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Abstract 

A new algorithm is presented for minimizing a linear function subject to a set of linear 
inequalities and one additional reverse convex constraint. The algorithm utilizes a conical 
partition of the convex polytope in conjunction with its facets in order to remain on the level 
surface of the reverse convex constraint. The algorithm does not need to solve linear 
programs on a set of cones which converges to a line segment. 

1. Introduction 

A constraint  g(x)<~ 0 is called a reverse convex constra int  if g is a quasi 
concave function.  Opt imizat ion problems with reverse convex constraints  gener- 
ally induce nonconvex  feasible regions which are often disconnected into several 
nonconvex  parts. As a result, problems with such constraints  generally have local 
op t ima  which are not  global opt ima.  

Problems of  this form were first studied by Rosen  [15] in a control  theoret ic 
sett ing and subsequently,  in an engineering setting by Avriel and Will iams [1,2]. 
For  a recent interesting applicat ion in VLSI  design, see Vidigal and Direc tor  [24] 
and Thach  [19]. Rosen  developed a successive l inearization technique which 
converges to a K u h n - T u c k e r  point.  Meyer  [9], in a more  general setting, proves 
convergence  to a K u h n - T u c k e r  point  and it is f rom that paper  that the term 
"reverse  convex"  is taken. 

Ueing [23] was the first to consider  global opt imiza t ion  for problems with 
reverse convex constraints .  In fact, the problem Ueing  considers  is the minimiza-  
tion of  a concave  funct ion subject to only reverse convex constra ints  and he 
develops a combinator ia l  approach  based upon  maximizing the objective subject  
to various combina t ions  of  reversals of  the reverse convex constraints .  Subse- 
quently,  Bansal and Jacobsen  [4,3] studied the global opt imiza t ion  of  a reverse 
convex p rogram which represented the maximiza t ion  of  ne twork  flow capaci ty.  In  
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particular, the incremental capacity cost functions were concave and, hence, 
represented economies-of-scale. Hillestad [8] then developed an edge search 
procedure for a linear program with one additional reverse convex constraint. 
Subsequently, Hillestad and Jacobsen [6] studied optimization problems with 
only reverse convex constraints and showed the convex hull of the feasible region 
is a convex polytope. They also suggested a cutting plane procedure, based upon 
Tuy cuts [20], as a possibly useful procedure for finding a good solution; however, 
they demonstrated that such a method need not converge to a feasible solution. 
Hillestad and Jacobsen [7] then presented an algorithm, for linear programs with 
one additional reverse convex constraint, which relies on simplex pivots and 
vertex enumeration of the feasible region intersected with the hyperplane de- 
termined by the current objective value. Tuy [22] then developed a method for 
convex programs with one additional reverse convex constraint which relies upon 
being able to solve concave minimization problems. In the latter paper, Tuy also 
shows that several reverse convex constraints can be converted to one such 
constraint at the expense of introducing an additional convex constraint and an 
additional variable. Tuy [21] also shows that virtually any optimization problem 
can, theoretically, be approximated by a convex program with one additional 
reverse convex constraint. Indeed, this latter result justifies the importance of this 
class of optimization problems. 

In addition to the above relevance of reverse convex programs, insight is 
gained into the computat ional  complexity of this class by observing that the 0 - 1 
linear integer programming problem is equivalent to the associated bounded 
variable linear program with the additional reverse convex constraint ~ ( x , -  x~) 
~< 0. Similarly, the minimization of a concave function f subject to linear 
constraints is obviously convertible to a linear program with one additional 
reverse convex constraint; in particular, choose an additional variable, x,,+~, and 
minimize xn+ ~ subject to the linear constraints and the additional reverse convex 
constraint f ( x )  - x,+ 1 <~ O. 

Because of the close relationship between reverse convex programs and con- 
cave minimization, the reader is referred to the recent survey article by Pardalos 
and Rosen [14]. For additional papers on reverse convex programming which use, 
in one way or another, Tuy cuts [20] see, for example, [16,18,11,5]. 

2. Definitions 

We briefly introduce the notation to be used throughout the paper. We denote 
by F A a bounded convex polytope in R" defined by a system of linear inequali- 
ties; that is 

FA= ( x ~ R " l A x  >~b }, 
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where A is an m • n matrix, m > n, and b is an m-vector. Let 

G =  ( x ~ R " l g ( x ) . < 0 }  

and  

G ~= {x ~ n " l g ( x  ) >0} ,  

where g is a con t inuous  concave funct ion on R". We assume G and G ~ are both  
non-empty .  Let F =  F A n G. The problem to be considered in this paper  is: 
min{  c-Cxlx ~ F } .  

DEFINITION 1 

Let x ~ be a vertex of F,,. The funct ion "ql is defined to be: 

,7,:R~--, R u { + oo} 

z ~ , / l ( Z  ) =eq ,  

where al = m i n { a  >/0: g ( x ~  ~ ( z - x ~  0} if this m i n i m u m  exists, and  al = 
some cons tan t  a otherwise ( a  > 1). 

DEFINITION 2 
Let y be an interior  point  of F A. The funct ion ~.~. is defined to be: 

,7,, :R"-, R u { + oo} 

z ---, ~,,(z) = % ,  

where a v = m i n { a  >~ 0: y + a ( z - y )  E OFa}. 
Note  that the existence of an interior  point  y of F A is equivalent  to dim(F,~) = n. 

DEFINITION 3 

Let z 1 . . . . .  z" be n affinely i ndependen t  vectors of R" with respect to some 
poin t  x ~ of R". Then  H [ z  1 . . . . .  z ~] denotes the convex hull of z 1 . . . . .  z", 
Je~ 1 . . . . .  z"] denotes  the plane defined by z 1 . . . . .  z" and  .Xf+[z 1 . . . . .  z"] denotes  

the half-space not  con ta in ing  x ~ whose b o u n d i n g  hyperp lane  is Je~ t . . . . .  z"]. 

DEFINITION 4 
C [ v  I . . . . .  v "] denotes  the cone or ig inat ing  at the origin and  generated by the n 

l inearly i ndependen t  vectors o 1 . . . . .  v" of R" i.e., C [ v  I . . . . .  v"] = { z  ~ R "  s.t. 
z = eqv I + . . .  +c~,,v n, ce 1 >1 0 . . . . .  ce,, >~ 0} 

We in t roduce  in the following the no t ion  of a "y-conica l  coverage" of the 

feasible region. 

