
Section I I I

Quantitative Models, Data Structuring
and Information Processing

Annals of Operations Research, 16 (1988) 201-240 201

S C H E D U L I N G P R O J E C T N E T W O R K S W I T H R E S O U R C E C O N S T R A I N T S
AND T I M E W I N D O W S

M. B A R T U S C H 1, R.H. M () H R I N G 2 and F.J. R A D E R M A C H E R 3

t Lehrstuhl Jar lnformatik und Operations Research, Uniuersitiit Passau, W.-Gerrnany.
2 Fachbereich Mathematik, TU Berlin W.-Gerrnany,

supported by Sonderforschungsbereich 303 (DFG), Unioersitiit Bonn
z Forschungsinstitut flir Anwendungsorientierte Wissensoerarbeitung, Ulm, W.-Germany

Abstract

Project networks with time windows are generafizations of the well-known CPM and MPM
networks that allow for the introduction of arbitrary minimal and maximal time lags between
the starting and completion times of any pair of activities.

We consider the problem to schedule such networks subject to arbitrary (even time
dependent) resource constraints in order to minimize an arbitrary regular performance
measure (i.e. a non-decreasing function of the vector of completion times). This problem
arises in many standard industrial construction or production processes and is therefore
particularly suited as a background model in general purpose decision support systems.

The treatment is done by a structural approach that involves a generalization of both the
disjunctive graph method in job shop scheduling [1] and the order theoretic methods for
precedence constrained scheduling [18,23,24]. Besides theoretical insights into the problem
structure, this approach also leads to rather powerful branch-and-bound algorithms. Compu-
tational experience with this algorithm is reported.

Keywords: Scheduling, project networks, MPM-networks, time-windows, order theoretic
approach to scheduling, disjunctive graph method.

1. Introduction

Real-life scheduling problems in industrial applications typically involve the
optimization of a complicated (usually non-linear) multiat tr ibute performance
measure subject to different kinds of constraints such as technological prece-
dence, time lags or windows, t ime-varying resource requirements and resource
availabilities, etc. This constitutes a situation particularly suited for the develop-
ment of general purpose decision support systems. The usual scheduling models
in machine scheduling [9] or project scheduling [10,23] are either too special to
model such a situation or just reduce the problem to a (mixed) integer program-
ruing problem [31,22] and apply general integer programming techniques. This
paper aims at closing the gap between practical needs and theoretical tools by

© J.C. Baltzer A.G. Scientific Publishing Company

202 M. Bartusch et al. / Schedufing project networks

investigating a very general class of deterministic scheduling problems which
allows for:
- arbitrary precedence constraints involving schedule-dependent time windows, i.e.

minimal and maximal time lags between starting times and completion times
of any two activities,

- different resource types, whose availability may change (in discrete jumps) over
time,

- resource requirements per activity involving several types and amounts that
may vary (in discrete jumps) with the processing of each activity,

- cost criteria (performance measures) that are arbitrary non-decreasing func-
tions of the activities' completion times, and thus may involve both "real cost"
and "individual preferences".

The first important step in one analysis of such problems is the development of
a suitable theoretical model that represents the basic features of such scheduling
problems by relatively simple mathematical structures that allow both theoretical
investigations (such as representation theorems for the set of feasible solutions
and the optimum value function, sensitivity analysis etc.) and are suited for a
"good" algolqthmic treatment (development and use of simple standard data
structures, separation of subtasks with high complexity etc.).

This is achieved in sect. 2 by a far-reaching reduction to the well-investigated
order-theoretic approach for project scheduling with partial orders as precedence
constraints [18,20,23,24].

Instead of partial'orders, precedence constraints and time windows are now
modeled by a "distance matrix" that represents a minimum potential in a
directed graph. This technique is closely related to the MPM-method for the
temporal analysis of project networks [27,28,10].

Furthermore, the appropriate use of time windows allows for a reduction of the
time-dependent resource requirements and availabilities to constant, i.e. time
independent, requirements and availabilities. These can, as in the order-theoretic
approach, be modeled by a system of forbidden sets, i.e. sets of networks activities
that may never be scheduled simultaneously. This reduction is important, as it
opens the way for a structural approach which is close to that for the order-theo-
retic case.

This approach is presented in sect. 3. We first show that if a system of
temporal constraints in the form of time windows has a feasible solution, then
there is an "embedded" partial order whose chains represent precedence con-
straints and whose antichains represent all principal possibilities for simultaneous
scheduling of jobs some of which are "forbidden" by the system of forbidden
sets. As in the order-theoretic case, construction of feasible schedules then means
introducing additional precedence constraints on these forbidden sets. In the
general case treated here, however, not all precedence constraints are possible, as
they may conflict with some time window constraint.

M. Bartusch et aL / Scheduling project networks 203

This establishes one of the major differences with the order-theoretic case. It
has several far-reaching consequences. In theoretical respect, it implies e.g. that
testing for the existence of a feasible solution is already NP-hard (theorem 3.10),
and that the stability behaviour w.r.t, variation of processing times is much more
restricted (remark 3.23). Section 3 will give a rigorous analysis of these aspects.

Section 4 presents a branch and bound algorithm based on the structural
approach of sect. 3. It generalizes both the disjunctive graph method for job shop
scheduling problems [1] and the branch and bound method for the order-theoretic
case [23,24]. An important speed-up is obtained by reduction techniques that
reduce the dimension of the problem to the number of jobs that actually require
scarce resources (are in some forbidden set) or whose completion time is essential
in the cost function. This reduction to the so-called essential jobs reduces the
computational effort per node of the underlying branching tree considerably. A
further reduction is obtained by time windows that restrict the choice of prece-
dence constraints on a forbidden set. Though theoretically harder to deal with,
with respect to the branch and bound algorithm they may prune branches of the
tree and thus restrict the search for good solutions. We close with demonstrating
our computational experience with this algorithm.

2. The general model

2.1. JOBS, SCHEDULES, AND PERFORMANCE MEASURES

The basic entities of the scheduling problems considered are the activities or
jobs. The set of all activities is denoted by A = { a~ , a n }, individual activities
are denoted by a i (i = 1 n) or a, /3, 3', etc.

These jobs represent units of the scheduling problem that must be scheduled
without preemption. (With respect to preemptive scheduling models this means
that preemptions can only take place at specified moments.) As will be seen later,
it is convenient to permit here also artificial jobs in order to represent cost terms
(milestones) or resource contraints in a simple way. Each job a; (real or artificial)
has a fixed processing t ime x i = x (a i) > 0. The vector x = (x I x~) denotes the
joint vector of processing times.

A schedule is an assignment of starting times to the jobs a l , . . . , a,,, i.e. a vector
S = (S t , . . . , Sn), where S i = S (a j) denotes the starting t ime of job a~, i.e. the time
at which processing of job ai starts. The time at which job a i has been completely
processed is called the completion t ime of a i and is denoted by C i = C(oti). Since
we assume that processing times are deterministic and as preemptions are not
permitted, the completion times are in our model uniquely determined by

(2.1) s, + x, = c , .

The vector C = (C1, . . . , C~) of completion times is in nearly all scheduling
models regarded as the list of parameters or attributes that determines the

204 M. Bartusch et aL / Scheduling project networks

"'goodness" of a schedule. This is usually [26,15] done by transforming the
multi-dimensional attribute C = (Ca Cn) by a function ~: R ~ ~ R I onto a
one-dimensional scale representing cost or utility.

So given K and a schedule S, K(S; x) = x(C 1 , Cn)= x (S + x) denotes the
cost resulting from scheduling jobs al , a n according to x. The only assump-
tion we make on r is that it is non-decreasing w.r.t, the componentwise ordering
of R ~, i.e.

(2.2) (C~ c~)<~(C; C ') ~ K (C ~ , c ,) < ~ x (c ; cd) .

These so-called regular measures of performance [8,26] or regular cost functions
cover the standard cost functions in machine scheduling such as makespan,
(weighted) flowtime, tardiness costs etc, and are general enough to allow also for
preference terms, real cost terms, milestones and many other cost terms occuring
in industrial applications.

2.2. TEMPORAL CONSTRAINTS

Schedules are subject to two types of constraints, temporal constraints and
resource constraints. In their most general form (which is standard e.g. in
applications in building industrie [13,30]), the temporal constraints are given by
arbitrary minimum and/or maximum time lags between starting times and/or
completion times of any two jobs. For instance, time lags between starting times
of jobs a i and aj have the form

• m a x (2.3) s, + l; 7 sj s, + l;j
• m a x l,.~ and l o are called the minimum and maximum start-to-start lag of job aj

: = m i n Si.q" m a x the window of relative to job a i, respectively, and W,7 [S~ + I u , l~y] time
Sj relative io S r Start-to-finish lags, finish-to-start lags, finish-do-finish lags, and
the associated windows are defined analogously. A schedule S = (S 1 S,) is
called time-feasible, if the starting times Si fulfil all inequalities given by the time
lags and (2.1). S" r c_ R n>_. denotes the set of all time-feasible schedules. SP r may
be empty since the constraints may be contradictory.

These temporal constraints contain the more common partial order precedence
constraints as a special case by considering only start-to-start time windows of
the form W~j= [Si+ x~, oo]. Also release times and due dates can easily be
represented in this model.

Graphical representations of networks with time lags usually draw for each job
a small rectangle whose left (right) side denotes its start (completion). Time lags
are represented by arrows between the associated sides of the rectangles. For
instance, in the example network in fig. 1, the arrow from job 3 to job 6
represents the finish-to-finish time lags 13~ = 3 and l~ax = 10.

Since we are dealing with fixed, deterministic processing times and time lags,
all different kinds of time lags may be represented in a standardized form by

M. Bartusch et aL / Schedul ing project ne tworks 205

(4,oo) ~ (3,sol

, (o,~) ~ . ~ _ = _ ~ . j . . ~ (o , ~)
o, oo) _ . . . ~ / e

> 7 ~ ' J i,,,o~ --'¢.,~-b--

Fig. 1. An example network with time lags.

reducing them to just one type; e.g. to minimum start-to-start lags. This is
achieved by replacing completion times C i according to (2.1) by S i + x i and by
transforming each inequality into the form S~ + 1, 7 ~ Sj (by allowing 1U to
become negative). Alltogether, one obtains the following transformation rules:
(2.4) start-to-start lags:

S, + l,7" <. sj - . S, + l,j ~ S j

S i Jr 1i7 in >1 S j --+ S j -4- lj i ~ S i

(2.5) start-to-finish lags:

s, + 1,7 ° .< g -+ s, + l,j .< sj

s ,+ l y x > /g -+ s j+ 6,-< s,

(2.6) finish-to-start lags:

C, + I,7" <. Sj -+ S, + I,j ~ S j

C, + l,7~ >_. s j -~ Sj + lj, ~ si

(2.7) finish-to-finish lags:
rain

C i + l U <<. C j - + S i + l i j ~ S j

c, + 1,7 ~x >_. g . -+ sj + lj, <. s ,

with 1U = li7 in

with lji = - 17] ax

rain w i t h l U - I U - x j

w i t h l j , = x j - 1i7 ax

with 1U = x~ + li"} i"

with lji = - xi - 17) ax

with l U = x i - x j + lin] in

with l j i = X j - - X i - - l i t ax

This reduction permits the representation of the temporal constraints by a
digraph G = (V, E) with edge weights as follows: G has a ver tex for each job (i.e.
V = A), and an edge (a i, c~i) directed from eli to a j if there is a constraint of the
form Si + l U ~ Sj with t U > - oo. In that case, the maximum value l U of all these
constraints is assigned as weight or length I U to the edge (a~, aj). G is called the
digraph o f the temporal constraints or simply the constraint digraph. For the
example of fig. 1, the constraint digraph is given in fig. 2.

