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In this paper, we develop a theoretical framework for the common business practice of 
rolling horizon decision making. The main idea of our approach is that the usefulness of 
rolling horizon methods is, to a great extent, implied by the fact that forecasting the future is 
a costly activity. We, therefore, consider a general, discrete-time, stochastic dynamic optimi- 
zation problem in which the decision maker has the possibility to obtain information on the 
uncertain future at given cost. For this non-standard optimization problem with optimal 
stopping decisions, we develop a dynamic programming formulation. We treat both finite and 
infinite horizon cases. We also provide a careful interpretation of the dynamic programming 
equations and illustrate our results by a simple numerical example. Various generalizations 
are shown to be captured by straightforward modifications of our model. 

1. Introduction 

Rolling horizon decision making is a common business practice for making 
decisions in a dynamic stochastic environment. In essence, this practice involves 
making the most immediate decisions, i.e., decisions that must be made in the 
first period, based on a forecast (deterministic or stochastic) of relevant informa- 
tion for a certain number of periods in the future. Clearly, the decision maker 
would be interested in knowing how far into the future he must forecast in order 
to make optimal first period decisions. At the beginning of the second period, the 
second period decisions become most immediate. In order to make these deci- 
sions, forecasts for additional periods in the future may be required. In addition, 
existing forecasts may, in some cases, also be revised or updated. This procedure 
repeats every period justifying the term rolling horizon decision making for the 
practice. Here, the term "hor izon"  refers to the number  of periods in the future 
for which the forecast is made. It is this horizon, that gets "rolled over" each 
period. 
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Much of the literature concerning rolling horizon decision making involves 
production planning problems. While the present paper deals with multiperiod 
stochastic optimization problems in general, it is desirable for expository pur- 
poses to limit our initial discussion to the production planning context. 

In the production planning context, the decision maker is concerned with 
making production decisions in each period in order to satisfy demand at a 
minimum cost. The relevant costs that are usually considered are cost of produc- 
tion, cost of carrying inventories, and cost of shortages or stockouts. Demand 
may be either deterministic or stochastic. If deterministic, it is assumed to be 
given. If stochastic, then its probability law is assumed to be known. It is not 
usual in the production planning models to include the cost of forecasting 
demand. It is incorporating forecast costs explicitly in the model, that we part 
company from the existing literature reviewed in section 2. 

Our reasons for incorporating the forecast costs is our belief that these costs 
along with the accuracy of forecasts (or lack thereof) lies at the heart of the 
practice of rolling horizon decision making. Indeed, the forecast of the future is 
either expensive or unreliable or both. Also, the more distant the future, the more 
expensive, less reliable, or both, the forecast. Moreover, in some cases, the 
forecast beyond a certain period may simply be unavailable. This is tantamount 
to saying that the forecast beyond this period is either infinitely expensive or 
completely uncertain in the sense that no probability law is known for it, or both. 
In the case of complete uncertainty beyond a certain period in the future, the 
problem lies in the domain of the theory of forecast and decision horizons; see, 
e.g. section 2 and section 6.3. 

The purpose of this paper is to develop a general theoretical framework for 
rolling horizon decision making. Every framework must begin somewhere. In the 
production planning context, we begin by specifying a probability space over 
which a stochastic demand process is defined a priori. Characteristics of this 
process may be known from related activities, it may be apparent from the past 
history, or it may simply be educated guesswork on the part of the decision 
maker. This demand, along with the production decisions in each period, de- 
termines the dynamics of the inventory process. Given various costs associated 
with production and inventories/shortages, a traditional stochastic production 
planning problem becomes specified. 

For our framework, we further assume that the firm has at its disposal some 
forecasting capabilities. These capabilities may reside within the firm or they may 
take the form of external forecasting services that the firm may hire. In either 
case, it costs money to forecast. It would be reasonable to assume that a forecast 
will represent a partial or full resolution of uncertainty in demand. Furthermore, 
the cost of forecasting will be assumed to depend on the distance in the future of 
the first period for which a forecast is not known, and the number of periods for 
which the forecast is made or requested. Cost may also depend on when the 
forecast is made. This can, of course, include the discounting of forecasting costs 
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incurred in the future. In addition, it is also reasonable to assume that forecasting 
cost will depend on the reliability (or quality) of the forecast. By this, we mean 
that a forecast that resolves a greater amount of uncertainty than some other 
forecast will be more expensive than the latter, ceteris paribus. Of course, this 
remark does not apply when the two forecasts are not comparable in the sense 
just defined. 