DEFINITION 5 
Given  an  inter ior  po in t  y of FA and n poin ts  z l , . . . ,  z" such that, for each 

i = 1 . . . . .  n, the vectors z 1 . . . . .  z ~-1, y, z i+~ . . . . .  z" are affinely i n d e p e n d e n t  with 
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respect to some vertex x ~ of  FA, a y-conical  coverage of F is defined to be a set 
of  cones C~, i = 1 . . . . .  n, where 

c i =  I x  ~ + c [ : ' - x  ~ . . . . .  : , - 1  x0,  y _  x o  : ,+1 _ x o  . . . . .  : ~  x0] 

and such that the following condit ions are satisfied: 

( i )  U ;'__ 1C, ~ F;  

(i i)  g ( z  j )  = 0 for j = 1 . . . . .  ,7. 

No te  that an initial y-conical  coverage can be found as follows: Assume we 
can find an interior point  y of  F A such that g ( y ) = 0 ,  and let x ~ be a 
nondegenera te  vertex of  F A which is infeasible for the reverse convex constraint .  
Then  let 01 . . . . .  v" in F A be the n neighboring vertices of  x ~ and, hence, x ~ 
v ~ . . . . .  v" are affinely independent .  Let z 1 . . . . .  z" be the n points  where the rays 

( , i  u = x ~ 1 7 6  ~ 0 }  

first intersect 3G, i.e., 

: '  = x~  + ~ l ( j ) ( o  ' - x  ~ 

for i = ]  . . . . .  n. Let 

c ,  = ( x ~ ) + C [ z  I - ~0 . . . . .  : , - 1  _ x0,  y _ ~0, : , + ,  _ ~0 . . . . .  z"  - ~0] .  

Then  (C~},"=~ is an initial y-conical  coverage for F. 
No te  that we have assumed the existence of  intersection points  of  the rays 

{ u I u = x ~ + a ( d  - x~ with aG. This assumpt ion  is not  critical to the a lgor i thm 
to be presented later. 

The idea of  the algori thm is to start with the initial coverage and for each cone 
C i = { x  ~ + C [ z  l - x  ~ . . . . .  z i - l - x  ~ y - x  ~ z i + l - x  ~ . . . . .  z " - x ~  and for 
each z J ~  F A, compute  the point  where the line segment  [y, z j] intersects the 
bounda ry  of  F A. That  is, we compute  rl,,(z i) and set 

uJ = y + Vly( ZJ)( zJ - y ). 

We then redefine z j by finding the point  where the half-line 

x~  + a( u J -  x ~  a >~ O 

intersects 3G. Tha t  is, we compu te  ~ ( u  j)  and redefine z j by  

: j  = ~0 + ,1~ (u  J ) (  uJ - x0 ) .  

At  this point,  we collect the major  assumpt ions  which are to hold th roughou t  
the remainder  of  the paper :  
(1) g is a cont inuous,  concave funct ion defined on R" 
(2) G ~ is bounded .  This assumpt ion  guarantees  that  certain line search problems,  

in the algorithm, will have solutions. 
(3) Int(FA) is not  empty.  
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(4) A point y ~ Int(FA)• 0G is available. This assumption is crucial and, in 
particular, rules out the 0 - 1 linear integer programming problem. A proce- 
dure for heuristically finding y is discussed at the beginning of section 6. 

The next section gives a detailed statement of the algorithm and provides a 
simple geometric example to explain the algorithm's steps. 

3. Statement of the algorithm 

Assume we have at hand a point y ~ Int(Fn) n 0G. Let b~A = F A. 
Step- I Solve the linear program 

n ~ n { c T x l x  ~ ~A} 

and assume x ~ is a nondegenerate vertex optimal solution. 
Step- II I f x  ~ 1 4 9  

Otherwise, construct an initial y-conical coverage as described in section 2. 
Set INFE AS  = { j lz  j fli F, }. 

Step- III  DO W H I L E  INFEAS =~ 
FOR EACH j ~ INF EAS  DO 
find the last point on the line segment [y, z j] which is in FA; that is, 
compute ~ , ( zJ ) .  Define 

u J = y + % , ( z J ) ( z J - y )  

and redefine z j as 

z J  = x ~ + , 7 , ( u ' ) ( ~ , J  - x ~  

If  z j ~ F a, remove j from INFEAS.  
E N D  DO 
E N D  DO W H I L E  

Step- IV Let 

c , = { x  ~ } + c [ z '  - ~ ~ . . . . .  z , - , - x  o, y _ x  o, z , + , _ x O  . . . . .  z " - x ~  

~I, + = ~ + [ z '  . . . . .  z '-1, y ,  z '+' . . . . .  z"].  

For i = 1 . . . . .  n solve the linear program 

min{cVx[x  ~ F a N ~  +} 

i denote an optimal vector. and let x .  
�9 T z i  maxi=l.n{cTxi,})  T H E N  IF (mlni=l.,,{ c } > 

let 

i = l , . . . , n  

let f A = FA a H +, 
let x ~ = argmin{ cTxi,, i = 1 . . . . .  n }. 
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Fig. 1. Two-dimensional example - algorithm's steps. 
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Return  to Step II  
E L S E I F  (mini=a. ,{ cVz * } ~< maxi=l. , ,  ( cVx~ }) T H E N  
let 

H+= { x ~ ~n [ cTx >~ m]n cTzi } , 
i =  ] . . . . .  n 

let & =F. nH+, 
let x ~ = a rgmin(  CTZ i, i = 1 . . . . .  n }. 
Re tu rn  to Step II.  

T o  i l lustrate the a lgor i thm geometr ical ly ,  consider  the two-d imens iona l  exam-  
ple in fig. 1. The  poin t  x ~ is op t imal  for the l inear p r o g r a m  and x ~ ~ G. G iven  
the point  y ~ Int(FA), the initial y-conical  coverage  is given by C 1 and C 2, where  

c t = { z  ~ } + c [ ;  - x ~ y - x  o ] 
and 

c~={x~ +C[z2-x~ y-xO]. 
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/ 

Fig. 2. Two-dimensional example - Step IV. 

In what  follows, we focus only on reduct ions  of  C a. Given v 1, a neighbor ing 
vertex of  x ~ we move to the bounda ry  of  G, 0G, by comput ing  ~1(vl). Since 
z ~ ~ FA, we move  f rom z 1 to the boundary  of  F A, OFA, in the direct ion y - z I and 
thereby obtain  the point  ul; that  is, we compu te  ~v(z~). The new z 1 ~ OG is then 
c o m p u t e d  by moving from u ~ in the d i r ec t i on -u  1 -  x~ that  is, we compu te  
~l(u~). This process cont inues and, as shown in fig. 1, the resulting sequences of  
z ' s  and u ' s  converge to z~, ~ OF A A OG. Similarly, one can easily see that this 
process carried out  upon  C 2 will quite rapidly, for  this example, lead to z ,  z ~ a F  A 
:q 0G. No te  that in the two-dimensional  case, as depicted in figs. 1 and 2, an 
opt imal  point  must  be a m o n g  the vectors { z~,, z 2 ). Tha t  is, if one solved the two 
linear programs (there is no  need to do so in two dimensions)  

m i n ( c T x I x ~ F A N ~ i + ) ,  i = 1 , 2 ,  

an opt imal  solution (in this case z ,  2) for the reverse convex p rog ram is also 
opt imal  for one of  these linear programs.  In  particular,  this implies that  in two 
dimensions  Step II  of  the a lgor i thm is not  reentered. 
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4. Convergence of the algorithm 

P R O P O S I T I O N  1 

Consider  the sequences { Z~.}k, i = 1 . . . . .  n, generated by the algorithm. For  
each i = 1 , . . . ,  n, the entire sequence is conta ined in the cone originating at x ~ 
and generated only by the two vectors going respectively through the interior 
point  y and the neighboring vertex # of  x ~ i.e., for all k = 1, 2 . . . . .  " 

. i  U i "k ( x  ~ } + C[  y - ,co, _ xo] .  