206 M. Bartusch et aL / Scheduling project networks

Fig. 2. The digraph associated with the example of fig. 1.

Obviously, a time-feasible schedule S = ($1 S,) then corresponds to an
assignment of numbers rr i to the vertices ai(i = 1 n) such that

a) ~,~0
(2.8) b) rr~ + l~j~< ~rj for each edge (a~, aj) of G

holds, and vice versa.
Numbers ~r i (i = 1 n) fulfilling (2.8)b) are known as (node) potentials in

graph theory, and there is a well-developped theory about them [5,27,28]. This
theory is also the basis of the so-called metrapotential-method (MPM) for project
networks [27,28,21], which deals with start-to-start lags, and thus, by the above
reduction, essentially also covers the general temporal constraints of our model.
Further applications to job-shop scheduling are given in [6]. The main results
applying here are formulated in the following proposition.

2.1. PROPOSITION
Let G = (V, E) be a digraph with vertex set V = { a I a,, }, edge set E c_ V × V

and edge lengths lij ~ R 1 for each edge (a;, aj) ~ E.
(1) There exists a potential for G iff G has no directed circuit of positive length. 1
(2) The set ~ of all potentials for G is a convex polyhedron in R n which is either

empty or unbounded.

For all graphtheoretic notions not defined here, see [14].

M. Bartusch et al. / Scheduling project networks 207

(3) / f ~ 4 : ~ , then ~nR~ (i .e. the set o f solutions o f (2.8)) contains a unique
potential ¢r ° = (~r ° ~r °) that is componentwise smaller than all other ~r ~
nR .

Sketch of proof: Let a i be a vertex on a directed circuit with total length l. The
edge conditions (2.8) b) along the circuit then imply that ¢r i + l ~< % which is only
possible if l ~< 0.

To show the other direction of (1) assume w.l.o.g, that there is a vertex (aa, say)
from which each other vertex can be reached by a directed path with non-nega-
tive arc lengths. (Otherwise introduce a new vertex with an arc of length 0 to
every other vertex.) Put X 1 = 0 and let, for i = 2 n, X; denote the length of a
longest directed path from a~ to a~ (which is well defined since there are no
cycles of positive length). By definition of longest paths, h i +/~j ~< Xj for each
edge (a i, aj). So X = (X 1 Xn) is a potential for G. Since all constraints (2.8)b)
are linear, the set of all potentials is a convex polyhedron. It is unbounded, since
any translation (~q , ~rn)+ (d 1 d,,) of a potential (~q , %,) is again a
potential.

Finally, the unique minimum non-negative potential is given by the longest
path lengths X~ >t 0 above, since the iterative application of (2.8)b) along any path
from a 1 to o~ i yields q/'i ~ Xi for any solution ~r I 7r,, of (2.8). []

For scheduling applications, the unique componentwise minimum solution of
(2.8) has a very natural interpretation. It gives the earliest possible starting times
of the activities subject to the contraints (2.8). We call this schedule the earliest
start schedule associated with the given temporal constraints, and denote it by E S
or ESD, where D is the distance matrix defined below. Moreover, the required
vertex a 1 with non-negative path length to all other vertices usually corresponds
to an activity representing the start of the project. In the example in fig. 2, we
have E S = (0, 0, 4, 3, 2, 9, 7). For instance, E S 7 is determined by the path
1 -2-5-7 .

The proof of proposition 2.1 relates the test for existence of a time-feasible
schedule and the determination of the ES-schedule to the computation of cycle
lengths and longest paths in digraphs. This can be done by standard graph
algorithms for shortest/ longest paths in digraphs, e.g. by the Floyd-Warshall
algorithm (cf. [14] for details). It starts with the matrix D 1 = (d}))), i, j = 1 n
of "edge lengths"

(2.9)
! if i = j

di0)= for each edge (or i, aj) of G

oo otherwise

and computes the matrix D = D (n+l) according to the following updating for-

208 M. Bartusch et aL / Schedufing project networks

U(m) mula (in which _.~j is the length of a longest path from al to aj that does not use
vertices am, a m + l , . . . , an).

(2.10) d[jm+l) = max(d~j m), d~,~')+d("!)~ -'my j"

We then have (cf. for instance [14]):

2.2. PROPOSITION
Let D (°) and D be as defined above and assume that there is a directed path from

a 1 to every other a i. Then:
(1) Computing D from D (°) according to (2.10) takes O(n 3) time.
(2) G contains a directed cycle with positive length i f f d(ii "+ I) > 0 for some i.
(3) I f all d(i~ +1) = O, then d(i] +1) is the length of a longest path f rom % to otj in G.

We caU D = D (n+l) the distance matrix associated with the temporal con-
straints (2.8), and denote the d}] +1) simply by d;j. Combining the previous
results, we obtain:

2.3. COROLLARY

Let D be the distance matrix of a scheduling problem with time windows. Then:
(1) There exists a time-feasible schedule i f f dii = 0 for all i = 1 n. In that

case, djj + djk <% dik for all pairwise distinct jobs ai, a j, a k.
(2) I f all dii = 0, then S = ($1 S ,) ~ R ">1 is a time-feasible schedule iff , for

all i ~ j , Si + dij <~ S j.
(3) I f all d , = O, then the earliest start schedule E S D associated with D is given

by ESD = (d11, dlz , din).

Proposition 2.2 and corollary 2.3 state that D can be obtained efficiently, that
the diagonal contains information whether a time-feasible schedule exists, and
that the first row gives the associated ESD of all jobs. Moreover, each row i
(including i = 1) contains the complete information about the minimum temporal
distance between the starting time of each job aj (j ~ i) and that of a i.

In other words, D represents the "transitive closure" of the temporal con-
straints (2.8). It is unique (if all d , - - 0 , i.e. if 6a re g f), while the graph G
constructed from the original time lags and windows is not. The graph G
introduced here is just one way to represent the temporal constraints. Other
graph representations (either based on other time lags than start-to-start lags, or
using different vertices for S; and C,. with the constraints Si + x~ ~< C~ and
C~ - x t ~< S~) have been used in [2,12,29]. Even with a fixed representation, there
may be several different graphs (without redundant "transitive" edges) leading to
the same unique distance matrix D and system Sa r of time-feasible schedules.
This is why we shall use the distance matrix D as representative for the temporal
constraints in the standard problem representation introduced below. An ad-
ditional theoretical justification is given by lemma 3.18.

M. Bartusch et aL / Scheduling project networks 209

Table 1
Distance matrix of G in fig. 2

D--
/ 04 29i) 1 - - 0 - 3 2 2 4 7

- - 6 0 - 3 - - 4 5
- 9 - 5 0 - 7 2
- 6 -5 0 0 2

- I1 -11 -7 -8 - 9 0 -
-14 -11 --10 --5 -13 --3

For the example of figs. 1 and 2, the associated distance matrix D is given in
table 1.

Compared with the order-theoretic case, there are several differences. Modeling
usual precedence constraints "Sj + x,. = Ci ~< Sj" in our model means the intro-
duction of an edge from tx i to txj with length x i. Since all xj > 0, there is a
time-feasible schedule iff the graph G is acyclic. In that case, the transitive
reduction of G is the unique non-redundant graph representation, and the
transitive closure of G is the partial order representing the precedence constraints
in the order theoretic model.

If G is acyclic, computation of ESD is possible in O(n 2) time. However,
computation of D (which is the starting point for the solution of the resource
constrained problem by branch and bound methods [23,24]) also takes O(n 3)
time. Yet another difference can be observed for the convex polyhedron 6"7- of
time-feasible schedules. If G is acyclic and S = (S 1 Sn), S ' = ($1' S~)
St , then also S + S ' = (S I + S (, . . . , S n + S / ,) ~ S r and, for ~ ,>1 , k - S =
(k S 1 , hSn) ~ S r. These properties of being dosed under vector addition and
(restricted) scalar multiplication is lost as soon as G contains directed cycles.

Finally it should be noted that the approach taken here remains also valid for
more general temporal constraints. The essential requirement is only that they
can be represented as S i + lij <~ Sj. The l~j may, however, be arbitrary functions
of the processing times x 1 xn. In this respect, the transformation rules
(2.4)-(2.7) just represent a special case, in which each l;j is an affine-linear
function of x and x i. Of course, with respect to sensitivity analysis or stability
behaviour (cf. sect. 3.5) certain smoothness properties of the lij as a function of
the x~ will be required.

2.3. RESOURCE CONSTRAINTS

While being processed, the jobs require certain resources from a set I of
resource types. Resources are reusable, i.e. they are released when they are no
longer required by a job and are then available for the processing of any other
job.

210 M. Bartusch et al. / Scheduling project networks

In its most general form, the demand of job a / ~ A for resource i ~ I is given
by a demand profile, i.e. a piecewise-constant function t;.o: [0, x/]---> I%1 =
{0, 1, 2 }, where 17 , j(t) denotes the number of units of resource i required by
job a / a t time t after its starting time S/.

Each resource type i ~ 1 is only available in a limited amount. Similar to the
requirements, the availability of resource i ~ I is generally given by a supply
profile, i.e. a piecewise-constant function Ri: [0, ~] ---, [~, where r;.(t) denotes the
number of units available of resource i at time t of the project execution.

A schedule S is called resource-feasible with respect to the r~,,, and R~
(i ~ I , a j ~ A) if at each time t of the project execution, the demand of each
resource i ~ I does not exceed the momentary supply R+(t), i.e.

(2.11) E ri~j(t- Sj) <~Ri(t) for each t and every i ~ I.

By 5a n we denote the set of all resource-feasible schedules.
To avoid trivial non-feasible cases, it is convenient to assume that each

individual job a/ can (not regarding the temporal constraints) be scheduled
without interruption in some interval, i.e. there is some t o >1 0 such that

(2.12) ri , ,(t)<~Ri(to+t) f o r a l l t ~ [O , x /] a n d e a e h i ~ I .

Since this condition can be verified efficiently, it has no influence on the
complexity of the whole problem (which is NP-hard, cf. sect. 3).

A schedule S is called feasible if it is both time-feasible and resource-feasible.
Then 6+'= 5at n 5aR-denotes the set of all feasible schedules.

A very important property of our model is the fact that the variable resource
demands and supplies can already be modeled by constant demand and supply
profiles. The corresponding reductions are described in the sequel. They make
appropriate use of time windows and dummy jobs without increasing the input
length of the problem description.

Let r% be a demand profile. Since demand profiles are piecewise constant, d,.,,
has constant values c 1 c,, on subintervals [0, Yl[, [Yl, Yz[. [Y,,,-1, x/] of
[0, xi], respectively (where c k 4~ Ck+l; k = 1 m - 1). Split the job %- into m
parts aJ ~7 with processing times yl, Y2-Y l x~-y, ,_~ and constant
resource demands c a c,,, respectively. Respect the non-preemption condition
by introducing the temporal constraints C(a~) = S(a~ +1), k = 1 m - 1 . S o in
terms of start-to-start lags, this means that

[S(a~) + Yk-Yk_~ <~ S(a~+~) and
(2.13)

Obviously, this process of splitting jobs and gluing the parts together by temporal
constraints makes all resource demands constant for one given demand profile.
An example is given in fig. 3.