In practice, sophisticated econometric forecasts will cost more than moving 
average forecasts or simple regression forecasts. Also, a combination of various 
forecasts will certainly cost more than each of the individual forecasts. However, 
there is evidence that a combination of forecasts yields more reliable forecasts 
than individual forecasts; see, e.g., Newbold and Granger [25], Granger and 
Newbold [15], Mahmoud [20], and Bopp [12]. Even when it comes to subjective 
forecasts, aggregating them over several individuals improves the quality of the 
forecast (Aston and Aston [3]). 

Given that there are several possible forecasts to choose from and given their 
costs, the decision maker faces another decision problem than just making the 
production decision in each period. He may want to forecast a part of the future 
at some cost and then make the production decision. Making the production 
decision this way may result in cost savings that might more than offset the cost 
of forecasting. 

Thus, it is clear that the forecasting decision may have to be made in each 
period along with the production decision. What is nontraditional about the 
problem is that, in each period, some future uncertainties may be resolved at 
some cost and only after this is a production decision made. In a sense, the state 
of the system changes twice in each period. At the beginning of the period, the 
decision maker knows the state of his inventory, the past realizations of demand, 
and previous forecasts made. On this basis, he makes a new forecasting decision, 
i.e., how many additional periods in the future to forecast and what quality of 
forecast to obtain. Once this is done, the information part of the state of the 
system changes. He then bases his production decision on this new state. After he 
makes the production decision, the demand for the period materializes, he counts 
the costs in the period and then moves on to the next period. Then the whole 
process repeats. 

Repeating the process also allows the decision maker, as mentioned earlier 
briefly, to possibly update or revise the forecasts obtained in prior periods. In 
other words, it may be desirable in a particular period to obtain a less expensive 
and perhaps less reliable forecast, while in the next period, it may be desirable to 
revise the forecast at some cost along with possibly obtaining forecasts for 
additional periods in the future. Such a situation occurs frequently in practice. As 
we shall see in section 6.2, the possibility of revising past forecasts can be easily 
incorporated in our model. 

Some important remarks from the point of view of decision making practice 
are in order. Since forecasting for the distant future may be prohibitively 
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expensive, it would be optimal in each period to forecast for a number of periods 
in the near future and then repeat the procedure next period. What we see 
therefore, is that introducing forecasting costs may result in an optimal forecast- 
ing policy, which resembles the rolling horizon policy. In fact, in an infinite 
horizon problem with the stationarity assumption, one would expect that the 
policy for the number of future periods forecasted in each period will be the same 
as in the previous period. In other words, we will have a stationary rolling horizon 
policy, as is often the case in practice. Of course, in a finite horizon problem, with 
or without the stationarity assumption, an optimal forecasting policy cannot be 
expected to be the same from period to period, unless it is constrained to be so. 

What we have just described captures the essential features of the rolling 
horizon decision making procedure. As we shall see in the next section, the 
procedure has only been dealt with heuristically in the literature. This paper 
formalizes the procedure in a rigorous optimization framework. 

The plan of the paper is as follows. A brief review of the literature is provided 
in section 2. In section 3, we precisely state the problem under consideration. The 
problem specification will be kept simple for convenience in exposition without 
losing the essential features of the rolling horizon decision making procedure. 
Another expository device is the assumption that an oracle (or oracles) will 
substitute for various forecasting methods or forecasting services. Thus, the cost 
of forecasting will be referred to as the cost charged by the oracle to provide some 
future information. Cost of going to the oracle, if any, can be considered as the 
fixed cost of the forecasting activity. It will be seen that our use of the oracle 
device results in no loss of generality, while it clearly simplifies the exposition. 
The problem defined in section 3 turns out to be a multi-period stochastic 
optimization problem with usual stochastic controls as well as stopping time 
decisions. Such problems have, to our knowledge, not been treated previously in 
the literature. Section 4 develops a dynamic programming for the finite horizon 
version of the problem. Interpretations are given in the production planning 
context for the recursion formulas of the dynamic programming. Boundedness of 
rolling horizon in each period is also proved. The infinite horizon version of the 
problem with the stationarity assumption is treated in section 5. Generalizations 
of the problem to incorporate more realistic as well as more general cases are 
treated in section 6. Here, we shall also describe the relationship of our paper to 
the theory of forecast and decision horizons. While the purpose of this paper is 
not computational, a numerical example is solved in section 7 to illustrate the 
theory developed in the paper. Section 8 concludes the paper with suggestions for 
further research on the problem. 

