
Annals of Operations Research, 16 (1988) 255-266 255

S C H E D U L I N G U N I T - T I M E T A S K S O N F L O W -
S H O P S U N D E R R E S O U R C E C O N S T R A I N T S

J. B L A Z E W I C Z 1 W. K U B I A K 2 and J. S Z W A R C F I T E R 3

t Instytut Automatyki, Politechnika Poznahska, Poznah. Poland
z Instytut lnformatyki, Politechnika Gdahska, Gdahsk, Poland
z Unioersidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Abstract

We consider the problem of scheduling tasks on flow shops when each task may also
require the use of additional resources. It is assumed that all operations have unit lengths, the
resource requirements are of 0-1 type and there is one type of the additional resource in the
system. It is proved that when the number of machines is arbitrary, the problem of
minimizing schedule length is NP-hard, even when only one unit of the additional resource is
available in the system. On the other hand, when the number of machines is fixed, then the
problem is solvable in polynomial time, even for an arbitrary number of resource units
available. For the two machine case an O(n log22n) algorithm minimizing maximum lateness
is also given. The presented results are also of importance in some message transmission
systems.

Keywords: Scheduling, flow shops, resource constraints, message transmission

I. Introduction

The paper is concerned with the problem of nonpreempt ive scheduling unit
t ime opera t ions on flow-shops when each opera t ion may require addit ional scarce
resources. Three essential d e m e n t s of the model are: a set of n tasks each
consist ing o f m operat ions, a set o f m machines and a set of s addit ional
resource types required by opera t ions in integer amounts . Tasks may s tand e.g.
for programs, ships, bui lding operat ions; machines-for processors, dockyards ,
bui lding machines, and addit ional resources m a y represent p r imary or mass
storage, channels, man-power or addi t ional tools, etc. One of the main issues
arising in the context of scheduling theory is the complexi ty analysis answering
the ques t ion whether or not a given p rob lem can be solved in polynomial- t ime.
(We refer the reader to [7] where the NP-comple teness theory is considered in
detail.) The complexi ty investigation of resource constra ined scheduling s tar ted in
1975 with a paper by Garey and Johnson [6]. Then, several papers were devoted
to this subject [1-5 ,5 ,9-12] . However , p rob lem of flow shop schedul ing under
resource constraints was considered in [5] and [9]. In the first paper , the

© J.C. Baltzer A.G, Scientific Publishing Company

256 J. Bta~ewicz et al. / Scheduling unit-time tasks on flow shops

NP-hardness of the problem was proved for two machines, arbitrary processing
times of the tasks and one resource type available in one unit, when schedule
length was to be minimized. The same problem but with unit processing times
was solved in O(n) time. Several other results were presented in [9]. These
include: an O(n log n) algorithm for two machines, unit processing time oper-
ations, one resoUrce type and the schedule length criterion, and several NP-hard-
ness proofs concerning unit time operations. Among them two problems of
minimizing schedule length may be distinguished: scheduling on two machines
with two resource types and scheduling on three machines with one resource type
(in both cases resource requirements are arbitrary). Using the first of the two
results and the theorem given in [4] one may also prove the NP-hardness of the
same problem but with many resources each available in the amount of one unit.

:'In [9] the problem of minimizing maximum lateness was also proved to be
NP-hard for two machines and one resource type but with arbitrary resource
requirements. Most of these results also hold for preemptive as well as no-wait
cases. (The latter denotes an additional constraint on the way of task processing
such that for any task whenever a processing of its operation on machine M i,
i = 1, 2 m - 1, finishes, immediately a processing of its next operation on
machine Mi÷ l starts.) At this point let us also mention an interesting application
of a no-wait resource constrained flow-shop scheduling in message transmission
systems. Clearly, the first problem with m machines, r units of an additional
resource, a set ~- of unit processing time tasks, and with schedule length
criterion, corresponds to a problem of transmitting a set ~'- of m-bit words over a
line which allows r bits equal to 1 to be sent in parallel only.

