
Annals of Operations Research, 25 (1990) 181-196 181

I N T E R V A L N E W T O N / G E N E R A L I Z E D B I S E C T I O N W H E N T H E R E ARE
S I N G U L A R I T I E S N E A R R O O T S

R. Baker K E A R F O T T

Department of Mathematics, University of Southwestern Louisiana, Lafayette, Louisiana 70505, USA

Abstract

Interval Newton methods in conjunction with generalized bisection are important elements
of algorithms which find the global optimum within a specified box X c R n of an objective
function q~ whose critical points are solutions to the system of nonlinear equations F(X) = 0
with mathematical certainO, , even in finite precision arithmetic. The overall efficiency of such
a scheme depends on the power of the interval Newton method to reduce the widths of the
coordinate intervals of the box. Thus, though the generalized bisection method will still
converge in a box which contains a critical point at which the Jacobian matrix is singular, the
process is much more costly in that case. Here, we propose modifications which make the
generalized bisection method isolate singular solutions more efficiently. These modifications
are based on an observation about the verification property of interval Newton methods and
on techniques for detecting the singularity and removing the region containing it. The
modifications assume no special structure for F. Additionally, one of the observations
should also make the algorithm more efficient when finding nonsingular solutions. We
present results of computational experiments.

Keywords: Nonlinear algebraic systems, Newton's method, interval arithmetic, Gauss-Seidel
method, global optimization, singularities.

1. Motivation, introduction, and notation

The general p rob lem we address is:

F ind, with certainty, the global o p t i m u m of the n o n l i n e a r object ive func t i on

qs(X) = q~(xa, x 2 x,,), (1 .1(a))

where b o u n d s x i and Yi are k n o w n such that

x i<~x i<~Y ~ for 1 ~< i ~< n.

A successful approach to this p rob l em is general ized b isec t ion in c o n j u n c t i o n

with interval N e w t o n methods. The in terva l N e w t o n m e t h o d enables us to

de te rmine crit ical po in ts (that is, roots of the g rad ien t F of q,), whereas var ious

techniques enable us to e l iminate regions c o n t a i n i n g crit ical po in t s which do no t

correspond to the global o p t i m u m before excessive effort is spent f ind ing them.

Thus, a related bu t more difficult p r o b l e m is

�9 J.C. Baltzer A.G. Scientific Publishing Company

182 R.B. Keapfott / Interval Newton /genera l i z ed bisection

Find, with certainty, approximat ions to all solutions of the nonl inear system

F (X) = (f , (x , , x 2 x ,) f , , (x , , x 2 x,,)) = 0, (1.1(b))

where bounds x i and Yi are known such that

xi <~ x~ ~ Y~ f o r l ~ < i ~ < n .

We write X = (x 1, x 2 , x,,), and we denote the box given by the inequalities on
the variables x i by B 1.

Interval Newton algorithms for solving (1.1(a)) can be thought of as straight-
forward modificat ions of algori thms for solving (1.1(b)); see, the comprehensive
reference [17] or, for example, [3] for a description of techniques part icular to
(1.1(a)). However, techniques for solving (1.1(b)) efficiently will similarly in-
crease, in general, the efficiency of solution of (1.1(a)). For this reason, we
concentrate on (1.1(b)) in the remainder of this paper. Along these lines, we will
refer to the Jacobian matrix of F instead of the Hessian matr ix of ~a.

Interval N e w t o n / g e n e r a l i z e d bisection methods for (1.1(b)) are described in
[4-6,12,13,15,18] etc. For an introduct ion to the interval ari thmetic under lying
these methods, see [1,11], the recent review [9], etc. Also, the book [14] contains
an overview of interval methods for linear and nonl inear systems of equations.

In these methods, we first t ransform F (X) = 0 to the linear interval system

F'(Xk)(Y~ k - Xk) = - F (X k) , (1.2)

where F ' (Xk) is a suitable (such as an elementwise) interval extension 2 of the
Jacobian matrix over the box Xk (with X 0 = B), and where X k ~ X k represents a
predictor or initial guess point. We note that (1.2) must be unders tood not as an
ordinary equat ion but as the set of all linear systems of equat ions A (X - Xk) =
- -F(X k) as A ranges over all matrices which are conta ined in the interval matrix
F ' (Xk) . If we then formally solve (1.2) using interval arithmetic, the resulting box
Y~k, which actually just satisfies

F ' (Xk)(5~ k - Xk) D - r (x k) , (1.2(b))

will contain all solutions to all such systems A(X - Xk) = - - F (X k) . Fur thermore ,
if each row of F ' contains all possible vector values that the cor responding row of
the scalar Jacobian matrix F ' (X) takes on as X ranges over all vectors in Xk,
then it follows f rom the mean value theorem that X k will conta in all solutions to
F (X) = 0. We then define the next iterate Xk+ 1 by

Xk+l = Xk n 5~k. (1.3)

This scheme is termed an interval Newton method.

