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Abstract 

The simplex algori thm for linear p rogramming  is based on the well-known equivalence 
between the problem of maximizing a linear function f on a polyhedron P and the problem 
of maximizing f over the set V e of all vertices of P. The equivalence between these two 
problems is also exploited by some methods  for maximizing a convex or quasi-convex 
function on a polyhedron.  

In this paper  we determine some very general condit ions under  which the problem of 
maximizing f over P is equivalent,  in some sense, to the problem of maximizing f over Vp. In 
particular, we show that these two problems are equivalent when f is convex or quasi-convex 
on all the line segments  contained in P and parallel to some edge of P. 

In the case where P is a box our results extend a well-known result of Rosenberg  for 0 -1  
problems. Furthermore,  when P is a box or a simplex, we determine some classes of 
funct ions that can be maximized in polynomial  time over P. 

1. Introduction 

Consider the continuous optimization problem 

(CP) {xEpmaX f ( x )  

and the discrete problem 

max f (x )  
(DP) 

X ~  Vp,  

where P ts a polyhedron in R n, Vp is the set of vertices of P and f is a 
real-valued function on P. In some cases problems CP and DP are known to be 
equivalent, i.e. one or all the solutions of CP can be obtained from the solutions 
of DP and vice versa. Clearly, when CP and DP are equivalent one could use 
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both continuous and discrete optimization techniques to solve them. Typical 
examples of this fact are provided by simplex and interior point methods for 
linear programming or by the methods employed for maximizing a convex 
function (or, equivalently, minimizing a concave function) over a polyhedron (see 
[11] for a survey of these methods). 

Let Pmax denote the set of global maximum points of f over P. We say that CP 
and DP are: 
- Strongly equivalent, if P,,~ is a face of P. 

- Equivalent, if Pmax is a union of faces of P or, equivalently, if whenever 
x ~ Pm~-,, the smallest face of P containing x is contained in Pmax" 
- Weakly equivalent, if Pm~x N V e ~ fJ, whenever Pm~x =# t~. 

Clearly, strong equivalence implies equivalence which, in turn, implies weak 
equivalence. Furthermore, it is well known that CP and DP are strongly equiv- 
alent, equivalent or weakly equivalent when f is linear, convex or quasi-convex, 
respectively (see Murty [10], Rockafellar [12] and Greenberg et al. [3]). 

Let v(CP) and v(DP) denote the optimal values of CP and DP respectively. It 
is easy to see that weak equivalence is sufficient to guarantee that v(CP) = v(DP). 
Furthermore, when P is an integral polyhedron, i.e. all the vertices of P are 
integer, weak equivalence between CP and DP trivially implies that at least one 
optimal solution for the problem of maximizing f over all the integer points in P 
lies in V e. 

In this paper we establish some very general conditions under which these 
three types of equivalence hold. Exploiting the equivalence between CP and DP 
we then deduce the polynomiality of some classes of optimization problems. 

Let us introduce some definitions and notations which will be used in the 
sequel. Given a set X c R ' ,  d im(X)  denotes the dimension of the smallest affine 
manifold containing X, while ri X, rbd X and coX denote the relative interior, the 
relative boundary and the convex hull of X respectively (see Rockafellar [12]). 
Let X be a convex set in II~ ". A function f :  X-o  R is called (strictly) quasi-con- 
vex (see Avriel et al. [1]) if for every x l, x 2 ~ X and for every a ~ [0, 1] 

f ( a x ' +  (1 - a ) x  2) ~ < m a x ( f ( x ' ) ,  f ( x 2 ) }  

(resp. f ( a x '  + (1 - a ) x  z) < max{ f ( x ' ) ,  f ( x Z ) } ) .  

Similarly, a function f is called (strictly) convex if for every x 1, x z ~ X and for 
every a e [0, 11 

f ( a x  1 + (1 -- a ) x  2) < a f ( x  1) + (1 -- a ) f ( x  2) 

(resp. f ( a x  1 + (1 - a ) x  2) < a f ( x  x) + (1 - a ) f ( x 2 ) ) .  

