Annals of Operations Research, 25 (1990) 19-42 19

A LEVEL SET ALGORITHM FOR A CLASS OF REVERSE
CONVEX PROGRAMS

Sihem BEN SAAD
AT&T Bell Laboratories, Holmdel NJ 07733, USA

Stephen E. JACOBSEN
Department of Electrical Engineering, University of California, Los Angeles, CA 90024, USA

Abstract

A new algorithm is presented for minimizing a linear function subject to a set of linear
inequalities and one additional reverse convex constraint. The algorithm utilizes a conical
partition of the convex polytope in conjunction with its facets in order to remain on the level
surface of the reverse convex constraint. The algorithm does not need to solve linear
programs on a set of cones which converges to a line segment.

1. Introduction

A constraint g(x) <0 is called a reverse convex constraint if g is a quasi
concave function. Optimization problems with reverse convex constraints gener-
ally induce nonconvex feasible regions which are often disconnected into several
nonconvex parts. As a result, problems with such constraints generally have local
optima which are not global optima.

Problems of this form were first studied by Rosen [15] in a control theoretic
setting and subsequently, in an engineering setting by Avriel and Williams [1,2].
For a recent interesting application in VLSI design, see Vidigal and Director [24]
and Thach [19]. Rosen developed a successive linearization technique which
converges to a Kuhn-Tucker point. Meyer [9], in a more general setting, proves
convergence to a Kuhn-Tucker point and it is from that paper that the term
“reverse convex” is taken.

Ueing [23] was the first to consider global optimization for problems with
reverse convex constraints. In fact, the problem Ueing considers is the minimiza-
tion of a concave function subject to only reverse convex constraints and he
develops a combinatorial approach based upon maximizing the objective subject
to various combinations of reversals of the reverse convex constraints. Subse-
quently, Bansal and Jacobsen [4,3] studied the global optimization of a reverse
convex program which represented the maximization of network flow capacity. In
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particular, the incremental capacity cost functions were concave and, hence,
represented economies-of-scale. Hillestad (8] then developed an edge search
procedure for a linear program with one additional reverse convex constraint.
Subsequently, Hillestad and Jacobsen [6] studied optimization problems with
only reverse convex constraints and showed the convex hull of the feasible region
is a convex polytope. They also suggested a cutting plane procedure, based upon
Tuy cuts {20}, as a possibly useful procedure for finding a good solution; however,
they demonstrated that such a method need not converge to a feasible solution.
Hillestad and Jacobsen [7] then presented an algorithm, for linear programs with
one additional reverse convex constraint, which relies on simplex pivots and
vertex enumeration of the feasible region intersected with the hyperplane de-
termined by the current objective value. Tuy [22] then developed a method for
convex programs with one additional reverse convex constraint which relies upon
being able to solve concave minimization problems. In the latter paper, Tuy also
shows that several reverse convex constraints can be converted to one such
constraint at the expense of introducing an additional convex constraint and an
additional variable. Tuy [21] also shows that virtually any optimization problem
can, theoretically, be approximated by a convex program with one additional
reverse convex constraint. Indeed, this latter result justifies the importance of this
class of optimization problems.

In addition to the above relevance of reverse convex programs, insight is
gained into the computational complexity of this class by observing that the 0 — 1
linear integer programming problem is equivalent to the associated bounded
variable linear program with the additional reverse convex constraint Y(x, — x?)
< 0. Similarly, the minimization of a concave function f subject to linear
constraints is obviously convertible to a linear program with one additional
reverse convex constraint; in particular, choose an additional varniable, x,,,, and
minimize x,,, subject to the linear constraints and the additional reverse convex
constraint f(x)—x,,, <0.

Because of the close relationship between reverse convex programs and con-
cave minimization, the reader is referred to the recent survey article by Pardalos
and Rosen [14]. For additional papers on reverse convex programming which use,
in one way or another, Tuy cuts [20] see, for example, [16,18,11,5].

2. Definitions

We briefly introduce the notation to be used throughout the paper. We denote
by F, a bounded convex polytope in R" defined by a system of linear inequali-
ties; that is

F,={xeR"|Ax>b},
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where A is an m X n matrix, m > x, and b is an m-vector. Let
G={xeR"|g(x)<0)

and
G°={xeR"|g(x) >0},

where g 1s a continuous concave function on R”. We assume G and G° are both
non-empty. Let F=F,NG. The problem to be considered in this paper is:
min{c"x [ x € F}).

DEFINITION 1
Let x° be a vertex of F,. The function 7, is defined to be:

MR >R U{+00}

where a; = min{a > 0: g(x°+ a(z — x°)) =0} if this minimum exists, and o, =
some constant a otherwise (a > 1).

DEFINITION 2
Let y be an interior point of F;. The function 7, is defined to be:

7, R">R U {+ o0}
oy (2) = a,

where @, =min{a>0: y+a(z—y) €3F,}.
Note that the existence of an interior point y of F, is equivalent to dim( F,) = n.