Following the above overview we see that several problems still remain open.
This is especiall37 true when considering scheduling problems with unit-time
operations, one resource type and zero-one resource requirements (i.e. operations
may require either zero or one unit of the additional resource). In the present
paper, we address ourselves to some of these problems. In particular, we prove
that the problem .of minimizing schedule length with an arbitrary number of
machines is NP-hard even for the case when the additional resource is available
in the amount of one unit. This result holds also for any other scheduling
criterion. On the other hand, when the number of machines becomes fixed, the
above problem may be solved in polynomial time (via a dynamic programming
approach) for an arbitrary amount of resource units available. The presented
approach has a more general meaning. Whenever the number of different task
types (differing by processing times, resource requirements, etc.) is fixed, it will
enable to solve the problem of minimizing schedule length. Finally, the problem
of minimizing maximum lateness will be considered and an O(n log2n) algorithm
for two machines and one unit of the additional resource will be given. The
method is also more general and may be applied for some other unit-time task
scheduling problems with the maximum lateness criterion. Before doing this we
will set up the subject more precisely.

J. Bta~ewicz et al. / Scheduling unit-time tasks on f low shops 257

We are given a set of n tasks 3-= (T 1, T 2 T n } each of which consists of m
operations, i.e. task Tj consists of the set of operations t~j = { Olj , O2j O,,y}.
Operations are to be processed on the set of m machines ~ = { M 1, M 2 M, , }
such that for each j , Oij is processed on machine M i, i.= 1, 2 m. An
additional resource R with limit r is also available in the system. Each operation
Oij, i = 1, 2 , m; j = 1, 2 n, requires for its processing machine M i and
the additional resource in the amount specified by R(Oi j) (which may be equal to
0 or to 1). A column vector describing the resource requirements of operations
constituting task Tj will be denoted by R(Ty). Operations must be processed
nonpreemptively, i.e. each operation once assigned to a processor must be
processed without any break till its completion. If the same constraint is imposed
on the way in which tasks are processed (i.e. each task once started must be
processed till the completion of its last operation without any break) the schedule
will be said to have the no-wait property. All the tasks are independent and the
operations of a particular task Tj, j = 1, 2 n, are processed in such a way that
Oij precedes O2j which precedes O3j and so on until Omj is completed. Each
operation O;j is characterized by unit processing time p (Oij) = 1, i = 1, 2 m,
j - 1, 2 n. Whenever maximum lateness is to be minimized, we will assume
that each task Tj is assigned a due date d(Tj) , i.e. a time by which the last
operation of the task (O,,j) is to be completed.

A feasible schedule is a function s: t g ~ Z (Z is a set of nonnegative integers),
which obeys the following conditions:
(a) For each integer t, t >/0,

s(t) <. m

where S (t) = { Oij ~ d): s(Oij) = t} is the set of operations assigned to machines
at time t.
(b) For each integer t, t >1 O,

E R(Oij)~r"
O~S(t)

(C) For each integer t, t >/0, and i = 1, 2 , . . . , m,

I{o,;: o,j s(t), j = 1, 2, . . . , n} l -< 1.

(d) For each Oo., i = 1, 2 m - 1; j = 1, 2 , . . . , n

s(O,j)¢s(O,+l.j)-l.
Whenever maximum lateness Lma ~ is to be minimized we add the following
condition to express feasibility for a given value L ' of Lmax:
(e) For each Tj, s(O,,,i) + 1 <~ d(Tj) + L' .

For a given schedule, let c(Oi.i) denote the completion time of operation O~j,

i.e. c(Oi.i) = s(Oij) + 1.

258 J. Bta2ewicz et al. / Scheduling unit-time tasks on flow shops

We will be interested in two criteria when evaluating schedules: the schedule
length defined as C,,~ = max(c(Oij) } and the maximum lateness defined as
m a x j (~(O,, , j) - d (Tj)} .

In the paper, we will use the notation defined in [5,8] for the short and concise
classification of scheduling problems. The three problems considered in the paper
are denoted as follows. F Ires 111, pj = l lC~a x whose NP-hardness is established
in sect. 2. Fm Ires 1 -1 , p , . i= l iCma x for which a dynamic programming ap-
proach is presented in sect. 3. Finally, F2 Ires 111, Pu = 1 [L.,,~ which is solved
by an O(n log2n) algorithm in sect. 4.