If - f  is (strictly) convex or (strictly) quasi-convex f is called (strictly) concave or 
(strictly) quasi-concave respectively. 
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2. The maximum principle 

It is well-known from Harmonic Analysis (see [9]) that all global maximum 
points of a subharmonic function f on a domain D must lie on the boundary of 
D unless f is constant. This property, called the maximum principle, is enjoyed 
also by other classes of functions. In this section we will determine some classes 
of functions satisfying the maximum principle on some or all the faces of a 
polyhedron. 

DEFINITION 2.1 
Let X be a subset of R" and let f be a function from X into R. We say that f 

satisfies the Maximum Principle (MP for short) on X iff, whenever x* ~ X and 
f ( x ) < ~ f ( x * )  for every x in X, either f ( x ) = f ( x * )  for every x in X or 
x * ~  rbdX. We say that f satisfies the Weak Maximum Principle (WMP for 
short) on X iff, whenever f ( x )  <~f(x*) for every x in X, there exist x '  ~ rbdX 
such that f (  x '  ) = f ( x  * ). 

Note that convex functions satisfy MP on every convex set, whereas quasi-con- 
vex functions satisfy WMP on every convex compact set. 

Let P be a polyhedron in R" and let s 1 . . . . .  s q be a set of vectors in ~n such 
that every edge of P is parallel to some s'. Furthermore, for every x ~ P and for 
every s ~ R" define 

Ps(x)=(z e:z=x+Xs, x R) 
Given any face F of P define also 

I F = {i:  s i is parallel to some edge of F }. 

PROPOSITION 2.1 
If f :  X--,  • is convex on Ps,,(x), for every h = 1 . . . . .  q and for every x ~ P, 

then f satisfies MP on every face of P. 

Proof 
Let F be a face of P and assume that there is a point x ~ r iF  that globally 

maximizes f over F. Given any point y ~ F, we can then find a finite sequence 
(xi}o<.i.<r such that 

xO= x, x r = y ,  xi ~ riesh,(xi), x i+1 ~ ps,,,(xi), 

h i ~  {1 . . . . .  q ) ,  i = 0  . . . . .  r - 1 .  

Observe that x ~ ~ riPs,,o(x ~ is a global maximum point for f over Ps,,o(X~ Then, 
since f is convex over Ps,,~,(x~ f must be constant on Psho(x~ Hence, f ( x  ~ = 
f ( x  1) and x 1 is also a global maximum point for f over F. Proceeding by 
induction we then get 

f ( x )  = f ( x  ~ = / ( x  1) . . . . .  f ( x  r) = / ( y ) .  

Hence f is constant over F. 
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Remark 2.1 
Note that when f is twice continuously differentiable, the assumption of the 

previous proposition is equivalent to 

(sh)THi(x)s">~ O, VX ~ P and Vh = 1 . . . . .  q, (1) 

where Hi(x) is the Hessian matrix of f at x. 

PROPOSITION 2.2 
Let f : P  ~ R, where P is a bounded polyhedron. If  for every x ~ P there 

exists y ~ P, y v~ x, such that, setting s = y -  x, f is (strictly) quasi-convex on 
P~(x), then f satisfies WMP (MP) on P. 

Proof 
Let us assume that there exists a global maximum point x ~ ~ r iP  for f over P. 

Let y E P be such that f is (strictly) quasi-convex on Ps(x~ where s = y -  x. 
Note that the extreme points x 1 and x 2 of Ps(x ~ belong to rbdP .  Furthermore,  
by the quasi-convexity of f we have 

f ( x  ~ <~ max{ f ( x l ) ,  f ( xZ) ) .  

Hence, either x 1 or x e is a global maximum point for f over P. If  f is strictly 
quasi-convex on Ps(X~ we have 

f ( x  ~ < m a x ( f ( x ' ) ,  f ( x 2 ) ) ,  

contradicting the global maximality of x ~ 

The following corollary is a trivial consequence of proposit ion 2.2. 

COROLLARY 2.2.1 
Let f :  P ~ R, where P is a bounded polyhedron. Assume that f is (strictly) 

quasi-convex on P,h(x), Vx ~ P and Vh ~ H c {1 . . . . .  q}. Then f satisfies WMP 
(MP) on all the faces F of P such that I r (q H 4: fJ. 