DEFINITION 3

Let z!,...,z" be n affinely independent vectors of R" with respect to some
point x° of R". Then H[:z!,...,z"] denotes the convex hull of Z',...,z",
H[z',..., z"] denotes the plane defined by Z',..., z" and #*[Z',..., z"] denotes

the half-space not containing x°, whose bounding hyperplane is J#[z',..., z"].

DEFINITION 4

C[v',..., v"] denotes the cone originating at the origin and generated by the n
linearly independent vectors o',...,¢" of R” ie, C[V',...,v"]={z€R" s.t.
Z=ot]v1 + .. tap", 20, 0,20}

We introduce in the following the notion of a “y-conical coverage” of the
feasible region.

DEFINITION 5
Given an interior point y of F, and n points z',..., z" such that, for each
i=1,...,n, the vectors z},..., z'"' y, z'*1 ..., z" are affinely independent with
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respect to some vertex x° of F,, a y-conical coverage of F is defined to be a set

of cones C,, i=1,..., n, where

C = {x°) +C[zl—x°,...,z’"1*x°, y=x% ! _«\'0»--~v2"’xo]

and such that the following conditions are satisfied:
(i) Ul_,C2F;
(ii) g{z/)=0for j=1,....n.
Note that an initial y-conical coverage can be found as follows: Assume we
can find an interior point y of F, such that g(y)=0, and let x° be a
nondegenerate vertex of F, which is infeasible for the reverse convex constraint.

Then let v',...,v" in F, be the n neighboring vertices of x° and, hence, x°,
v, ..., v" are affinely independent. Let z',..., z" be the n points where the rays

{u)u=x"+a(v'—x°), a> 0}
first intersect 0G, i.e.,
2= a0y (o) = )

for i=1,...,n Let
C={x)+C[2"=x% .., 27 =0 y—x0 2T =0 2" = x0].

Then {C,}7_, is an initial y-conical coverage for F.

Note that we have assumed the existence of intersection points of the rays
{ulu=x"+a(v'— x%)} with 9G. This assumption is not critical to the algorithm
to be presented later.

The idea of the algorithm is to start with the initial coverage and for each cone
C={x°}+C[z' = x%..., 27 = x0 y—x% 2" —x% ... 2" = x"], and for
each z’/ & F,, compute the point where the line segment [y, z/] intersects the
boundary of F,. That is, we compute 7,(z”) and set

=y +m,(20)(= = ).
We then redefine z/ by finding the point where the half-line

x°+a(u’ —x%), ax=0
intersects 3G. That is, we compute 7,(u/) and redefine z/ by

7= x4+, (u/ ) (u/ — x°).

At this point, we collect the major assumptions which are to hold throughout

the remainder of the paper:
(1) g is a continuous, concave function defined on R”".
(2) G° is bounded. This assumption guarantees that certain line search problems,

in the algorithm, will have solutions.
(3) Int(F,) is not empty.
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(4) A point y € Int(F,)NdG is available. This assumption is crucial and, in
particular, rules out the 0 — 1 linear integer programming problem. A proce-
dure for heuristically finding y is discussed at the beginning of section 6.

The next section gives a detailed statement of the algorithm and provides a
simple geometric example to explain the algorithm’s steps.

3. Statement of the algorithm

Assume we have at hand a point y € Int(F,) N 3G. Let F, = F,.
Step- 1 Solve the linear program

min{c"x|x € F, }

and assume x° is a nondegenerate vertex optimal solution.

Step- I If x° € G, stop.
Otherwise, construct an initial y-conical coverage as described in section 2.
Set INFEAS = { j|z/ & F,}.

Step- III DO WHILE INFEAS # @
FOR EACH ; € INFEAS DO
find the last point on the line segment [y, z/] which is in F,; that is,
compute 1,(z’). Define

w=y+m,(z/)(z/-y)
and redefine z/ as
2/ =x%+ n(u ) (u/ - x°).

If z/ € F,, remove j from INFEAS.

END DO
END DO WHILE
Step- IV Let
C.= {xo} + C[zl —x% .., 2 = X0, y—xo, it —x0 z"—xo],
M+ =%+[21’”"zi—1, v, Zi+l,‘“’zn].
For i=1,..., n solve the linear program

min{c'x|x € F, No#")

and let xj denote an optimal vector.

IF (min,_, ,{¢"z'} > max,_, ,{¢"xi}) THEN

let

H*= {xEIR"|ch>
i=1,...,

let £,=F,NH",

let x°=argmin{c"x§, i=1,...,n).
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Fig. 1. Two-dimensional example — algorithm’s steps.

Return to Step II

ELSEIF (min,_, {c"z'} < max,_, ,{c"x4}) THEN
let

H*= {x €R"|c"x> min cTzi},

let F,=F,NH",

let x°=argmin{c"z, i=1,..., n}.

Return to Step II.

