 
(a) For  each integer t, t >/0, 

s( t )  <. m 

where S ( t )  = { Oij ~ d): s(Oij  ) = t} is the set of operations assigned to machines 
at time t. 
(b) For  each integer t, t >1 O, 

E R(Oij)~r" 
O~S( t )  

(C) For  each integer t, t >/0, and i = 1, 2 , . . . ,  m, 

I{o,;: o,j s(t), j =  1, 2, . . . ,  n} l  -< 1. 

(d) For  each Oo., i = 1, 2 . . . . .  m - 1; j = 1, 2 , . . . ,  n 

s(O,j)¢s(O,+l.j)-l. 
Whenever maximum lateness Lma ~ is to be minimized we add the following 
condition to express feasibility for a given value L '  of Lmax: 
(e) For  each Tj, s(O,,,i) + 1 <~ d(Tj)  + L' .  

For  a given schedule, let c(Oi.i) denote the completion time of operation O~j, 

i.e. c( Oi.i) = s( Oij ) + 1. 
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We will be interested in two criteria when evaluating schedules: the schedule 
length defined as C,,~ = max(c(Oij) } and the maximum lateness defined as 
m a x j  (~(O,, , j )  - d (Tj )} .  

In  the paper, we will use the notation defined in [5,8] for the short and concise 
classification of scheduling problems. The three problems considered in the paper  
are denoted as follows. F Ires 111, pj = l lC~a x whose NP-hardness is established 
in sect. 2. Fm Ires 1 -1 ,  p , . i= l iCma x for which a dynamic programming ap- 
proach is presented in sect. 3. Finally, F2 Ires 111, Pu = 1 [ L.,,~ which is solved 
by an O(n log2n) algorithm in sect. 4. 

2. NP-hardness of problem F Ires 111, Pij = 11 Crux 

In this section we will prove that the flow shop scheduling problem with, an 
arbitrary number  of machines, unit-time, nonpreemptive operations, a unit of an 
additional resource and with Cm, x criterion, is NP-hard,  thus unlikely to admit  a 
polynomial  time algorithms. The proof  is similar to that of theorem 1 in [9], thus 
we give here only its outline, leaving details to the reader. 

It is sufficient to prove the NP-hardness of the decision counter part  (denoted 
by H1) of F Ires 111, p;j  = l lCm~ x. As a known NP-comple te  problem (denoted 
by / /2)  we will use the Hamiltonian Path problem ([7], [9]). For  a given instance 
of / /2 defined by a graph G = (V, E), let q = IVI ,  z = 2 ( q ( q -  1) + t)  and let a 
corresponding instance of H 1 be defined by assuming: 
- A number  of m = 2z machines M 1 . . . . .  M,,, Among them, the odd machines 
M i, i = 3, 5 . . . . .  z -  1 are labeled respectively with the pairs (k,  l) in lexico- 
g raph ica l  order ing ,  1 ~< k,  1 ~< q and  k :~ l, tha t  is us ing labels  
(1, 2), (1, 3) . . . . .  (2, 1) . . . . .  (q, q - 1 ) .  The same labels are applied to the odd 
machines Mi+:; where machine M~+~ receives the same label as M i. 
- A number  of n = (q-1)z + 1 tasks T 1, T z . . . . .  T,. The tasks T 1, T 2 . . . . .  Tq are 
called vertices and the resource requirements of their operations are defined as 
follows: 

Machine i, unlabeled R(Ou) 
l 1 
2 ,4  . . . . .  z 1 
z + l  0 
z +2 ,  z + 4  . . . .  ,2z 0 

Machine i, labeled (k, l) R(Oi~ ) 
j ~ { k , l }  0 
j ~  {k, 1} and (k. 1 )~E  0 
j ~  {k, 1} and(k, l) q~E 1 

The remaining ( q - 1 ) ( z -  1) tasks Tj, j >  q have their operat ions with zero 
resource requirements R ( O u )  = 0, for i = 1, 2 . . . . .  m. 
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- The threshold value for the schedule length is (q + 1)z. 
Now, it is sufficient to note that in the above construction the resource 

requirements of the odd operations of vertex i are nothing else but entries of the 
i-th row and the i-th column of the adjacency matrix of G. Moreover, standard 
arguments show that each schedule, which can be taken into account in consider- 
ation of the threshold value, is a no-wait schedule with z unit times between any 
two consecutive vertices. 