COROLLARY 2.2.2 
Let f : P ~ R, where P is a bounded polyhedron with p edges. Assume that f 

is (strictly) quasi-convex on Ps,,(x), Vx ~ P and Vh ~ H c  (1 . . . . .  q}. For  every 
h ~ H  denote d h the number  of edges of P parallel to s h and let d=F~hez4dh. 
Then f satisfies WMP (MP) on all faces of dimension m such that 

m(m + 1 ) / 2  > p -  d. (2) 

Proof 
The number  of edges of an m-dimensional face F of P is not smaller than 

m(m + 1)/2,  the number  of edges of an m-dimensional  simplex (see Brondsted 
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[2]). Hence, f rom (2) we deduce that  there exists an edge of  F parallel to s h, for 
some h ~ H. The conclusion then follows f rom corol lary 2.2.1. 

Remark 2.2 
Note  that  the conclusions of  proposi t ion  2.2 and corol lary 2.2.1 remain  valid 

also when P is unbounded  but  has at least one vertex, if the (strict) quasi-convex- 
ity assumption is replaced by (strict) convexity. Indeed,  in this case, in the proof  
of  proposi t ion 2.2 Ps(X ~ may be unbounded  on one side. If  this is the case the 
proof  may be modif ied as follows. Consider  x ~, the only extreme point  of  Pfix ~ 
and take any point  x 2 ~ Ps(x ~ such that x ~ = ax 1 + (1 - a)x 2 for some a 
[0, 1]. If f is convex we have 

<~ a f (x  1) + (1 - a) f (x  2) <~ a f ( x  ~ + (1 - a) f ( x  ~ = f ( x  ~ f ( x  O) 

and hence 

f ( x  ~ = f ( x ' )  = f ( x 2 ) .  

Since x 1 ~ rbd P, this concludes the p roof  of this case. If  f is strictly convex we 
have the contradic t ion 

f ( x  ~ < a f (x  1) + (1 - a) f (x  2) <~f(x~ 

The previous results require the knowledge of  some or all edges of  P.  W h e n  the 
edges of P are not  explicitly known we can still guarantee the validity of MP or 
W M P  by making more restrictive assumpt ions  on f .  

PROPOSITION 2.3 
Let f :  P ---, N be twice cont inuously  differentiable. If  at any x ~ P the Hessian 

matrix Hf(x) of f has at least m positive eigenvalues, then f satisfies M P  on 
every face F of  P such that d i m ( F )  > n - m. 

Proof 
Let F be a face of  P with d i m ( F )  > n - m. Then,  for any point  x ~ r i F  it is 

possible to find y ~ F such that (y - x)THf(x)(y -- x)  > 0. Hence,  no  point  in 
the relative interior of  F can satisfy the second order  necessary condi t ions  for 
maximality.  Therefore  f satisfies M P  on F. 

DEFINITION 2.2 
Let f be a funct ion f rom a convex set X c R" into R. We say that  f is 

m-convex (m-quasi-convex)  over X, for 1 ~< m ~< n, if 

f (ax '  + (1 - a ) x  2) ~< af (x ' )  + (1 - a) f ( x  2) 

(resp. f ( a x  I + (1 - a ) x  2) ~< max{ f ( x  1), f ( x 2 ) } ) ,  

for every a ~ [0, 1] and for every x 1, x 2 ~ X such that  x i = Yi for  at least n - m 
indices i in { 1 . . . . .  n }. 
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N o t e  that n-(quasi-)convexity coincides with ord inary  (quasi-)convexity.  Fur-  
thermore,  if f is re-(quasi-)convex, then it is also m'-(quasi-)convex,  for every 
m '  < m. The converse is not  true in general: the funct ion f (x ,  y)  = x 2 + y 2  _ 4xy 
is 1-convex but is neither 2-convex nor  2-quasi-convex. 

It  is a s t raightforward consequence of  the second order  character izat ion of  
convexity that a twice cont inuously  differentiable funct ion f on  a convex open  set 
~2 is m-convex over ~2 if and only if all the m-dimensional  principal  submatr ices  
of  Hs(x) are positive semidefinite for every x in I2. In particular,  f is 1-convex if 
and only if all the diagonal  elements of  HI(x) are nonnegat ive  for every x in I2. 
N o t e  also that 1-convexity may  be viewed as convexi ty  with respect to each 
variable separately. 