In particular, this result implies that any accumula t ion  point  -~ ~, of  (z  k}k is also 
in the above cone. 

Proof 
This proposi t ion will subsequently allow us to carry out  a p roof  of affine 

-~ i = 1, . n and also gives some insight independence  of  the limiting vectors ~. . . . .  
into the geometry  of  this algorithm. Let us show by induct ion that each entire 
sequence (z~. } k is conta ined in a cone generated by two rays. 

For  k = l ,  the claim is certainly true since z ~ - x ~  ~ for some 
a ~ R +, i = 1 , . . . ,  n. Assume the result to be true for k > 1; the algori thm finds 
the intersection of  the line segment [y, z~.] with the poly tope  F A, call it u~. We 
have: 

i 
~ k  - - Y )  

o r  

i i i 

i Moreover ,  i is a convex combina t ion  of  y and z k. i.e. u k 

{ x  ~ + c [ . , , -x  ~ o ' -x~ 
z~. ~ ( x ~ } + C [ y  - x ~ v i -  x ~ by the inductive hypothesis ,  

and 

( x  ~ + C [ y - x  ~ v i - x  ~ i s a c o n v e x s e t .  

i X O, U i Consequent ly ,  u k ~ ( x }  + C [ y -  - x ~  The next step of  the a lgor i thm 
i extends the ray going through u k so as to hit the reverse convex constraint ,  thus 

const ruct ing i Z k + l :  

i ~ X 0 i _ X 0 ) 

_ _  i = ( 1  ~l (u~ , ) )x~  

i Therefore,  since x ~ and u k are both  in the set ( x  ~ } + C [ y  - x ~ v ~ - x~ we have 
i ~ {x ~ } + C [ y - x  ~ v i x~ Since ( x  ~ + C [ y - x  ~ v i -  X O] is a closed Z k +  1 

n i U i subset o f R  , we also have that  z . ~ ( x  ~ + C [ y - x  ~ - x~ This shows that  
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for each of  the major  iterations, i = 1 . . . . .  n, of  the algorithm, the sequence { z~ } k 
stays within a two-dimensional  subspace of R". [] 

A similar a rgument  also shows that for each i = 1 . . . . .  n, the sequence { z~.}k 
generated by the algori thm has the proper ty  

z;+,  ~ {x ~ } + c [ y -  x ~ 4 -  x~ 

The proof  of convergence of  this algori thm consists of  three parts: We will 
start by  showing that for each index i = 1 . . . . .  n, the sequence { z~ }k generated 

i in 3F+ A 3G. Then we will show that by the algori thm converges to an element z ,  
i Z~-I+ the resulting n vectors z. ,  i = 1 . . . . .  n have the proper ty  that { z~. . . . . .  y, 

Z ~+ 1, n . . . .  z ,  } are affinely independent  with respect to x ~ for i = 1 . . . . .  n. The third 
part  of  the p roof  consists in showing that, f rom one iteration of  the algori thm to 
the next, no  part  of  the feasible region is deleted. 

For  the first part, since the proof  is the same for each index i = 1 . . . . .  n, we 
will drop the superscript.  

The  algori thm consists of  the following main iteration: Given a current  
z k ~ 3G, some intermediate  point  u k is const ructed such that: 

u k = y  + r( , , (zk)(z  k - y ) ,  (1) 

z,,+, = x ~ + "ql (uk)(  u,  - x~  (2) 

And  consequently,  

Idk+ + = y 4- Tlv(Zk+l)(Zk+l -- y ) .  (3) 

Let us then look more  closely at the sequence { u k }. By combin ing  (2) and (3) we 
can see that 

. , + ,  = ~ ( ~ ) ,  

where 

+ ( u )  = y  + ,7 , (x  ~ + ,11(~)(,, - x ~  ~ + ,7 , (u ) (u  - x ~ - y )  

This relationship shows that the algori thm is of  the fixed-point type. 

L E M M A  1 

The funct ion q5 is cont inuous  on G c, the closure of G c. 

Proof  
The functions 771 and Try can be written as 

~ l ( z ) = m i n ( a > ~ O :  g ( x  ~ + a ( z - x ~  

j =  1 ,n 

It is immedia te  that  v/1 and ~/y are con t inuous  on G-r and, hence, so is q5. [] 
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L E M M A  2 

Let u .  be an accumulat ion point  of  { u k }. Then, u .  ~ OF A n ~G. 

P r o o f  
Because of  proposi t ion 1 and the fact that  y ~ I n t ( F  A), the intersection of  the 

cone {x ~ + C [ y - x  ~ v - x  ~ with the bound ing  faces of  F A, which contain  
elements of  { u k }, must  be the union of  line segments. We denote  this intersection 
by  OP=ILi, which is a compac t  set because of  the assumed boundedness  of  F A. 
Since { u k } c UP=ILi, an accumula t ion  point  u .  exists, and q~(Uk)= Uk+l. Let j 
be the index such that u .  ~ Lj. By const ruct ion of  the algori thm we have, for all 
sufficiently large k,  Uk+l ~ (U*, U k) C Lj, which implies that { u k } and { u k+l } 
have the same accumulat ion point  u. .  By cont inui ty  of  ~ we have u .  = 4~(u*) 
and therefore u .  ~ OF A n 0G. [] 

T H E O R E M  1 

For  each i = 1 . . . . .  n, the sequence { z~, ) k generated by the algori thm converges 
towards  _i ~, ~ OF A A OG. 

P r o o f  
Again,  we drop the superscript  which denotes  a part icular  cone. We know there 

exists u ,  ~ OF A n aG such that { u k } converges to u, .  We have 

zk+,  = x ~ + x ~  

Consequent ly ,  { z k } must  have a limit point  z ,  such that 

z .  = x ~  + , 1 ( . . ) ( . .  - x ~  

Since ~ l (u , )  = 1, we have z ,  = u, .  Thus  z" ~ OF A n ~G. [] 

i Having  found the limiting vectors z , ,  i = 1 . . . . .  n, the last step of  the a lgor i thm 
constructs  the hyperplanes  going through y and n -  1 of  these points.  Conse-  
quently,  we need to prove the affine independence  of  these vectors. 