2. A brief review of the literature 

In 1977, Baker [4] conducted an experimental study of the effectiveness of 
rolling horizon decision making in production planning. Baker noted that, while 
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most existing formulations in the production planning literature are finite horizon 
models (see, e.g., Holt et al. [17] and Wagner and Whitin [29]), the production 
planning problems themselves occur in systems that will operate indefinitely. He 
suggested that there are two principal reasons why finite horizon models might be 
appropriate for decision-making in infinite horizon problems. First, the forecasts 
for the remote future tend to be unreliable and are, therefore, of limited 
usefulness. Second, the decisions must for practical reasons be based on limited 
information about the future. The purpose of the Baker study was to use 
simulation to investigate the efficiency of decisions obtained from optimizing a 
finite multiperiod problem with concave costs and implementing those decisions 
on a rolling basis. The study suggested, with exceptions however, that rolling 
schedules are quite efficient. 

McClain and Thomas [22] examined a linear-cost model using simulation and 
concluded that good terminal conditions for a finite horizon model might be 
better than additional periods' worth of information as a way of summarizing 
future requirements. Baker and Peterson [6] and Baker [5] developed an analytical 
framework for evaluating rolling schedules. They used a simplified version of the 
HMMS quadratic cost model to study the effects of the length of the rolling 
horizon, the terminal conditions, the uncertainty in forecasts, and the periodicity 
of demand on the rolling horizon decisions as seen in comparison to the optimal 
infinite horizon policy. 

Recognizing the complexity of developing a general analytical framework to 
evaluate rolling horizon procedures, researchers conducted empirical examina- 
tions of the effect of such factors as the length of the rolling horizon, demand 
variations over time, forecast errors, and lead times on the suboptimality of 
rolling schedules. Blackburn and Millen [11], Chand [14], Huang and Ong [18], 
and WemmerliSv and Whybark [30] studied the behavior of various lot sizing 
heuristics in the rolling horizon environment. An interesting conclusion was that 
various lot sizing techniques produce similar results in the presence of uncer- 
tainty. 

More recently, Alden and Smith [1] have derived error bounds for the cost of 
rolling horizon procedures in the general setting of a finite state Markov control 
model. More specifically, they have shown that, as the length of the rolling 
horizon increases, the cost of the corresponding rolling horizon procedure geo- 
metrically approaches the infinite horizon cost provided the model includes 
discounting. In addition, the error bound can be improved if ergodicity is taken 
into account. These results have been improved and extended to Markov control 
models with arbitrary state spaces by Hernandez-Lerma and Lasserre [16]. 

Other related work has been carried out in connection with the maintenance of 
a stable Master Production Schedule (MPS), a critical issue in many firms that 
utilize Material Requirement Planning (MRP) systems to plan and control 
manufacturing operations. It is known .that frequent adjustments to the MPS 
caused by changes in customer order requirements, sales forecasts, or production 
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plans can induce major changes in the detailed MRP schedules - a phenomenon 
referred to as nervousness (see, e.g., Mather [21]). Berry et al. [7] examine the data 
from Abott Laboratories to study the effectiveness of the approach of freezing the 
MPS, used frequently in practice, in reducing the nervousness of the system. 
Carlson et al. [13] have modified several standard lot sizing procedures used in a 
rolling horizon environment to incorporate the cost of changing the MPS; thereby 
alleviating nervousness by considering its economic effect. In a recent paper, 
Sridharan et al. [28] have examined the impact on cost of three important 
decision variables in managing the stability of the MPS within a rolling horizon 
framework: the method used to freeze the MPS, the proportion of the MPS that 
is frozen, and the length of the rolhng horizon for the MPS; see also other works 
on the topic cited in Sridharan et al. [28]. 