Careful inspection of the above proof  shows that for other criteria such as 
mean flow time, maximum lateness, etc., and for preemptive as well as no-wait 
modes of processing the above problem remains NP-hard  as well. In the next 
section we will show, however, that fixing the number  of machines m, allows one 
to solve the problem in polynomial time. 

3. A dynamic programming approach to solving Fin Ires 1" 1, Pii = 11Cma~ 

Below we will show that if the number  of machines is fixed, then the problem 
considered in the last section may be solved in polynomial  time, even for the case 
when more than one unit of the additional resource is available in the system.We 
will employ a dynamic programming approach.  The problem to be solved is 
somewhat  more general than the formulated flow shop problem. Instead of 
starting from machine M~, the operations of Tj constitute any sequence 
Ok, j, Ok,+l,j . . . . .  O,,j, where kj E Z,, + . * Ok, / is called the head of task (sequence) 
T/. Now we will explain the idea of the algorithm. The following definitions will 
be used in order to do that. 

Two sequences belong to the same class of sequences if they have the same 
number  of operations, and operations processed on the same machine have the 
same resource requirements in both sequences. I f  m is the number  of machines 
then the number  of classes of sequences c is equal to 2 "'+~ - 1. 

Two instances belong to the same class of instances if they contain the same 
number  of  sequences in each class of  sequences. It is not difficult to see that if m 
is fixed then c is fixed and the number  of classes of instances, with at most  n 
sequences, is less than n". 

Let I be an instance of the more general problem defined above and H ( I )  the 
set of  heads of I.  A feasible starting set for I is a nonempty  subset of heads 
H ___ H ( I ) ,  that satisfies 

(i) if Oki ~ H and Okj ~ H then i = j .  

(iX) Y'~ R(Oki ) <~ r. 
Ok,~H 

In other words, H is a subset of heads which can start a feasible schedule for I. 

* Z2" =(1,2  ..... k} and Zk= {0,1 ..... k}. 
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Let H be a feasible starting set for 1. Denote by an( I  ) the instance which is 
obtained by deleting from the sequences of I the heads from H. The instance 
all(1 ) will be called a direct successor of L Two feasible starting sets for 1, H and 
H '  belong to the same class of feasible starting sets for 1 if the instances otn(1) 
and ~ , ( I )  belong to the same class of instances. It is easy to see that there is at 
most E l~ i , ~ , , ( ~ )=dc l a s se s  of instances which contain direct successors of I. 
Obviously, if m is fixed then d is fixed as well. 

The above considerations practically show how to employ a dynamic program- 
ming approach in order to get a polynomial time algorithm. A class of instances 
can be written as a class vector from Z n x • • • x Z,  - c times. The entries of a 
class vector show how large are classes of sequences in a class of instances. Then 
a problem state can be defined as a pair consisting of a class vector and a 
non-negative integer which can be interpreted as the starting moment for the next 
feasible starting set. The problem states being direct successors of the problem 
state (1, t) are closely related to the classes of feasible starting sets for I and can 
be obtained if the classes are generated. Moreover, t is equal to t '  + 1, where t '  is 
the starting moment for the "earliest" direct predecessor of the problem state 
( / ,  t). It is sufficient to generate O(n c+1) problem states in order to obtain a 
problem state with the length of an optimal schedule. Then, backtracking along 
the best path of decisions allows for the construction of an optimal schedule. The 
details are left to the reader. 

It is easy to see that the time complexity of the algorithm is O(nC+llog n). It 
should be noted that the time of generating any problem state is O(log n). 
Obviously, it is, a polynomial time algorithm if m is fixed. 