M. Bartusch et al. / Schedul ing projec t ne tworks 211

0 ~2 ~ ~3 zt z2

2

!

o
,3t

z3

I oi I +

r ; = 2 r i = 0 r i = l r , = 3 , r i = 2 , r l =3

! /1 ! /2 - ! /1

- Y l Y l - Y 2
- 21 _Z2

: 2 Z3 " Z3

Fig. 3. Transformation of variable demand and supply profiles.

If job aj has several non-constant demand profiles, then take the largest
intervals on which each profile 13, ' is constant as the intervals [0, Yl[, [Yl, Yz[. . . .
above and proceed analogously. Then ob aj will be split into at most as many
subjobs as there are different values c k in the union of the ranges of all ri~,, i ~ I .

For a supply profile R i, we proceed as follows (see also fig. 3). Let
[0, zl], [z 1, z2] [z m] be the maximal subintervals on which R i is constant,
and let b l , . . . , b,,,+l be the associated values. The idea then is to introduce for
each subinterval [Zk_ 1, Zk] with b i < m a x (b I b,,,+l} a dummy job flk with
processing time X (f l k) = z k -- z k_ ~, constant resource demand r ;¢ ,=
max(b l , . . . , b,,,+] } - b;, and temporal constraints S (B k) = S (a l) + Zk_l that fix
its processing period exactly in the interval [z k - 1, Zk]. So loosely speaking, we
introduce a dummy job for each supply interval with " low" supply that must be
processed during this interval at project execution and absorbs the nonavailable
resource units. This allows us to set R i = m a x { b 1 b,,,+a} during project
execution. Obviously, we need at most as many dummy jobs for R i as there are
different values b k in the range of Ri.

Let P be the original problem on the set A = (a I a,, } with the variable
resource profiles, and let P denote the transformed problem on the set A * =

212 M. Bartusch et al. / Scheduling project networks

(a 1 ct,, an+ 1 am}, where a , ,+ l , . . . , a,, denote the newly introduced jobs
(resulting from either job splitting or adding dummies).

Let 5 a and 5 a* denote the sets of feasible schedules for P and P * respec-
tively. We then have:

2.4. THEOREM

5 a is the projection of 5 a* under the projection pr(1 ~: R ' ~ R" with
Pr(1 ,~ (Y l , . . . , Ym) = (Yl yn); i,e. i f S* = (S 1 S,,, S,+ a Sin) ~ 5 a*,
then S = (S 1 S,) ~ 5 p, and each schedule S ~ 5 a is obtained in that way.

Proof
Straightforward from the transformation rules. []

Note that this reduction is only possible by changing both the resource and the
temporal constraints. So with respect to the representation 5P=SarNSan, the
constraints defining 5" n are relaxed, while those defining 5" r are strengthened.

Concerning the complexity to carry out the transformation and its influence on
the length of the encodings of P and P * observe that, for P, we need to store all
the subintervals of the r% and the R; and the associated values c k and b 1. Since
we introduce at most tha~ many additional jobs and twice that many additional
temporal constraints, we obtain:

2.5. THEOREM

The number of additional jobs in P* is bounded by the total number N of values of
the demand and supply profiles of P (and thus by the input length of P).

The transformation requires at most O(N) time and changes the input length only
by a constant factor.

Proof
Straight-forward from the above remarks and the transformation rules. [:3

So altogether, we have:

2.6. COROLLARY

Each scheduling problem with time windows and variable resource demand and
supply is polynomially equivalent to a scheduling problem with time windows and
constant resource demand and supply.

As in the order-theoretic case, constant resource demand and supply profiles
permit a s imple-and theoretically very convenient-descript ion of the resource
constraints by means of a system of forbidden sets.

Let r~,,j ~ N and R; ~ N denote the constant resource demand and supply of
sort i ~ L Then a set N _ A of jobs is called forbidden if

(2.14) ~ ri,aj > R i for some i ~ I ,
aj~N

M. Bartusch et al. / Schedufing project networks 213

i.e. if, for some i ~ 1, the total amount of resource i required by the jobs from N
exceeds the available amount R i. Note that (2.14) is just the negation of (2.11),
which is independent of time t because of the constant demands and supplies.

The system of all forbidden sets is denoted by ~4". In terms of the system .A r, a
schedule 5 ° is resource-feasible iff no set N ~ aV" is scheduled simultaneously at
any time t, i.e.

(2.15) Nff£S(t) :=(a i~AIS j<~t<Cj} fo r a l lN~ .A/ " .

It follows easily that forbidden sets characterize exactly all kinds of time-inde-
pendent resource constraints (see e.g. [23]). We will see later that they model the
"essential conflicts" in simultaneity that have to be settled by any feasible
schedule.

The only disadvantage of the description by forbidden sets is the fact that the
number of sets required may be exponential in the input length, even if we
restrict ourselves to the minimal forbidden sets (w.r.t. set inclusion.) However,
practical experience [2] shows that their determination usually causes no problem,
in particular when compared with the time required to find an optimal solution.
Moreover, in many applications the availabilities R~ are constraint and indepen-
dent of n, thus resulting in a size of Jg" that is polynomial in n.

Note, however, that even for polynomial .,4 r, the size of JV" and the size of the
sets in X significantly influence the running time of the branch and bound
algorithm in Section 4. So altogether, since we will use .,4 r essentially in our
algorithmic methods, we prefer to neglect the disadvantage of a possibly "long"
problem description and use the system of forbidden sets for representing the
resource constraints in our standard model.

2.4. THE STANDARD REPRESENTATION

As a consequence of the preceding considerations, each scheduling problem
considered in this paper can be represented by
- a se t A = (a I , a , } of jobs
- a vector x = (x 1 x ,) of processing times
- a distance matrix D representing the temporal constraints (2.8)
- a system ~/" of forbidden sets representing the resource constraints
- a regular cost function x

We refer to this as the standard representation of the scheduling problem, and
denote it by [A, x, D, ~/', x].

The optimization aim then consists in computing the least cost (the optimum
value)

(2.16) p(x; x) :=inf(~:(S; x) I S ~ 5 0 },

and in determining an optimalschedule S, i.e. a schedule S with p(x; x) = x(S; x).

214 M. Bartusch et al. / Scheduling project networks

Here 5a=A°r n 6Pn denotes the set of all feasible schedules are defined in sects.
2.2 and 2.3.

The reduction of a variety of scheduling problems to this standard represen-
tation is not just for reasons of unification. We will see that this representation
does, indeed, reveal the basic underlying mathematical structure of scheduling
problems, and serves as a "natural" starting point for both theoretical insights
and algorithmic procedures.

This is the reason why the standard representation is also a natural internal
model for computer packages or DSS for dealing with real-life scheduling
problems. The internal model may be completely hidden from the user (for whom
it may in mathematical respect be much too complicated to understand). Interac-
tion with the user would then take place via a user interface that transforms the
user parameters (such as time lags, precedence constraints, resource demands and
supplies etc.) into the internal model according to the transformation rules given
in this section, and retransforms results, messages etc. into the user's representa-
tion. All internal computations, however, would be based on the "suitable"
internal model.

A possible specification of such a package is given in [4] as part of an advanced
decision support system for the interactive solution of scheduling problems.

3. The structural approach

3.1. THE EMBEDDED.PARTIAL ORDER

Let P be a scheduling problem in standard form [A, x, D, .A r, x]. Assume
that there exists a time-feasible schedule, i.e. 5ar~JJ. We will show that the
conditions on 5P r represented by D contain certain "embedded" partial order
constraints. This partial order represents precedence constrains that any time-
feasible schedule must obey, and in addition represents with its antichains all sets
of jobs that may be scheduled simultaneously. It will serve as the central structure
for the solution methods developed in this paper and relates the general case to
the order-theoretic approach.

Define the relation <D by

(3.1) a+ <D a / i f every time-feasible schedule S fulfils Ci <<. Sj.

So ai <D aj iff a i can only be started after ai has been completed. It is clear that
<D is a partial ordering on the set of jobs. We call 6)0 = (A, <D) the embedded

partial order of the temporal constraints. The following result shows that (9 o is,
indeed, "embedded" into the distance matrix D.

3.1. THEOREM
°ti <o otj iff x i <~ dij.

M. Bartusch et al. / Scheduling project networks 215

This shows that D contains all the information about 0 0 and that OD can be
obtained from D in O(n 2) time. The proof of this result is based on two lemmas
about schedule modification.

3.2. LEMMA

Let S be a time-feasible schedule. Then for any a, ~ A and any d ~ N 1, S ' defined
by

S ' = S , + d

(3.2) sj max{Sj, S~+d,j+d} ifj*i

is also a time feasible schedule.

P r o o f
Assume that S ' is not time-feasible. Then there are a/, a,, ~ A with S t' + dr,,, >

S,,;. Since $1 <<. St', this is only possible if S/' = Si + du + d. So

Si + d~t + d + dl,, > S,~ >~ S~ + di,, + d,

which implies d~l + dl, , > dim, a contradiction to corollary 2.3 (1). t3

3.3. LEMMA

Let S be a time-feasible schedule. Let U = { cq ak } be a set of jobs with
S i <~ S~ and x i > dij for all i, j = 1 k (i ~ j) .

Then there is a time-feasible schedule S ' with S k = S k and S~' ~ S[< Ci' for
i = 1 k - 1 .

Proof
Let (in the order al, a2 ctk) a i be the last job with Ci ~< S k. (If there is no

such job, then already S has the required property.)
We will modify S into a time-feasible schedule S ' with Sj<~ S] ~ Sk = Sk

(j = 1 k - 1) and Ci' > $2. Clearly, a finite sequence of such modifications
will construct a time-feasible schedule with the required properties.

To this end, put d := Sk - Ci + 8, where

8 : = m J n (x i , m J n (x , - d i j [j = l k , j ~ i } } .

Note that 8 > 0. By lemma 3.2, S ' defined by

s/:=s,+a
Sf := max{ Sj, Si + dij + d } if j=/= i

is a time-feasible schedule with Sj <~ Sf for all aj (j = i k) . We will show that
S ' has the claimed properties.

First, for % ~ (eq a~ } \ { a i } we obtain

S i --}- d i j "~ d = Si"~- di j ' { - S k - C, -4- ~ = S k - (x i - d i j) + ~ ~.~ S k

216 M. Bartusch et al. / Scheduling project networks

by definition of & The definition of S ' then implies S k = S~ and Sj ~ Sk = S[
for j ~ {1 k}\(i) .

For a;, we have

S [= S , + d = S ~ + S k - - C , + 8 = S k - - x i + 8 ~ S ,

by definition of 6.
Finally, concerning the completion time C,.' of ot i, we have

C,' = C, + d= S~ + 8 > s , ,

again by definition of 6. []

Proof of theorem 3.1
Let x i ~< dij. Then, for any time-feasible schedule S,

ci = Si + x , ~ s , + dij~< sj

because of corollary 2.3 (1). Hence a i <o aj.
In the converse direction, let ag <0 a j, and let S be a time-feasible schedule.

By definition of < o , C,. ~< Sj, and thus Sd ~ Sj and djt ~< 0, which implies
xj >/da.;. Assume that xi > dij. Then lernma 3.3 can be applied to U = { a;, aj },
i.e. there is a time-feasible schedule S ' with S,.' ~< Sj < C[, a contradiction to
a~ <o aj. Hence x t <~ d~j. []

The proof shows that missing precedence constraints a~ <o aj related to
simultaneous scheduling. In fact, there is a very strong such relationship, which is
formulated in the next theorem.