To illustrate the algorithm geometrically, consider the two-dimensional exam-
ple in fig. 1. The point x° is optimal for the linear program and x° & G. Given
the point y € Int( F}), the initial y-conical coverage is given by C; and C,, where

C={x)+C[z'=x% y—x7]
and
C={x")+C[z2-x° y—x°].
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Fig. 2. Two-dimensional example — Step IV.

In what follows, we focus only on reductions of C,. Given v', a neighboring

vertex of x° we move to the boundary of G, 3G, by computing n,(v'). Since
z' & F,, we move from z' to the boundary of F,, 3F,, in the direction y ~ z' and
thereby obtain the point u'; that is, we compute 1,(z'). The new z' € 3G is then
computed by moving from u' in the direction «' — x%; that is, we compute
n,(u"). This process continues and, as shown in fig. 1, the resulting sequences of
z’s and u’s converge to zix € 3F, N dG. Similarly, one can easily see that this
process carried out upon C, will quite rapidly, for this example, lead to zi € 9F,
N 8G. Note that in the two-dimensional case, as depicted in figs. 1 and 2, an
optimal point must be among the vectors { z3, z4}. That is, if one solved the two
linear programs (there is no need to do so in two dimensions)

min{ch|xEE4r\.)fi+}, i=1,2,

an optimal solution (in this case z}) for the reverse convex program is also
optimal for one of these linear programs. In particular, this implies that in two
dimensions Step II of the algorithm is not reentered.
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4. Convergence of the algorithm

PROPOSITION 1

Consider the sequences {z;},, i=1,..., n, generated by the algorithm. For
each i=1,..., n, the entire sequence is contained in the cone originating at x°
and generated only by the two vectors going respectively through the interior
point y and the neighboring vertex v of x% ie., forall k=1,2,....:

e (x°)+Cly—x° v —x°].
In particular, this result implies that any accumulation point zi of {z;}, is also
in the above cone.

Proof
This proposition will subsequently allow us to carry out a proof of affine
independence of the limiting vectors zj, i =1,..., n and also gives some insight

into the geometry of this algorithm. Let us show by induction that each entire
sequence { z; }, is contained in a cone generated by two rays.

For k=1, the claim is certainly true since z{ — x°=a(v'— x°) for some
aceR* i=1,..., n. Assume the result to be true for k > 1; the algorithm finds
the intersection of the line segment [y, z;] with the polytope F,, call it uj. We
have:

ue =y +n,(z)(zi )
or

up=(1=mn,(z))y +n,(zi) i,
lLe. u} is a convex combination of y and zj. Moreover,

ye {x°) +Cly—x° v =x°],

zie {x°}+C[y—x° v'—x°] by the inductive hypothesis,
and

{(x°) +C[y—x° v - x is a convex set.

Consequently, u} € {x}+ C[y—x° v' — x°]. The next step of the algorithm
extends the ray going through u} so as to hit the reverse convex constraint, thus
constructing z; ,

Ziewr = X0+ my(u ) () — x°)
= (1 _’71(”2)))‘0 +771(“i-)”5<~
Therefore, since x° and u;, are both in the set {x°} + C[y — x°, v’ — x°], we have
7p ., €{x°} + Cly —x°% v' — x°]. Since {x°}+ C[y—x% v'—x°] is a closed
subset of R”, we also have that zf € {x°} + C[y — x°, v/ — x°]. This shows that
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for each of the major iterations, i =1,..., n, of the algorithm, the sequence { z} },
stays within a two-dimensional subspace of R”. O

A similar argument also shows that for each /=1,..., n, the sequence {z}},
generated by the algorithm has the property
zp, €{x°)+ Cly—x° zi —x°].

The proof of convergence of this algorithm consists of three parts: We will
start by showing that for each index /i =1,..., n, the sequence {z}}, generated
by the algorithm converges to an element zj in 3F, N 3G. Then we will show that

the resulting n vectors z, i=1,...,n have the property that {z},...,z{"', y,

zit1,...,z}) are affinely independent with respect to x° for i =1,..., n. The third

part of the proof consists in showing that, from one iteration of the algorithm to
the next, no part of the feasible region is deleted.

For the first part, since the proof is the same for each index i=1,..., n, we
will drop the superscript.

The algorithm consists of the following main iteration: Given a current
z, € 9G, some intermediate point u, is constructed such that:

uk=y+77_y(zk)(zk—y)’ (1)

Zewr = X0+ 1 () — x°). (2)
And consequently,

“k+1=)’+"7_y(zk+1)(zk+1—)’)- (3)

Let us then look more closely at the sequence { «, }. By combining (2) and (3) we
can see that

uk+1=¢(uk)’
where
o (u) =y +n,(x+m(u)(u—x°))(x°+n,(u)(u—x°) —y).

This relationship shows that the algorithm is of the fixed-point type.

LEMMA 1 _
The function ¢ is continuous on G°, the closure of G°.

Proof
The functions 7, and 7, can be written as

n(z) = min{a >0: g(x°+a(z—x%) =0},

n),(z) = min{a > 0: min {(A,-(y+ a(z—y)) _bj)z} =O>.