I Throughout the paper, we will denote interval quantities with boldface letters. Vectors will be
denoted with capital letters.

2 Interval extensions of a function may be defined by simply evaluating the functions in interval
arithmetic. The result of such a computation is an interval which contains the range of the
function over the interval argument. Consult the introductions in [1], [11], and the recent review
[9]; consult [16] for an in-depth treatment of interval methods for the range of functions.

R.B. Kearfott / Interval Newton/generalized bisection 183

If the coordinate intervals of Xk+ 1 are not smaller than those of X k, then we
may bisect one of these intervals to form two new boxes; we then cont inue the
iteration with one of these boxes, and put the other one on a stack for later
consideration. As explained in [5,6,12], and elsewhere, the following fact (from
[13], p. 263) allows such a composi te generalized bisection algori thm to compute
all solutions to (1.1(b)) with mathematical certainty. For many methods of solving
(1.2),

if Xkc--Xk, then the system of equat ions in (1.1) has a unique

solution in X k. Conversely, if Xj, n X k = ~ then there are no
solutions of the system in (1.1) in X k.

(1.4)

We now present a simplified version of the generalized bisection algori thm in
[6]. 3

ALGORITHM 1.1
Basic generalized bisection algorithm

1. (Initialization phase)
(a) Inpu t a tolerance ~ such that no box will have a coordinate width less than

C.

(b) Input a tolerance c F such that we do no further computa t ions on an X if
11 F(X)II ~ < EF for X ~ X.

(c) X k ~- B.
2. (Bisection)

(a) If X k = (x 1, x 2 x ,) , where xj = [xj, ~j], then choose a coordina te i in
which to bisect.

(b) Fo rm two new boxes X~ and X~, by replacing x i in X k by either [wi, ~] or
[x i, r where r i = (x~ + .~i)/2.

(c) Place either X~ or X~ on a stack 5 p for later considerat ion, and replace X/,
with the other one.

3. (Interval Newton method and root storage)
(a) (Test for convergence)

(i) If the width of at least one coordinate x j of X k is greater than ~, then
compute the interval vector F(X) for use in (ii) below.

(ii) If the width of each coordinate x j of X k is less than ~, or if
II F(X)IJ ~ < ~V then

(a) Store X k in a list s of small boxes Which possibly conta in roots.
(f l) I f the stack 5 ~ is empty, then stop. Otherwise, pop a box f rom 5 '~,

let that box become X k, and return to the beginning of this step.

For clarity, we do not include the "expansion step", which is step 4 of algorithm 3.1 in [6],
although the implementation in the experiments in this paper has it. In our experience, this step
usually does not affect the various measures of efficiency for the algorithm.

184 R.B. Kearfon / Interval Newton/general ized bisection

(b) (Obtain the funct ion and Jacobian for (1.2).)
(i) Compu t e the interval Jacobian matrix F ' (X k).

(ii) Compu t e F(Ark), using interval ari thmetic to bound the roundof f error.
(c) (Bound the solution set in (1.2).) Use some method to compute an interval

enclosure Xk to the solution set of the interval linear system (1.1(b)).
(d) If Xk --~ Xk, then do the following.

(i) Store X k in a list ,s of boxes which conta in unique roots.
(ii) If the stack 5 P is empty, then stop. Otherwise, pop a box f rom 50, let

that box become X k, and return to the beginning of step 3(a).
(e) If :Kk r X k is sufficiently smaller than X k, then replace X k by :Kk n X k and

return to step 3(a). Otherwise, replace X k by Xk n X k and return to step 2.
(f) If Xk r Xk = O then stop if the stack 5 a is empty; otherwise, pop a box

f rom 5 p, let that box become X k, and return to the beginning of step (3a).

