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Abstract 

Interval Newton methods in conjunction with generalized bisection are important elements 
of algorithms which find the global optimum within a specified box X c R n of an objective 
function q~ whose critical points are solutions to the system of nonlinear equations F(X) = 0 
with mathematical certainO, , even in finite precision arithmetic. The overall efficiency of such 
a scheme depends on the power of the interval Newton method to reduce the widths of the 
coordinate intervals of the box. Thus, though the generalized bisection method will still 
converge in a box which contains a critical point at which the Jacobian matrix is singular, the 
process is much more costly in that case. Here, we propose modifications which make the 
generalized bisection method isolate singular solutions more efficiently. These modifications 
are based on an observation about the verification property of interval Newton methods and 
on techniques for detecting the singularity and removing the region containing it. The 
modifications assume no special structure for F. Additionally, one of the observations 
should also make the algorithm more efficient when finding nonsingular solutions. We 
present results of computational experiments. 

Keywords: Nonlinear algebraic systems, Newton's method, interval arithmetic, Gauss-Seidel 
method, global optimization, singularities. 

1. Motivation, introduction, and notation 

The general  p rob lem we address is: 

F ind,  with certainty,  the global  o p t i m u m  of the n o n l i n e a r  object ive func t i on  

qs(X) = q~(xa, x 2 . . . . .  x,,), (1 .1(a))  

where b o u n d s  x i and  Yi are k n o w n  such that  

x i<~x i<~Y  ~ for 1 ~< i ~< n.  

A successful approach  to this p rob l em is general ized b isec t ion  in  c o n j u n c t i o n  

with interval  N e w t o n  methods.  The  in terva l  N e w t o n  m e t h o d  enables  us to 

de te rmine  crit ical po in ts  ( that  is, roots of the g rad ien t  F of q,), whereas var ious  

techniques enable  us to e l iminate  regions c o n t a i n i n g  crit ical  po in t s  which  do no t  

correspond to the global o p t i m u m  before  excessive effort  is spent  f ind ing  them. 

Thus,  a related bu t  more  difficult  p r o b l e m  is 
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Find, with certainty, approximat ions  to all solutions of  the nonl inear  system 

F ( X ) = ( f , ( x , ,  x 2 . . . . .  x , )  . . . . .  f , , ( x , ,  x 2 . . . . .  x,,)) = 0, (1.1(b))  

where bounds  x i and Yi are known such that 

xi <~ x~ ~ Y~ f o r l ~ < i ~ < n .  

We write X = (x 1, x 2 . . . .  , x,,), and we denote  the box given by the inequalities on 
the variables x i by B 1. 

Interval Newton  algorithms for solving (1.1(a)) can be thought  of  as straight- 
forward modificat ions of algori thms for solving (1.1(b)); see, the comprehensive  
reference [17] or, for example, [3] for a description of techniques part icular  to 
(1.1(a)). However,  techniques for solving (1.1(b)) efficiently will similarly in- 
crease, in general, the efficiency of solution of  (1.1(a)). For  this reason, we 
concentrate  on (1.1(b)) in the remainder  of  this paper.  Along these lines, we will 
refer to the Jacobian matrix  of F instead of  the Hessian matr ix  of ~a. 

Interval N e w t o n / g e n e r a l i z e d  bisection methods  for (1.1(b)) are described in 
[4-6,12,13,15,18] etc. For  an introduct ion to the interval ari thmetic under lying 
these methods,  see [1,11], the recent review [9], etc. Also, the book  [14] contains  
an overview of interval methods for linear and nonl inear  systems of  equations.  

In these methods,  we first t ransform F ( X )  = 0 to the linear interval system 

F'(Xk)(Y~ k - Xk)  = - F ( X k ) ,  (1.2) 

where F ' (Xk)  is a suitable (such as an elementwise) interval extension 2 of the 
Jacobian matrix over the box Xk (with X 0 = B), and where X k ~ X k represents a 
predictor  or initial guess point. We note that (1.2) must  be unders tood  not  as an 
ordinary equat ion but  as the set of  all linear systems of equat ions  A ( X -  Xk) = 
- -F(  X k) as A ranges over all matrices which are conta ined in the interval matrix 
F ' (Xk) .  If  we then formally solve (1.2) using interval arithmetic, the resulting box 
Y~k, which actually just  satisfies 

F ' (Xk)(5~ k - Xk ) D - r (  x k  ) , (1.2(b))  

will contain all solutions to all such systems A( X -  Xk) = - - F ( X k ) .  Fur thermore ,  
if each row of F '  contains all possible vector values that the cor responding  row of 
the scalar Jacobian matrix F ' ( X )  takes on as X ranges over all vectors in Xk, 
then it follows f rom the mean value theorem that X k will conta in  all solutions to 
F ( X )  = 0. We then define the next iterate Xk+ 1 by 

Xk+l = Xk n 5~k. (1.3) 

This scheme is termed an interval Newton method. 