4. An O(n log2n) algorithm of F2 Ires 111, Pij = 1 I Lm,x 

In this section we wiU consider the problem of minimizing maximum lateness 
in a two-machine flow shop with unit time nonpreemptable operations and a unit 
of an additional resource available in the system. In the approach presented, two 
stages can be distinguished. The first stage consists in checking for feasibility, i.e. 
answering the question whether or not there exists a feasible schedule with no 
task late for a given set of due dates (the feasibility problem is denoted by 
F21res 111, p i / =  1, d j I -  [8,5]). The method here assigns tasks to baskets 
denoted by particular due dates. Then, starting from the end of the schedule, it 
tries to assign in consecutive time slots tasks available in corresponding baskets, 
so that there is no. idle time for the machines and the additional resource. The 
second stage consists in applying a binary search procedure which uses the above 
method and changes the trial values of due dates and Lma x, thus producing an 
optimal schedule. Below we start with the first algorithm which solves the 
problem F2 [res 111, pij = 1, dj [ - .  

Let  us denote dmln=minrj{d(Tj)}.  To avoid pseudopolynomiality of our 
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algorithm we have to modify the due dates for all the tasks in the following way: 

{dmi, + 2n,  i f d ( T j ) > d ~ . + 2 n ,  

d (Tj) := d ( Tj ), otherwise. 

Then, the value dma x is defined as dm~ = maxrj~a-(d(Tj) }. The baskets ~ are 
now defined in the following way: 

~jj= (T~o~ ' :  d ( r ) = j } ,  j=dmin ,  dmin+l  . . . . .  din=. 

For brevity we will also denote an operation not requiring the additional resource 
by an operation of type 0 and the one requiring a unit of this resource by an 
operation of type 1. For the same reasons the four types of tasks will be denoted 
respectively by 1 °, 0t,11, and 0 °. The first symbol denotes a task Tj with 
R(Oij) = 1 and R(O2j ) = 0 and the remaining symbols the other corresponding 
types of tasks. 

The following algorithm assigns the tasks to consecutive time slots starting 
from din=. To make the assignment rules uniform an additional set D of 0 type 
dummy operations to be processed on M 1, is added. The algorithm uses an 
additional procedure IDLE TIME which checks whether or not it is possible to 
assign tasks from .5 r and dummy operations from D to machines in interval 
[0, din= ] in such a way that no idle time on M~ appears. (In the case when such a 
schedule exists, a Boolean variable IT takes the value "no").  Now the algorithm 
can be described. Its input is set ~q" and its output is answer "yes"  (plus the 
schedule) in the case when a schedule with no task late exists for F2 [res 111, Pij 
= 1, dj  [ - ,  or " 'no" in the opposite case. 

ALGORITHM 1 
1. If m i n r ~ -  (d(T)}  >/2n, then the answer is "yes".  Schedule the tasks one 

by one in the time interval [0, 2n]. End the algorithm. Otherwise go to step 2. 
2. If dm~ ~ ~< n, then the answer is "no" .  End the algorithm. Otherwise go to 

step 3. 
3. Set D .'= ( dm~ - n dummy operations of type 0, to be processed on 3,/1 ). 
4. Call IDLE TIME (D, .9"). If IT = "yes",  then the answer is "no" .  End the 

algorithm. 
Otherwise the answer is "yes".  Remove dummy operations from the obtained 
schedule. End the algorithm. [] 

The procedure IDLE TIME takes as the input the sets D and if" and its 
output is "yes"  if there is an idle time on M 1 when scheduling D and ~q', and 
" n o "  otherwise. Its description is as follows. 

PROCEDURE IDLE TIME (D, .~') 
1. Set t := dma x, B : - - -~  t. 

Construct a list ZERO, consisting of the operations of type 0, ZERO := D. 
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Construct a list ONE consisting of the operations of type 1, initially empty. 
2. If either ONE or ZERO is not empty, then choose an operation from any 

list and a task from set B in the following order (first the operation appears, then 
the task chosen): 1 1 ° ~ 0  0 1 ~ 0  1 1 ~ 1  0 ° ~ 0  1 ° ~ 0  0 °---,1 (a task is not 
chosen) ~ 0 (B is empty). Go to step 3. 
Otherwise, i.e. if ONE and ZERO are empty, go to step 4. 

3. Remove the chosen operation from its appropriate list and the chosen task 
(if any) from set B. Assign at time t -  1 the chosen operation to M 1 and the 
second operation of the chosen task (if any) to M 2. The first operation of that 
task is added to the beginning of the appropriate fist (i.e. if R(Ojj) = 1, then O;j 
is added to ONE). Set t ' . = t -  1, B : = B  U.~,, and go to step 2. 