In step 3(e), we may say :Kt. is sufficiently smaller than X k if there is a j such
that Y j - x i > ~ and (Y-__s ~< (Y - x j) / 2 . Such a condi t ion will ensure the
overall convergence of the algorithm, since it guarantees that each step, whether
interval Gauss -Se ide l or bisection, will reduce one of the coordinates by at least a
factor of 2. In practice, however, we have found a volume ratio (which, ap-
propria te ly implemented, also implies convergence) to be effective; we cont inue
to use the Gauss -Se ide l i teration after a sweep of all n coordinates only if

fi wlx:) f i wl,,,), 115)
i=1 i~l

w(x,)>c w(x,)>~

for some 7/ with 0 < ~ < 1 (r / = 0.6 works well), where x + = ~i n x i.
We use the following notat ion. We write X = (x 1, xz x .) for Xk and we

write Ai j for the interval in the i th row and j t h co lumn of A = F ' (X) . Similarly,
we write 4 F (X k) = F = (f p f 2 f .) , and X k = (X 1, X 2 X.), SO that (1.2)
becomes

A(X k - Xk) = - F (1.6)

We generally precondi t ion (1.6); i.e., we mult iply by a matrix Y to obta in

YA(X k - Xk) = -- YF. (1.7)

Let Y~ = (yl , Y2 y .) denote the i th row of the precondi t ioner , let

k i = Y/F,

and let

Y / A = G i = (~i,1, Gi,2 ~i.n) = ([g,.,, gi,1], [~i.2, ~i,2] [~i,n' gi.n])"

4 We denote the components of F as boldface intervals, since they must be evaluated in interval
arithmetic with directed roundings or else roundoff error may cause algorithm 1.1 to miss a root.

R.B. Kearfott / Interval Newton/generalized bisection 185

With the above notation, we have the following version of the interval Newton
method for step 3(c) of algorithm 1.1 which usually works well.

ALGORITHM 1.2

Preconditioned version of interval Gauss-Seidel; see [8]
Do the following for i = 1 to n.

1. (Update a coordinate.)
(a) Compute the preconditioner row Y, as the linear programming precondi-

tioner described in [8].
(b) Compute k i and G i.
(c) Compute

= x , - , + E c , . ; (x ; - x ;) / G , . , (1.8)
j =]
j r

using interval arithmetic.
2. (The new box is empty.) If ~i n x i = 0 , then signal that there is no root of F

in X, and continue the generalized bisection algorithm.
3. (The new box is non-empty; prepare for the next coordinate.)

(a) Replace x i by x i N xi.
(b) Possibly re-evaluate F'(Xk) to replace A by an interval matrix whose

corresponding widths are smaller.

In step 2(a) of algorithm 1.1, we have found maximal smear to be appropriate
for determining which coordinate to bisect. That is, we bisect the coordinate
direction j for which oj is maximum, where

oj = 1max<i<,, (la_i,j[, lai,jl }(.~j-- xj). (1.9)

This coordinate direction is, roughly, the one in which the values of the fi
change most rapidly relative to the individual widths of the present box X.

Algorithm 1.1 must eventually complete with (possibly empty) lists of boxes
and .~e', such that all roots of F in B are contained in boxes in ~ or &o,, and
each box in cL contains a unique root; compare with the convergence analysis in
[5]. However, the cost bound in [5] is very pessimistic, and the actual efficiency of
algorithm 1.1 depends on how well algorithm 1.2 (step 3(c) of algorithm 1.1) finds
the solution bounds IK k in (1.2). If the widths of the components of X are
sufficiently small, if the Jacobian matrix is reasonably well-conditioned, and if
the interval extension F ' to the Jacobian matrix gives reasonably sharp bounds
on the range of the Jacobian matrix, then the widths of the components of 2~ k are
smaller than those of X, and iteration of algorithm 1.2 will reduce them further,
until the condition in step 3(d) holds. (In fact, this interval Newton method is
locally quadratically convergent in the sense that the widths go to zero at that

186 R.B. Kearfott /Interval Newton/generalized bisection

rate.) If not, then bisection reduces the size of Xk slowly, especially when the
dimension n is large, and many more boxes must be considered.

In this paper, we present techniques which are useful when algorithm 1.2 does
not give bounds Xk with smaller widths, because the Jacobian matrix is ill-condi-
tioned or singular near the root. These techniques do not assume anything about
the structure of the singularity, and they may be embedded into algorithm 1.1
without adversely affecting its efficiency on non-singular problems.

The techniques are based on
(i) an observation concerning a componentwise variant of (1.4); and

(ii) an algorithmic technique and set of heuristics for astutely "trisecting" a box
which contains a singular root.

We formally present the componentwise variant of (1.4) in section 2. In section 3,
we give the trisection algorithm, the heuristics, and a corresponding modified
version of algorithm 1.1. In section 4, we present computational results from the
test set in [6] and additional functions with singular roots. We summarize in
section 5.

2. A componentwise root inclusion test

Suppose X, = (r a, r 2 r,) is a root (F(X,)= 0), such that the Jacobian
matrix F'(X,) is singular, and suppose X, ~ X k. Then it is impossible for
~(k _C X k as in (1.4). (To see this, note that F ' (Xk) contains a singular matrix, so
that ~(k cannot be bounded.) s However, if we choose the preconditioner Y, as in
algorithm 1.2, then in many cases each width w (~) is minimal, given the interval
extension F'(Xk). Thus, even if X k contains a point X, with F'(X,) singular, we
often have ~ _ x i for some (but not all) i.