Call a set U of jobs potentially parallel or simply parallel if there exists a
time-feasible schedule S and a time t such that S; ~< t < C,. for all a; ~ U (i.e. all
jobs from U are scheduled in parallel or simultaneously at time t with respect to
S). Call a set U o f j o b s an antichain of a partial order {9 = (A, <o) on A, if any
two jobs a~, o9 ~ U are incomparable or unrelated (i.e. neither a~ <o % nor
aj <e ai). We denote this by a i lie aj.

3.4. THEOREM
Let P = [A, x, D, JV', x] be given with Se T ~ fa. Then the parallel sets of jobs of

P are exactly the antichains of the embeddedpartial order 6) 0 = (A, <0).

Proof
Let U be parallel, and let S be the associated schedule that achieves the

simultaneous scheduling of U. Then Ci> S i and Cj> Si for any two jobs
ot i, a i ~ U, and thus a; 11o c~j by (3.1). It follows that U is an antichain of 0 o.

In the converse direction, let U = { a l , . . . , eek} be an antichain of @0- Let S be
a time-feasible schedule for P and assume w.l.o.g, that Sj ~< S,,, j = 1 k - 1.
Since U is an antichain, a j l toa k (j = 1 , . . . , k - 1) and thus x j > djk for each
j = 1 , k - 1 because of theorem 3.1. So lemma 3.3 applies to U and yields a
schedule S ' that schedules U simultaneously. []

M. Bartusch et al. / Scheduling project networks 217

Fig. 4. Node diagram of the embedded partial order of ~ from example 3.5.

As a consequence of theorem 3.4, it suffices with respect to the resource
constraints, to specify only those (minimal) forbidden sets that are antichains of
the embedded partical order @n. This follows immediately from the fact that only
antichains of On are parallel sets. We will denote the system of c__-minimal
forbidden sets that are antichains of @D by ,W~ed and refer to it as the system of
reduced forbidden sets.

Note that ¢4/~ea can be determined completely analogously to the order-theo-
retic case from the (constant) demand and supply profiles by traversing On in a
special way that generates all maximal antichains of ~9 D. See Bartusch [2] for
details of this method.

Finally, it should be noted that in the order-theoretic case, the embedded
partial order On is just the given partial order of technological precedence
constraints.

We close this subsection with an example.

3.5. EXAMPLE

Consider the problem of fig. 1 whose distance matrix D is given in table 1.
Comparing D with x = (3, 1, 4, 2, 5, 2, 1), one obtains x i ~< dij and thus a s <D aj
for (i, j) e {(1, 3), (1, 4), (1, 6), (1, 7), (2, 4), (2, 5), (2, 6), (2, 7), (3, 6), (4, 6),
(4, 7), (5, 7)). The embedded partial order OD is given in fig. 4. The maximal
antichains of O n are {1, 2), {1, 5), {2, 3), (3, 4, 5}, {3, 7}, (5, 6}, and (6, 7}. In
the earliest-start schedule ES, the antichains {1, 2}, {1, 5}, (3, 4, 5) and (3, 7}
are scheduled in parallel (see fig. 5). The remaining antichains are scheduled in
parallel by the schedules S (a) and S C2) of fig. 5.

S (') is obtained from ES by applying the construction of lemma 3.3 tc
U = {2, 3}. This yields 6 = min{ x2, x 2 - d23} -- min{1, 1 + 4} = 1 and d = $3 -
C2 + 6 = 4 - 1 + 1 = 4. So {2, 3} is scheduled in parallel, and, as a side effect

218 M. Bartusch et aL / Scheduling project networks

ES

sO)

s ~

" ~ I l I 3 I i - - T - q

I 5 I r l
I I l I I "} I I

't I

t I I s I

f--t-] I

0 f 2 4 5 6 8

F--r-q

1 I

, ;o ;, ,2

I 5 1 I--v-]

0 f 2 3 4 5 6 7 8 9 0 I 12

Fig. 5. Some time-feasible schedules for example 3.5.

t
13

)t

)t

>t

also {5, 6). S (2) is then again obtained from ES by applying the construction to
U = (7, 6}. Note th~tt in both cases, the start of job 4 is postponed because of
d76 = - 5.

3.2. THE MAIN REPRESENTATION THEOREM

The embedded partial order On derived in the previous subsection expresses
only properties of time-feasibility. We will now investigate how resource-feasibili O,
is related to Oo. Our analysis yields some additional, strong relationships with the
order-theoretic case.

It is well known that any schedule S for a scheduling problem on A induces a
partial order 0 s = (A, <s) on A by putting

(3.3) ai <s aj iff C i <~ Sj,

i.e. if a i is completed before aj is started. O s is an interval order and reflects the
precedences between jobs created by the schedule S. (See [19] or [25] for more
information about interval orders and their relationship with scheduling prob-
lems.) We call O s the partial order induced by the schedule S.

In particular, any feasible schedule S induces a partial order O s. We will now
investigate how these partial orders are related to the embedded partial order (90 .

M. Bartusch et al. / Scheduling project networks 219

3.6. LEMMA
Let P = [A, x, D, ~ , x] be a scheduling problem, and let S be a feasible

schedule for P. Then
(1) a, <,9 aj = a i <s olj
(2) For each forbidden set N ~ J/ ' , there are jobs a i, aj ~ N with ai <s°ti .
(3) The temporal constraints given by

(3.4) { ti + dij <~ tj for all a s -~ Olj

t i + x i <~ t i for all a i <s aj

are solvable.
(4) The earliest-start schedule ESD + os associated with the temporal constraints (3.4)

is a feasible schedule for P with ESD+os <~ S (componentwise) and
x(ESD+o,; x) <~ ~(S; x).

Proof
Any feasible schedule must respect the constraints (3.1) represented by the

embedded partial order. So a i <0 ai yields Ci ~< Sj and thus a~ <os aj. This proves
(1).

Since S is feasible, no forbidden set N ~ X can be parallel with respect to S.
Hence for any N ~ Jg', there are a~, aj ~ N with C~ <~ Sj, and thus ct i <os aj by
definition of 0 s.

S itself is a solution to (3.4). So by proposition 2.1 and corollary 2.3, ESD+os is
well defined and componentwise better than S. ESD+os is feasible for P since it
preserves the temporal constraints given by D (first line of (3.4)) and does not
schedule a forbidden set in parallel. This last property follows from the second
line of (3.4) together with part (2) of the lemma.

Finally, the monotonicity of x then yields that ESo+os is less costly than S.
[]

Lemma 3.6 shows that each feasible schedule can be improved upon by an
ES-schedule arising from a certain "extension" of OO whose properties are given
by (2) and (3). This motivates the following definitions:

Let O~ = (A, <1) and 02 = (A, <2) be partial orders on the same set A. (92
is called an extension of O 1 (denoted by 01 _ 02) if, for any a , /3 ~ A, ct <1 fl
implies that a <2 ft. An extension O = (A, <e) of the embedded partial order
O o of some scheduling problem P = [A, x, D, .W', x] is called resource-feasible
if
(3.5) no antichain of O is a forbidden set,
and time-feasible if the system D + O of temporal constraints given by

S i + d U <~ Sj for all dij, i ~ j

(3.6) Sj + x,. ~< S i for all a i <e aj

has a solution.

220 M. Bartusch et al. / Scheduling project networks

If O is time-feasible, then the earliest start schedule associated with the system
(3.6) is denoted by ESn+o.

Finally, O is called feasible, if it is both time- and resource-feasible.
With these notations, statements (1)-(3) of lemma 3.6 may be restated by

saying that induced partial orders 0 s of feasible schedules S are feasible. The
converse direction is considered in the next lemma.

3.7. LEMMA
Let 0 be a feasible extension of the embedded partial order

[A, x, D, .At', x]. Then ESD+ o is a feasible schedule for P.
e ofP=

Proof
Let O be feasible. Then ESn+ o respects the temporal constraints given by D

because of (3.6) and hence is time-feasible for P. Property (3.5) implies that to
each N ~ .A/" there are two comparable jobs, say ai, aj ~ N with a t <o aj. Then
(3.6) implies that a t is completed before e 9 is started with respect to ESn+ o.
Hence N is not scheduled simultaneously and thus ESn+ o is also resource-feasi-
ble for P. 13

Altogether, we obtain:

3.8. THEOREM: (MAIN REPRESENTATION THEOREM)
Let P = [A, x, D, ,A/', x] be a scheduling problem. Then the optimum value

p(x; x) has the representation

(3.7) p(K, x)---min(x(ESo+o; x) lODc_O, 0 feasible}.

Proof
Denote the left-hand-side and the right-hand-side of (3.7) by p and 0',

respectively. Then lemma 3.7 and (2.16) imply that p ~< O'. Conversely, lemma 3.6
shows that any feasible schedule S can be improved upon by taking ESo+o~..
Hence 0>I P'- []

Theorem 3.8 provides many theoretical insights into the optimization problem
given by P = [A, x, D, Jg', x].

First of all, it shows that only finitely many schedules need to be considered.
They arise from feasible extensions of the embedded partial order On, which - as
will be shown in the next subsection - constitute a subclass of the semilattice of
all partial orders on A with interesting properties that determine e.g. the
geometrical nature of the set of all feasible schedules and the analytical properties
of the optimum value p(K, .) as a function of the processing times x.

Second, theorem 3.8 is the basis for the algorithmic methods developed in sect.
4, which essentially consists in constructing in a branch-and-bound approach a

M. Bartusch et aL / Scheduling project networks 221

feasible extension O of O o for which ESo+ o is optimal for P. The necessary
theoretical consequences of theorem 3.8 for this approach are derived in subsec-
tion 3.4.

The representation theorem 3.8 and its consequences can be viewed as a
natural generalization of the order-theoretic approach for precedence constrained
scheduling problems [18,20,23,24]. In fact, this approach was the motivation for
the treatment given here, and the notions of embedded partial order and feasible
extension presented here turn out to provide the right concept for a far-reaching
analogy.

There are, however, some important differences that also cause certain nasty
effects with respect to the feasibility domain and the behaviour of the function
O(K; "). Mainly, these differences arise from the necessity to require time-feasibil-
ity of "feasible" extensions in addition to resource-feasibility, which is not
necessary for precedence-constrained scheduling. As our treatment below will
show, this requirement causes some nasty time-dependencies of the feasibility
domain. Compared with precedence-constrained scheduling, this results in weaker
properties of O(x; •) and the feasibility domain, but, on the other hand, leads to
stronger algorithmic properties.

3.3. THE SET OF FEASIBLE EXTENSION

Given P = [A, x, D, ,4/', K], let o~ r, o~- R and ~ denote the set of time-feasi-
ble, resource-feasible, and feasible extensions of OD, respectively. Furthermore,
let O(A) denote the set of all partial orders on A. It is well known that O(A)
ordered by " ___ " is a semi-lattice with certain structural properties, see e.g. [23].

We will now investigate how o ~ is embedded into E)(A).

3.9. THEOREM
For ~T' "~R, and o~, the following properties hold:

(1) ~ r is a convex subset of O(A) with 0 o as least element,
(2) f f is a filter of 0(A),
(3) -~=Jr (3o~" R is a convex subset of O(A).

Proof
To show (1), let O ~ - r . Then the system D + O given by (3.6) has a solution.

Obviously, any such solution also satisfies the system D + O' for any O' with
0 D c_ O' c_ O. This proves (1).