I Throughout the paper, we will denote interval quantities with boldface letters. Vectors will be 
denoted with capital letters. 

2 Interval extensions of a function may be defined by simply evaluating the functions in interval 
arithmetic. The result of such a computation is an interval which contains the range of the 
function over the interval argument. Consult the introductions in [1], [11], and the recent review 
[9]; consult [16] for an in-depth treatment of interval methods for the range of functions. 
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If the coordinate  intervals of Xk+ 1 are not  smaller than those of  X k, then we 
may bisect one of  these intervals to form two new boxes; we then cont inue  the 
iteration with one of these boxes, and put  the other  one on a stack for later 
consideration. As explained in [5,6,12], and elsewhere, the following fact (from 
[13], p. 263) allows such a composi te  generalized bisection algori thm to compute  
all solutions to (1.1(b)) with mathematical certainty. For  many  methods  of  solving 
(1.2), 

if Xkc--Xk, then the system of equat ions in (1.1) has a unique 

solution in X k. Conversely, if Xj, n X  k = ~ then there are no 
solutions of the system in (1.1) in X k. 

(1.4) 

We now present a simplified version of  the generalized bisection algori thm in 
[6]. 3 

ALGORITHM 1.1 
Basic generalized bisection algorithm 

1. (Initialization phase) 
(a) Inpu t  a tolerance ~ such that no box will have a coordinate  width less than 

C. 

(b) Input  a tolerance c F such that we do no further computa t ions  on an X if 
11 F(X)II ~ < EF for X ~  X. 

(c) X k ~- B. 
2. (Bisection) 

(a) If X k = (x 1, x 2 . . . . .  x , ) ,  where xj  = [xj, ~j], then choose a coordina te  i in 
which to bisect. 

(b) Fo rm two new boxes X~ and X~, by replacing x i in X k by either [wi, ~ ]  or 
[x i, r where r i = (x~ + .~i)/2. 

(c) Place either X~ or X~ on a stack 5 p for later considerat ion,  and replace X/, 
with the other one. 

3. (Interval Newton  method and root storage) 
(a) (Test for convergence) 

(i) If  the width of  at least one coordinate  x j  of  X k is greater than ~, then 
compute  the interval vector F(X) for use in (ii) below. 

(ii) If  the width of each coordinate  x j  of  X k is less than ~, or if 
II F(X)IJ ~ < ~V then 

(a)  Store X k in a list s of small boxes Which possibly conta in  roots. 
(f l)  I f  the stack 5 ~ is empty,  then stop. Otherwise, pop a box f rom 5 '~, 

let that  box become X k, and return to the beginning of  this step. 

For clarity, we do not include the "expansion step", which is step 4 of algorithm 3.1 in [6], 
although the implementation in the experiments in this paper has it. In our experience, this step 
usually does not affect the various measures of efficiency for the algorithm. 
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(b) (Obtain  the funct ion and Jacobian  for (1.2).) 
(i) Compu t e  the interval Jacobian  matrix F ' ( X  k). 

(ii) Compu t e  F(Ark), using interval ari thmetic to bound  the roundof f  error. 
(c) (Bound the solution set in (1.2).) Use some method  to compute  an interval 

enclosure Xk to the solution set of the interval linear system (1.1(b)). 
(d) If  Xk --~ Xk, then do the following. 

(i) Store X k in a list ,s of  boxes which conta in  unique roots. 
(ii) If  the stack 5 P is empty,  then stop. Otherwise, pop  a box f rom 50, let 

that  box become X k, and return to the beginning of  step 3(a). 
(e) If  :Kk r X k is sufficiently smaller than X k, then replace X k by :Kk n X k and 

return to step 3(a). Otherwise, replace X k by Xk n X k and return to step 2. 
(f) If Xk r Xk = O then stop if the stack 5 a is empty;  otherwise, pop  a box 

f rom 5 p, let that  box become X k, and return to the beginning of  step (3a). 