Jj=1n

It is immediate that 7, and #, are continuous on G¢ and, hence, so is ¢. O
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LEMMA 2
Let u, be an accumulation point of {«, }. Then, u, € 3F, N 3G.

Proof

Because of proposition 1 and the fact that y € Int( F,), the intersection of the
cone {x°} + C[y— x° v— x°] with the bounding faces of F,, which contain
elements of { u, }, must be the union of line segments. We denote this intersection
by U~ ,L;, which is a compact set because of the assumed boundedness of F,.
Since {u, } cU/,L,, an accumulation point u, exists, and ¢(u,)=u,,,. Let j
be the index such that u, € L,. By construction of the algorithm we have, for all
sufficiently large k, u, ., € (uy, u,) € L;, which implies that {u,} and {4}
have the same accumulation point uw,. By continuity of ¢ we have u, = ¢(u*)
and therefore u, € dF,N0G. O

THEOREM 1
For each i =1,..., n, the sequence { z} }, generated by the algorithm converges

towards z; € 9F, N 9G.

Proof
Again, we drop the superscript which denotes a particular cone. We know there
exists uy € 0F, N G such that {u,} converges to u,. We have
Zr = x0+my (), — x°).
Consequently, { z*} must have a limit point z, such that
ze = x4+, (ug) (g — x°).
Since 7;(u,) =1, we have z, = u,. Thus z* €9F,N3G. O
Having found the limiting vectors zi, i =1,..., n, the last step of the algorithm

constructs the hyperplanes going through y and n —1 of these points. Conse-
quently, we need to prove the affine independence of these vectors.

LEMMA 3 .
For each i=1,....n, {v! =x% .., 07 =x% y—x% /"1 =x% ..., 0" —x"}
are linearly independent. v',..., v" are the n neighboring vertices that are used

for the original cone coverage.
Proof
Assume there exist «a, ..., a, such that
(v =x")+ .4 (VT =x) +a(y—x) (0T =X +

+a,(v"—x%) =0.
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Since y € Int( F,), there exist a,,..., a, > 0 such that
y=a,(v' =x")+ ... +a,(v"—x%).
Consequently, from the linear independence of (v' — x°),...,(v" — x°), we have

a; +a,a, =0,

oyt oa; =0,

o toa,,, =0,

a,+woa,=0,
aa;,=0.
From the last equality, since a; > 0, we get a, = 0, which implies a; = ... = a,=0.
a

PROPOSITION 2

The limiting vectors z§, i =1,..., n generated by the algorithm are such that,
for each i=1,...,n, z}, ..., 247", y, zi*1, ..., zI are affinely independent with
respect to x°.

Proof
It is sufficient to show that z} —x° 2z2—x%. .., zi'—x% p—x% zit!'-—
x% ..., z§ — x° are linearly independent. Assume there exist a,,..., a, such that:

a(zk —x)+ . e (2 = x) e (y—x°) +
o (2T = x%) + .. +a,(zf —x%) =0.
We also have, since zi € {x°} + C[y — x°, v'— x°]:
Vi=1,...,n,3M >0, A,>0,s.t. z{ —x°=A(y—x°) + A (v/ — x°).
Consequently, we have
(N, + .o N7 et N e N ) (= x0) + N, (0 = x0)

+oota N 0T =X e AT = X0 + L+, Ny (07— x%) = 0.

0 i+l _ _0 0

Since ' —x%..., 0" =x0 y—x% v X0 . —x
dent, the latter equality implies

i

are linearly indepen-

(aN) + .. o N7V + o N L+, N)) =0,
al}\12=0,

1
a;_ Ny =0,

i+l
a; Ny =0,

a, N, =0.
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Since zy,..., zj € 3F,, and y € Int( F,), we have
N,#0,...,N5#0.
Thus, from the last n — 1 equalities, we have
q=..=0a,_,=0,,,=...=a,=0.
Therefore, the first equality yields a;=0. O
We now show that, at each iteration, no feasible point is deleted.

LEMMA 4
Let ¥ =%z}, ..., 27" y, zF1,-.., z]. Then, for each k,

{ f’:l(jfiﬂk))c} nNF=0.
Proof

By construction, the claim is true for k =1, i.e., when z{ = x° + a(v' — x°), for
some o greater than zero. Assume the claim is true for k; i.e., assume

. . C
{ (ot 2 s 2] }ﬂF= %
and also assume:
P . B C
{ﬂ;;]()ff[z}\.ﬂ, PSSP L - A S5 | }ﬁF;ﬁ .
Note that, since one iteration of the algorithm corresponds to a move with
respect to one of the z’s, it is sufficient to prove the claim for the index / = 1. Let

x € F be an element of the above non-empty intersection. We start by noticing
that

;’=1(3f,+[2,1\., 2. n7h y, z,",”,...,z,(.'])c
=Int({y} + C[z}\.—y,...,z,",’—y]).
We have
g(x) >0,

x&Int({y}+ C[u}\.—y, 2=y, z,'j—y]),
xelnt({y}+ C[z}‘.+l -y, z} =y, z} —y]).