Statement (2) follows immediately from (3.5), since for any extension O' of
some O ~ ~R, each antichain U of O' is also an antichain of O and thus U ~,4".

Since ~ = o~ r C~ ~R, and any filter is convex, .~ is convex, too. []

Note that, different from precedence-constrained scheduling, ~ is in general
not a filter, i.e. there may be resource-feasible extensions O of OD that are not

222 M. Bartusch et al. / Schedu#ng project networks

time-feasible. We will see in the next sections that this behaviour is closely related
to the existence of "cycles" in the constraints (3.6) represented by D + ~9.

As a direct consequence, one obtains that testing for the existence of a feasible
extension - or equivalently, testing whether the nonempty sets ~-r and ~'R
intersect - is already NP-hard, in general. Concerning computational complexity,
this establishes a severe difference with precedence-constrained scheduling.

3.10. THEOREM
Testing whether a scheduling problem P = [A, x, D, ,A/'] has a feasible solution

is an NP-hard problem, even in the case when x = (1, 1 1) and ~ represents
machine-constraints (i. e. j4/'= (N c A: [N] >1 m + 1 for some f i x e d m < n.)

Proof
In order to avoid problems with a possible "exponential" representation of ~/',

we will represent the machine constraints just by the number m of available
machines. Furthermore, D will contain only values dij ~ (0, 1 n } u (- 2 }
and the symbol " - oo". So the input-length for such a problem P = [A, D, m] is
O (n 2 log n).

We will use the fact that the following precedence-constrained unit-time
scheduling problem Q is NP-complete; see [16] or [11] for details:
Q: INSTANCE: A partial order ~9 o on A = { a 1 or,, }, processing times xj = 1

(j = 1 n), a number m of parallel machines.
QUESTION: Does there exist a feasible schedule on m machines with length
l~< 3?

In [16], there is a-direct reduction of CLIQUE to Q. We show now that Q 0c p.
Define D C°) by

if ~j <o,, a,"
(3.8) d~j °)= if i = j

otherwise,

and let D be the associated distance matrix in the sense of proposition 2.2. The
constraints (3.8) are just the precedence constraints a <o. aj and the constraint
that there may be at most a time lag of 2 between a i, ctj with ai <co aj (which of
course implies that any time-feasible schedule respects ~9 o and has length l ~< 3).

Obviously, there is a feasible schedule with length l ~< 3 iff there is a feasible
extension @ of Oo = ~gD, i.e. an extension with [U I ~< m for all antichains U of
~9. []

The reason for this NP-hardness result is that "'deadlines" can be modeled by
maximum time-lags, thus transforming feasibility problems for precedence-con-
strained scheduling with deadlines to scheduling problems with time windows.

M. Bartusch et al. / Scheduling project networks 223

We close this subsection with a monotonicity property on O(A) that is
essential for the algorithmic approach developed in section 4.

Let D 1 = (d}))) and D 2 = (d}})) be two n x n (distance) matrices. We write
D~ ~< D 2 iff d}))~ d}} ~ for all pairs i, j . Similarly, for two solvable constraint
system D + 191, D + 19z, where 191, 19z are time-feasible extensions of O o, we
write D + 19~ <~ D + 02 if, for the distance matrices D~ representing D + 19~
(i = 1, 2) in the sense of proposition 2.2, we have D l ~< D 2. Finally, we call a
distance matrix D' feasible, if it is the distance matrix of a constraint system
D + 19 with feasible extension 19 of 19D.

3.11. LEMMA
Let 191, 02 be time-feasible extensions of 19o. Then

(3.10) O 1 c_ 192 ~ D + 191 ~< D + 192

In particular, ESo+o, ~ ESD+o,_ and x(ESo+o,; x) <~ x(ESo+o~; x) for any
cost function x.

Proof
Let 01 c_ 02 and let D s = (d~})), s = 1, 2, denote the distance matrices of the

(solvable) systems D + 0~. Since O 1 c__ 02, any time-feasible schedule S for
D + 0 z is also time-feasible for D + 01. Suppose that (3.10) is false, i.e. there are
k 4= l with d °) > n(2) Let S be a time-feasible schedule for D, and thus also for

k l ~ k l "

D 1. We will show that we can modify S into a schedule S ' that is still
time-feasible for D 2 but violates S[+ a m , "kt <~ Si, thus obtaining a contradiction.
To this end, we apply lemma 3.2 to ak with d > S l - S k - d ~) if ,1¢2) = ~ k l - - ~ , and

,4(2) d = S t - S k - dt2)kl o t h e r w i s e . I n b o t h cases w e o b t a i n t h a t S[= m a x { S l, S k + - k l

+ d } = S u So in the first case, we obtain the direct contradiction

S [- S[= S t - S k - d < "4~1) ~ k l

' d(1) > S ; + "4(2) while in the second case, we obtain S£ = S t - ~ktd(2) and thus S£ + "kt ~kl
= S~ = S[, again a contradiction.

The other statements follow from the fact that ESo+o, = (d(a() d~,)) and
the monotonicity of x. []

This monotonicity property implies that in order to determine the opt imum
value p(x; x) for any cost function ~, one need only consider the G-minimal
partial orders in ~ , or, equivalently, the minimal feasible distance matrices (with
respect to the componentwise ordering). So we obtain the following stronger
version of the representation theorem.

3.12. COROLLARY
The optimum value p(x; x) of the scheduling problem P = [A, x, D, ~" , x] is

already obtained as
p(x; x) = min{ x(ESD+o; X) I OD G 19, 19 minimal feasible}

= m i n (K (e S o , ; x) lD < D' , D ' minimal feasible}.

224 M. Bartusch et al. / Schedufing project networks

3.4. CONSTRUCTION OF FEASIBLE EXTENSIONS

The structure of ~ described in theorem 3.9 and the definition of feasibility
give the foilowing characterization of feasible extensions of a problem P =
[A, x, D, .A f, x].

3.13. LEMMA

An extension 0 of OD is resource-feasible iff, for any N Go#" (or, equivalently,
for any N ~ N e d) , there are a i, aj ~ N with a i <o aj.

Proof
Resource-feasibility means that no forbidden set N is an antichain of O.

Obviously, this is equivalent to the statement that any such set N contains two
comparable jobs a;, aj. Since each forbidden set contains a forbidden set from
~ed, the lemma follows, rn

Lemma 3.13 implies that any resource-feasible extension can be constructed
from OD by adding successively precedence constraints a, < a j to Oo until all
(non-redundant) forbidden sets are no longer antichains.

This establishes a complete analogy with precedence-constrained scheduling,
and shows that the non-redundant forbidden sets N ~ J/~r~a represent the "es-
sential conflicts" arising from the resource constraints. These conflicts are settled
by a resource-feasible partial order by adding precedence constraints for each
" c o n f l i c t " .

However, the temporal constraints may restrict the ways in which precedence
constraints can be added to O o. In theorem 3.9, this is expressed by the fact that
~'r is generally only a convex subset of d)(A), while f i r is always a filter.

Furthermore, we do not just consider feasible extensions O in the representa-
tion theorem, but constraint systems of the form D + O. Thus instead of
computing a feasible extension, it turns out to be better to compute directly the
constraint system D + (9 or, equivalently, its embedded partial order O' (which
may be different from O).

We will first consider the algorithmic treatment of adding a single precedence
constraint to a distance matrix.

To this end, let D' = (di~.) be a distance matrix that has a feasible solution (e.g.
the distance matrix of a constraint system D + O in the sense of (3.6)). We say
that the precedence constraint a k < a t may be added to D' if also the constraint
system

[Si + d,'j <~ Sj forall i * j
(3.11) (Sk + x~ ~< Si

has a solution.

M. Bartusch et aL / Schedul ing pro jec t ne tworks 225

3.14. LEMMA

I n the abooe si tuation, a k < a t m a y be added to D" i f f

(3.12) Xk <~ -- d,'k.

H
In that case, the distance ma t r i x D " = (du) represent ing the constraint sys tem

(3.11) is obtained in O (n 2) t ime as

(3.13) d,.'j = max(d,~, d,'k + x~ + dl'j }

P r o o f
Because of proposition 2.1 and corollary 2.3, the di'y represent lengths of

longest paths in some digraph G'. Adding the constraint a k < a t then means
adding the edge (a k, at) with length x k to G', and the resulting graph G"
represents the system (3.11). This system has a solution iff adding a k < at does
not create a cycle of positive length in G". Since any newly created cycle in G"
must contain the edge (a k, at) , the longest such cycle will consist of the edge
(a k , a t) and a longest path from a t to ot k in G', which has length dr' k. So the
length of the longest newly created cycle is x k + dr' k, which gives (3.12).

If there is no cycle of positive length in G", then the longest path lengths d;').
of G" are obviously obtained by comparing the old path lengths di~. in G' with

l the possibly newly created path a i - ak - at - a j of length di' k + x~ + dtj . This
gives (3.13). []

Of course, adding a precedence constraint ct k < a I to D ' is only meaningful if
it is not already contained in the embedded partial order O' of D'. If already
ak <o' al, then x k ~< d~/ because of theorem 3.1, and thus

l l ! I !

d~' k + Xk + d U <-% d~k + dkl + d U <-% d U

• c e t r because of corol lary 2.3 (1). Hence (3.13) just redu s to d u = d U for all i, j . I n
that case, also (3.12) is satisfied since x k <~ d~, t and d~t + dr" k <~ O.

We will use the notation D " = D ' + [a k < at] to express that D " arises from
D' by adding a k < a t.

The algorithmic approach based on lemmas 3.13 and 3.14 constructs distance
matrices rather than (feasible) extensions. Of course, each constructed distance
matrix is associated with its embedded partial order, and so one may also express
the construction process as a construction of partial orders. The main point here
is that different partial orders O1, 02 may induce the same constraint system
D + O z = D + 02. However, if we consider the unique distance matrix D ' repre-
senting this constraint system (in the sense of proposition 2.2), then D ' has a
uniquely determined embedded partial order O', and D + O' = D + O 1 = D + 02,
while O' may be different from O z . and 02. So restricting ourselves to the
construction of distance matrices may be interpreted as constructing only
"canonical" partial orders O' that represents a constraint system D + O. (In fact,

226 M. Bartusch et al. / Scheduling project networks

O' is the least upper bound in the semi-lattice O(A) of all partial orders 0 with
D + O = D + O ' .)

Assume that the initial distance matrix D, the embedded partial order O o, and
the system ~red of minimal forbidden antichains of Oo are given. Suppose
further that O is a feasible extension of Oo. We then want to construct the
distance matrix D ' representing the (solvable) constraint system D + O.

To this end, let ai, < aj, a,- < ay, be the additional precedence constraints
of O w.r.t @D, i.e. O \ O D = {ai, < ay, aik < aj~}. Then all systems D + {a~r <
aj, I r = 1 s} , s = 1 , k, have a feasible solution, and the associated dis-
tance matrices D 1 D k for these systems are obtained iteratively by computing
D, from Ds_ 1 (with D O = D) as D, = 19,_ 1 + [ai ' < %-] in the sense of lemma 3.11.

.a(s-1) Note that some of the D, may be equal to D,_ ~. This is the case if x~, ..~ uo. ' .
This condition can be easily checked before performing an iteration.

For the last distance matrix D k in this sequence, we have:

3.15. LEMMA
D k is the distance matrix o f the constraint system D + O.

Proof
Let D ' be the distance matrix of D + O, and let O k denote the embedded

partial order of Dk. By construction, each D s is constructed in a "minimal" way
from D,_a in order to fulfil the additional constraint a;, < a j, given by O. This
obviously implies that D k < D ' .