In step 3(e), we may say :Kt. is sufficiently smaller than X k if there is a j such 
that  Y j -  x i > ~ and (Y-__s ~< ( Y -  x j ) / 2 .  Such a condi t ion will ensure the 
overall convergence of  the algorithm, since it guarantees that each step, whether  
interval Gauss -Se ide l  or bisection, will reduce one of  the coordinates  by at least a 
factor  of  2. In  practice, however,  we have found  a volume ratio (which, ap- 
propria te ly  implemented,  also implies convergence)  to be effective; we cont inue  
to use the Gauss -Se ide l  i teration after a sweep of  all n coordinates  only if 

fi wlx:) f i  wl,,,), 115) 
i=1 i~l 

w(x,)>c w(x,)>~ 

for some 7/ with 0 < ~ < 1 ( r / =  0.6 works well), where x + = ~i n x i. 
We use the following notat ion.  We write X = (x 1, xz . . . . .  x . )  for Xk and we 

write Ai j for the interval in the i th row and j t h  co lumn of  A = F ' (X) .  Similarly, 
we write 4 F ( X k ) = F = ( f p f  2 . . . . .  f . ) ,  and X k = ( X  1, X 2 . . . . .  X.), SO that  (1.2) 
becomes  

A(X k - Xk) = - F  (1.6) 

We generally precondi t ion  (1.6); i.e., we mult iply by a matrix Y to obta in  

YA(X k - Xk) = -- YF. (1.7) 

Let Y~ = (yl ,  Y2 . . . . .  y . )  denote  the i th  row of  the precondi t ioner ,  let 

k i = Y/F, 

and  let 

Y / A = G i =  (~i,1, Gi,2 . . . . .  ~i.n) = ([g,.,, gi,1], [~i.2, ~i,2] . . . . .  [~i,n' gi.n])" 

4 We denote the components of F as boldface intervals, since they must be evaluated in interval 
arithmetic with directed roundings or else roundoff error may cause algorithm 1.1 to miss a root. 
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With the above notation, we have the following version of the interval Newton 
method for step 3(c) of algorithm 1.1 which usually works well. 

ALGORITHM 1.2 

Preconditioned version of interval Gauss-Seidel; see [8] 
Do the following for i = 1 to n. 

1. (Update a coordinate.) 
(a) Compute the preconditioner row Y, as the linear programming precondi- 

tioner described in [8]. 
(b) Compute k i and G i. 
(c) Compute 

= x , -  , + E c , . ; ( x ; -  x ; ) / G , . ,  (1.8) 
j = ]  
j r  

using interval arithmetic. 
2. (The new box is empty.) If ~i n x i = 0 ,  then signal that there is no root of F 

in X, and continue the generalized bisection algorithm. 
3. (The new box is non-empty; prepare for the next coordinate.) 

(a) Replace x i by x i N xi. 
(b) Possibly re-evaluate F'(Xk) to replace A by an interval matrix whose 

corresponding widths are smaller. 

In step 2(a) of algorithm 1.1, we have found maximal smear to be appropriate 
for determining which coordinate to bisect. That is, we bisect the coordinate 
direction j for which oj is maximum, where 

oj = 1max<i<,, ( la_i,j[, lai,jl }(.~j-- xj). (1.9) 

This coordinate direction is, roughly, the one in which the values of the fi 
change most rapidly relative to the individual widths of the present box X. 

Algorithm 1.1 must eventually complete with (possibly empty) lists of boxes 
and .~e', such that all roots of F in B are contained in boxes in ~ or &o,, and 
each box in cL contains a unique root; compare with the convergence analysis in 
[5]. However, the cost bound in [5] is very pessimistic, and the actual efficiency of 
algorithm 1.1 depends on how well algorithm 1.2 (step 3(c) of algorithm 1.1) finds 
the solution bounds IK k in (1.2). If the widths of the components of X are 
sufficiently small, if the Jacobian matrix is reasonably well-conditioned, and if 
the interval extension F '  to the Jacobian matrix gives reasonably sharp bounds 
on the range of the Jacobian matrix, then the widths of the components of 2~ k are 
smaller than those of X, and iteration of algorithm 1.2 will reduce them further, 
until the condition in step 3(d) holds. (In fact, this interval Newton method is 
locally quadratically convergent in the sense that the widths go to zero at that 
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rate.) If not, then bisection reduces the size of Xk slowly, especially when the 
dimension n is large, and many more boxes must be considered. 

In this paper, we present techniques which are useful when algorithm 1.2 does 
not give bounds Xk with smaller widths, because the Jacobian matrix is ill-condi- 
tioned or singular near the root. These techniques do not assume anything about 
the structure of the singularity, and they may be embedded into algorithm 1.1 
without adversely affecting its efficiency on non-singular problems. 