Consequently, 3v € (u}, z},,), 3a, €(0, 1), 3a,,..., a, > 0, such that
x—y=a(v-y)+tayzi-y)+... +a,(zi—y),

Note that g assumes non-negative values on the half-line originating at y and
with direction x — y. This fact, combined with g(y) = g(x) = 0, implies, because
of the concavity of g, that g(%) =0 for all X on this half-line. Therefore, let ¥ be
such that
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That is,
a a
- 1 2 ' y
X=— v+ —5 o+ =tk

Z,«=1ai Z,-=1ai Z'-’_.]ai ’

Thus, by concavity of g

a a . .,
Lg(v)+ —2 g(z,f)+...+—g(zk).

Z:;]al Zi=1ai Z,,',—]ai

Since g(v) = 0 and g(z}),..., g(z}) =0,

g(x) >

a,

-1
Zi=1ai

g(%)> g(v)=0.

Therefore,
g(%)=0=a,g(v)=0=¢g(v)=0,

which contradicts the fact that z, ,, is by construction the first point on the line,
originating at x° and going through u}, where g attains the zero value. Therefore
one cannot have g(x) =0 and, hence, x& F. O

THEOREM 2
The algorithm converges to an optimal solution of the reverse convex problem.

Proof
The last step of the algorithm solves the following »n linear probiems:
min ¢'x,
xeR"
X EF, ﬂ%”*[zl,..., iy, oz z,'.!].

Let x4 be a solution thus obtained to the above linear problem. As seen
previously, no feasible point has been eliminated and, consequently,

n +
T DF.
Therefore, for any x € F,
¢"x > min{c"x},...,c"x}},

and the algorithm resumes, setting x°:=argmin{c'x}, i=1,...,n}, or x°:=

argmin{c'z, i=1,...,n}, and F,==F,N{x€R"|c"x > c"x°}). The algorithm
stops if x° € F (i.e., g(x°) =0). This has to happen since, at each execution of
Step II of the algorithm, the neighboring edges of x°, one of which being an edge
of the original F,, is eliminated from further searches.
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S. Construction of test problems

This section develops a method for constructing linear programs with an
additional reverse convex constraint whose optimal solution is known. The
method is an application of the procedure of Sung and Rosen [17] for construct-
ing a concave minimization problem whose vertex optimal solution is known.

Testing the algorithm against known sample problems led to the realization
that very few numerical examples of significantly high dimension exist in the
literature for the obvious reason that they are hard to solve. The question that
naturally follows then is: How does one develop a set of reverse convex problems
whose solution is known beforehand? The same question has been raised in the
context of the minimization of a concave function on a bounded polytope and a
variety of methods have been proposed. Sung and Rosen [17] developed a method
based on the following geometric fact: since the minimum of a concave function
over a polytope is attained at one of the vertices, one can choose, in advance, a
vertex and then construct a concave function for which the chosen vertex is
optimal. To achieve this, a sphere containing the polytope and passing through
this vertex is constructed. Then one can build a quadratic concave function whose
minimum over the sphere is attained at this prespecified vertex. The minimum of
this function over the polytope will also then occur at this vertex. Pardalos
generalizes this idea to indefinite quadratic functions in [13].

For the application of the above idea to reverse convex programs we simply
proceed as follows. Consider the linear program

min {c'x|Ax< b},

xER"
where 4 is an m X n matrix with m>n+1, ceER", b€ R". Let x* be a point
on an edge of the polytope F, = (x €R"| Ax < b) and let a = c"x*. The idea is
to construct a sphere passing through x* and which contains

F,n{xeR"|"x<a}.

The construction of such a sphere is the same as that of [17] once we have used
the objective to redefine the convex polytope. We assume x* is on an edge of F,
and is not a vertex of F,. Then x* is a vertex of the following polyhedron

F,Nn{xeR"|c"x<a}.
We assume the following linear equalities define x*

alx=b,, i=1,...,n—1,

cTx=c"x*,
where the first n — 1 equalities are, without loss of generality, assumed to define
the edge on which x* lies and a] is the ith row of 4. Let B denote the matrix

formed by the first n — 1 rows of A and by the row ¢". Also let b denote the right
hand side corresponding to the first n — 1 components of b and let 5 = (b, ¢Tx*)".
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As observed by Sung and Rosen [17], one can find the radius of a ball
containing F, N {x€R"{c'x <c¢'x*} by solving the following n linear pro-
grams: Fori=1,...,n—1

min{ alx|Ax < b, c"x < cTx* }
and
min{c™x| Ax <b, 'x <c'x*}.

Let v,,...,v, denote the respective optimal objective values of these n linear
programs and define

v(e)=(v,— €, v,—€,...,0,—€),

where € is an arbitrarily small positive number. Let the jth component of the
vector r be defined as

r= 1/2(Ej+ UJ(E)).
We can now state the following theorem.