2. NP-hardness of problem F Ires 111, Pij = 11 Crux

In this section we will prove that the flow shop scheduling problem with, an
arbitrary number of machines, unit-time, nonpreemptive operations, a unit of an
additional resource and with Cm, x criterion, is NP-hard, thus unlikely to admit a
polynomial time algorithms. The proof is similar to that of theorem 1 in [9], thus
we give here only its outline, leaving details to the reader.

It is sufficient to prove the NP-hardness of the decision counter part (denoted
by H1) of F Ires 111, p;j = l lCm~ x. As a known NP-comple te problem (denoted
by / /2) we will use the Hamiltonian Path problem ([7], [9]). For a given instance
of / /2 defined by a graph G = (V, E), let q = IVI , z = 2 (q (q - 1) + t) and let a
corresponding instance of H 1 be defined by assuming:
- A number of m = 2z machines M 1 M,,, Among them, the odd machines
M i, i = 3, 5 z - 1 are labeled respectively with the pairs (k, l) in lexico-
g raph ica l order ing , 1 ~< k, 1 ~< q and k :~ l, tha t is us ing labels
(1, 2), (1, 3) (2, 1) (q, q - 1) . The same labels are applied to the odd
machines Mi+:; where machine M~+~ receives the same label as M i.
- A number of n = (q-1)z + 1 tasks T 1, T z T,. The tasks T 1, T 2 Tq are
called vertices and the resource requirements of their operations are defined as
follows:

Machine i, unlabeled R(Ou)
l 1
2 ,4 z 1
z + l 0
z +2 , z + 4 ,2z 0

Machine i, labeled (k, l) R(Oi~)
j ~ { k , l } 0
j ~ {k, 1} and (k. 1)~E 0
j ~ {k, 1} and(k, l) q~E 1

The remaining (q - 1) (z - 1) tasks Tj, j > q have their operat ions with zero
resource requirements R (O u) = 0, for i = 1, 2 m.

J. Bta2ewicz et aL / Scheduling unit-time tasks on flow shops 259

- The threshold value for the schedule length is (q + 1)z.
Now, it is sufficient to note that in the above construction the resource

requirements of the odd operations of vertex i are nothing else but entries of the
i-th row and the i-th column of the adjacency matrix of G. Moreover, standard
arguments show that each schedule, which can be taken into account in consider-
ation of the threshold value, is a no-wait schedule with z unit times between any
two consecutive vertices.

Careful inspection of the above proof shows that for other criteria such as
mean flow time, maximum lateness, etc., and for preemptive as well as no-wait
modes of processing the above problem remains NP-hard as well. In the next
section we will show, however, that fixing the number of machines m, allows one
to solve the problem in polynomial time.

3. A dynamic programming approach to solving Fin Ires 1" 1, Pii = 11Cma~

Below we will show that if the number of machines is fixed, then the problem
considered in the last section may be solved in polynomial time, even for the case
when more than one unit of the additional resource is available in the system.We
will employ a dynamic programming approach. The problem to be solved is
somewhat more general than the formulated flow shop problem. Instead of
starting from machine M~, the operations of Tj constitute any sequence
Ok, j, Ok,+l,j O,,j, where kj E Z,, + . * Ok, / is called the head of task (sequence)
T/. Now we will explain the idea of the algorithm. The following definitions will
be used in order to do that.

Two sequences belong to the same class of sequences if they have the same
number of operations, and operations processed on the same machine have the
same resource requirements in both sequences. I f m is the number of machines
then the number of classes of sequences c is equal to 2 "'+~ - 1.

Two instances belong to the same class of instances if they contain the same
number of sequences in each class of sequences. It is not difficult to see that if m
is fixed then c is fixed and the number of classes of instances, with at most n
sequences, is less than n".

Let I be an instance of the more general problem defined above and H (I) the
set of heads of I. A feasible starting set for I is a nonempty subset of heads
H ___ H (I) , that satisfies

(i) if Oki ~ H and Okj ~ H then i = j .

(iX) Y'~ R(Oki) <~ r.
Ok,~H

In other words, H is a subset of heads which can start a feasible schedule for I.

* Z2" =(1,2 k} and Zk= {0,1 k}.