Finally, the extensive literature on forecast horizons is intimately related to 
rolling horizon decision making. We shall not review this literature as it has been 
surveyed in Morton [24], Aronson and Thompson [2], Bhaskaran and Sethi [10], 
and Sethi [26]. For our brief discussion, it is sufficient to know that a forecast 
horizon is a finite horizon that is far enough off that the data beyond it have no 
effect on the optimal decisions in the current period, see, e.g., Bes and Sethi [9]. 
Clearly, if we can find a forecast horizon in each period on a real-time basis 
without any cost, then using these forecast horizons as successive rolling horizons 
will provide a rolling schedule that is optimal for the infinite horizon problem. At 
least, in this sense, the theory of forecast horizons provides a partial justification 
for the practice of rolling horizon decision making. 

A related paper for our work is that of Kleindorfer and Kunreuther [19], who 
for the first time introduced forecasting costs in their consideration of forecast 
horizons. Importance of these costs had been emphasized earher by Modigliani 
and Cohen [23]. Kleindorfer and Kunreuther define a forecast horizon to be a 
period that is sufficiently distant in the future so that the data beyond it has no 
larger effect on the optimal decision in the first period than the cost of getting the 
forecast for one additional period following the period under consideration. Thus, 
the forecasting cost is considered exogenously. In other words, the forecast itself, 
except for its length, does not have any impact on other decisions. The dis- 
tinguishing feature of our paper, on the other hand, is that it integrates the 
forecasting activity as a decision variable to be determined simultaneously with 
other decision variables. 

3. Statement of the problem 

In this section, we introduce some notation and we develop a mathematical 
model for the following scenario. A decision maker controlling a stochastic 
system over a finite or infinite planning horizon has access to an oracle that can 
provide exact realization of a part of the future at some given finite cost. This 
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assumption is relaxed in section 6.1. The decision maker seeks to minimize his 
total expected cost consisting of his expenses for the oracle and the cost incurred 
by controlling the system. Although the oracle is costly, it helps to reduce the 
uncertainty of the system and thereby reduces the decision maker's total cost. In 
each period t, two decisions have to be made, namely, how much information on 
the future to buy and which control action to take. Of course, the choice of the 
control action may depend on all the information available in that period as well 
as on the state of the system. 

3.1. STATE EQUATION 

We denote by N the problem horizon, where N is either a positive integer or 
oo. If N <  oo, then Z N= (1, 2 . . . . .  N} and ZoN=ZNU {0}. On the other hand, 
if N = oo, then Z °o and Z~ ° denote the set of positive, respectively, non-negative 
integers. We consider a probability space (I2, ~ ' ,  P } and a stochastic process 
(~ t ) t e z  ~ defined on this space with values ~, ~ D r The set D I, t ~ Z N, will be 
termed as the set of all possible disturbances in period t and is assumed to be 
countable. This countability assumption helps us to avoid the delicate technical 
details concerned with various measurability questions. In particular, it will not 
be necessary to assume measurability of the transition function and the cost 
functions introduced below. Moreover, no structural assumptions are required on 
the state spaces and control spaces defined in the next paragraph. 

We let ~0 denote an arbitrary constant and ~ t  the sub-g-algebra of ~-  
generated by the truncated process ~t := (~0 . . . . .  ~t). For every t ~ Z N, there is a 
state space $1 and a control space C,  The state variable at the end of period t is 
x, ~ S, and the control action applied in period t is u, ~ C r Furthermore, we let 
S O = {x0) be a given deterministic initial state. A sequence ( u , ) , ~ z ,  of controls 
generates a sequence ( x t ) t e z ,  of states via the transition equation 

Xt =f t (Xt - l '  g/t' ~t)' t E Z N. (1) 

Here f,: St_ l × C~ × 19, -~ S~ are given functions. 

3.2. ROLLING HORIZONS 

Let h denote a stopping time with respect to the family ( ~ t ) t ~ z  ~ of a-fields. 
This means that h is a non-negative random variable such that the event 
{ h -- t ) E ~ t  for all t ~ Z0 ~. Thus, stopping times can be interpreted as random 
variables independent of the future. We also define ~ to be the o-algebra 
associated with h; it consists of the sets A ~ "  for which A f~ (h  = t }  ~ t t  for 
all t ~ Z0 ~. In other words, ~h  is the totality of events to be observed over the 
random time h. 