THEOREM 3 [17]
x* is the unique optimal solution to the following reverse convex problem:
min  ¢'x
s.t. Ax<b,
— | Bx—rli*< =1/41lb = v() ||,

where the norm is the Euclidean norm.

Example 1: A three-dimensional example

min  —2x, +x, — X3,
xeR?
s.t. X, +x,+x;<4,
X, €2,
X3 < 3,

3

3x,+x;,<6
Xp, X5, X532 0.
The above three-dimensional polytope is found in {12]. The prespecified edge
point is x* = (0.5, 0, 3) with objective value —4. This enables us to construct a

reverse convex constraint to be appended to the above linear problem. Recall that
the equation of such a reverse constraint is

—|Bx—r|2< —=1/4|lb—v(e) | %,
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Table 1

Three-dimensional example

y 1.269053724 0.730946276 1.269053724
x0 2 0 0

z) 2 1.326639 0.67336
22 1.9054 0.09455 0

23 0.5625699 0.218715 3

x} 0.58817 0 3

x2 0.68017 0.31983 3

x3 1.8598 0 0

x° 0.58817 0 3

z) 1.46271215 1.1583201 1.37896
2} 1.99953758 0.3509639 0

3 0.5 0 3

x* 0.5 0 3

where, in this case,

0 0 1
B=]0 -1 0
-2 1 -1
and
3 0-¢ 1.5—-¢/2
b= , vie)=|—-1—-¢|, r={—-05-¢/2
-4 —6—¢ -5—-¢/2

If one sets ¢ = 0.2 and allows MINOS 5.1 [10] to begin at its own computed
starting point, the solution (1.8772, 0.0, 0.0) with objective value —3.7544 is
found and, hence, this problem has non-optimal local minima. Solving the
resulting problem using the algorithm of section 3 yields an optimal solution
x*=(0.5, 0, 3) while taking 67 iterations with a CPU time of 0.1 seconds on a
Sun SPARCstation 1.

In this paper, an iteration is defined as a step between two successive points z},
z; ,, on the boundary of G. Hence, the total number of iterations is the sum of all
such steps in all n cones. Table 1 is a summary of the last points produced by the
algorithm of section 3. The first row is the interior point y; the second row is the
initial vertex x°. The next three rows comprise the z, for i=1, 2, 3 and the
following three rows contain the solutions xji of the resulting linear programs.
There is one return to Step II and the next row of the table is the new x° at which
the algorithm is initiated. The new zj are produced and the last row contains the

optimal solution, x* = z;.
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6. Numerical results

In this section, we present examples of concave minimization problems as well
as other types of reverse convex programs. An iteration is defined as a step
between two successive points zj, zj,, on the boundary of G. Hence, the total
number of iterations is defined to be the total number of such steps over all
iterations and all cones. In all of the numerical work presented, we used a
tolerance parameter, for the calculation of n, and 7,. equal to 1073 We also
report the CPU times for each example and all examples were run on a Sun
SPARCstation 1. While such CPU times are reported, not too much importance
should be placed upon them since we made little effort to make the reverse
convex code numerically efficient. For instance, we used a bisection algorithm to
compute 1, and 7.

Some words of caution regarding numerical implementation are in order. In
particular, the convergence proof assumes that the z; and the z} are computed
exactly. Of course, each such computation is the result of an infinite process and,
as a result, numerical accuracy is extremely important. In fact, under relatively
inaccurate computation of the z; and the zj, the final answer to the problem may
be infeasible. This behavior has not occurred in any of our examples using 107%
as the numerical tolerance for the calculation of %, and n,. The numerical
implementation of such nonconvex problems will be the subject of another paper.

6.1. CONCAVE MINIMIZATION EXAMPLES

Note that the construction of the interior point y is trivial for concave
minimization problems subject to linear inequality constraints because of the
assumption that dim( F,) = n.

Example 2: Falk-Hoffman example

min  —(x; = 1)’ —x2— (x5 = 1)%,

xer?

s.t. X, +x;—xy<1,
—x;+Xx,—x3< —1,
12x, + 5x, + 12x5 < 34.8,
12x, + 12x, + Tx; <291,
—6x; +x;+x,< —4.1,

Xp, X5, X532 0.