The above considerations lead us to examine weaker forms of (1.4) for singular
systems. We obtained some preliminary results in [7], in which we singled out
certain directions in which F was singular, and examined a related non-singular
subproblem in a lower-dimensional space. In fact, by viewing the problem slightly
differently, we may do this more directly and efficiently within the framework of
algorithm 1.1. The idea is to view the system F (X) = 0 as a lower-dimensional
system which is parametrized in terms of the variables x~ for which ~ K x i. We
have

THEOREM 2.1
Let ~ be computed in algorithm 1.2, for each i with 1 ~< i ~< n. Let

n r

�9 ~conv = {ilxiC--Xi} = (t j } j = l ,

5 Similarly, if there is a point X~ X k at which F'(X) is ill-conditioned, then we can expect at
least one component interval of Xk to be large.

R.B. Kearfott / Interval Newton/generalized bisection 187

and let
r/d

x ,) =

If X = (x 1, x 2 x.) , then let /~: R "~ -~ R "~ be given by

F(x,,, x,~ x,.olx~,,, x~2 xu . ,)=(Y, ,F(X), Y ,F (X) Y,.oF(X)).

Define

X =((x, , ,x ,~ , x , .) [x , ~ x , fort j~'~on~},

and

Then, for each (x,,, x~,, x , .) ~Xdi v,
solution in X~o,~.

F(x,,, x,~ x, .) = 0 has a unique

Theorem 2.1 states that, if the interval Gauss-Seidel method (algorithm 2.1)
reduces the widths of nc of the component intervals, then, for each choice for
each of the remaining variables, there is a unique set of values of the correspond-
ing variables within those intervals for which n~ linear combinations of the
function, defined by the preconditioner rows, simultaneously equals zero.

Proof of theorem 2.1
The proof is similar to the proof of theorem 2.3 in [10]. In each case, the

interval linear system analogous to (1.2) contains the solutions to a parametrized
set of nonlinear systems, so that conclusions based on (1.4) apply to each element
of the set.

Specifically, pick any particular (x,,, x~ , . . . , x~) ~ Xdi v. Then F(x,,, x,2,
x,.c) is simply a function from R "c to R"" which o~eys the hypotheses in the first
part of (1.4). Furthermore, by the construction of Xcon~, Xcon~ _c X~o,~ , so/~ has a
unique solution in X~o.v. []

The fact that xi _c x x for one or more i is evidence that the box X k is small
enough for the linear interval system (1.2) to model the local behavior of F (in at
least some components). Additionally, it allows us to reduce the widths of certain
coordinates of X k through the interval Newton method, thus avoiding the
necessity to bisect those coordinates. This, in turn, usually results in less total
operations to complete the generalized bisection algorithm. The following
corollary to theorem 2.1 clarifies these facts.

COROLLARY 2.2
Suppose the box X~ has a non-empty index set ~onv associated with it, as in

theorem 2.1. Suppose also that X is any box obtained from X k by repeated

188 R.B. Kearfott / Interval Newton/generalized bisection

application (in any order) of step 2(a) or step 3(e) within algorithm 1.1, but under
the assumption that the coordinate index i in step 2(c) is always chosen from
~ . Then the conclusion of theorem 2.1 is still true, with the same ~"~on* and
~ i ~ , but with X replacing X k.

Proof
We may view algorithm 1.1 as producing a hierarchy of boxes: step 2 produces

two boxes below Xk, whereas step 3(e) produces one such box. The corollary
follows by induction on the level of the boxes in this hierarchy. To this end,
assume that, instead of being the initial box, X k is an arbitrary box in the
hierarchy, and that the conclusions of theorem 2.1 are true for X k. Then, if X k

1 2 passes through step 2, the boxes X~ and X~ have coordinate sets X and X
which are identical to the set Xr corresponding to X k, but have coordinate sets
X~ v and X~ v which are strict subsets of those of X k. Since the conclusion of
theorem 2.1 held for any (x.,, x.., x . .) ~ Xdi v, it must hold when Xai v is
replaced by either X~i v or X2iv .