In the converse direction, observe that O _ O k by construction of D k, and so
D + O ~< D + Ok because of lemma 3.11. Since D k is the distance matrix of
D + O k, we obtair~ D ' <~ D k. []

Combining corollary 3.12, lemma 3.13 and lemma 3.14, one obtains that, in
order to construct (minimal) feasible distance matrices, it suffices to consider
distance matrices constructed from D in the sense of lemma 3.14 by adding
precedence constr0ints for the forbidden sets in the sense of lemma 3.13. So we
have:

3.16. COROLLARY
The opt imum value p(x, x) o f the scheduling problem P = [A, x , D, JV', ~] is

obtained as
p(~, x) = min{~c(ESD,; x) [D ' = D + [oti, < otj,] + . . . +[ai~ < aj,] for all
choices oq, < or j, o f precedence constraints such that each forbidden set N ~ Jg"
contains a pair { a i , or j, } }.

This corollary is the starting point for the branch-and-bound algorithm in sect. 4.

3A. THE GEOMETRIC STRUCTURE OF THE SET OF FEASIBLE SCHEDULES

As a side result of the main representation theorem, we also obtain a geometric
~haracterization of the set 6 a of all feasible schedules viewed as subset of R n

M. Bartusch et aL / Scheduling, project networks 227

3.17. THEOREM
Let P = [A, x, D, Jg', x] be a scheduling, problem. Then the set S ° of feasible

schedules for P has a representation as

~ = ~ o , u . . . us~ok,

where 01 O k denote the minimal feasible extensions of Oo, and 6ao, is the
convex polyhedron of all schedules solving the constraint system D + O, (s =
1 k).

Proof
This follows immediately from lemmas 3.6, 3.7, and 3.11. []

In other words, 5 p is the union of (not necessarily disjoint) convex poly-
hedrons, each of which represents the set of solutions of a system of linear
inequalities of the form (3.6), i.e. with common inequalities S i + dij ~< Sj for all
d i / (i ¢ j) , and with additional inequalities from O s.

Each such polyhedron 5Pe, contains a unique componentwise minimal point
viz. ESo+o, and so any non-decreasing function of the S,. (or, equivalently, of the
completion times Ci = Si + x,) attains its minimum on one of these points
ESD+o;

The main representation theorem may then be regarded as establishing a 1-1
correspondence between the geometrically minimal points and certain partial
orders (the minimal feasible extensions). Furthermore, the construction of a
feasible partial order is equivalent to constructing a feasible point of 6 ° from the
outside (more precisely, from a point of the larger polyhedron ~ given by the
inequalities of D) by introducing successively new inequalities of the form
S i + x i ~< S / for the forbidden sets.

Though this geometric point of view is still only descriptive, it might become
the starting point for polyhedral methods for the solution of general scheduling
problems.

The mentioned 1-1 correspondence between minimal points of 5 p and minimal
feasible extensions of O D might suggest that the standard representation given by
the distance matrix D and the set of essential conflicts .A/~ed (the system of all
c -minimal forbidden antichains of the embedded partial order OD) is a unique
discrete description of the feasible domain 6" of a scheduling problem.

For precedence-constrained scheduling, this is indeed the case [23,24,18]. In the
general case treated here, however, one can only give a unique description by a
derived distance matrix and system of forbidden sets which may be different
from D and ~#~ed- The reason for this is again the involved interaction of
temporal constraints and resource constraints.

Suppose that 6 a is the set of feasible schedules for a scheduling problem P
over A = {a 1 a,} with processing time vector x = (x l , . . . , x,,). From 5 a, we

228 M. Bartusch et al. / Schedufing project networks

can in a natural way construct a matrix Dse = (d ~) and a set system ./V's~ by
putting

(3.14) d~:=sup(t~Rll&+t<~Sj for all S ~ S a } ,

where sup ~[= - ~ , and
(no S ~ A a schedules N in parallel,
| but each proper subset of N is

(3.15) N ~ at/'s~: ¢~ ~ scheduled in parallel by some S ~ S a,

[and no pair ai, aj ~ N fulfils S i + x i < Sj

for all S ~ 6 a.

So N ~al/'se if it is a candidate set for parallel scheduling (there is no
precedence constraint a i < % on N), but only all proper subset are actually
scheduled in parallel.

It is easy to see that D s, fulfils d ~ + s,, s,, djk ~ dik for all i, j , k. Hence D ~ is a
distance matrix (i.e. a matrix of longest path lengths). We call D s" and aV "s~ the
derived distance matrix and derived system of forbidden sets of P, respectively. One
then obtains easily:

3.18. LEMMA

Let ,9"1, ,9" 2 be the feasible domain of two scheduling problems over A and x, and
let Di s" and a~,.s"(i = 1, 2) be the derived distance matrix and system of forbidden sts.

Then 641 = a" 2 iff D ~ = D ~ and at/'~= M/'2~

In precedence-constrained scheduling, one obtains the stronger result that, if
Sa 1 =SP 2, then e q u i t y holds also for the standard representation, i.e. D 1 --/)2
and .A~d = . / ~ . This characterization property of "essentially distinct" problems
is, however, lost for general temporal constraints. This will be demonstrated in
the next example

3.19. EXAMPLE

Let P = [A, x, D, at/'] be given by
A = { o q , az, a3}, x = (2 , 1 , 1) ,

{o 1,
D = - o o , o , ,

oo, 0,
Then every feasible schedule must schedule a= and 43 completely in parallel at
any time after the completion of a~, i.e.

S~= {(S~, S~ , S~) ~ R ~ I S ~ + ~ <, S~ , S~ + 2 <, s~ , s~ = s~ } .

Hence

0, 2, i) D ~ _ ' - ~ , 0, and at/'aP=~.

M. Bartusch et al. / Scheduling project networks 229

The reason is that, although for each i, j there is a time-feasible schedule S
with S -4- d i j -~ S j , there may not be a feasible such schedule, (the pair 1, 2 in the
example) and, furthermore, that to a proper subset of some N ~.,4~d, there may
not be a feasible schedule that schedules N in parallel (the set { al, a 2 } in the
example}. Both properties are valid for precedence constrained scheduling and
establish the mentioned characterization of essentially distinct problems.

3.5. REMARKS ON STABILITY AND SENSITIVITY ANALYSIS

We will now investigate the sensitivity behaviour of the optimum value and of
optimal feasible extensions with respect to a variation of the processing times.
Again, the structural approach taken in this paper turns out to provide a very
natural access to such questions.

A basic difference with precedence-constrained scheduling is given by the fact
that the optimum value p(x; x) may not exist for some x, even if the temporal
constraints given by D are solvable. An additional complication arises from the
dependence of the distance matrix D and thus the feasibility domain S# from the
processing times, something which is inherent to time window constraints and
establishes another basic difference with precedence-constrained scheduling.

We will first study the effect of a variation of the processing times on the
distance matrix D. This effect is caused by the transformation rules (2.4)-(2.7)
which show that each arc length l u of the underlying digraph G is an (affine)
linear function of x i and xj, i.e. lid = a i j --I- bijx i "b CiyX j with a i j ~ I~ 1 and
bu, cij E { - - 1, 0, + 1}.

Note that all results of this section remain valid if we assume that the temporal
constraints are given by a digraph G whose arc lengths l u (x) are arbitrary
(affine) linear functions of the processing times.

A system of such temporal constraints has a solution iff G contains no cycle of
positive length w.r.t, the processing time xl x n. Let Xr denote the set of all
x ~ R n for which the system of temporal constraints is solvable. >/

3.20. LEMMA

(1) X r is a convex polyhedron.
(2) For any x E XT, every entry di j (x) of the associated distance matrix D (x) is a

piecewise linear and convex function in every variable x r
(3) The associated embedded partial orders OD(x) = (A, <x), x ~ X T, have in

O(A) a greatest lower bound Or = (A, <r), which is given by

(3.16) ai <T aj ¢~ Ot i <x Otj for all x ~ X r.

Proof
The set X r is obviously the set of solutions of the system of cycle inequalities

(3.17) E l,(x)~O
(i, j)~c

230 M. Bartusch et a L / Scheduling project networks

given by the directed cycles C of G. Since each l j j (x) is linear in x, this is a
system of linear inequalities and (1) follows.

(2) follows from the fact that diy(x) is the maximum of path lengths, and that
each path length is a linear function of x.

The partial order 07- is the intersection of all (gD(x), and hence their greatest
lower bound in ¢(A). D

The partial order (gr may be regarded as representing the "real" time-indepen-
dent precedence constraints, while each embedded partial order ~gD(x) may
contain additional precedence constraints caused by sufficiently short processing
times (i.e. x i <<. d i j (x) in the sense of theorem 3.1).

In particular, in precedence-constrained scheduhng, (gr is just the initially
given partial order of precedence constraints.

So for each x ~ Xr, one obtains a scheduling problem [A, x, D (x) , M/', x],
where Jg" is always the same system of forbidden sets and D (x) is the distance
matrix representing the temporal constraints given by the digraph G with arc
lengths l i j (x). Since D (x) and the embedded partial order (gD(~) also depend on
x, the set of associated feasible extensions of (gD(~,) will in general also depend on
x.

However, there is a different behaviour between resource-feasible and
time-feasible extensions. To see this, note first that all extensions of some (gD(x)
are also extensions of (gr, the time-independent partial order contained in all
(gD(~). So for a particular x ~ X r , the sets ~ T (X) , #'a(X) and ~ (x) of all
time-feasible, resource-feasible and feasible extensions of (gr are well-defined.
We then easily ol~tain:

3.21. LEMMA
Foreach x E Xr, ~ (x) =.~r (x) N~- a, where ~ a =#'R(x) = ((9 ~ (grl no anti-

chain of (9 contains a forbidden set N ~ .A/" }.

In other words, the change in the set .~(x) of feasible extensions that occurs
from varying the processing times is entirely caused by time-feasibility (and not
by resource-feasibility). This is a major drawback in comparison with precedence
constrained scheduling, where ~r(x) never changes (~ (x) =#-R for all x), and
causes the nasty behaviour illustrated below in example 3.23.

An extension (9 of (gr is by definition time-feasible for a given x ~ Xr, if the
constraint system D (x) + (9 is solvable. Let, for fixed (9, X o denote the set of all
processing time vectors x for which D (x) + (9 is time-feasible. We then have:

3.22. LEMMA
For each extension (9 of (gr, Xe is a (possibly empty) convex polyhedron.
Furthermore, # ' r (x) = {(9__. Orl Xe ~ } , and ~ (x) = ((9 ~#'R I Xe ~ } •

M. Bartusch et al. / Scheduling project networks 231

Fig. 6. Temporal constraint graph G.

Proof
Obvious from lemma 3.20 and the definition of time-feasibility. []

3.22. EXAMPLE
Consider a scheduling problem with 4 jobs, i.e. A = { ct I a 4 } and temporal

constraints given by the following time lags:
- minimum start-to-start lags $1 ~ $2, $1 < $3, $1 ~< $4, $3 ~< $4
- the min imum start-to-finish lag $2 ~< $3 + x3
- the max imum start-to-start lag $4 <~ $2 + 2.

These temporal constraints result in the digraph given in fig. 6. So Xr = R 4>/, i.e.
the temporal constraints are solvable for any vector of processing times.

Furthermore, @D(x) = Or is the degenerate order on A (all 4 jobs are pairwise
unrelated).