We let H(s,  N )  denote the set of all stopping times h such that s ~< h ~< N, if 
N < o o ,  and s<~h<oo,  if N = o o .  A sequence ( h t ) t a Z o  N of stopping times 
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ht E H ( t -  1, N)  will be called a sequence of admissible rolling horizons, if 
h 0 = 0 and if 

h t _  1 V ( t  - 1) ~< h t for all t ~ Z u. (2) 

In what follows let us denote by h; the stopping time h; = h, v t. 
The interpretation of rolling horizons is as follows. At the beginning of period 

t, before approaching the oracle, the decision maker knows the realizations of the 
random variables ~h~-,c~')(t0). If he decides not to go to the oracle, then those 
realizations along with the value of xl_ ~ is all the information he has at his 
disposal to decide which control u, to implement. In this c a s e  h t = h ; _  1. Other- 
wise, he asks the oracle for realizations up to period h,(oa) at a cost to be defined 
in section 3.5. It should be emphasized that, since getting future information from 
the oracle is expensive, the decision maker may want to obtain the future 
realizations successively one at a time. The definition of rolling horizons as 
stopping times captures precisely this sequential character of information gather- 
ing. 

Alternatively, the decision maker may be required to specify the number  of 
periods for which he must obtain information all at once. This case of nonsequen- 
tial information gathering can be handled as a special case of our  model as 
described in section 4.1. 

Note that the definition of roiling horizons above implies that no information 
on some future period can be obtained unless all realizations prior to that period 
are already known. Furthermore, (2) implies that no information gets lost, i.e., 
that any information available in period t - 1 will also be available in period t. 
Finally, since h~_ ~/> t - 1, the information available at the beginning of period t 
includes at least the realizations of the past periods up to t - 1. 

3.3. THE AUGMENTED STATE 

In a dynamic optimization problem, the state variable at time t -  1 usually 
contains all the information available to make the control decision in period t. 
From this observation and from section 3.2, it should be clear that x,_ 1 is an 
insufficient state variable, since it does not include the known realizations ~h;_,. 
Let us, therefore, define the augmented state spaces 

Z , = { ( x , s ,  lS ) ] x~S , ,  t ~ s < N + l ,  g;S~DoX... XD, } .  (3) 

Every augmented state vector X t ~ Z, consists of the state x, at the end of period 
t, the number s, of realizations known at the end of period t, and these 
realizations ~s, themselves. Given sequences (u t)~ ~ z ~ and (ht)  ~ ~ z ~ of controls 
and admissible rolling horizons, the augmented state evolves according to 

Zt=F~(Xt_ ,, u,, h,, ~N), t ~ Z  ~, (4) 

where the function F~ is defined by 

r , ( x , . ,  h, (y,(x, u, h v t,  hv,) (5) 
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if X = (x, s, ~ ) .  Note that the transition function F t is expressed formally as a 
function of ~ ,  although only realizations up to period h will affect its value. This 
is unlike in the usual case when the transition function depends only on the t-th 
disturbance ~,. Since h could conceivably be equal to N, the above property is the 
main reason that makes our problem a non-standard dynamic optimization 
problem. In this regard we would also like to point out that the usual state 
variable x t depends on the future disturbances ~t+l . . . . .  ~h, provided that a 
forecast has been obtained, i.e., h t > t. 

3.4. DECISION LAWS 

We have seen in section 3.2 (see eq. (2)) that, for a given augmented state 
(xt_l, h' ,-~, ~h,_,) ~ Z,-z,  the set of admissible horizons for period t is given by 

h'  H( ,_~, N).  Therefore, we call any function ~t: ~t-z ~ H(t - 1, N) that satisfies 

n,(x, s, ~s) ~ H(s ,  N) ,  for all (x,  s, ~s) ~ Z,_I,  (6) 

an admissible rolling horizon law for period t. We denote by o~t the set of all 
admissible rolling horizon laws for period t. Note that the dements  of ~ are 
not stopping times but functions, which map into a set of stopping times. 

Now we assume that, for every x ~ S,_~, there exists a non-empty subset 
U,(x) _c C, called the set of admissible controls. Any function g,: Z,_ 1 ~ C, that 
satisfies 

/~,(x, s, ~ )  ~ U,(x), for all (x,  s, ~') E ~,_a,  (7) 

is called an admissible control law at time t. We denote by .¢t', the set of all 
admissible control laws for period t. 