L E M M A  3 

For  each i = 1  . . . . .  n, { v l - x  ~ . . . . .  d - l - x  ~ y - x  ~ v i + l - x  ~ . . . . .  v n - - x  ~ 
are linearly independent ,  v 1 . . . . .  o" are the n neighbor ing vertices that are used 
for the original cone coverage. 

P r o o f  
Assume there exist a 1 . . . . .  % such that 

Ogl(U 1 - -  X O) J r - . . .  --[- Ogi_ 1 ( U / - 1  - -  X O) + a i ( y  - x ~ + o l i + l ( V  `+1 - x 0 ) - [ - . . .  

+~n(V"--X ~ 
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S ince  y ~ In t (FA) ,  the re  exis t  a l  . . . . .  a ,  > 0 such  tha t  

y = a , ( v '  - x ~  + . . .  + , , ~  ~ - x ~  

C o n s e q u e n t l y ,  f r o m  the  l inea r  i n d e p e n d e n c e  of  ( v  1 -  x ~ . . . . .  ( v " - x ~  we h a v e  

a I q'- o t ia  1 = O,  

a i _  1 -~ a i a i _  1 = O,  

a i +  1 Jr- oLiai+ 1 = 0 ,  
~  

a n + a i a n  = O,  

o t ia  i = O. 

F r o m  the  las t  equa l i t y ,  s ince  a~ > 0, we get  a~ = 0, w h i c h  imp l i e s  a 1 = . . .  = a,, = 0. 
[ ]  

P R O P O S I T I O N  2 
i T h e  l i m i t i n g  vec to r s  z . ,  i = 1 . . . . .  n g e n e r a t e d  by  the  a l g o r i t h m  are  such  that ,  

_ i + l  n fo r  e a c h  i = 1 . . . . .  n,  zl. . . . . .  z U 1 ,  y,  - ' .  . . . . .  z .  a re  a f f i ne ly  i n d e p e n d e n t  w i t h  

r e spec t  to x ~ 

Proof  
I t  is su f f i c i en t  to s h o w  tha t  z ~ , - x  ~ z .  2 - x  ~ . . . .  z~, - l - x  ~ y - x  ~ z~ + i -  

n __ X 0 x ~ . . . . .  z .  a re  l i nea r ly  i n d e p e n d e n t .  A s s u m e  the re  exis t  a I . . . . .  a n such  tha t :  

,,1 (z ' ,  - x  ~ + . . .  + ~ , _ , ( z ;  - 1 -  x ~ + , ~ , ( y -  x ~ ) + 

a , + , ( z ;  + '  - x ~ + . . .  + ~ ~  . . . .  x ~  O. 
i W e  also have ,  s ince  z .  ~ { x ~ } + C [ y  - x ~ v* - x ~  

V j = I  . . . . .  n , 3 X { > O ,  X ~ > / O , s . t .  z g - x  ~  ~  - / - x ~  

C o n s e q u e n t l y ,  we  h a v e  

(a lXl l  + . . .  + a , _ , X ' , - '  + ,~, + a ,+,7 , ' ,  +1 + . . .  + ~ . X " , ) ( y  - x ~  + a , X ' 2 ( o '  - x ~  

+ . . .  + ~ , _ , X ' ; l ( o  ' -1  - x ~  + a , + , X ' ; ' ( o  ' + 1 -  x ~  + . . .  + a , , X ' ~ ( v " -  x ~  = O. 

Since  v ~ - x ~ . . . . .  v i -1  - x ~ y - x ~ d +~ - x ~ . . . . .  v" - x ~ a re  l i n e a r l y  i n d e p e n -  

den t ,  the  l a t t e r  e q u a l i t y  i m p l i e s  

( a l X l l  qt_ . . . . . . [ _ a i _ l ~ k i l l _ ~  ai.q_ a i+ l~k i l+ l  _l_ . . . - - } - a , , ~ k q )  = O,  

al~) = = 0, 

. . .  

a i_  l~ki21 = O, 

~,+,X~J -1 = 0 ,  

o . .  

a,~,'~ = 0. 
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Since - 1 .,, ~.  . . . . . .  . ~ OF A, and  y ~ Int(FA),  we have 

k]2 ~ 0 . . . . .  k'~, ~ 0. 

Thus,  f rom the last  n - 1 equali t ies ,  we have 

0 ~ 1 ~  . . .  ~ i _ 1  ~ O s  ~ . . .  ~ a n ~ 0 .  

Therefore ,  the first equal i ty  yields a i = 0. [] 

W e  now show that,  at each i tera t ion,  no feasible po in t  is dele ted .  

L E M M A  4 

Let , ~ , + ( k ) = ~ + [ z ~ ,  _i-1 �9 . - ,  "Zk Y ,  Z ~ + I  ' . . . .  k , z ,  ]. Then,  for each k, 
n + ( k )  c 

Proof 
By cons t ruc t ion ,  the c la im is t rue for k = 1, i.e., when ~t "~ = x~  + a(  d - x~  for 

some a greater  than zero. A s s u m e  the c la im is t rue for k; i.e., a s sume  

{n;'=, [ 4, . . . ,  ,,-'-' , ),, .,~+'. , . . . ,  z~.!])~} A F = 

and  also assume:  

\, , i=l~J~, z~, y ,  ~. z n Fv~ Z ' k + l ,  " ' ' ,  " k  , , ' ' ' '  " 

N o t e  that ,  s ince one  i t e ra t ion  of  the a lgo r i t hm c o r r e s p o n d s  to a move  with  
respect  to one of  the z ' s ,  it is suff ic ient  to p rove  the c l a im for the index  i = 1. Let  
x ~ F be an e lement  of  the above  n o n - e m p t y  in tersec t ion .  W e  s tar t  by  no t i c ing  

that  
,, _ , - ,  _ ,+,  _ ~  

N i =  l Z , Z , k , . . . , z .  k , .~ ,  /-'k ' I ' ' '  ~ 'k 

= I n t ( { y }  + C [ z ~ - y  . . . . .  z ' ~ - y ] ) .  