The techniques are based on 
(i) an observation concerning a componentwise variant of (1.4); and 

(ii) an algorithmic technique and set of heuristics for astutely "trisecting" a box 
which contains a singular root. 

We formally present the componentwise variant of (1.4) in section 2. In section 3, 
we give the trisection algorithm, the heuristics, and a corresponding modified 
version of algorithm 1.1. In section 4, we present computational results from the 
test set in [6] and additional functions with singular roots. We summarize in 
section 5. 

2. A componentwise  root inclusion test  

Suppose X, = (r  a, r 2 . . . . .  r,) is a root (F(X,)= 0), such that the Jacobian 
matrix F'(X,) is singular, and suppose X, ~ X k. Then it is impossible for 
~(k _C X k as in (1.4). (To see this, note that F ' (Xk) contains a singular matrix, so 
that ~(k cannot be bounded.) s However, if we choose the preconditioner Y, as in 
algorithm 1.2, then in many cases each width w ( ~ )  is minimal, given the interval 
extension F'(Xk). Thus, even if X k contains a point X, with F'(X,) singular, we 
often have ~ _ x i for some (but not all) i. 

The above considerations lead us to examine weaker forms of (1.4) for singular 
systems. We obtained some preliminary results in [7], in which we singled out 
certain directions in which F was singular, and examined a related non-singular 
subproblem in a lower-dimensional space. In  fact, by viewing the problem slightly 
differently, we may do this more directly and efficiently within the framework of 
algorithm 1.1. The idea is to view the system F ( X ) =  0 as a lower-dimensional 
system which is parametrized in terms of the variables x~ for which ~ K x i. We 
have 

THEOREM 2.1 
Let ~ be computed in algorithm 1.2, for each i with 1 ~< i ~< n. Let 

n r 

�9 ~conv = {ilxiC--Xi} = ( t j } j = l ,  

5 Similarly, if there is a point X~ X k at which F'(X) is ill-conditioned, then we can expect at 
least one component interval of Xk to be large. 
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and let 
r/d 

x , )  = 

If X = (x 1, x 2 . . . . .  x.) ,  then let /~: R "~ -~ R "~ be given by 

F(x,,, x,~ . . . . .  x,.olx~,,, x~2 . . . . .  xu . , )=(Y, ,F(X ), Y ,F (X)  . . . . .  Y,.oF(X)). 

Define 

X .... =((x, , ,x ,~ .. . .  , x , . ) [ x , ~ x ,  fort j~'~on~},  

and 

Then, for each (x,,, x~,, . . . .  x , . )  ~Xdi v, 
solution in X~o,~. 

F(x,,, x,~ . . . . .  x, .)  = 0 has a unique 

Theorem 2.1 states that, if the interval Gauss-Seidel method (algorithm 2.1) 
reduces the widths of nc of the component intervals, then, for each choice for 
each of the remaining variables, there is a unique set of values of the correspond- 
ing variables within those intervals for which n~ linear combinations of the 
function, defined by the preconditioner rows, simultaneously equals zero. 

Proof of theorem 2.1 
The proof is similar to the proof of theorem 2.3 in [10]. In each case, the 

interval linear system analogous to (1.2) contains the solutions to a parametrized 
set of nonlinear systems, so that conclusions based on (1.4) apply to each element 
of the set. 

Specifically, pick any particular (x,,, x~ , . . . ,  x~ ) ~ Xdi v. Then F(x,,, x,2, . . . .  
x,.c) is simply a function from R "c to R"" which o~eys the hypotheses in the first 
part of (1.4). Furthermore, by the construction of Xcon~, Xcon~ _c X~o,~ , so/~ has a 
unique solution in X~o.v. [] 

The fact that xi _c x x for one or more i is evidence that the box X k is small 
enough for the linear interval system (1.2) to model the local behavior of F (in at 
least some components). Additionally, it allows us to reduce the widths of certain 
coordinates of X k through the interval Newton method, thus avoiding the 
necessity to bisect those coordinates. This, in turn, usually results in less total 
operations to complete the generalized bisection algorithm. The following 
corollary to theorem 2.1 clarifies these facts. 

COROLLARY 2.2 
Suppose the box X~ has a non-empty index set ~onv associated with it, as in 

theorem 2.1. Suppose also that X is any box obtained from X k by repeated 
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application (in any order) of step 2(a) or step 3(e) within algorithm 1.1, but under 
the assumption that the coordinate index i in step 2(c) is always chosen from 
~ .  Then the conclusion of theorem 2.1 is still true, with the same ~"~on* and 
~ i ~ ,  but with X replacing X k. 