We have assumed that the set of admissible horizons depends only on the 
number s of periods already known and not on the state x or the realizations ~s. 
Also, the set of admissible controls is assumed to depend only on the state x and 
neither on s nor on ~s. It should be mentioned that both of these assumptions are 
only imposed for simplicity in exposition. They could be relaxed without affect- 
ing the results of this paper. 

We can now summarize the stochastic dynamics of the problem. At the 
beginning of period t ~ Z0 ~, the augmented state is a realization of the vector 
Xt_ 1 = (x,_ 1, h',_l, ~h;_,). The decision maker applies a rolling horizon law 
~, ~ ~ ,  to obtain the rolling horizon 

h ,=~/ , (x ,_z ,  h;_l ' ~h;_,). (8) 

This rolling horizon is a stopping time and it defines a future up to which the 
oracle is asked for information. After receivin__g this information, the decision 
maker faces a new augmented state vector, say X t, defined as Xt = (x,_ 1, h t, ~h,). 
He now applies a control law/~t ~ ~t't to obtain 

u,--l~,(xt_l, h,, ~h,). (9) 
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Fig, 1. Schematic of the process of information gathering and system control. 

By implementing this control and by observing the realization ~, (if h t = t - 1), 
the augmented state finally changes to X~ = (x,, h;, ~h;). For convenience of 
reference, the process of information gathering and controlling the system is 
summarized in fig. 1. 

From the above discussion (in particular, eq. (5)) and the fact that x 0 and 40 
are deterministic, i.e., ~o-measurable, it should be clear that x t and X, are 
~ -measu rab l e  random variables with values in S t and ~t, respectively. 

3.5. COST FUNCTION 

The total cost incurred in period t consists of two parts. First, getting 
information from the oracle involves the cost a'-lG(h~_l, h t )  , where et ~ (0, 1] is 
a constant discount factor and cr: Z~ × Z~ ~ [0,-oo) is a given function. This 
part of the cost will be referred to as the oracle charge. The price of the future 
information may depend on the number h~_ 1 of realizations already known, on 
the forecast horizon h~ required, and on the period t itself. It should be noted 
that this formulation of the oracle charge is very general and is capable of 
describing various phenomena (e.g., fixed costs of going to the oracle). Reasona- 
ble assumptions on G include (i) that storing information is free (cl(h~_l, ht) = O, 
for h, = h~_l) and (ii) that forecasting for a larger number of periods is more 
costly than forecasting for a smaller number of periods ((ct(h~_l, h,) is non-de- 
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creasing in hi). All results except for those in section 4.3, however, hold without 
these assumptions. 

The second component of cost is the one incurred by the implementation of 
the control action. Since this cost will also depend on the state, it will be referred 
to as the running cost rather than merely the control cost. As usual, we assume 
that the running cost is given by et'-lgt(x,_l,  u,, ~,), where gt: St-1 x C t x D t 
[0, oo] is a given extended real-valued function. Note that by allowing gt to take 
on the value + co we can easily include state constraints in our model. With the 
definition of the total t-period cost  k t as 

k , ( x ,  u, ~, h;_ 1, h , ) - - -g , (x ,  u, ~ ) +  c,(h~_l, h,) 

the cost functional for the N-period problem is given by 

N 

JN(xo,  (~ , ) tuz" ,  (# , ) ,~z  ~) = S E a ' - l k t ( x , - 1 ,  ut, ~,, h ; - t ,  ht) ,  (10) 
t = l  

if N < oo, and 
t /  

J (xo, (n,) , . z* ,  = lim E a'-lk,( x,-1, u,, h',_a, h,), 
n - ' *  o o  t = l 

(11) 

if N = co. Here the rolling horizon h, and the control u, at time t are expressed 
by their feedback form (8) and (9), respectively, and E denotes the expectation 
with respect to the probability measure P. The decision maker seeks to minimize 
(10) (or (11) if N = co) over the set of all sequences (/~t),~z ~ and (*l,),~z,' with 
/~, ~¢1t', and *1, ~ ,  t ~ Z N, and subject to the constraints (1), (4), (8), and (9). 
We denote by JN*(Xo) the optimal cost of the N-period problem, i.e., the 
infimum of JN(Xo, " , "  ) subject to the above-stated contraints. Note that we 
assume that initially no information on the future realizations is available, i.e., 
h o = 0. This allows us to write the objective functional and the optimal value 
function in terms of x 0 only. In a more general setting with arbitrary initial 
information X 0 = (x0, h~, ~h;) and h~ > 0, we would have to write J~C(X o, . ,  • ) 
and j N . (  Xo ) in place of J ~ ( x  o, . ,  . ) and JN*(xo) ,  respectively. Moreover, the 
expectations on the right hand side of (10) and (11) would be conditional 
expectations given X 0. 