260 J. Bta~ewicz et al. / Scheduling unit-time tasks on flow shops

Let H be a feasible starting set for 1. Denote by an(I) the instance which is
obtained by deleting from the sequences of I the heads from H. The instance
all(1) will be called a direct successor of L Two feasible starting sets for 1, H and
H ' belong to the same class of feasible starting sets for 1 if the instances otn(1)
and ~ , (I) belong to the same class of instances. It is easy to see that there is at
most E l~ i , ~ , , (~)=dc l a s se s of instances which contain direct successors of I.
Obviously, if m is fixed then d is fixed as well.

The above considerations practically show how to employ a dynamic program-
ming approach in order to get a polynomial time algorithm. A class of instances
can be written as a class vector from Z n x • • • x Z, - c times. The entries of a
class vector show how large are classes of sequences in a class of instances. Then
a problem state can be defined as a pair consisting of a class vector and a
non-negative integer which can be interpreted as the starting moment for the next
feasible starting set. The problem states being direct successors of the problem
state (1, t) are closely related to the classes of feasible starting sets for I and can
be obtained if the classes are generated. Moreover, t is equal to t ' + 1, where t ' is
the starting moment for the "earliest" direct predecessor of the problem state
(/ , t). It is sufficient to generate O(n c+1) problem states in order to obtain a
problem state with the length of an optimal schedule. Then, backtracking along
the best path of decisions allows for the construction of an optimal schedule. The
details are left to the reader.

It is easy to see that the time complexity of the algorithm is O(nC+llog n). It
should be noted that the time of generating any problem state is O(log n).
Obviously, it is, a polynomial time algorithm if m is fixed.

4. An O(n log2n) algorithm of F2 Ires 111, Pij = 1 I Lm,x

In this section we wiU consider the problem of minimizing maximum lateness
in a two-machine flow shop with unit time nonpreemptable operations and a unit
of an additional resource available in the system. In the approach presented, two
stages can be distinguished. The first stage consists in checking for feasibility, i.e.
answering the question whether or not there exists a feasible schedule with no
task late for a given set of due dates (the feasibility problem is denoted by
F21res 111, p i / = 1, d j I - [8,5]). The method here assigns tasks to baskets
denoted by particular due dates. Then, starting from the end of the schedule, it
tries to assign in consecutive time slots tasks available in corresponding baskets,
so that there is no. idle time for the machines and the additional resource. The
second stage consists in applying a binary search procedure which uses the above
method and changes the trial values of due dates and Lma x, thus producing an
optimal schedule. Below we start with the first algorithm which solves the
problem F2 [res 111, pij = 1, dj [- .

Let us denote dmln=minrj{d(Tj)}. To avoid pseudopolynomiality of our

J. Bta~ewicz et al. / Scheduling unit-time tasks on flow shops 261

algorithm we have to modify the due dates for all the tasks in the following way:

{dmi, + 2n, i f d (T j) > d ~ . + 2 n ,

d (Tj) := d (Tj), otherwise.

Then, the value dma x is defined as dm~ = maxrj~a-(d(Tj) }. The baskets ~ are
now defined in the following way:

~jj= (T~o~ ' : d (r) = j } , j=dmin , dmin+l din=.

For brevity we will also denote an operation not requiring the additional resource
by an operation of type 0 and the one requiring a unit of this resource by an
operation of type 1. For the same reasons the four types of tasks will be denoted
respectively by 1 °, 0t,11, and 0 °. The first symbol denotes a task Tj with
R(Oij) = 1 and R(O2j) = 0 and the remaining symbols the other corresponding
types of tasks.

The following algorithm assigns the tasks to consecutive time slots starting
from din=. To make the assignment rules uniform an additional set D of 0 type
dummy operations to be processed on M 1, is added. The algorithm uses an
additional procedure IDLE TIME which checks whether or not it is possible to
assign tasks from .5 r and dummy operations from D to machines in interval
[0, din=] in such a way that no idle time on M~ appears. (In the case when such a
schedule exists, a Boolean variable IT takes the value "no"). Now the algorithm
can be described. Its input is set ~q" and its output is answer "yes" (plus the
schedule) in the case when a schedule with no task late exists for F2 [res 111, Pij
= 1, dj [- , or " 'no" in the opposite case.