W e  have 

x$Int({y}+C[u~-y, z;-y . . . . .  z;-y]), 
x ~  I n t ( { y }  + C [  "t . - " - y ] ) .  ~ k + l  - - . ] ) ,  2 2  - Y ,  , "~k 

Consequent ly ,  3v ~ (u]., z l + l ) ,  ] a  1 ~ (0, 1), 3a  2 . . . . .  a,, >1 0, such that  
- -  ~ 9 n __  ) 

x y a ] ( v - y ) + a 2 ( z ~ , - y ) + . . . + a , , ( z k  ) ) ,  

N o t e  that  g assumes  non-nega t ive  values  on the ha l f - l ine  o r ig ina t ing  at y and  
with  d i rec t ion  x - y .  This  fact, c o m b i n e d  with  g ( y )  = g ( x )  = O, impl ies ,  because  
of  the concav i ty  of  g, that  g(Y)  = 0 for all ~ on this hal f - l ine .  Therefore ,  let ~ be  

such that  

=0,  

Y - y = ( x - y  ai  . 
i =  
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That  is, 

.~ a l  a 2 
- -  - - v +  - - z ~ +  . . .  + - -  ZL,a, ZL,a, 

Thus,  by  concavi ty  of  g 

a l  a 2 >_. - - g ( v ) + - -  
ET=101 s 

Since g(v) >~ 0 and 2 ,, g(Zk) . . . . .  g(Zk) = O, 

a, 
g ( Y ~ ) > ~ - - g ( v ) > _ - O .  

E','=la, 
Therefore,  

g(~Z) = 0 = a , g ( v )  = 0 = g ( v )  = 0, 

a n k 
n 

E i = l a i  Zn �9 

a n n g(z ) + . . .  + - - g ( z k ) .  
2';=,., 

which contradicts  the fact that z~+ 1 is by cons t ruc t ion  the first point  on the line, 
originating at x ~ and going through u~, where g at tains the zero value. Therefore  
one cannot  have g(x)  = 0 and, hence, x ff F. [] 

T H E O R E M  2 

The algori thm converges to an opt imal  solution of  the reverse convex problem.  

Proof 
The last step of  the algori thm solves the following n linear problems:  

min cL~c, 
X~R"  

x ~ F a A . , ~ + [ z l ,  . . . . .  z; -1, y,  z ,  . . . . . .  

i b e  a solution thus obtained to the above linear problem. As seen L e t  x ,  

previously, no feasible point  has been eliminated and, consequently,  

U" J ~ + D F .  i = 1  i 

Therefore,  for any x ~ F, 

>_. min{ . . . . .  cTx:  }, 

and the a lgor i thm resumes, setting x ~ := argmin{ crxi,, i =  1 . . . . .  n},  or x ~ := 
argmin{ cTz~, i = 1 . . . . .  n }, and F A := FaN { x ~ R" [ cTx > CTX ~ }. The a lgor i thm 
stops if x ~  F (i.e., g ( x  ~ = 0). This has to happen  since, at each execution of  
Step II of  the algorithm, the neighboring edges of  x ~ one of  which being an edge 
of  the original F a, is el iminated f rom further  searches. 
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5. Construction of test problems 

This section develops a method for const ruct ing linear programs with an 
addit ional reverse convex constraint  whose opt imal  solution is known.  The 
method  is an application of  the procedure  of  Sung and Rosen [17] for construct-  
ing a concave minimizat ion problem whose vertex optimal solution is known.  

Testing the algori thm against known sample problems led to the realization 
that very few numerical  examples of  significantly high dimension exist in the 
literature for the obvious reason that they are hard to solve. The question that 
natural ly follows then is: How does one develop a set of  reverse convex problems 
whose solution is known beforehand? The same quest ion has been raised in the 
context  of  the minimizat ion of  a concave function on a bounded  poly tope  and a 
variety of methods  have been proposed.  Sung and Rosen [17] developed a method  
based on the following geometric fact: since the min imum of a concave funct ion 
over a poly tope  is at tained at one of  the vertices, one can choose, in advance,  a 
vertex and then construct  a concave funct ion for which the chosen vertex is 
optimal.  To  achieve this, a sphere conta in ing the poly tope  and passing through 
this vertex is constructed.  Then one can build a quadrat ic  concave funct ion whose 
min imum over the sphere is at tained at this prespecified vertex. The min imum of  
this function over the poly tope  will also then occur  at this vertex. Pardalos  
generalizes this idea to indefinite quadrat ic  funct ions in [13]. 

For  the applicat ion of  the above idea to reverse convex programs we simply 
proceed as follows. Consider  the linear p rogram 

rain {ca`x[Ax <~b), 
X~R" 

where A is an rn X n matrix with m >~ n + 1, c ~ ~" ,  b ~ N" .  Let x*  be a point  
on an edge of  the po ly tope  F A = { x ~ R" I Ax  ~< b } and let a = cTx*. The idea is 
to const ruct  a sphere passing through x* and which contains  

The  const ruct ion of  such a sphere is the same as that of  [17] once we have used 
the objective to redefine the convex polytope.  We assume x*  is on an edge of  F A 
and is not  a vertex of  F A. Then x* is a vertex of  the following po lyhedron  

FAn {x~n"lca`x <~ ~}. 
We assume the fol lowing linear equalities define x*  

a [ x = b  i, i =  l . . . . .  n - l ,  

cVx = c ' x * ,  

where the first n - 1 equalities are, wi thout  loss of  generality, assumed to define 
the edge on  which x*  lies and a[ is the i th row of A. Let B denote  the matr ix 
fo rmed by the first n - 1 rows of  A and by the row c a'. Also let b @ n o t e  the right 
hand  side cor responding  to the first n - 1 componen t s  of  b and let b = (b, c'rx* )v. 
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As  observed  by  Sung and  Rosen [17], one can f ind the radius  of  a bal l  
con ta in ing  F A fq { x ~ Rn ] cVx <~ cVx.  } by  solving the fol lowing n l inear  p ro-  
grams:  F o r  i =  1 . . . . .  n - 1 

min{ a T x l A x  <~ b, cTx ~ CVX * } 

and  

min{ cTx l A x  <~ b, cTx ~ cTx * }. 

Let v~ . . . . .  G deno te  the respect ive  op t ima l  objec t ive  values of  these n l inear  
p r o g r a m s  and def ine  

v w ( ~ )  = ( v , - - ~ ,  o 2 - - ~  . . . . .  v , , - -  ~ ) ,  

where  e is an a rb i t ra r i ly  small  posi t ive  number .  Let  the j t h  c o m p o n e n t  of  the 
vec tor  r be def ined  as 

We can now state  the fol lowing theorem.  

THEOREM 3 [171 
x *  is the un ique  op t ima l  so lu t ion  to the fol lowing reverse convex p r o b l e m :  

min cVx 
s.t .  A x  <~ b, 

Z 
- II B x  - r II z ~ _ 1 / 4  II b - v ( E ) I I  :, 

where  the n o r m  is the Euc l idean  norm.  

Example 1: A three-dimensional example 

min - 2 x  I + x z -  x 3, 
x e R  :~ 

s . t .  x 1 + x 2 + x 3 ~< 4 ,  

x1~<2,  

X3~<3,  

3x 2 + x 3 ~< 6, 

x l ,  x 2, x 3 >/0.  