Proof 
We may view algorithm 1.1 as producing a hierarchy of boxes: step 2 produces 

two boxes below Xk, whereas step 3(e) produces one such box. The corollary 
follows by induction on the level of the boxes in this hierarchy. To this end, 
assume that, instead of being the initial box, X k is an arbitrary box in the 
hierarchy, and that the conclusions of theorem 2.1 are true for X k. Then, if X k 

1 2 passes through step 2, the boxes X~ and X~ have coordinate sets X . . . .  and X . . . .  
which are identical to the set Xr corresponding to X k, but have coordinate sets 
X~ v and X~ v which are strict subsets of those of X k. Since the conclusion of 
theorem 2.1 held for any (x.,, x.., . . . .  x . . )  ~ Xdi v, it must hold when Xai v is 
replaced by either X~i v or X2iv . 

Now suppose that X k passes through step 3(e) of algorithm 1.1. Then a single 
new box X += X k ~ Xk is produced, whose coordinates can be grouped into 

~ + - Y( . . . .  A X . . . .  and Xdi v Xai~ A Xdi ~. But fix any particular (x~,, x., ,  X c o n v  - -  - + ~ " " " ~ 

x~,.) ~ Xdi ~, and apply the interval Newton method with the point  
~ +  

(x , x . . . .  x ) X.iv replacing Xdi . .  Then (from monotone inclusion proper-  
/Ll /~2 " /X~ d n . 

ties of interval arithmeuc), the set which would be stored in step 3(e) must be 
contained in the degenerate box with coordinate intervals taken from Xr and 
(x., ,  x.~, . . . .  x. . , ) .  However, any solutions of k x = 0  (with parameters  
(x., ,  x.,, . . . .  x.~ in X . . . .  must also be in X . . . .  �9 Therefore, for each 

Xdi v, there is a unique solution of F = 0  in X . . . .  . This ( x . , ,  x ,  . . . .  x . ~  ~ " + - + 

concludes the proof  of the corollary. [] 

We note that, despite corollary 2.2, boxes may be produced-from X k which do 
not contain any roots of the full function F. Such boxes are detected in step 3(a) 
by observation that the interval function value does not contain zero. They also 
may be detected in step 3(e) if Y(k n X k = ~ .  

Alternately, we may conclude that there is a unique solution of F ( X ) =  0 in 
one of the boxes. The following theorem tells us that we need only check 

X d i v  C X d i  v .  

THEOREM 2.3 
Suppose X is a box produced from a box X k for which the hypotheses of 

theorem 2.1 hold with coordinate bound lists 0 0 Xconv and X d i v ,  where we assume, as 
in corollary 2.2, that only coordinate directions represented in ~'~iv were 
bisected. Let the corresponding coordinate bound lists for X be Xconv and Xdi v- 
Suppose that X enters steps 3(c) and 3(d) of algorithm 1.1; let the image box 
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have coordinate bound lists X . . . .  and Xdiv" If Xdiv ---- Idly, then F ( X )  = 0 has a 
unique solution within X. 

Proof 
First, suppose that we apply algorithm 1.2 to any box Xbe t ..... whose ith 

coordinate interval is the ith coordinate of the image X k of X k if i ~M~c . . . .  and 
whose ith coordinate interval is contained in the ith coordinate interval of Xk if 
i ~.Ara~ v. Inclusion monotonicity then implies that, if we use the appropriate  
preconditioner row, the ith coordinate of the image Xbet . . . .  is contained in the 
i th coordinate of Xbe t . . . .  for i ~.A/~on v. If we then apply mathematical  induction 
(and, without loss of generality, assume use of the appropriate  preconditioner 
rows), we may conclude that the ith coordinate of the image Xbet . . . .  is contained 
in the ith coordinate of Xbc t . . . .  for i~.A~c . . . .  if Xbc t . . . .  is any box produced 
from X k as in corollary 2.2. Thus, X _c X. [] 

Theorem 2.3 is of particular use in practice, since repetition of step 3(c) in 
algorithm 1.1 typically causes convergence of one or more coordinate intervals, so 
that strict containment of the image intervals in subsequent boxes cannot be 
expected. In those cases, the outward rounding process often precludes assertion 
of containment.  With theorem 2.3, we generally need not check containment once 
such convergence has occurred. 