Now let .A r = ((a 2, 0/4} }. Then ~R = (~9 l, O2}, where of course O1 = (A , a 2
< a4) and 02 = (A, a 4 < a2). The associated constraint systems D (x) + 0 i are
obtained from the graph G by adding arcs (a2, ct4) with length 124= x2 and
c h a n g i n g 142 - - - 2 into 142 = x4, respectively.

The cycle inequalities in the modified graphs then give

and

So if we fix x l = c 1 and x 4 = c 4, we obtain the situation in the x 2 - x 3 - p l a n e
depicted in fig. 7.

Consider the line segment L = x lx 2 in the x 2 -x3 -p l ane . For all x ~ L with
x2 ~< 2, O1 is the only optimal extension, for all x ~ L with x2 > 2 and x3 < c4
there is no optimal extension, and for x ~ L with x 2 > 2 and x 3 >i c 4 the optimal
extension is given by 02.

232 34. Bartusch et aL / Schedufing project networks

s 3

~'(x) = { e ~ , e = }

q
~-(=) = { O : } /

z

~-(=) = {0=}
,/o

/
y(=) = 0

l

Fig. 7, Systems of feasible extensions.

For the respective ES-schedules and associated cost values one obtains
x(ES~+o,; x)= x(c,, x2, x~, x2 + c4),

• x) = , (c , , x 2 + c , , x, , c,).
Since both argument vectors are incomparable (with respect to the component-
wise ordering on R4), there are cost functions with x(c 1, x2, x 3, x 2 + ca)>
~(cl, x2 + c4, x3, c4).

This shows that, even for processing times x that are monotonically increasing
along a line segment, the optimum value p(x; x) may decrease and even not be
defined at a l l Even more, as variation of x 4 shows, this may happen in an
arbitrarily small neighborhood of some vector x o. All this shows:

3.23. REMARK

In general, the domain X r of the optimum value function 0(~; ") is not convex,
and p(~¢; •) is not monotonically increasing in the processing times.

So positive results may only expected when the occurence of cycles is re-
stricted. A strong such "restricting" assumption is the basis of the following
theorem.

3.24. THEOREM

Let, in the digraph of temporal constraints, all l i j (x) >~ 0 for any x ~ R"> and

Xr ~ ~J.
Then X r = R ":, and p(x; •) is monotonically increasing in the processing times x.
Moreover, p(x; .) is (uniformly) continuous i f x is, and p(~j; x j) ~ p(x; x)

. for j -o oo whenever Kj ~ r uniformly and x J ~ x (j -o oo).

Proof
Since all l i j(x)I> 0, and since adding precedence constraints preserves this

property, one obtains that # ' (x) is independent of x, and that each constraint
system D (x) + O, 0 E ~ , is solvable for any x ~ R">. Hence X r = R">.

M. Bartusch et al. / Scheduling project networks 233

The property l i j (x) >i 0 for all x implies that all x~ in the linear function have
non-negative coefficients, and thus all l i j(x) are monotonically increasing in x.
So also all constraint systems D(x) + O, 0 ~ J ; , and hence all ESo(x)+o, 0 ~ ,
are monotonically increasing in x.

This obviously implies the monotonicity property. The other statements follow
from ,~(x) =~" for all x and the main representation theorem. []

Theorem 3.24 obviously covers the case of precedence-constrained scheduling,
where each l i j(x) is of the form l u (x) = xi.

Note, however, that it does not suffice to assume that the digraph representing
the temporal constraints is acyclic. Then arc lengths l i j(x) may be negative and
cycles may be created by adding precedence constraints on forbidden sets (which
can be forced by temporal constraints to be unique on a forbidden set). So
essentially (i.e. by adding some additional jobs to model the forcing), the same
situation as in example 3.22 can be constructed.

With respect to the resource restrictions and the cost function, the monotonic-
ity behaviour of the optimum value is much better, as the final result of this
section shows:

3.25. THEOREM
Let P1 = [A, x, D, ~#'1, rl] and P2 = [A, x, D, ~ 2 , x2] be scheduling problems

with the same jobs and temporal constraints. Let Oi(~:i; x) (i = 1, 2) denote the
associated optimum values.

Then pl(xl; x) ~ p2(•2; X) if 1~ 1 <~ r 2 and each N ~.A/" 2 is contained in some
N' eX1.

Proof
The assumption on -#'1 and J¢'2 implies that -,~A ~ 2 for the respective

domains of resource-feasible extensions of On. Combining this with theorem 3.9
and theorem 3.8 proves the result. []

The assumption of ~ 1 and ,#'2 is e.g. fulfilled if both problems have the
same resource types, but with smaller requirements per job in P1 and/or larger
availabilities in P2.

4. Algorithmic aspects

4.1. THE ALGORITHM

As mentioned before, the algorithm based on the structural approach taken in
this paper is a branch-and-bound algorithm that constructs feasible extensions @

234 M. Bartuseh et al. / Schedu6ng project networks

(or rather, the associated distance matrix of D + O) according to the results of
sect. 3.3.

So a node in the underlying search tree is a distance matrix D'>~ D that
represents the original temporal constraints given by D and some additional
precedence constraints introduced on certain forbidden sets.

D' is feasible if all forbidden sets N ~.A/" are destroyed, i.e. if D' contains a
precedence constraint a i < fl/(which is equivalent to x i ~< di~ by theorem 3.1) for
each N~.W'. Then D' represents a feasible solution with objective value
x(ESD,; x). This value will be compared with the currently best value p* (and
substituted for it if it is smaller). So #* always represents the best value so far
obtained.

If D' is not feasible, then there will be information available on the yet
undestroyed forbidden sets and on the precedence constraints that may destroy
them. This information can e.g. be handled by maintaiaahag a list of precedence
contraints "ai < aj" contained in not yet destroyed forbidden sets, possibly
together with a globally available (static) array representing which precedence
constraint destroys which forbidden set in order to test this on 0(1) time.

Then branching from D' is based on this information about not yet destroyed
forbidden sets and precedence constraints destroying them. There are two princi-
ple ways for organizing the branching.

The first way takes a not yet destroyed forbidden set N o (possibly the "next"
in a predetermined order on the forbidden sets, or with respect to some dynamic
rule involving e.g. increases in the associated ES-schedules or cost values) and all
precedence constraints that destroy N o and may be added to D' (in the sense of
lemma 3.14). Each such precedence constraint a i < a / then represents a branching
to a subset of the feasibility domain ~- in which feasible schedules fulfil the
additional constraint S+ + x+ <~ S s.

The second way is a variation in which one considers all precedence constraints
that may be added to D' and destroy some forbidden set (instead of a fixed set
N O as above), possibly again supported by static or dynamic rules of choice. This
way was used in the computations reported on in sect. 4.2.

Note that if there is no precedence constraint that may be added to D', then
there is no path from D' to a feasible solution and no branching is necessary in
the current node.

As lower boundLB on p(r; x) in the current node with distance matrix D' we
take the associated cost value x(ESD,; x) . This is a natural lower bound because
of lemma 3.11, though possibly not the best one. Better lower bounds may be
derived for special problems (e.g., in job shop scheduling, lower bounds based on
1-machine problems have led in [7] to a solution of the famous 10 × 10-job shop
scheduling problem), or by deriving bounds from the system of yet undestroyed
sets, by subgradient methods or other standard techniques. So far, our algorith-
mic experience has only been based on the "'natural" lower bound.

The selection rule we have used was depth first search (DFS). This can of

M. Bartusch et al. ,/Schedulingproject networks 235

course be replaced by any other standard rule for selecting the next branch in the
search tree, though DFS compares favourably with others because of the data
handling.

So in all variations of this branch-and-bound scheme, a selected branch is
associated with a precedence constraint a t < aj that leads to the new distance
matrix D " = D ' + [a t < ai] that is computed from D ' in O(n) time according to
(3.10).

The branch is pruned if the lower bound LB associated with D " (LB =
~(ESD,,; x) in our computations) exceeds the currently best value p*. Note that
in order to determine the special lower bound x(ESD,,; x), it suffices to compute
only the values (ESo,)] that are needed as arguments in the cost function ~:
(possibly only one as for project duration when there is a last job representing the
end of the project). So this lower bound can be obtained in O(n) time without
computing the entire matrix D".

These are the basic ingredients of the branch and procedure which essentially
consist in an "on-line" settling of conflicts on forbidden sets by introducing
precedence constraints on them and by calculating the new distance matrix. So
the forbidden sets and the distance matrix determine the "size" of the problem in
computational respect.

Here again, a reduction to the "computational core" of the problem is possible.
In order to keep I ~ 1 small, restriction to the system ~'~ed of reduced forbidden
sets (G-minimal forbidden antichains of 0 D, cf. sect. 3.1) is very reasonable,
though it takes some additional effort. Methods to carry out this reduction have
been developed in [2]. Compared with the time spent on the branch-and-bound
part of the algorithm, the time needed to compute ,,4'~ed is neglectably small.

Besides the size of ~4 z, also the size of D can be kept small. To this end, call a
job a i resource-essential if a t ~ N for some N ~ J/'~ed (i.e. if it needs a "scarce"
resource), and cost-essential if the completion time C~ of a i is an essential
variable of ~ (i.e. the values of C~ matter).

4 .1 . L E M M A

The data required in the distance matrix D' for updating, checking for embedded
and addable precedence constraints, and for computing the associated cost
~(ESn,; x) consists of those dr'j, for which a i is resource-essential or i = 1, and a i
is resource- or cost-essential.

Proof
Checking for embedded and addable precedence constraints a; < aj requires

only resource-essential jobs because of theorem 3.1 and (3.12). Since precedence
constraints are only added between resource-essential jobs, updating dt~. after

t ¢
adding a k < a t requires according to (3.13) only knowledge of entries dij, d~k and
d£j which all belong to resource-essential jobs.

236 M. Bartusch et aL / Scheduling project networks

The calculation of the cost value requires knowledge of the dl'j for which % is
cost-essential. Their updating after adding a k < a t requires knowledge of dl~. ,
d ! . t ~k, and dkj, i.e. of entries for which the row (other than 1) corresponds to a
resource-essential job and the column to a resource- or cost-essential job. []

Note that additional reduction tricks, such as representing a term of the form
max{ Cj,, C~, } in the cost function by the completion time of a dummy job
a,+l and precedence constraints a,; < a,+ 1, s = 1 , k, may help to reduce the
really needed part of the distance matrix even further.

Altogether this shows that the computational core is given by the set of
zost-essential and resource-essential jobs which may be small compared with the
set of all jobs in many applications. Only the processing step of determining ~/~,d
and D requires knowledge of the entire data; afterwards, the reduced data set
suffices for all computations.

As with the transformation to the standard representation, the reduction to
zost- and resource-essential jobs may be carried out internally, i.e. completely
bidden from the user, which is e.g. particularly useful in decision support systems.

~.2. COMPUTATIONAL EXPERIENCE

Computational experience with this approach for the purely precedence-con-
strained case has already been reported in [23,24] and the master thesis [17]. In
particular, [17] contains a detailed comparison with the integer prograrnnfing
tpproach taken in [31]. The two approaches were compared on examples partly
~aken from the literature ranging from 10 to 31 jobs and from 12 to 440 reduced
Forbidden sets and covering various applications from civil engineering (com-
9licated precedence constraints) to processor scheduling (simple precedence con-
~traints given by parallel chains of jobs, but much parallelism and many forbi-
aden sets).