In order to use the reverse convex algorithm and a linear programming sub-
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Table 2
Falk — Hoffman example
y 1.0006 0.498152 1.012933 0.981522 1.229846
x° 1.0333 0.4 1.7 0 40
z 1.0333 0.4 1.7 39.348 40

2 0.982627 0.694459 0.71183 0.9736 1.5393
z3 0.95891 0 1.2591 0.9859 1.05479
3 1.4236058 0.265115 0.688721 0.97909 1.325718
23 1.03333 0.4 1.7 0 0.65111
x) 1 0 0 0 2.5281
x2 1.76 0 1.14 39.184 40
xi 1 0.9 0.9 38.53 40
x4 0.72857 0 0.27143 37.583 40
X3 1 0 ¢ 37.47 40
x° 1 0 0 37.47 40
zL 1.000531 0.72967 1.173508 6.0109 6.5734
22 0.943949 0.49681 1.0668808 1.079436 1.333876
23 1.237667 0.479859 1.212811 2.32154 2.65355
e 1.000615 0.498152 1.012933 0 0.248324
3 1 0 0 39 40
x* 1 0 0 39 40

routine, we introduce two new nonnegative variables m,, 7, thus rewriting this
problem as:
min M2
n]_nIER..\‘ERJ
s.t. xy+x,—x;31,
X, +x;—xy< —1,
12x; + 5x, +12x, < 34 .8,
12x, +12x, + 7Tx; < 291,
—6x,+x,+x;< —4.1,
m <40,
UFERS 40,

X1 Xa4 X35 My, "7220’
—(xy~ 1) =x2~(x;—1)" —n, +n, < 0.

Note that bounds on 5, and n, have also been introduced due to the original
assumption that the polytope is bounded. Table 2 is a summary of the inter-
mediate points generated by the algorithm. The first row is the interior point
y € Int( F,) N 8G. The second row is the initial vertex x°. The next 5 rows provide
the coordinates of zl,..., z3 (the two last columns indicate the values of 5, and
7n,), and the following five rows provide the coordinates of the solutions of the 5
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linear problems solved at Step IV of the algorithm. We return to Step II with the
new x° = x;. The new zj, i=1,...,5 are computed and it is found that x* = z3
is optimal. Finally, the last row contains the optimal vector in the higher
dimensional space considered (because of the addition of two variables, the space
is R® rather than R®). The method required 61 iterations with a resulting CPU
time of 0.4 seconds.

Example 3: Six-dimensional cube example

min  10.5x; — 3.95x, + 3.0x; + 5.0x,

xER®
+1.5x5 — 1.5x¢ — 1.5x7 — x3
—x;—2x}—x2—-25x2,
s.t. 0<x,<99,
0<x,<99,
0<x;<99,
0<x, <99,
0<x,<99,
0<x,<99.
Table 3
Six-dimensional cube example
y 0.999945 0.999945 0.999945 0.999945
0.999945 0.999945 100.00005 94.449866
x° 99 99 99 99
99 99 0 10000000
z) 99 99 99 99
99 99 9913231.4499 10000000
22 0 1.000033 1.000033 1.000033
1.000033 1.000033 99.999965 103.45033
z: 0.999897 0 0.999897 0.999897
0.999897 0.999897 100 89.500364
e 0.999965 0.999965 0 0.999965
0.999965 0.999965 100 96.449879
z3 0.999975 0.999975 0.999975 0
0.999975 0.999975 100 97.44991
28 0.999950 0.999950 0.999950 0.999950
0 0.9999505 100 94.9499078
z] 0.9999064 0.9999064 0.9999064 0.9999064
0.9999064 0 100 90.45037
EM 99 99 99 99
99 99 0 86768.55
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This example is used as a test example since it has the obvious answer x* =
(99, 99, 99, 99, 99, 99). Table 3 is a summary of the intermediate points generated
by the algorithm. The first row is the interior point y € Int(F,) N 9G. The next
row is the initial vertex x°. The next 8 rows give the coordinates of zl,..., z§ and
table 4 provides the coordinates of the solutions of the 8 linear problems solved
by Step IV of the algorithm. Finally, the last row of table 4 contains the optimal
vector in the higher dimensional space considered {because of the addition of two
variables. the space is R* rather than R®). There were no returns to Step II. The
algorithm used 40 iterations with a CPU time of 0.6 seconds.

Example 4: Six-dimensional sliced cube exanple

min  10.5x, = 3.95x, + 3.0x; + 5.0x,

YER®
+1.5x,~ 1.5x — 1.5x2 = x3

2 - 2
—x3— 2x; — x5 — 2.5xg,

VAN
ey
O

s.t. 0<x,

»

\O

o o
VAN AN
o=
L

O O

¢ e
wooa
N NN

O O O O O

\O

o o o
VAN
-

A
a‘;—<
A

X, x, x4+ x, + xg + x < 500,
X; + 3x, + 6x5+ 2x, 2 50,

3xg +4x, =50,

xy+ 2x, + 3x5 + x < 350.

After 67 iterations the algorithm produced the vector x* = (99, 99, 53, 99, 0, 99)
with f(x*)= —70262.05. As a means of comparison with existing codes for
nonlinear programming, we ran the same problem using the well-known MINOS
5.1 [10] package, obtaining the vector x** =(99, 99, 99, 76, 0, 99) with an
objective value of approximately —69181.04.