Now suppose that X k passes through step 3(e) of algorithm 1.1. Then a single
new box X += X k ~ Xk is produced, whose coordinates can be grouped into

~ + - Y(. . . . A X and Xdi v Xai~ A Xdi ~. But fix any particular (x~,, x., , X c o n v - - - + ~ " " " ~

x~,.) ~ Xdi ~, and apply the interval Newton method with the point
~ +

(x , x x) X.iv replacing Xdi . . Then (from monotone inclusion proper-
/Ll /~2 " /X~ d n .

ties of interval arithmeuc), the set which would be stored in step 3(e) must be
contained in the degenerate box with coordinate intervals taken from Xr and
(x., , x.~, x. . ,) . However, any solutions of k x = 0 (with parameters
(x., , x.,, x.~ in X must also be in X �9 Therefore, for each

Xdi v, there is a unique solution of F = 0 in X This (x . , , x , x . ~ ~ " + - +

concludes the proof of the corollary. []

We note that, despite corollary 2.2, boxes may be produced-from X k which do
not contain any roots of the full function F. Such boxes are detected in step 3(a)
by observation that the interval function value does not contain zero. They also
may be detected in step 3(e) if Y(k n X k = ~ .

Alternately, we may conclude that there is a unique solution of F (X) = 0 in
one of the boxes. The following theorem tells us that we need only check

X d i v C X d i v .

THEOREM 2.3
Suppose X is a box produced from a box X k for which the hypotheses of

theorem 2.1 hold with coordinate bound lists 0 0 Xconv and X d i v , where we assume, as
in corollary 2.2, that only coordinate directions represented in ~'~iv were
bisected. Let the corresponding coordinate bound lists for X be Xconv and Xdi v-
Suppose that X enters steps 3(c) and 3(d) of algorithm 1.1; let the image box

R.B. Kearfott / Interval Newton / generalized bisection 189

have coordinate bound lists X and Xdiv" If Xdiv ---- Idly, then F (X) = 0 has a
unique solution within X.

Proof
First, suppose that we apply algorithm 1.2 to any box Xbe t whose ith

coordinate interval is the ith coordinate of the image X k of X k if i ~M~c and
whose ith coordinate interval is contained in the ith coordinate interval of Xk if
i ~.Ara~ v. Inclusion monotonicity then implies that, if we use the appropriate
preconditioner row, the ith coordinate of the image Xbet is contained in the
i th coordinate of Xbe t for i ~.A/~on v. If we then apply mathematical induction
(and, without loss of generality, assume use of the appropriate preconditioner
rows), we may conclude that the ith coordinate of the image Xbet is contained
in the ith coordinate of Xbc t for i~.A~c if Xbc t is any box produced
from X k as in corollary 2.2. Thus, X _c X. []

Theorem 2.3 is of particular use in practice, since repetition of step 3(c) in
algorithm 1.1 typically causes convergence of one or more coordinate intervals, so
that strict containment of the image intervals in subsequent boxes cannot be
expected. In those cases, the outward rounding process often precludes assertion
of containment. With theorem 2.3, we generally need not check containment once
such convergence has occurred.

3. Trisection and other algorithms

In this section, we first introduce a process for algorithmically handling roots
at which the Jacobian matrix is singular or ill-conditioned. We then present a
modified version of algorithm 1.1 which will be more efficient at isolating roots at
which the Jacobian matrix is ill-conditioned.

The algorithm for singularities is based on "tr isect ion" of the box, and is
applied after step 3(d) of algorithm 1.1. The algorithm incorporates a heuristic for
determining when the interval linear system (1.2) adequately models the original
nonlinear system F (X) = 0; namely, it tests for singularity provided the set .A/~o, v
in theorem 2.1 is nonempty.

ALGORITHM 3.1
Algorithmic removal of singular roots.
Let X k be the current box before step 3(e) of algorithm 1.1, and let X k be the

corresponding guess point for (1.2). Let ~V~on v and ~aiv as in theorem 2.1 be
given; also maintain a list of those coordinates ,'f~rea~y of X k which have been
previously produced from the trisection process in step 3 of this algorithm. Then
do the following if ,A/~o, v 4: ~ .

190 R.B. Kearfott / Interval Newton/generalized bisection

1. Apply the classical Newton's method, with starting point Xk, to find a root of
F(X) = 0, using tolerances scaled appropriately for the linear convergence
near singular roots.
- If Newton's method does not converge to a point within the box, then

return.
- Otherwise, do the remaining steps of this algorithm.

2. Let X. ~ X k be the solution to which Newton's method has converged.
Compute the condition number (or estimate thereof) for the Jacobian matrix
F' (X,).
- If the condition number is less than a prescribed tolerance /r then return.
- Otherwise, continue to step 3.