Finally, we would like to mention that it is straightforward to include a 
terminal value S(XN, N,  ~N) in the cost functional provided N < oo. This would 
be the case, for example, in production-inventory models, where a salvage value 
for the ending inventory in period N has to be taken into account. 

We should note that, if the oracle is not accessible, then h t = t -  1 for all 
t ~ Z N and u, = ixt(xt_l, hi, ~h,) is non-anticipative. In this case the problem 
defined above reduces to the standard stochastic control problem. It should be 
obvious that access to the oracle at any cost can only decrease the optimal cost. 
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3.6. REMARK ON NOTATION 

If s E Z~, then the conditional expectation with respect to the a-algebra 
will be written as Es, i.e, E ( Y I ~  ) = EsY. Similarly, if h is a stopping time and 
~h the associated o-algebra, then E ( Y I . ~ n ) = E h Y .  Finally, if (h, ~n) is a 
particular realization of (h(t~), ~*(~')(t0)), then the conditional expectation 
E( Y l ~h(~,)( w ) = ~h) = ( Eh Y)( to ) will be denoted by E( y I $h). 

4. Finite horizon problem 

In this section, we consider the problem defined in section 3 for N < oo. We 
first derive two different but equivalent dynamic programming formulations. The 
first one is a single recursion but it contains the optimization over the set of 
stopping times. Since this formulation is not suitable for computational purposes, 
we resolve the part of the problem concerned with the optimization over stopping 
times by another recursion. After the formal derivation of the dynamic program- 
ming equations, we give an intuitive explanation. Finally, we show that in a 
discounted model with bounded cost, the rolling horizons are uniformly bounded. 

4.1. DYNAMIC PROGRAMMING 

THEOREM 1 
Define the value function 

VN: { ( t , x , h , ~ h ) l t ~ Z ~ + l , ( x , h , ~ h ) e Z , _ l } ~ a  

recursively by 

V"(N + 1, ~, h, ~ ) =  0 

and, for t ~ Z ", 

v~(t,  x, h, ~h) 

- -  inf E( inf Eo[k,(x, u, ~,, h, o) 
o~H(h,N) tu~Ut(x ) 

+ + 1, i , (x ,  u, o v , ,   ov,)lle } 

Then, it holds that J~C*(Xo) = VN(1, Xo, O, ~o). 

(12) 

(13) 
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Proof 
By definition, we have 

JN*(Xo) = inf JN(xo, (~,),~z~, (/z,)t=z~) 
( n, ),  ~ z ~ ' , (  V., ),  ~ z ~' 

= inf E ~ a ' - l k t [ x , _ l ,  /~,(xt_l, r/,, ~",), 
( r / ' ) '  ~ I ' ( P ' ) '  ~ t t = l  

h' h;_,, } (14) t - - l ~  * 
/ 

where ,b(xt_l,  h~_l, ~h;_,), when it occurs inside the function /x,, has been 
abbreviated to ~,, and where the infimum is taken over all sequences ( , / t ) t~z ~ 
and (/~t)t~z N which satisfy ,/t ~ t ,  /t, ~.,¢/t for all t ~ Z  N. Because k,>~0, the 
expectation and summation in the above expression can be interchanged. More- 
over, k 1 does not depend on ~/, and Pt, for t = 2 , . . . ,  N. This shows that JN*(Xo) 
can be written as 