The  above  t h r ee -d imens iona l  p o l y t o p e  is found  in [12]. The  p respec i f i ed  edge  
po in t  is x *  = (0.5, 0, 3) with objec t ive  value  - 4 .  This  enables  us to cons t ruc t  a 
reverse  convex cons t r a in t  to be  a p p e n d e d  to the above  l inear  p rob l em.  Recal l  tha t  

the equa t ion  of  such a reverse  cons t r a in t  fs 

Z 
- II Bx - r II 2 ~< _ 1 / 4  II b - v ( e )  II z 
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Table 1 
Three-dimensional example 

.t' 1 . 2 6 9 0 5 3 7 2 4  0 . 7 3 0 9 4 6 2 7 6  1 . 2 6 9 0 5 3 7 2 4  

x ~ 2 0 0 
. I  , ,  2 1 . 3 2 6 6 3 9  0 . 6 7 3 3 6  

.2 1.9054 0.09455 0 
~3 0.5625699 0.218715 3 
x~ 0.58817 0 3 
xi 0.68017 0.31983 3 
x~ 1.8598 0 0 

x ~ 0.58817 0 3 
_l 1.46271215 1.1583201 1.37896 
zg  1 . 9 9 9 5 3 7 5 8  0 . 3 5 0 9 6 3 9  0 

.3 0.5 0 3 
x* 0.5 0 3 

where,  in this case, 

B = 
0 0 1 
0 - 1  0 

- 2  1 - 1  

and  

, = 

3) 
_0, 

4 

= 

0-~  

- 1  - c  

- 6 - ~  

, r ~ 

1.5 - e / 2  ] 

- 0 . 5  - ~ / 2 1 .  
5 - ] 

If one sets ~ = 0.2 and  al lows M I N O S  5.1 [10] to begin  at  its own c o m p u t e d  
s ta r t ing  point ,  the so lu t ion  (1.8772, 0.0, 0.0) with objec t ive  value  - 3 . 7 5 4 4  is 
found  and,  hence,  this p r o b l e m  has n o n - o p t i m a l  local min ima .  Solving the 
resul t ing  p r o b l e m  using the a lgor i thm of  sect ion 3 yields  an o p t i m a l  so lu t ion  
x* = (0.5, 0, 3) while  t ak ing  67 i te ra t ions  wi th  a C P U  t ime of  0.1 seconds  on a 
Sun S P A R C s t a t i o n  1. 

In this paper ,  an i te ra t ion  is def ined  as a s tep be tween  two successive po in t s  z~, 
z~.+l on  the b o u n d a r y  of  G. Hence ,  the to ta l  n u m b e r  of  i t e ra t ions  is the sum of  all 
such s teps in all n cones.  Tab le  1 is a s u m m a r y  of  the last  po in t s  p r o d u c e d  by  the 

a lgo r i thm of  sect ion 3. The  first row is the in te r io r  p o i n t  y;  the second  row is the  
i for i = l ,  2, 3 and  the ini t ia l  ver tex x ~ The  next  three  rows compr i se  the z .  

i fo l lowing three rows con ta in  the so lu t ions  x .  of  the  resul t ing  l inear  p r o g r a m s .  
The re  is one  re turn  to Step II  and  the next  row of  the table  is the new x ~ at which  

i the a lgo r i thm is in i t ia ted .  The  new z .  are  p r o d u c e d  and  the last  row con ta ins  the 
o p t i m a l  solut ion,  x *  = z .  3. 
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6. Numerical results 

35 

In this section, we present examples of concave minimizat ion problems as well 
as other  types of  reverse convex programs.  An iteration is defined as a step 
between two successive points _i ~k, zt-+~ on the boundary  of  G. Hence, the total 
number  of i terations is defined to be the total number  of such steps over all 
i terations and all cones. In all of  the numerical  work presented, we used a 
tolerance parameter,  for the calculation of  r h and 7b., equal to 10 -8. We also 
report  the CPU times for each example and all examples were run on a Sun 
SPARCsta t ion  1. While such C P U  times are reported, not  too much impor tance  
should be placed upon them since we made little effort to make the reverse 
convex code numerical ly efficient. For  instance, we used a bisection algori thm to 
compute  r h and 7/,. 

Some words of  caut ion regarding numerical  implementat ion are in order. In 
particular,  the convergence proof  assumes that the _i _; ~k and the ~, are computed  
exactly. Of  course, each such computa t ion  is the result of  an infinite process and, 
as a result, numerical  accuracy is extremely important .  In fact, under  relatively 
inaccurate computa t ion  of the -k -; and the z,; the final answer to the problem may 
be infeasible. This behavior  has not occurred in any of our examples using 10 -8 
as the numerical  tolerance for the calculation of  7/1 and ~,.. The numerical  
implementa t ion of  such nonconvex problems will be the subject of  another  paper.  

6.1.  C O N C A V E  M I N I M I Z A T I O N  E X A M P L E S  

Note  that the const ruct ion of  the interior point  y is trivial for concave 
minimizat ion problems subject to linear inequali ty constraints  because of  the 
assumpt ion  that dim(F4) = n. 

Example 2." Falk-Hoffman example 

m i n  
.x.E~ 3 

s . t .  

- ( x ,  - 1 ) 2 - x  2 -  (x  3 -  1) 2, 

x~ + x 2 - x 3 ~< 1, 

- x ~ + x  2 - x  3~< - 1 ,  
12x I + 5x 2 + 12x 3 ~< 34.8, 

12x 1 + 12x 2 + 7x 3 < 29.1, 

- 6 x  l + x  z + x  3 ~ < - 4 . 1 ,  

X 1, X 2 ,  X 3 ~ O. 

In order  to use the reverse convex a lgor i thm and a linear p r o g r a m m i n g  sub- 
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Table 2 
Falk - Hoffman example 

y 1.0006 0.498152 1.012933 0.981522 1.229846 

x ~ 1.0333 0.4 1.7 0 40 
_1 1.0333 0.4 1.7 39.348 40 
.2 0.982627 0.694459 0.71183 0.9736 1.5393 
.3 0.95891 0 1.2591 0.9859 1.05479 
.4  , ,  1.4236058 0.265115 0.688721 0.97909 1.325718 
z~ 1.03333 0.4 1.7 0 0.65111 
x~ 1 0 0 0 2.5281 
x~ 1.76 0 1.14 39.184 40 
x~ 1 0.9 0.9 38.53 40 
.4 0.72857 0 0.27143 37.583 40 X ,  

x~ t 0 0 37.47 40 

x ~ 1 0 0 37.47 40 
_1 1.000531 0.72967 1.173508 6.0109 6.5734 =* 

z~ 0.943949 0.49681 1.0668808 1.079436 1.333876 
_3 1.237667 0.479859 1.212811 2.32154 2.65355 =,  
.4  , ,  1.000615 0.498152 1.012933 0 0.248324 
.5 1 0 0 39 40 
x * 1 0 0 39 40 