3. (Actual trisection)
(a) Find t such that

o,= max oj,
1 <~j<~n

J ~ ~
J 6~'A~alread~

where

o j= max (l_a,.jl, Iffi,jl}(~j--Xj).
l~i<~n

(b) Given a domain tolerance e m~ x for the width of a coordinate at a singular
solution, form (one, two, or) three new boxes X~, X~, and X~, such that
(i) X[. is obtained from Xk by replacing the t th coordinate interval

[x~k), ~k)] of X k by [x~ k), x~ *) - ,maxX~k)], provided x~ *~- ,maxX~ k)
x~k)~

(ii) X~ is obtained from Xk by replacing the t th coordinate interval
[y}k),_ ~}k)] of Xk by Ix}*) + CmaxX} k), ~}k)], provided A. t:'(*) "1- Emax.~} k)

(ii) X3k is obtained from X k by replacing the t th coordinate interval
[x~k), ~ k)] of X k by [y~ *) - EmaxX~ k), x~ *)-[- ~max-~k)].

4. (Adjusting information for the main algorithm)
(a) Put X[. and X~ on the stack of boxes to be considered later.
(b) Replace the current box X k by X 3.
(c) Place t in the set ~already corresponding to the current box X 3 (but not X~

or X2).

Figure 1 illustrates execution of step 3(b) of algorithm 3.1.

x h 1,1 x~,L ~ x~,~

; ~; + ~mj, ~ ~

Fig. 1. Illustration of the three subintervals into which the t th coordinate is divided in step 3(b) of
algorithm 3.1.

R.B. Kearfon / Interval Newton/generalized bisection 191

To incorporate algorithm 3.1, we modify the basic generalized bisection
algorithm. For example, we do not wish to bisect a coordinate of a box which was
produced from some X~ and whose index is in .Ar~lr~aay. Likewise, it is unneces-
sary to bisect in coordinate directions whose indices are in .A~o, ~. Furthermore,
we should not measure the widths of coordinate intervals whose indices are in
aV~o, ~ or ..'f~lr~ay when testing the size of the box for further bisection. Finally,
we gain efficiency if we take account of theorem 2.3 when determining the
inclusion in (1.4) or in step 3(d) of algorithm 1.1. The following modified
generalized bisection algorithm takes account of these considerations.

ALGORITHM 3.2
Generalized bisection with trisection to handle singularities

1. (Initialization phase)
(a) Input a tolerance c such that no box will have a coordinate width less than

{[.
(b) Input a tolerance E F such that we do no further computations on an X if

II F (X) II ~ < ~v for X ~ X.
(c) Xk '-- g.
(d) J~on,r ~ 0 and Jff~lre~dy ~ ~-

2. (Bisection) Do the following step only if

~'~onv tO .Araiready 4: { 1, 2 n }.

(a) If X ~ = (x] , x 2 x .) , where x j = [x g , Yj], then choose a coordinate
i ff J~conv U J~already in which to bisect.

(b) Form two new boxes X 1 and X 2 by replacing x i in X k by either [~0i, Yi] or
[_xi, ~0i], where wi = (x_i + x i) /2 .

(c) Place either X~ or X~ on a stack ~9 ~ for later consideration (along with
J~o,v and JV',Jreaay), and replace X k with the other one.

3. (Interval Newton method and root storage)
(a) (Test for convergence)

(i) If the width of at least one coordinate x i of X k for j ff Jffconv tO J~already
is greater than c, then compute the interval vector F(X) for use in (i_i)
below.

(i.i) If the width of each coordinate xj of Xe with j ~ JV~o, ~ U "/~/'already is
less than e, or if II F(X)I1~ <oF then
(a) Store X k in a list <s of small boxes which possibly contain roots.
(fl) If the stack S p is empty, then stop. Otherwise, pop a box from 6 ~

(along with J~r and J~already), let that box become Xk, and
return to the beginning of this step.

(b) (Obtain the function and Jacobian for (1.2).)
(i) Compute the interval Jacobian matrix F'(X~).

(ii) Compute F(X k), using interval arithmetic to bound the roundoff error.

192 R.B. Kearfott / Interval Newton / generalized bisection

(c) (Bound the solution set in (1.2).) Use algorittun 1.2 to compute an interval
enclosure Xk to the solution set of the interval linear system (1.1(b)).

(d) If x i G ~i for each i with i ~ ~/s then do the following.
(i) Store X k in a list s of boxes which contain unique roots.

(ii) If the stack 5 p is empty, then stop. Otherwise, pop a box from 5"
(along with Jg~o.,, and ,A/~re,dy), let that box become X~., and return to
the beginning of step 3(a).

(e) Update JV~oo ,, by taking the union of the old JV~oo,, with those indices i
from step 3(d) for which x, G i~.

(f) If ,4/~ r O, then execute algorithm 3.1.
(g) If (1.6) holds, then replace X k by Xk n Xk and return to step 3(a).