6.2. REVERSE CONVEX TEST PROBLEMS

The following test problems have been generated using the theoretical results
of section 5. Given a linear problem with a bounded feasible region, and given a
point x* on an edge of this polytope, a subroutine first builds a quadratic
function such that, if the corresponding reverse convex constraint is appended to
the linear problem, x* is optimal for the resulting reverse convex problem. The
construction of the interior point y is done heuristically. Two different vertices of
the polytope are chosen, say by maximizing and minimizing a linear objective,
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Table 4
Linear program solutions; six-dimensional cube example
x4 99 99 99 99
99 99 0 86768.5473
x2 99 99 99 99
99 99 991320 10000000
x3 99 99 99 99
99 99 991320 10000000
x? 99 99 99 99
99 99 991320 10000000
X3 99 99 99 99
99 99 991320 10000000
x$ 99 99 99 99
99 99 991320 10000000
x1 99 99 99 99
99 99 991320 10000000
x§ 99 99 99 99
99 99 991320 10000000
x* 99 99 99 99
99 99 0 86768.5473

and then the line between them is searched for an intersection with the boundary
of G.
Example 5: A twenty-dimensional example

min = 9%, —2x5 — 8xy — 6x;5 — 3x,;, — 6x, — Txg — 9xyg
xeR®
— X4~ 5x;5— Tx3— 8x, — 6x;; — 3xy5 — 4xy4
—5x, —4xg — 3xy; — 2X;4 — X355-
subject to:

X, +x,+x;+x,<1,
<2,

Xg+ X+ X + X5 €3,
<

X5+ Xg+ x5+ Xg

X3t Xt X5+ X6 < 3,
Xy7 F Xy X9+ Xy < 4,
X+ X5+ xg+ x5+ X7 < 3,
Xyt Xg+ X0+ X4+ X5 <3,
Xy+ Xq+ xpy + x5+ X9 < 3,
Xgt+ Xg+ X5 F X+ Xy <3
O0<x,<1,i=1,...,20.

t

1
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The prechosen edge vector is:
x*=(05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1, 1),

with objective value of v* = —17.5. Then a reverse convex constraint is con-

structed as described in section 5. The reverse convex algorithm finds, in 82

iterations with CPU time = 2.1 seconds, the vector
x**=(1,0,0,0,0,0,0,0,0.33762972396, 0, 0.9665335136736, 0, 0, 0, 0,

0,0,0,0,0)

with optimal objective value v* = —17.5. Note that x** # x*. This occurs since

we deliberately took €, of the previous section, equal to zero and, therefore, an

alternative optimal solution can be produced.

Example 6: A forty-dimensional example

min —215x, — 116x, — 670x; — 924x, — 510x,

xeRrR*
—600x, — 424x, — 942x5 — 43x4 — 36%9x,,
—408x;; — 52xy, — 319x; — 214x,, — 851x;;
~394x,, — 88x,; — 124x5 + 17x;5 — 779
—278x,; — 258x5;, — 271x,, — 281x,, — 3265
—819x,, — 485x,; — 454x,5 — 297x,9 ~ 53x4,
—136x5; — 796x;, — 114x,; — 43x,4
—268x35 — 179x5; — 78x35 — 105x;9 — 2814,
subject to

8x; + 11x, + 6x, + x4 + Txgs + 9x + 10x, + 3xg4
+11xg + 11x,5 + 2xy,

+ x5+ 16x75 + 18x,, + 2x5 + X1 + X5 + 22,5 +

3x,6 + 4,0 + Txy + 6x4,

2X53F 2X54 + Xo5 + 2X 56 + X593 + 8xpg + 10x,

+2x39 + X3 + 9x35 + X353

+9x34 + 2x35 + 4xy + 1025, + 8x55 + 6x59 + x4y < 5000;
Sx;+ 3x, +2x5+ Tx, + Txg + 3x¢ + 6x5 + 2x5 + 15x,
+8x,9 + 16x,

x5+ 2203+ 2004+ Txys + Txgg + 2255+ 2x5 + 4x
+3x,0 + 229,

+13x,5; + 8xy3 + 2x,, + 3x,5 + 4xp + 337 + 255 + Xy
+10x,5 + 6x5,

+3x5; + 4xgy + X34+ 8xyg + 6x3g + 3x5, + dxyg + 6x5
+ 2 x4 < 5000;

3x; +4x, + 6x53+ 2x, + 2x5 + 3x, + Tx; + 10xg +

3xg + Txyg + 2,

+16x,, + 3x;5 + 3x;, + 9x;5 + 8xy6 + 9xy5 + Txyg
+6x,5 + 16X, + 12x,,

+ X495 + 3x55 + 14x,, + x5 + 13x,6 + 6,55 + 1654

+ 3% + 2x3 + X5,

+2x35 + 8x35 + x5, + 2x35 + TX36 + X537 + 2x55 + 6X5
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+5x 4 < 5000;
0<x,<99, i=1,...,40.

Again, by running a procedure that creates a reverse convex constraint to be
appended to this linear program, we build a reverse convex problem with
prechosen optimal vector

x*=1(49.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0)

and objective value v* = —10642.5. The algorithm finds x* after 189 iterations
and a CPU time of 5.2 seconds.
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