The branch-and-bound approach proved to be much superior. The integer
programming approach was much slower and in most cases was not able to
:ompute the optimum value within a given time limit (mostly 192 seconds on a
Eyber 175), while the branch-and-bound algorithm found the optimum in all
~ases within 0.073 to 4.278 seconds CPU-time.

The subsequently reported experience in the general case was obtained by M.
Bartusch in this thesis [3] on a Cyber 175 at the Rechenzentrum of the RWTH
~.achen and, in a different implementation, on an IBM 3081 at the Institute of
9perations Research at the University of Bonn.

The first project considered models the construction of a bridge as depicted in
ig. 8.

There are 7 main groups of jobs denoted by A i (excavatiOn), Pi (ground
?iling), B i (concrete foundations), S/(soil stabilization and concrete framework),
~'/i (above-grade abutments and piers), 7]i (erection of superstructure) and Vj

M. Bartusch et al. / Scheduling project networks 237

~ 1 1 ; ' * . ' ? ~ i i ~ : ~ i . ~ T1 ! *, ! T3 i!.~.3~:;,;i,'V,!7 .~' ' i * '

:,~': g:!~i;'~? M1 M6 //

Fig. 8. Bridge construct ion project.

HAX NF 3
MAX EF L

HAX [F L

HAX NF 3 .~
I s2 1 .I 62 I A.~ I .I "~ /

~ ,_L2.1~ ~ l . z d I~(_z3 [2zt._t..:

MAX EF /.
MAX NF 3

: - ~ ~ . . ' k!!12__

HIN MAX NF 30 '" m L

MAX NF "/

rqs 21'1~P1213 I~l~l-I.~L2..J 12Et.ZJ 'L2L[-~ =
MAX EF L] S],

' ~,t.N..5.t t z ~ J '33[~8 '

HAX IF /.

I s6 ~ I '~-:-[,i-Zff-I _F-~"C--

", ' .Ax NF 3

I A 5 I

MAX NF 3

! i

~1 Ks I

:~ f Pt
- -~c6JO

HIN NF "2 ' ~

V 2 '

~1 T s I

Fig. 9. Temporal constraints of bridge construct ion project.

238 M. Bartusch et al. / Scheduling project networks

(earth fill-up). Some of these jobs are further subdivided, but the basic resource
types they require (excavator, pile driver, concrete gang, framework gang, mason
gang, crane, bulldozer) are determined by the group in which they belong. The
complete temporal constraints are Nven in fig. 9.

Each of the 46 final jobs a; is represented by a rectangle that contains its name
(with PA and PE denoting project start and end), and, in the second row its index
i and its processing time x i in days. The temporal constraints are given by arrows
as in fig. 1, where maximum time lags are indicated by MAX, NF means
finish-to-start lag ("Normalfolge"), EF means finish-to-finish lag ("Endfolge"),

m i n and absence of any arrow indication means a finish-to-start lag with l~j - 0 and
13 a x ~ OO.

The temporal constraints contain several special features required by the civil
engineers. For example, due to incoming ground water, there is a maximum time
lag of 3 days between the completion of the ground piling in the excavation~ and
the start of erecting the framework for making the concrete foundations. The
super structure will be delivered exactly at day 30 after project start, causing a
minimum and maximum time lag of 30 days between PA and L (delivery). Also,
there is housing for the workers that has to be built up (UE) and closed down
(UA) within certain time limits depending on the availability of the different
worker gangs, etc.

This problem was first solved for x = max (overall project duration) and
several constellations of available resources, ranging from 1 unit for each of the
seven types up to the maximum type required (for which one obtains p(x; x) =
x(ESD; x) = 60, i.e. the best value w.r.t, the temporal constraints only).

The actually computed constellations were chosen in such a way that all
possible different resource availabilities could be solved by application of the
monotonicity result 3.25.

Altogether, 29 different constellations were solved, 15 with 1 scarce resource
type, 11 with 2 scarce resource types, and 3 with 3 scarce types. The required
CPU-time on the CYBER 175 ranged from 0.2 second to 47.4 seconds for 28 of
these problems, but with a large out-runner of 1206.3 for the 29th problem. The
average CPU-time was 3.8 seconds for the 28 problems and 45.4 seconds for all
problems. On the IBM 3081, the (virtual) running time ranged from 0.02 sec to
62.95 seconds for 27 problems with two outrunners of 213.8 and 400.1 seconds.
The "'large-outrunner" problem was not solved to optimality within the time-limit
of 1800 seconds. The average time (excluding the outrunner) was 27.93 seconds.
The number of recursive calls of the branch and bound routine (which corre-
sponds to the number of edges traversed in the decision tree) ranged from 1 to
907,000 with a mean of 48,000.

A variant of this problem (additional start-to-start time lags of minimum
duration 2 between UE and Si, i -- 1 , . . . , 6; these were due to a modification by
the project planner based on a post-optimal analysis of the previous solution) was
solved for a typical cost function occcuring in building industry. Besides project

M. Bartusch et a L / Scheduling project networks 239

duration, it contained in a weighted sum penalty terms for important individual
jobs (K 1, K 2, II2) that model e.g. the freeing of resources (pile driver) or the end
of certain groups of jobs ("subprojects"). These penalties ~ e non-decreasing,
piecewise linear functions f~ (Ci) of the completion times C/of the individual jobs.

The problem was solved for 5 variations of the cost function, with CPU-times
ranging from 23.5 sec to 47.3 sec.

Finally, a real-fife pipeline project [13] with 72 jobs and 14 resource types (of
which 7 are scarce) was investigated and solved w.r.t, to overall project duration.

The initial heuristics gave a first upper bound of 136 for the branch-and-bound
part of the algorithm which obtained an optimal schedule with length 133 after
13.9 seconds on the CYBER 175 and after 185.6 seconds on the IBM 3081.

It seems that the branch-and-bound approach works very well when the
number of reduced forbidden sets is not too large and these sets are small in size.
This is usually the case when there are many temporal constraints (which is
typical for applications in civil engineering). Here maximum time lags have an
additional advantage of possibly pruning parts of the search tree.

On the other hand, when the problem has a "large degree of parallelism", i.e. if
there a many (large) forbidden sets or if there are not many temporal constraints
(OD is "close" to an antichain), then establishing optimality of a solution will
require too much time. This is particularly true for machine scheduling or job
shop scheduling problems. For these problems, better lower bounds in the
branch-and-bound procedure are very essential, as has been proved by the recent
solution of the famous 10 × 10 job-shop scheduling problem in [7].

Acknowledgement

The last two authors would like to express their appreciation for having had
the opportunity of many years of close scientific cooperation with their student
M. Bartusch, which lead to his thesis and to the continuation of his work
presented in this paper.

References

[1] E. Balas, Project scheduling with resource constraints, in: Applications of Mathematical
Programming, ed. E.M.L. Beale (The English University Press, London, 1971) 187-200.

[2] M. Bartusch, An algorithm for generating all maximal independent subsets of a poset,
Computing 26 (1983) 343-354.

[3] M. Bartusch, Optimierung von Netzpliinen Knit Anordnungsbeziehungen bei knappen Betri-
ebsmittein, Thesis, Tech. Univ. of Aachen, 1983.

[4] M. Bartusch, R.H. MShring and F.J. l(adermacher, A conceptional outline of a DSS for
scheduling problems in the building industry, Decision Support Systems (1988) to appear.

[5] C. Berge, Graphs (North Holland, Amsterdam, 1985).

240 M. Bartusch et al. / Schedufing project networks

[6] L Carlier, Ordonnancements ~ constrainte.s disjonctives, RAIRO 12 (1978) 333-351.
[7] J. Carlier and E. Pinson, A branch and bound method for the jobshop problem, preprint,

Universit6' de technologic de Compiegne, 1986.
[8] R.W. Conway, W.L. Maxwell and L.W. Miller, Theory of Scheduling (Addison-Wesley,

Reading, MA, 1967).
[9] M.A.H. Dempster, J.K. Lenstra and A.H.G. Rinnooy Kan, eds. Deterministic and Stochastic

Scheduling (Reidel, Dordrecht, 1982).
[10] S.E. Elmaghrab~¢, Activity Networks: Project Planning and Control by Network Models (Wiley,

New York, 1977).
[11] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness (Freeman, San Francisco, 1979).
[12] M. Glinz and R.H. M5hring, Reduction theorems for networks with general sequencing

relations, Methods of Oper. Res. 27 (1977) 124-162.
[13] W. Jurecka, Netzwerkplanung im Baubetrieb, Teil 2 (Optimierungsverfahren Bauverlag GmbH,

Wiesbaden, 1972).
[14] E.L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston,

New York, 1976).
[15] E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Recent developrffents in deterministic

sequencing and scheduling: a survey, in: Deterministic and Stochastic Scheduling, eds. M.A.H.
Dempster et al. (Reidel, Dordrecht, 1982).

[16] J.K. Lenstra and A.H.G. Rinnooy Kan, Complexity o[scheduling under precedente con-
straints, Oper. Res. 26 (1978) 22-35.

[17] G. Mendzigal, Entwurf und Vergleich von A!gorithmen zur Optimierung yon deterministischen
Netzpl[ixLen mit Betriebsmittelbeschriinkungen, Master Thesis, RWTH Aachen (supervisor:
R.H. M~Shring), 1984.

[18] ILH. M~Shring, Minimizing costs of resource requirements in project networks subject to a
fixed completion time, Oper. Res. 32 (1984) 89-120.

[19] R.H. M~Shring, Algorithmic aspects of comparability graphs and interval graphs, in: Graphs
and Orders, eel. I. Rival (Reidel, Dordrecht, 1985) p. 41-101.

[20] R.H. M/Shring and'F.J. Radermacher, Scheduling problems with resource-duration interaction,
Methods of Oper. Res. 48 (1984) 423-452.

[21] K. Neumarm, Operations Research Verfahren, Band III (Carl Hauser Verlag, Miinchen, 1975).
[22] J. Patterson, R. Slowinski, B. Talbot and J. Weglarz, An, algorithm for a general class of

precedence and resource constrained scheduling problems, 1982, preprint.
[23] F.J. Radermacher, Kapazitiitsoptimierung in Netzpliinen, Math. Syst. in Econ. 40 (Anton Hain,

Meisenheim, 1978).
[24] F.J. Radermacher, Scheduling of project networks, Annals of Oper. Res. 4 (1986) 227-252.
[25] F.J. Radermacher, Schedule-induced posets, Discrete Appl. Math 14 (1986) 67-91.
[26] A.H.G. Rinnooy Ran, Machine Scheduling Problems: Classification, Complexity and Computa-

tion (Nijhoff, The Hague, 1976).
[27) B. Roy, Cheminement et Connexit6 dans les graphes, Application aux probl6mes d'ordonnan-

cement, METRA, S6rie Sp6ciale, No. 1, (Thesis), 1962.
[28] B. Ro3/, G-raphes et Ordonnancement, Revue Fran~aise de Recherche OpErationelle (1962)

323-333.
[29] J. Sehwarze, Netzplanteehfiik ~ r Praktiker (Verlag Neue Wirtschaftsbriefe, Herne/Berlin,

1974).
[30] R: Seeling, Rethenfolgenprobleme in Netzpl~inen, Bauwirtschaft (1972) 1897-1904.
[31] F.B. Talbot and J.H. Patterson, An efficient integer programming algorithm with network cuts

for solving resource-constrained scheduling problems, Management Sei. 24 (1978) 1136-1174.