3. Trisection and other algorithms 

In this section, we first introduce a process for algorithmically handling roots 
at which the Jacobian matrix is singular or ill-conditioned. We then present a 
modified version of algorithm 1.1 which will be more efficient at isolating roots at 
which the Jacobian matrix is ill-conditioned. 

The algorithm for singularities is based on "tr isect ion" of the box, and is 
applied after step 3(d) of algorithm 1.1. The algorithm incorporates a heuristic for 
determining when the interval linear system (1.2) adequately models the original 
nonlinear system F ( X )  = 0; namely, it tests for singularity provided the set .A/~o, v 
in theorem 2.1 is nonempty.  

ALGORITHM 3.1 
Algorithmic removal of singular roots. 
Let X k be the current box before step 3(e) of algorithm 1.1, and let X k be the 

corresponding guess point for (1.2). Let ~V~on v and ~aiv as in theorem 2.1 be 
given; also maintain a list of those coordinates ,'f~rea~y of X k which have been 
previously produced from the trisection process in step 3 of this algorithm. Then 
do the following if ,A/~o, v 4: ~ .  
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1. Apply the classical Newton's method, with starting point Xk, to find a root of 
F(X)  = 0, using tolerances scaled appropriately for the linear convergence 
near singular roots. 
- If Newton's method does not converge to a point within the box, then 

return. 
- Otherwise, do the remaining steps of this algorithm. 

2. Let X. ~ X k be the solution to which Newton's method has converged. 
Compute the condition number (or estimate thereof) for the Jacobian matrix 
F'  ( X,). 
- If the condition number is less than a prescribed tolerance /r then return. 
- Otherwise, continue to step 3. 

3. (Actual trisection) 
(a) Find t such that 

o,= max oj, 
1 <~j<~n 

J ~ ~ .... 
J 6~'A~alread~ 

where 

o j=  max (l_a,.jl, Iffi,jl}(~j--Xj). 
l~i<~n 

(b) Given a domain tolerance e m~ x for the width of a coordinate at a singular 
solution, form (one, two, or) three new boxes X~, X~, and X~, such that 
(i) X[. is obtained from Xk by replacing the t th coordinate interval 

[x~k), ~k)] of X k by [x~ k), x~ * ) -  ,maxX~k)], provided x~ *~-  ,maxX~ k) 
x~k)~ 

(ii) X~ is obtained from Xk by replacing the t th  coordinate interval 
[y}k),_ ~}k)] of Xk by Ix}*) + CmaxX} k), ~}k)], provided A. t:'(*) "1- Emax.~} k) 

(ii) X3k is obtained from X k by replacing the t th coordinate interval 
[x~k), ~ k ) ]  of  X k by  [y~ * ) -  EmaxX~ k), x~ *)-[- ~max-~k)]. 

4. (Adjusting information for the main algorithm) 
(a) Put X[. and X~ on the stack of boxes to be considered later. 
(b) Replace the current box X k by X 3. 
(c) Place t in the set ~already corresponding to the current box X 3 (but not X~ 

or X2). 

Figure 1 illustrates execution of step 3(b) of algorithm 3.1. 

x h 1,1 x~,L ~ x~,~ 

; ~; + ~mj, ~ ~ 

Fig. 1. Illustration of the three subintervals into which the t th  coordinate is divided in step 3(b) of 
algorithm 3.1. 
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To incorporate algorithm 3.1, we modify the basic generalized bisection 
algorithm. For example, we do not wish to bisect a coordinate of a box which was 
produced from some X~ and whose index is in .Ar~lr~aay. Likewise, it is unneces- 
sary to bisect in coordinate directions whose indices are in .A~o, ~. Furthermore, 
we should not measure the widths of coordinate intervals whose indices are in 
aV~o, ~ or ..'f~lr~ay when testing the size of the box for further bisection. Finally, 
we gain efficiency if we take account of theorem 2.3 when determining the 
inclusion in (1.4) or in step 3(d) of algorithm 1.1. The following modified 
generalized bisection algorithm takes account of these considerations. 

ALGORITHM 3.2 
Generalized bisection with trisection to handle singularities 

1. (Initialization phase) 
(a) Input a tolerance c such that no box will have a coordinate width less than 

{[. 
(b) Input a tolerance E F such that we do no further computations on an X if 

II F ( X )  II ~ < ~v for X ~ X. 
(c) Xk '-- g. 
(d) J~on,r ~ 0 and Jff~lre~dy ~ ~-  

2. (Bisection) Do the following step only if 

~'~onv tO .Araiready 4: { 1, 2 . . . . .  n }. 