Let us now assume that the po lyhedron  P is expressed in one  of  the following 

ways: 

P= {x~N""  Ax=b ,  a<<.x <~fl } (3) 

or  

P-- (x~g~"" Ax <~b, a<~x <~fl}, (4) 

w h e r e A  ~ R  "'x", b ~ N " ,  a, / ~ R " ,  a=(al  .. . . .  a.), t3=(/31 . . . . .  B.), - o o  ~<a i 
< fli ~< + oo and min{ l a i l ,  I/?i I} < + m.  N o t e  that  the assumpt ions  on a and fl 
imply that, if P ~ ~[, P has at least one vertex. 

PROPOSITION 2.4 
Let P be a po lyhedron  defined by  (3) or (4) and assume that A has rank 

m - 1. If  f is re-(quasi-)convex over P,  then f is (quasi-)convex over p,.h(x) for 
every h = 1 . . . . .  q and for every x ~ P. 

Proof 
Let s = (s 1 . . . . .  s,,) be a vector parallel to an edge of  P. Observe that  every 

edge of  P lies in the intersection of  n - 1 linearly independent  hyperp lanes  taken 
f rom among  those defining P in (3) or  (4). Since r ank(A)  = m - 1, we have si = 0 
for at least n - m indices i. F r o m  m-(quasi-)convexity of  f we then derive that  f 
is (quasi-)convex over the sets Ps(x) for every x E P.  

The following corollaries are a s t ra ight forward consequence  of  propos i t ions  2.1 
and  2.4. 

COROLLARY 2.4.1 
Under  the assumpt ions  of  propos i t ion  2.4, f satisfies M P  ( W M P )  on all the 

faces of  P. 

COROLLARY 2.4.2 
If  P = { x ~ R""  a ~< x ~< fl } and f is 1-(quasi-)convex over P,  then f satisfies 

M P  (WMP)  on all the faces of  P. 
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3. The set of global maximum points of a function over a polyhedron 

In this section we present some rather general conditions for the equivalence 
between problems CP and DP. Let 12 denote a set of faces of a polyhedron P and 
let 12c be the set of all faces of P that are not contained in ~2. 

P R O P O S I T I O N  3.1 

Let f be a real function on P and assume that f satisfies WMP for every face 
F ~ 12. Then the set /'max of global maximum points of f over P satisfies the 
following relation 

Pmax N (Vp g F?s2F)--P~, (5) 

when Pma~ 4= ~. Furthermore, if f satisfies MP for every F ~ 12, then there exists 
12' c 12 such that 

U rCPm~• c U F. (6) 
F ~ $2' F ~ 1 2 ' t d l 2  c 

PFoof 
Assume that f satisfies WMP for every F ~  12 and that Pma• :gg- Let F *  

denote a face of P of minimal dimension among those satisfying the relation 
Pm~ n F4~g.  If F *  ~ 12c or d i m ( F * ) =  0, then (5) holds. Hence assume that 
F * ~ 12 and dim( F * ) > 0 and let x E Pm~ n F *. By the WMP one can then find 
y ~ r b d F *  such that y ~ Pm~, contradicting the minimality assumption on F * .  
Assume now that f satisfies MP for every F ~ 12 and, for every x ~ P, denote F x 
the smallest face of P containing x. Note that, by the MP, if x ~ Pm~, we have 
F.,. c Pmax" Then, setting 12' = ( F ~ 12 : F = F x, x ~ Pmax }, the first inclusion of (6) 
holds. The second inclusion is a trivial consequence of the definition of 12' and of 
the following one 

Pm C U F,-. 
X ~ Pmax 

COROLLARY 3.1.1 
If f satisfies MP (WMP) on all the faces of P, then problems CP and DP are 

(weakly) equivalent. 

COROLLARY 3.1.2 
If f is quasi-concave on P and satisfies MP on all the faces of P, then 

problems CP and DP are strongly equivalent. 

Proof 
By proposition 3.1, Pmax is a union of faces of P. On the other hand, from the 

quasi-concavity of f it follows that Pma~ is convex (see [1]). Hence Pmax must be a 
face of P. 
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The following straightforward consequence of proposition 3.1 extends a result 
of Hager et al. [5]. 

COROLLARY 3.1.3 
If  f satisfies WMP on all the faces of P of dimension greater than m, then at 

least one point of Pma~ lies in an m-dimensional face of P. 