ALGORITHM 1
1. If m i n r ~ - (d(T)} >/2n, then the answer is "yes". Schedule the tasks one

by one in the time interval [0, 2n]. End the algorithm. Otherwise go to step 2.
2. If dm~ ~ ~< n, then the answer is "no" . End the algorithm. Otherwise go to

step 3.
3. Set D .'= (dm~ - n dummy operations of type 0, to be processed on 3,/1).
4. Call IDLE TIME (D, .9"). If IT = "yes", then the answer is "no" . End the

algorithm.
Otherwise the answer is "yes". Remove dummy operations from the obtained
schedule. End the algorithm. []

The procedure IDLE TIME takes as the input the sets D and if" and its
output is "yes" if there is an idle time on M 1 when scheduling D and ~q', and
" n o " otherwise. Its description is as follows.

PROCEDURE IDLE TIME (D, .~')
1. Set t := dma x, B : - - -~ t.

Construct a list ZERO, consisting of the operations of type 0, ZERO := D.

262 J. Bta2ewicz et aL / Scheduling unit-time tasks on flow shops

Construct a list ONE consisting of the operations of type 1, initially empty.
2. If either ONE or ZERO is not empty, then choose an operation from any

list and a task from set B in the following order (first the operation appears, then
the task chosen): 1 1 ° ~ 0 0 1 ~ 0 1 1 ~ 1 0 ° ~ 0 1 ° ~ 0 0 °---,1 (a task is not
chosen) ~ 0 (B is empty). Go to step 3.
Otherwise, i.e. if ONE and ZERO are empty, go to step 4.

3. Remove the chosen operation from its appropriate list and the chosen task
(if any) from set B. Assign at time t - 1 the chosen operation to M 1 and the
second operation of the chosen task (if any) to M 2. The first operation of that
task is added to the beginning of the appropriate fist (i.e. if R(Ojj) = 1, then O;j
is added to ONE). Set t ' . = t - 1, B : = B U.~,, and go to step 2.

4. If all tasks have been assigned, set I T : = " n o " , otherwise set I T : = " y e s " .
.End the procedure. []

The uniqueness of the choices made by the procedure stems from the following
rules.
(i) Operations are taken from the beginning of the lists, except for the case when

no task is chosen. In the latter case an operation from the end of the list is
chosen.

(ii) Tasks of the same type are chosen in nonincreasing order of their due dates.

Before presenting some lemmas that prove the correctness of algorithm 1 we
need some more definitions. For a given schedule S and time moment t =
1 ,2 dm~ , - 1 , let C(t, s) [ZERO(t, S)] denote a set of operations [a set of
operations of type 0] to be processed on M~, not assigned in interval [t, dmax],
being dummy or belonging to tasks whose second operation has been assigned in
interval [t, d m j . Moreover, let ~q'(t, S) .'= {t ~3r : d(T) > t and t has not been
assigned in interval [t, dm~] in S }. Now we may give the lemma. The first lemma
contains some quite simple observations and we present it omitting a proof.

LEMMA 1
Let 37" and D be respectively a set of tasks and a set of dummy operations.

Then for any schedule for ~q- and D with no task late, and without an idle time
on M 1 in time interval [0, dm~,], there exists schedule S with the same properties,
which in addition fulfils the following conditions:
(i) tasks of the same type are processed on M 2 in increasing order of their due

dates;
(ii) if x and y are operations of type 0 to be processed on M 1 and s (x) > s (y)

in S and y ~ D, then s(z) <~ s(x) , where y and z compose one task;
(iii) if for some time t no machine processes an operation of type 1, then

d(T) <~ t for each task of type 11 or 01 completed in S before t, and
C(t + 1, S) contains no operation of type 1;

(iv) if there exists time t in which M 2 performs a task of type 11 (resp. 0 °) (resp.

J. Bta~ewicz et aL / Scheduling unit-time tasks on flow shops 263

has an idle time), then d(T) ~ t for each task of type 01 (resp. 1 °) (resp. 0 °
and 1 °) which has been completed in S before t. []

The second lemma relates the schedules produced by procedure IDLE TIME
to other schedules with no task late.