(a) If X ~ = ( x ] , x  2 . . . . .  x . ) ,  where x j = [ x g ,  Yj], then choose a coordinate 
i ff J~conv U J~already in which to bisect. 

(b) Form two new boxes X 1 and X 2 by replacing x i in X k by either [~0i, Yi] or 
[_xi, ~0i], where wi = (x_i + x i ) /2 .  

(c) Place either X~ or X~ on a stack ~9 ~ for later consideration (along with 
J~o,v and JV',Jreaay), and replace X k with the other one. 

3. (Interval Newton method and root storage) 
(a) (Test for convergence) 

(i) If the width of at least one coordinate x i of X k for j ff Jffconv tO J~already 
is greater than c, then compute the interval vector F(X) for use in (i_i) 
below. 

(i.i) If the width of each coordinate xj  of Xe with j ~ JV~o, ~ U "/~/'already is 
less than e, or if II F(X)I1~ <oF then 
(a)  Store X k in a list <s of small boxes which possibly contain roots. 
(fl) If the stack S p is empty, then stop. Otherwise, pop a box from 6 ~ 

(along with J~r and J~already), let that box become Xk, and 
return to the beginning of this step. 

(b) (Obtain the function and Jacobian for (1.2).) 
(i) Compute the interval Jacobian matrix F'(X~). 

(ii) Compute F( X k), using interval arithmetic to bound the roundoff  error. 
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(c) (Bound the solution set in (1.2).) Use algorittun 1.2 to compute an interval 
enclosure Xk to the solution set of the interval linear system (1.1(b)). 

(d) If x i G ~i for each i with i ~ ~/s then do the following. 
(i) Store X k in a list s of boxes which contain unique roots. 

(ii) If the stack 5 p is empty, then stop. Otherwise, pop a box from 5" 
(along with Jg~o.,, and ,A/~re,dy ), let that box become X~., and return to 
the beginning of step 3(a). 

(e) Update JV~oo ,, by taking the union of the old JV~oo,, with those indices i 
from step 3(d) for which x, G i~. 

(f) If ,4/~ .... r O, then execute algorithm 3.1. 
(g) If (1.6) holds, then replace X k by Xk n Xk and return to step 3(a). 

Otherwise, replace X k by Xk n X k and return to step 2. 
(h) If X~. n X k = ~ then stop if the stack ~9 ~ is empty; otherwise, pop a box 

from 5 p (along with JV~o~ v and ~lre,~dy), let that box become X k, and 
return to the beginning of step 3(a). 

d. Numerical results 

In this section, we report test results comparing algorithm 3.2 to the algorithm 
in [8], where we report on the basic generalized bisection algorithm in conjunction 
with the specially preconditioned interval Gauss-Seidel  method (algorithm 1.2). 

The test set is that from [8], which is that from [6]. Common tolerances and 
algorithmic details, with some minor modifications, are as in [8]. In trisection 
(algorithm 3.1) we took the range tolerance for the point Newton method in step 
1 to be 10 -12 and the domain tolerance to be 10 -5 II Xk II 2. In step 2 of algorithm 
3.1, we took ~max = 104, and we took the minimum coordinate width in step 3(b) 
to be •max = 10-3- 

As in [8], table 1 gives estimates for the amount of work for each of the three 
methods. The first column gives the problem number as in [6], the second column 
gives the dimension n of the problem, and the third column gives the method, 
where " lp"  refers to the basic method with the linear programming precondi- 
tioner, as in [8], and where " t r i . "  refers to the trisection method (with algorithm 
3.1 and algorithm 3.2) for singularities. Column 4 (NBOX) gives the total 
numbers of boxes considered in algorithm 1.1 or algorithm 3.2 (i.e. the number of 
times that step 3(c) is entered), column 5 (NFUN)  gives the total number of 
interval function evaluations, column 6 (NJAC) gives the total number  of interval 
Jacobian evaluations, and column 7 gives an estimate W~ for the total amount  of 
work, which is computed as 

W e --- N F U N  + nNJAC. 