rou t ine ,  we i n t r o d u c e  two  n e w  n o n n e g a t i v e  va r i ab l e s  ~1, "qz thus  r e w r i t i n g  this  

p r o b l e m  as: 

ra in  ~h - ~2, 
-q~ ..02 E R ,.t- ~ ~ 3 

s.t. xl + x  2 - x  3~< 1, 

--x~ + x 2 - - x 3  ~< - - 1 ,  

127q + 5x 2 + 1 2 x  3 ~< 34.8 ,  

1 2 x  1 + 1 2 x  2 + 7x 3 ~< 29 .1 ,  

- 6x~ + X 2 ..I_ X 3 ~ - -  4 . 1 ,  

~1 ~< 40,  

~2 ~< 40, 
X l ,  X 2 ,  X 3 ,  "1]1, ~ 2  ~ O ,  

- ( x ,  - 1)  2 -  - 1)  2 -  , ,  + , 2  0 .  

N o t e  tha t  b o u n d s  on  ~ a n d  ~2 h a v e  a lso  b e e n  i n t r o d u c e d  d u e  to the  o r i g i n a l  

a s s u m p t i o n  tha t  the  p o l y t o p e  is b o u n d e d .  T a b l e  2 is a s u m m a r y  of  the  i n t e r -  

m e d i a t e  p o i n t s  g e n e r a t e d  by  the  a l g o r i t h m .  T h e  f irs t  r o w  is the  i n t e r i o r  p o i n t  

y ~ In t (FA)  n 3G. T h e  s e c o n d  row is the  in i t i a l  v e r t e x  x ~ T h e  n e x t  5 rows  p r o v i d e  

the  c o o r d i n a t e s  o f  z~, . . . . .  z ,  5 ( the  two  last  c o l u m n s  i n d i c a t e  the  va lues  o f  01 a n d  

~2), a n d  the  f o l l o w i n g  f ive  rows  p r o v i d e  the  c o o r d i n a t e s  o f  the  s o l u t i o n s  o f  t he  5 
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l i n e a r  p r o b l e m s  s o l v e d  a t  S t e p  I V  o f  t h e  a l g o r i t h m .  W e  r e t u r n  to S t e p  I I  w i t h  t h e  
i n e w  x ~ = x .  5. T h e  n e w  z . ,  i = 1 . . . . .  5 a r e  c o m p u t e d  a n d  it  is f o u n d  t h a t  x *  = z .  5 

is o p t i m a l .  F i n a l l y ,  t he  l a s t  r o w  c o n t a i n s  t h e  o p t i m a l  v e c t o r  in  t h e  h i g h e r  

d i m e n s i o n a l  s p a c e  c o n s i d e r e d  ( b e c a u s e  o f  t h e  a d d i t i o n  o f  t w o  v a r i a b l e s ,  t he  s p a c e  

is R 5 r a t h e r  t h a n  R3) .  T h e  m e t h o d  r e q u i r e d  61 i t e r a t i o n s  w i t h  a r e s u l t i n g  C P U  
t i m e  o f  0 .4  s e c o n d s .  

Example 3: Six-dimensional cube example 
m i n  l O . 5 x  1 - 3 . 9 5 x  2 + 3 . 0 x  3 + 5 . 0 x  4 

X ~ R  6 

+ 1 . 5 x  5 - 1 . 5x  6 - 1 . 5x  2 - x~ 

2 _  2x4Z_ x s -  2 . 5 x  2, - - X  3 

s . t .  0 ~< x 1 ~< 99,  

0 ~ < x 2 ~ < 9 9 ,  

0 ~< x 3 ~< 99 ,  

0 ~< x4~< 99,  

0 ~ x 5 ~ 99 ,  

0 ~< x 6 ~< 99.  

Table 3 
Six-dimensional cube example 

y 0.999945 0.999945 0.999945 0.999945 
0.999945 0.999945 100.00005 94.449866 

x ~ 99 99 99 99 
99 99 0 10000000 

z~ 99 99 99 99 
99 99 9913231.4499 10000000 

z~ 0 1.000033 1.000033 1.000033 
1.000033 1.000033 99.999965 103.45033 

.3 0.999897 0 0.999897 0.999897 
0.999897 0.999897 100 89.500364 

. 4  , ,  0.999965 0.999965 0 0.999965 
0.999965 0.999965 100 96.449879 

. 5  ~, 0.999975 0.999975 0.999975 0 
0.999975 0.999975 100 97.44991 

z~ 0.999950 0.999950 0.999950 0.999950 
0 0.9999505 100 94.9499078 

z~ 0.9999064 0.9999064 0.9999064 0.9999064 
0.9999064 0 100 90.45037 

z~ 99 99 99 99 
99 99 0 86768.55 
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This example is used as a test example since it has the obvious answer x * =  
(99, 99, 99, 99, 99, 99). Table 3 is a summary of the intermediate points generated 
by the algorithm. The first row is the interior point y ~ hat(F4) C3 OG. The next 
row is the initial vertex x ~ The next 8 rows give the coordinates of zl,, _s . . . .  ~, and 
table 4 provides the coordinates of the solutions of the 8 linear problems solved 
by Step IV of the algorithm. Finally, the last row of table 4 contains the optimal 
vector in the higher dimensional space considered (because of the addition of two 
variables, the space is R s rather than •6). There were no returns to Step II. The 
algorithm used 40 iterations with a CPU time of 0.6 seconds. 

E x a m p l e  4." S i x - d i m e n s i o n a l  s l i c e d  c u b e  e x a m p l e  

rain 10.5x I - 3.95x z + 3.0x 3 + 5.0x 4 

+ l . 5 x  5 -  1.5x 6 -  1.5x 2 -  x 2 

- . x  5 - 2 x ~  - x ~  - 2 . 5 x g ,  

s.t. 0 ~< .~g ~< 99, 

0 ~ < x 2 4 9 9 ,  

0 ~< x 3 ~< 99, 

0~<x4~<99, 

0 ~< x 5 ~< 99, 

0 ~< x 6 ~< 99, 

x 1 + x 2 + x 3 + x 4 + x 5 + x 6 ~ 500, 

x I + 3x 2+ 6x 3+ 2x 4>/-50, 

3x s + 4x 6 >~ 50, 

x 3 + 2 x  4 + 3x 5 + x 6 ~< 350. 

After 67 iterations the algorithm produced the vector x* = (99, 99, 53, 99, 0, 99) 
with f ( x * ) =  -70262.05. As a means of comparison with existing codes for 
nonlinear programming, we ran the same problem using the well-known MINOS 
5.1 [10] package, obtaining the vector x**  =(99,  99, 99, 76, 0, 99) with an 
objective value of approximately -69181.04. 