LEMMA 2

If the Boolean variable IT = "yes" after performing procedure IDLE TIME for
sets .9" and D, then there is no schedule for 3 7- and D with no task late an d
without and idle time on M~ in time interval [0, dm~x].

Proof
Suppose on the contrary that there exists a schedule S for o~ and D with no

task late and without an idle time on M~, despite the fact that IT = "yes" . Using
this assumption, we will change S step by step so that no idle time will appear on
M l and after k steps S and the partial schedule P obtained by procedure ID LE
TIME, will be consistent in time interval [dm~ , - k , dm~x], thus leading to a
contradiction.

According to lemma 1, we may assume that S obeys conditions (i) through (iv).
Without loss of generality we may also assume that in P if M 1 performs an
operation x of type 1 and M 2 has an idle time, then the second operation of the
same task is performed immediately after the completion of x.

Now taking into account the above assumptions and the way in which tasks
are assigned in procedure IDLE TIME, we have to consider only two cases in
which P and S may differ.

CASE 1

If in S s (x) ~ s (y) (see fig. 1), where x is the first operation to be assigned out
of those composing set ZERO (~', S) then the way of changing S is obvious.
Hence, suppose s (x) > s(y) . According to condition (i) in lemma 1, in time

I'I o operohon V
M e ~ l

0
Schedule P

M~ I 0 I

M z ~ o

T
Schedule G

Fig. 1.

264 J. Bta2ewicz et aL / Scheduling unit-time tasks on flow shops

M1

o

ZE,~O ('~ P) =

l,l o

7"
Schedule P

Schedule S

Fig. 2.

!

®
2"

interval [s (y) + 1, ~-] in S machine M 2 cannot perform an operation of a task of
type 11 (cf. schedule P and the fact that in time interval [~-+ 1, dmax] both
schedules are consistent). Taking additionally into account condition (iii), it
follows that any operation of type 0 performed on M 1 in time interval [s (y) + 1, ~-]
is performed in parallel with the second operation of a task of type 0 ~. Thus,
following condition (i.i) we get for each t, s (y) + 1 <~ t <~ ~', that set ZERO (t, S)
contains at least one dement from set ZERO (~-, S), which leads to a contradic-
tion. Hence, we get that P and S are consistent in time interval [,r, ~" + 1].
Moreover, taking into account the above considerations, we assume that in S if at
time t M 1 performs an operation of type 1 and M 2 a task of type 0 ° and ZERO
(t + 1, S) ~ , then there is no task of type 11 such that d (T) >! t.

CASE 2
Let "r i < ~" be the latest time in S in which M 2 performs a task of type 11 (cf.

fig. 2). Since ZERO (.r, S)4 : 0, then for each t, ~-, < t ~< ~-, ZERO (t, S)4:£[.
Thus, in S M 2 performs only tasks of types 1 ° or 01 at each time t, ~'1 + 1 ~< t ~< ~-.
Moreover, since ZERO (~', P) = ~ and I C(~, P) [>i 2, then in P at each time
moment t, r l < t < ~', M 2 performs tasks of type 1 °, where ~1 is the latest
moment, ~-~ < ¢, in which M 2 performs a task of type 0 ° in P (if such a moment
exists). It is not hard to see that there must be such a time moment, if there exists
time moment ~.2, ~.2 < ~., in which M 2 performs in P a task of type 01 or 11 (in
this case ~.2 < ~.1). Hence, at each moment t, "q ~< t ~< ~-, M 2 performs in P only
tasks of types 1 °, 0 ° or 01. Moreover, there is no idle time on either machine in
time interval [zl, ~') in S. It follows from the above considerations that if for each
task T of type 1 ° or 01 completed in S by ~'1, d(T)<~ T~, then .Y'(~-~, S) =
.,q'(~q, P) U {T} where T is of type 0 ° and IZERO (~'1, P) I = 1. Let us consider
the opposite case. Then set ..q-(~-a, S) contains a task of type 1 ° and does not
contain a task of type 01.