We notice that algorithm 3.1 and algorithm 3.2 were markedly superior to the 
basic algorithm on problem 3, which has a rank-two defect in the Jacobian matrix 
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Table 1 
Cost measures with and without trisection 
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# n meth. NBOX NFUN NJAC Est. 
work 

1 2 

2 2 

3 4 

4 5 

9 2 

10 4 

11 8 

12 3 

14 2 

15 2 

16 4 

17 5 

Tot. 

tr|. 
lp 

trl. 
lp 

tn. 
lp 

tn. 
lp 

tn. 
lp 

trl. 
Ip 

trl. 

lp 

In. 
lp 

trL 
Ip 

trl. 
lp 

try. 
lp 

try. 
Ip 

tn. 
lp 

41 73 32 137 
41 69 28 115 

53 86 33 152 
53 86 33 152 

25 40 13 92 
480 726 246 1710 

68 124 56 404 
68 124 56 404 

25 48 23 94 
23 44 21 86 

398 635 235 1575 
771 1214 443 2986 

571 973 321 3541 
671 1141 371 4109 

563 922 359 1999 
551 914 363 2003 

44 72 28 128 
41 68 27 122 

3 5 2 9 
3 5 2 9 

3 6 3 18 
3 6 3 18 

67 109 42 319 
67 108 41 313 

1861 3093 1147 8468 
2772 4505 1634 12024 

at the root. Fur thermore ,  us ing the new algor i thm did not  seem to undu ly  
degrade the per formance  on  the other problems;  in fact, it seems to also work 
better  when there are scaling difficulties, as in p rob lem 10. 

In  addi t ion  to the efficiency improvemen t s  evident  in table 1, a lgor i thm 3.1 
and a lgor i thm 3.2 have certain qual i ta t ive advantages .  For  example,  in p rob lem 3 

(a var iant  of Powell 's  s ingular  funct ion) ,  only a single possible  roo t - con ta in ing  

box was placed in the list s (and  none  were deleted from ~ '  in the dele t ion 

steps explained in [5] and  [6]), whereas, when  the basic a lgor i thm was used, 5 

boxes were placed in A ~  (giving a r e d u n d a n t  l is t ing of the root), and  3 boxes 
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Table 2 
Total clock times for the two algorithms 

# tri. lp 

1 0.07 0.06 
2 0.13 0.18 
3 0.17 1.63 
4 1.65 1.56 
9 0.07 0.05 

10 4.61 6.90 
11 23.22 16.00 
12 2.73 2.21 
14 0.06 0.06 
15 0.004 0.004 
16 0.03 0.03 
17 1.43 1.26 
All 34.22 29.94 

were deleted from 0~'. Also, theorem 3.2 came into play effectively in problem 
11, which has 16 distinct roots, none of which corresponded to a singular 
Jacobian matrix. In the basic algorithm (with the linear programming precondi- 
tioner), the 16 root-containing boxes were placed in the list A a ' ,  for which there is 
no definite affirmation that unique roots have been isolated; however, with 
algorithm 3.1 and algorithm 3.2, all 16 boxes were placed in the list A a, for which 
there is verification that each box contains a unique root. 

Total execution times for the algorithms can only be taken as another relative 
measure of efficiency, since such times are strongly dependent upon the imple- 
mentation of interval arithmetic, etc. However, we supplement table 1 with a list 
of total  c lock  times on an unloaded IBM 3090 with the V M / C M S  operating 
system; these appear in table 2. (Note that these times will change with system 
load, etc.) 

The extra running times for our new algorithms in table 2 may be due partially 
to fluctuations in system load. However, they are probably also due to repeated 
application of the classical Newton's method in step 1 of algorithm 3.1. This 
problem can be remedied by storing the points X, for later use, or by using a 
more finely tuned heuristic to determine singularity. 

5. Summary, conclusions, and future work 

We have considered interval Newton/genera l ized  bisection algorithms as 
foolproof methods for solving the global optimization problem. We have devel- 
oped theory and algorithmic details for techniques to make these algorithms more 
efficient when the Hessian matrix is either ill-conditioned or singular at the 
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opt imum.  The algori thm has been written to find all critical points,  but  can be 
modified to efficiently find just  the global op t imum (and cor responding  parame-  
ter set or sets). 

The results of numerical  experiments indicate that  the techniques have value, 
and can possibly be applicable in a general code. 

The algori thm can undoubted ly  be further " tuned" .  In  particular,  the criterion 
in step 3(f) of  algori thm 3.2 to determine when to execute a lgor i thm 3.1 can 
possibly be made  more  appropriate.  Also, Newton ' s  me thod  in algori thm 3.1 is 
applied redundant ly ,  since it is unnecessary to compu te  the root  again for any X 3 
which has been formed f rom some Xk; considerable C P U  time could be saved by 
storing the root  X.  along with the other  stack informat ion  associated with X 3. 
Fur thermore,  alternate ways of  determining whether the system is i l l-conditioned 
(step 2 of  algori thm 3.1), or different values of Kma x, may  lead to an algori thm 
which executes, on  average, in less C P U  time. 
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