4.  T h e  b o x  c a s e  

In this section we will specialize the previous results to the case where P is a 
box, while in the next section we shall deal with the case where P is a simplex. 
Let us then assume that P is a box, i.e. P is defined by (3) with A = 0, b = 0 and 
- oo < % < fli < + oo for i = 1 . . . . .  n. In this case, it is easily seen that a set of 
vectors parallel to all the edges of P is e I . . . . .  e ' ,  the canonical basis of •". 
Furthermore,  by making the simple change of variables 

where D = d i a g ( ( f l l - % ) - l , . . . , ( f l  _ a , , ) - l ) ,  p may be transformed into the 
0 -1  hypercube Q = [0, 1]" and hence V e coincides with the 0 -1  discrete hyper- 
cube B = {0, 1}'. In the sequel we will then assume, without loss of generality, 
that P = [0, 1]'. Note  that in this case problem DP is an unconstrained 0 -1  
program. Hence, when CP and DP are equivalent in some sense, the methods of 
pseudo-Boolean programming (see [6-8]) may be employed to solve the continu- 
ous problem CP and, conversely, the methods of continuous optimization can be 
used to solve DP. Rosenberg [13] has shown that CP and DP are equivalent, in 
the box case, when f is a polynomial which is linear with respect to each variable. 
This result is generalized in the next proposition, which is a straightforward 
consequence of corollaries 2.4.2, 3.1.1 and 3.1.2. 

PROPOSITION 4.1 
If f is 1-(quasi-)convex on P, then problems CP and DP are (weakly) 

equivalent. Furthermore,  if f is 1-convex and quasi-concave on P, problems CP 
and DP are strongly equivalent. 

A well-known result in 0 -1  optimization is the fact that the problem of 
maximizing a supermodular  function over the discrete 0 -1  hypercube can be 
solved in polynomial  time (see Groetschel et al. [4]). In view of the above 
remarks, this result can be extended to the continuous case as follows. 

PROPOSITION 4.2 
If  f is 1-quasi-convex on P and the restriction of f to Vp is supermodular  then 

problem CP can be solved in polynomial  time. 
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Remark 4.1 
The assumptions of proposition 4.2 are satisfied, e.g., when f is twice continu- 

ously differentiable and the second order derivatives f~j(x) are nonnegative for 
every i, j = l  . . . .  , n  and for every x ~ P .  Indeed, in this case f is clearly 
1-convex. Furthermore, Topkis [14] has shown that the nonnegativity of the 
mixed partial derivatives f i j (x )  for i 4:j  implies the supermodularity of f on P 
and hence, afort ior i ,  on Vp. 

Remark 4.2 
In view of the remarks of section 1, if a and fl are integer and the assumptions 

of proposition 4.2 hold, then at least one optimal solution for the integer program 

(IP) / m a x  f ( x )  
a~<x~<fl ,  x in t ege r  

must be attained at a vertex. Hence problem IP can also be solved in polynomial 
time. 

5. The simplex case 

In this section we discuss the equivalence of CP and DP in the case where P is 
expressed in the following way 

P =  ( x ~ R " :  x>~O, aXx <~b}. (7) 

Note that in this case the cardinality of Vp is not greater than n. Hence problem 
DP is trivial. Therefore, when CP and DP are equivalent, problem CP can also be 
solved immediately. Note also that if b > 0 and a t > 0 for i =  1 . . . . .  n, P is a 
simplex. It is easy to check that a set of vectors parallel to all edges of P is 
S = (s~J}~,j= 1 ..... , ,  where s ~j = a i  e i  - aje j, if i 4 = j ,  and s" = e i, for i = 1 . . . . .  n. 

PROPOSITION 5.1 
Let f be twice continuously differentiable and assume that 

(i) f.(x)>~O, V x ~ P ,  i, j = l  . . . . .  n; 
(ii) a2fii(x) + a~fj?.(x) - 2aiaj f i j (x  ) >~ O, Vx ~ P, i, j = 1 . . . . .  n, i 4~j. 

Then CP and DP are equivalent. 

Proof 
Note that conditions (i) and (ii) are equivalent to (siJ)THi(x)(siJ)>1 O, for 

every x ~ P. Hence, the proof follows from remark 2.1, proposition 2.1 and 
corollary 3.1.1. 
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