Let ~'2, ~'2 < ~',, be the latest time moment in S such that M z performs a task of
type 1 ° and set .Y'(~r 2, S) does not contain a task of type 1 °. Since ZERO

J. Bta~ewicz et al. / Schedufing unit-time tasks on flow shops 265

(~'1, S) = ~ , then at each moment t, ~'2 ~< t < ~'1, M2 performs a task of type 10 in
S. It follows that at each moment t, "r 2 ~< t < z, M 2 performs in P only tasks of
types 1 °, 01 or 0 ° (exactly one task of that type is processed). Thus, 9"(~- 2, S) =
,~q-('r 2, P) U {T} where T is of type 0 ° and IZERO (%, P) l = 1.

Now, it is not hard to show the way in which one has to change the assignment
of tasks in S in time interval [~'1, z] ([~'2, r], respectively), to obtain the desired
consistency. []

Finally, the following lemma establishes the correctness of algorithm 1.

LEMMA 3
Algorithm 1 constructs a schedule with no task late for a given set of tasks,

whenever such a schedule exists.

Proof
I t is sufficient to note that if I T = "yes" for ~7- and D such that I D I = d ~ - n,

then lemma 2 assures us that there is no schedule without delayed tasks for set
~q-. []

Now we may proceed to the minimization problem F2 Ires 111, Pij = 11Lma~"
A binary search procedure conducted on the value Lm~ x (and the adjusted values
of task due dates) will give us an opt imal schedule after O(log2n) repetitions of
algorithm 1. The overall complexity is thus O(n log2n) since algorithm 1 can be
easily implemented to run in O(n log2n) time.

Let us note that the presented approach is of more general nature, since its
idea may also be used in solving problems with parallel machines and in open
shops whenever resource requirements are of 0-1 type and tasks (or operations)
are of unit length.

Acknowledgment

The authors gratefully acknowledge helpful comments made by Hans RiSck on
the first draft of this paper.

References

[1] J. Bla~ewicz, Deadline scheduling of tasks with ready times and resource constraints, Inform.
Process. Lett. 8 (1979) 60-63.

[2] J. Bla~ewicz, J. Barcelo, W. Kubiak and H. R/Sck, Scheduling tasks on two processors with
deadlines and additional resources. European J. on the Oper. Res. 26 (1986) 364-370.

[3] J. B/a~ewiez, W. Cellary, R. Slowihski, J. Weglarz, Scheduling under Resource Constraints:
Deterministic Models, Annuals of Operations Research 7 (J.C. Baltzer, Basel, 1986).

266 J. Bta2ewicz et al. / Scheduling unit-time tasks on f low shops

[4] J. B/aZewicz, W. Kubiak, H. R~Sck and J. Szwarcfiter, Minimizing mean flow time under
resource constraints on parallel processors, Acta Informatica 24 (1987) 513-524.

[5] J. Bla~ewicz, J.K. Lenstra and A.H.G. Rinnooy Kan, Scheduling subject to resource con-
straints: classification and complexity, Discrete Appl. Math. 5 (1983) 11-24.

[6] M.R. Garey and D.S. Johnson, Complexity results for multiprocessor scheduling under
resource constraints, SIAM J. on Comput. 4 (1975) 397-411.

[7] M.R. Garey and D.S.. Johnson~ Computers and Intractability: A Guide to the Theory of
NP-Completeness (W.H. Freeman, San Francisco, 1979).

[8] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and
approximation in deterministic sequencing and scheduling theory: a survey, Ann. Discrete
Math. 5 (1979) 287-326.

[9] H. R/Sck, Some new results in flow-shop scheduling, Zeitschrift fi~r Oper. Res. 28 (1984) 1-16.
[10] R. Slowihski, L'ordonnancement des t~ches pr6emptives sur les processeurs ind6pendants en

pr6sence de r6ssources suppl6mentaires, RAIRO Informat. 15 (1981) 155-156.
[11] J.D. Ullman, Complexity of sequencing problems, in: Computers and Job/Shop Scheduling

~' Theory, ed. E.G. Coffman, Jr. (J. Wiley, New York, 1976).
[12] D. de Werra, Preemptive scheduling linear programming and network flows, Siam J. Algebr.

and Discrete Meth. 5 (1984) 11-20.