6.2. REVERSE CONVEX TEST PROBLEMS 

The following test problems have been generated using the theoretical results 
of section 5. Given a linear problem with a bounded feasible region, and given a 
point x* on an edge of this polytope, a subroutine first builds a quadratic 
function such that, if the corresponding reverse convex constraint is appended to 
the linear problem, x* is optimal for the resulting reverse convex problem. The 
construction of the interior point y is done heuristically. Two different vertices of 
the polytope are chosen, say by maximizing and minimizing a linear objective, 
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Linear program 
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solutions; six-dimensional cube example 
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x~ 99 99 99 99 
99 99 0 86768.5473 

x~ 99 99 99 99 
99 99 991320 10000000 

x~ 99 99 99 99 
99 99 991320 10000000 

x~ 99 99 99 99 
99 99 991320 10000000 

x~ 99 99 99 99 
99 99 991320 10000000 

x~ 99 99 99 99 
99 99 991320 10000000 

x~ 99 99 99 99 
99 99 991320 10000000 

x~ 99 99 99 99 
99 99 991320 10000000 

x*  99 99 99 99 
99 99 0 86768.5473 

a n d  t h e n  t h e  l i n e  b e t w e e n  t h e m  is s e a r c h e d  f o r  

o f  G.  

Example 5." A twenty-dimensional example 
r a i n  

xE• 211 

s u b j e c t  t o :  

a n  i n t e r s e c t i o n  w i t h  t h e  b o u n d a r y  

- 9 x  t - 2 x  5 - 8 x  9 - 6x13 - 3x17 - 6 x  2 - 7 x 6  - 9Xlo 

- X l  4 - 5x18 - 7x3 - 8 x  7 - 6 x l l  - 3x15 - 4 x t 9  

- 5 x  4 - 4 x  8 - 3 x l z  - 2x16 - 3:20 , 

X 1 + X 2 " t - X 3 + X 4 ~  l ,  

X 5 n t- X 6-}- X 7 q- X 8 <~. 2 ,  

X 9 -F XI0 -t'- Xll  "1"- X12 ~ 3,  

X13 ~- X14 "t- X15 -t- X16 ~ 3,  

X17 -t- X18 "1"- X19 -Jr- X20 ~ 4 ,  

x~ + x 5 + x 9 + xa3 + x~7 ~< 3 ,  

x 2 + x 6 + x m + x t4  + x~8 ~< 3,  

X 3 -{- X 7 -{'- Xll  "1- Xl5 Jr X19 ~ 3,  

X 4 -I- X 8 + X12 -Jr- X16 q- X20 ~ 3, 
0 ~ < x i ~ <  1,  i = 1  . . . . .  2 0 .  
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The prechosen edge vector is: 
x*  = (0.5, 0, 0 , 0 ,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1), 

with objective value of  v* = - 1 7 . 5 .  Then  a reverse convex constraint  is con- 
structed as described in section 5. The reverse convex algori thm finds, in 82 
iterations with C P U  time = 2.1 seconds, the vector 

x * *  = (1, 0, 0, 0, 0, 0, 0, 0, 0.33762972396, 0, 0.9665335136736, 0, 0, 0, 0, 
0, 0, 0, 0, 0) 

with opt imal  objective value v* = - 1 7 . 5 .  No te  that x * *  ~ x* .  This occurs since 
we deliberately took e, of  the previous section, equal to zero and, therefore, an 
alternative opt imal  solution can be produced.  
Example 6: A forty-dimensional example 

min - 2 1 5 x  1 - 116x 2 - 670x 3 - 924x 4 - 510x 5 
x ~ R  a~ 

- -600x  6 -- 424x 7 -- 942x s -- 43x 9 -- 369Xlo 
--408Xla -- 52x12 -- 319x13 -- 214X14 -- 851x15 

88x17 -- 124X18 + 17X19 -- 779X2o 
258x22 -- 271X23 -- 281X24 -- 326x25 
485x27 -- 454x28 -- 297x29 -- 53x30 
796X3z -- 114X33 -- 43X35 
179x37 -- 78x38 -- 105x39 -- 281x40 ' 

- -  394X16 -- 
- -278X21-  
-- 819Xz6 -- 
-- 136X31 -- 
-- 268X36 -- 

su~ec t  to 
8x I + l l x  2 + 6x 3 + x 4 "}- 7X 5 "4- 9X 6 + 10X 7 + 3X 8 
+ l l x  9 + l lxa0 + 2Xll 
+X12 + 16X13 + 18X14 + 2X15 + X16 + X17 + 2X18 + 
3Xa9 + 4X20 + 7X21 + 6X22 
2X23 + 2X24 + X25 + 2X26 + X27 + 8X28 + 10X29 
+ 2X3o + x31 + 9x32 + x33 
+ 9x34 + 2x35 + 4x36 + 10x37 + 8x38 + 6x39 + X4o ~< 5000; 
5x 1 + 3 x  2 + 2 x  3 + 7 x  4 + 7 x  5 + 3 x  6 + 6 x  7 + 2 x  8 + 1 5 x  9 
+ 8Xlo + 16x~1 

+X12 + 2X13 + 2X14 + 7X15 + 7X16 + 2X17 + 2X18 + 4X19 
+ 3X20 + 2X2a 
+ 13X22 + 8X23 + 2X24 + 3Xz5 + 4X26 + 3X27 + 2X28 + X29 
+ 10X3o + 6X3a 
+ 3X32 + 4x33 + x34 + 8X35 + 6x36 + 3X37 + 4X38 + 6X39 
+ 2x4o ~< 5000; 
3x I + 4 x  2 + 6 x  3 + 2 x  4 + 2 x  5 +  3x 6 + 7 x  7 +  10x 8 +  
3x 9 + 7x10 + 2Xll 
+ 16x~2 + 3xa3 + 3x~4 + 9x~5 + 8x~6 + 9x17 + 7x18 
+ 6x19 + 16x20 + 12x21 
+x22 + 3x23 + 14x24 + 7x25 + 13x26 + 6x27 + 16x28 
+ 3x29 + 2x30 + x31 
+2x32 + 8x33 + 3x34 + 2x35 + 7X36 -t- X37 + 2X38 "t'- 6X39 
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+ 5X4o ~< 5000; 
0 ~<xi~< 99, i = 1  . . . . .  40. 

Again,  by r u n n i n g  a procedure  that creates a reverse convex cons t ra in t  to be 
appended  to this l inear  program, we bui ld  a reverse convex prob lem with 
prechosen opt imal  vector 

x*  = (49.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

and  objective value o* = -10642 .5 .  The a lgor i thm finds x*  after 189 i terat ions 
and  a C P U  time of 5,2 seconds. 
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