Otherwise, replace X k by Xk n X k and return to step 2.
(h) If X~. n X k = ~ then stop if the stack ~9 ~ is empty; otherwise, pop a box

from 5 p (along with JV~o~ v and ~lre,~dy), let that box become X k, and
return to the beginning of step 3(a).

d. Numerical results

In this section, we report test results comparing algorithm 3.2 to the algorithm
in [8], where we report on the basic generalized bisection algorithm in conjunction
with the specially preconditioned interval Gauss-Seidel method (algorithm 1.2).

The test set is that from [8], which is that from [6]. Common tolerances and
algorithmic details, with some minor modifications, are as in [8]. In trisection
(algorithm 3.1) we took the range tolerance for the point Newton method in step
1 to be 10 -12 and the domain tolerance to be 10 -5 II Xk II 2. In step 2 of algorithm
3.1, we took ~max = 104, and we took the minimum coordinate width in step 3(b)
to be •max = 10-3-

As in [8], table 1 gives estimates for the amount of work for each of the three
methods. The first column gives the problem number as in [6], the second column
gives the dimension n of the problem, and the third column gives the method,
where " lp" refers to the basic method with the linear programming precondi-
tioner, as in [8], and where " t r i . " refers to the trisection method (with algorithm
3.1 and algorithm 3.2) for singularities. Column 4 (NBOX) gives the total
numbers of boxes considered in algorithm 1.1 or algorithm 3.2 (i.e. the number of
times that step 3(c) is entered), column 5 (NFUN) gives the total number of
interval function evaluations, column 6 (NJAC) gives the total number of interval
Jacobian evaluations, and column 7 gives an estimate W~ for the total amount of
work, which is computed as

W e --- N F U N + nNJAC.

We notice that algorithm 3.1 and algorithm 3.2 were markedly superior to the
basic algorithm on problem 3, which has a rank-two defect in the Jacobian matrix

R.B. Kearfott / Interval Newton / generalized bisection

Table 1
Cost measures with and without trisection

193

n meth. NBOX NFUN NJAC Est.
work

1 2

2 2

3 4

4 5

9 2

10 4

11 8

12 3

14 2

15 2

16 4

17 5

Tot.

tr|.
lp

trl.
lp

tn.
lp

tn.
lp

tn.
lp

trl.
Ip

trl.

lp

In.
lp

trL
Ip

trl.
lp

try.
lp

try.
Ip

tn.
lp

41 73 32 137
41 69 28 115

53 86 33 152
53 86 33 152

25 40 13 92
480 726 246 1710

68 124 56 404
68 124 56 404

25 48 23 94
23 44 21 86

398 635 235 1575
771 1214 443 2986

571 973 321 3541
671 1141 371 4109

563 922 359 1999
551 914 363 2003

44 72 28 128
41 68 27 122

3 5 2 9
3 5 2 9

3 6 3 18
3 6 3 18

67 109 42 319
67 108 41 313

1861 3093 1147 8468
2772 4505 1634 12024

at the root. Fur thermore , us ing the new algor i thm did not seem to undu ly
degrade the per formance on the other problems; in fact, it seems to also work
better when there are scaling difficulties, as in p rob lem 10.

In addi t ion to the efficiency improvemen t s evident in table 1, a lgor i thm 3.1
and a lgor i thm 3.2 have certain qual i ta t ive advantages . For example, in p rob lem 3

(a var iant of Powell 's s ingular funct ion) , only a single possible roo t - con ta in ing

box was placed in the list s (and none were deleted from ~ ' in the dele t ion

steps explained in [5] and [6]), whereas, when the basic a lgor i thm was used, 5

boxes were placed in A ~ (giving a r e d u n d a n t l is t ing of the root), and 3 boxes

194 R.B. Kearfott / Interval Newton/generalized bisection

Table 2
Total clock times for the two algorithms

tri. lp

1 0.07 0.06
2 0.13 0.18
3 0.17 1.63
4 1.65 1.56
9 0.07 0.05

10 4.61 6.90
11 23.22 16.00
12 2.73 2.21
14 0.06 0.06
15 0.004 0.004
16 0.03 0.03
17 1.43 1.26
All 34.22 29.94

were deleted from 0~'. Also, theorem 3.2 came into play effectively in problem
11, which has 16 distinct roots, none of which corresponded to a singular
Jacobian matrix. In the basic algorithm (with the linear programming precondi-
tioner), the 16 root-containing boxes were placed in the list A a ' , for which there is
no definite affirmation that unique roots have been isolated; however, with
algorithm 3.1 and algorithm 3.2, all 16 boxes were placed in the list A a, for which
there is verification that each box contains a unique root.