4. If  all tasks have been assigned, set I T : = " n o " ,  otherwise set I T : = " y e s " .  
.End the procedure. [] 

The uniqueness of the choices made by the procedure stems from the following 
rules. 
(i) Operations are taken from the beginning of the lists, except for the case when 

no task is chosen. In the latter case an operation from the end of the list is 
chosen. 

(ii) Tasks of the same type are chosen in nonincreasing order of their due dates. 

Before presenting some lemmas that prove the correctness of algorithm 1 we 
need some more definitions. For a given schedule S and time moment t = 
1 ,2  . . . . .  dm~ , - 1 ,  let C(t, s) [ZERO(t, S)] denote a set of operations [a set of 
operations of type 0] to be processed on M~, not assigned in interval [t, dmax], 
being dummy or belonging to tasks whose second operation has been assigned in 
interval [t, d m j .  Moreover, let ~q'(t, S) .'= {t ~3r :  d(T )  > t and t has not been 
assigned in interval [t, dm~ ] in S }. Now we may give the lemma. The first lemma 
contains some quite simple observations and we present it omitting a proof. 

LEMMA 1 
Let 37" and D be respectively a set of tasks and a set of dummy operations. 

Then for any schedule for ~q- and D with no task late, and without an idle time 
on M 1 in time interval [0, dm~,], there exists schedule S with the same properties, 
which in addition fulfils the following conditions: 
(i) tasks of the same type are processed on M 2 in increasing order of their due 

dates; 
(ii) if x and y are operations of type 0 to be processed on M 1 and s (x )  > s ( y )  

in S and y ~ D, then s(z)  <~ s(x) ,  where y and z compose one task; 
(iii) if for some time t no machine processes an operation of type 1, then 

d(T )  <~ t for each task of type 11 or 01 completed in S before t, and 
C(t + 1, S)  contains no operation of type 1; 

(iv) if there exists time t in which M 2 performs a task of type 11 (resp. 0 °) (resp. 
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has an idle time), then d(T )  ~ t for each task of type 01 (resp. 1 °) (resp. 0 ° 
and 1 °) which has been completed in S before t. [] 

The second lemma relates the schedules produced by procedure IDLE TIME 
to other schedules with no task late. 

LEMMA 2 

If the Boolean variable IT = "yes"  after performing procedure IDLE TIME for 
sets .9" and D, then there is no schedule for 3 7- and D with no task late an d  
without and idle time on M~ in time interval [0, dm~x]. 

Proof 
Suppose on the contrary that there exists a schedule S for o~ and D with no 

task late and without an idle time on M~, despite the fact that IT = "yes" .  Using 
this assumption, we will change S step by step so that no idle time will appear on 
M l and after k steps S and the partial schedule P obtained by procedure ID LE 
TIME,  will be consistent in time interval [dm~ , - k ,  dm~x], thus leading to a 
contradiction. 

According to lemma 1, we may assume that S obeys conditions (i) through (iv). 
Without loss of generality we may also assume that in P if M 1 performs an 
operation x of type 1 and M 2 has an idle time, then the second operation of the 
same task is performed immediately after the completion of x. 

Now taking into account the above assumptions and the way in which tasks 
are assigned in procedure IDLE TIME, we have to consider only two cases in 
which P and S may differ. 

CASE 1 

If in S s (x )  ~ s (y )  (see fig. 1), where x is the first operation to be assigned out 
of those composing set ZERO (~', S)  then the way of changing S is obvious. 
Hence, suppose s ( x ) >  s(y) .  According to condition (i) in lemma 1, in time 

I'I o operohon V 
M e ~ l 

0 
Schedule P 

M~ I 0 I 

M z ~ o 

T 
Schedule G 

Fig. 1. 
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M1 

o 

ZE,~O ('~ P) = 

l,l o 

7" 
Schedule P 

Schedule S 

Fig. 2. 

! 