Total execution times for the algorithms can only be taken as another relative
measure of efficiency, since such times are strongly dependent upon the imple-
mentation of interval arithmetic, etc. However, we supplement table 1 with a list
of total c lock times on an unloaded IBM 3090 with the V M / C M S operating
system; these appear in table 2. (Note that these times will change with system
load, etc.)

The extra running times for our new algorithms in table 2 may be due partially
to fluctuations in system load. However, they are probably also due to repeated
application of the classical Newton's method in step 1 of algorithm 3.1. This
problem can be remedied by storing the points X, for later use, or by using a
more finely tuned heuristic to determine singularity.

5. Summary, conclusions, and future work

We have considered interval Newton/genera l ized bisection algorithms as
foolproof methods for solving the global optimization problem. We have devel-
oped theory and algorithmic details for techniques to make these algorithms more
efficient when the Hessian matrix is either ill-conditioned or singular at the

R.B. Kearfott / Interval N e w t o n / g e n e r a l i z e d bisection 195

opt imum. The algori thm has been written to find all critical points, but can be
modified to efficiently find just the global op t imum (and cor responding parame-
ter set or sets).

The results of numerical experiments indicate that the techniques have value,
and can possibly be applicable in a general code.

The algori thm can undoubted ly be further " tuned" . In particular, the criterion
in step 3(f) of algori thm 3.2 to determine when to execute a lgor i thm 3.1 can
possibly be made more appropriate. Also, Newton ' s me thod in algori thm 3.1 is
applied redundant ly , since it is unnecessary to compu te the root again for any X 3
which has been formed f rom some Xk; considerable C P U time could be saved by
storing the root X. along with the other stack informat ion associated with X 3.
Fur thermore, alternate ways of determining whether the system is i l l-conditioned
(step 2 of algori thm 3.1), or different values of Kma x, may lead to an algori thm
which executes, on average, in less C P U time.

References

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations (Academic Press, New
York, 1983).

[2] E.R. Hansen, On solving systems of equations using interval arithmetic, Math. Comp. 22
(1968) 374-84.

[3] E. Hansen, Global optimization using interval analysis - the multidimensional case, Numer.
Math. 34 (3) (1980) 247-70.

[4] E. Hansen, and S. Sengupta, Bounding solutions of systems of equations using interval
analysis, BIT 21 (1981) 203-11.

[5] R.B. Kearfott, Abstract generalized bisection and a cost bound, Math. Comp. 49 (179) (1987)
187-202.

[6] R.B. Kearfott, Some tests of generalized bisection, ACM Trans. Math. Software 13 (3) (1987)
197-220.

[7] R.B. Kearfott, On handling singular systems with interval Newton methods, IMACS Ann.
Comp. Appl. Math. 1.2 (1989) 653-655.

[8] R.B. Kearfott, Preconditioners for the interval Gauss-Seidel method, accepted for publication,
SIAM J. Numer. Anal. 27 (3) (1990) 804-822.

[9] R.B. Kearfott, Interval arithmetic techniques in the computational solution of nonlinear
systems of equations: introduction, examples, and comparisons, in: Proc. 1988 AMS/SIAM
Seminar on Applied Mathematics, American Mathematical Society (1990) pp. 337-357.

[10] R.B. Kearfott, An interval step control for continuation methods, submitted, Math. Comp.
(1989).

[11] R.E. Moore, Methods and Applications of Interval Analysis (SIAM, Philadelphia, 1979).
[12] R.E. Moore and S.T. Jones, Safe starting regions for iterative methods, SIAM J. Numer. Anal.

14 (6) (1977) 1051-065.
[13] A. Neumaier, Interval iteration for zeros of systems of equations, BIT 25 (1) (1985) 256-73.
[14] A. Neumaier, Interval Methods for Systems of Equations (Cambridge University Press, 1989; in

press).
[15] K. Nickel, On the Newton method in interval analysis, Technical Summary Report no. 1136,

Mathematics Research Center, the Universityof Wisconsin at Madison, Madison, WI.

196 R.B. Keatfott / Interoal Newton/general ized bisection

[16] H. Ratschek and J. Rokne, Computer Methods for the Range of Functions (Ellis Horwood and
John Wiley, Chichester, New York, 1984).

[17] H. Ratschek and J. Rokne, New Computer Methods for Global Optimization, (Ellis Ho~vood
and John Wiley, Chichester, New York, 1988).

[18] J.M. Shearer and M.A. Wolfe, Some computable existence, uniqueness, and convergence tests
for nonlinear systems, SIAM J. Numer. Anal. 22 (6) (1985) 1200-207.