® 
2" 

interval [ s (y)  + 1, ~-] in S machine M 2 cannot perform an operation of a task of 
type 11 (cf. schedule P and the fact that in time interval [~-+ 1, dmax] both 
schedules are consistent). Taking additionally into account condition (iii), it 
follows that any operation of type 0 performed on M 1 in time interval [ s (y )  + 1, ~-] 
is performed in parallel with the second operation of a task of type 0 ~. Thus, 
following condition (i.i) we get for each t, s ( y )  + 1 <~ t <~ ~', that set ZERO (t, S)  
contains at least one dement  from set ZERO (~-, S), which leads to a contradic- 
tion. Hence, we get that P and S are consistent in time interval [,r, ~" + 1]. 
Moreover, taking into account the above considerations, we assume that in S if at 
time t M 1 performs an operation of type 1 and M 2 a task of type 0 ° and ZERO 
(t  + 1, S)  ~ ,  then there is no task of type 11 such that d ( T )  >! t. 

CASE 2 
Let "r i < ~" be the latest time in S in which M 2 performs a task of type 11 (cf. 

fig. 2). Since ZERO (.r, S )4 :  0, then for each t, ~-, < t ~< ~-, ZERO (t, S)4:£[.  
Thus, in S M 2 performs only tasks of types 1 ° or 01 at each time t, ~'1 + 1 ~< t ~< ~-. 
Moreover, since ZERO (~', P )  = ~  and I C(~, P )  [ >i 2, then in P at each time 
moment  t, r l <  t < ~', M 2 performs tasks of type 1 °, where ~1 is the latest 
moment,  ~-~ < ¢, in which M 2 performs a task of type 0 ° in P (if such a moment  
exists). It is not hard to see that there must be such a time moment,  if there exists 
time moment  ~.2, ~.2 < ~., in which M 2 performs in P a task of type 01 or 11 (in 
this case ~.2 < ~.1). Hence, at each moment  t, "q ~< t ~< ~-, M 2 performs in P only 
tasks of types 1 °, 0 ° or 01. Moreover, there is no idle time on either machine in 
time interval [zl, ~') in S. It follows from the above considerations that if for each 
task T of type 1 ° or 01 completed in S by ~'1, d(T)<~ T~, then .Y'(~-~, S ) =  
.,q'(~q, P )  U {T} where T is of type 0 ° and IZERO (~'1, P )  I = 1. Let us consider 
the opposite case. Then set ..q-(~-a, S)  contains a task of type 1 ° and does not 
contain a task of type 01. 

Let ~'2, ~'2 < ~',, be the latest time moment  in S such that M z performs a task of 
type 1 ° and set .Y'(~r 2, S)  does not contain a task of type 1 °. Since ZERO  
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(~'1, S) = ~ ,  then at each moment  t, ~'2 ~< t < ~'1, M2 performs a task of type 10 in 
S. It  follows that at each moment  t, "r 2 ~< t < z, M 2 performs in P only tasks of 
types 1 °, 01 or 0 ° (exactly one task of that type is processed). Thus, 9"(~- 2, S) = 
,~q-('r 2, P )  U {T} where T is of  type 0 ° and IZERO (%, P)  l = 1. 

Now, it is not hard to show the way in which one has to change the assignment 
of tasks in S in time interval [~'1, z] ([~'2, r], respectively), to obtain the desired 
consistency. [] 

Finally, the following lemma establishes the correctness of algorithm 1. 

LEMMA 3 
Algorithm 1 constructs a schedule with no task late for a given set of tasks, 

whenever such a schedule exists. 

Proof 
I t  is sufficient to note that if I T  = "yes"  for ~7- and D such that I D I = d ~  - n, 

then lemma 2 assures us that there is no schedule without delayed tasks for set 
~q-. [] 

Now we may proceed to the minimization problem F2 Ires 111, Pij = 11Lma~" 
A binary search procedure conducted on the value Lm~ x (and the adjusted values 
of task due dates) will give us an opt imal  schedule after O(log2n ) repetitions of 
algorithm 1. The overall complexity is thus O(n log2n) since algorithm 1 can be 
easily implemented to run in O(n log2n) time. 

Let  us note that the presented approach is of more general nature, since its 
idea may also be  used in solving problems with parallel machines and in open 
shops whenever resource requirements are of 0-1 type and tasks (or operations) 
are of unit length. 
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