[ JN*(xo)= inf E ( k , l ~ ° ) +  inf E Ea ' -~k , [~  ° , (15) 
lr/I E ' )~I  "~l E " ~ I  (llt)t;*2'(l&t)t~2 t=2  

where we have omitted the arguments of k ,  ~/t, and /~r Both ~h(Xo, 0, ~o) and 
~'~(x o, 0, ~0)= ~ (x0 ,  0, ~0)v  1 are stopping times greater or equal to zero so 
that 

e(k, le) IC], 

E E a ' - ' k t [ }  ° = a E  En;Eat -2k ,  ~o . 
t = 2  t = 2  

Now observe that the decision laws ~lt and /z, for t >i 2 are not applied before 
period two when the information (x~, ~1~(x 0, 0, }0), }~;) is known. This means 
that 

inf E E,~ ~_, at-2kt ~0 = E inf E,~; Y~. ott-2k t ~0 . 
( r / ' ) '  ~ 2 " ( P ' ) '  ~ 2 t = 2  t (~ r ) t  ;~ 2"(/~*)* ~* 2 t = 2  

Therefore, we obtain from (15) 

JN*(Xo)= ~, ¢~,inf.~, ~ ,  { E[(E,~k~) [li ° ] 

+ ° r E  L ( n , ) ,  ~, ~ , ( p , ) ,  ~, 2 t = 2  

( = inf E Enk 1 + a inf gn; E at-2kt ~o 
"q l ~ ' a l  • P l  ~"~¢1 (~t)~;,2,(P~)t~,2 t ~ 2  

-- inf E k I + a inf y ,  at-2k, ~o 
'11 ~Y~'t ,t~, ~ ' ,  , ~ " ('t/t)t ; ' 2 ' ( P t ) '  ~' 2 t = 2  
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The last step is true because of 0 ~< ~1 ~< ~/~. A similar argument as before shows 
that we can interchange the infimum with respect to/L a ~JLca and the expectation 
operator E ( . - .  It°). Indeed, the control law ~1 is not applied before the 
information (x o, ~h(xo, 0, t°), t ~') becomes known. Thus, we arrive at 

JU*(Xo)= inf E inf E n k ~ + a  inf ; Z a t - Z k ,  t ° • 
~1 ~,9~, 1 pl E...~¢ 1 I (~1)1 a, 2,(Pt)~ ~'~ t = 2  

The innermost infimum in this expression has exactly the same structure as the 
definition of JN*(Xo) in (14). We can, therefore, apply the same argument N -  2 
more times to obtain 

j U . ( x 0 ) =  inf E [  inf E [k l + a  inf E_, inf E_[k  2 

+ . . - + o r  inf E,~_I inf E _ k , ] - . - ] t ° } .  
~/~ E . . ~  v p,v ~ , .~N ~N J 

Using the simple fact that, for any functions G~ and G~ defined on appropriate 
spaces, we have 

inf G~(x, s, t ~, t~(x, s, t ' ) ) =  inf G~(x, s, t ~, u), 
# ~ ' ,  u ~  U , (x )  

inf Gz(x, s, t ~, ~(x,  s, t * ) ) =  inf Gz(x, s, t ~, h), 
~ h ~ H ( s , N )  

we can also write 

J~C*(x0) = inf E (  inf ghl[kl  + et inf E h, inf gh [k  2 
h I ~H(O,N) ~ u~ ~ Ul(xo) h2~H(h~,N) i u2 E U2(xl) 2 

+ - - - + a  inf Eh;,, inf Eh kN].. .]]t°}.  (16) 
hN~H(h~_I ,N)  - utcEUN(x~_I) 

From (12) and (13) follows 

inf Eh; ' inf Ehku](~o) = VN(N, x~_l(o~), 
hu~H(h~_ l ,N)  -I ulv~Utc(x~_l ) 

Using this equation, (13), and (16), we obtain recursively JU*(Xo)= 
V~'(1, x 0, 0, t°). This proves the theorem. [] 

Let us, just for a moment, assume that information gathering is non-sequential, 
i.e., that the decision maker is required to specify the number of periods for 
which he can obtain the realizations before getting any information from the 
oracle. This situation can be captured by theorem 1, if we replace the constraint 
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oEH( h ,  N) in (13) by o ~  (h  . . . . .  N},  that is, if we replace the optimization 
over stopping times by an optimization over integer numbers. In that case (12) 
and (13) are a set of equations that can be used to compute JU*(xo)= 
Vre(1, x 0, 0, ~0). Note that such a situation arises often in practice when the 
decision maker hires a consulting organization to do a forecasting project for him. 
In this case, sequential information gathering is far too expensive to be practical. 

If, on the other hand, the original formulation with o ~ H(h, N) being a 
stopping time is considered, then eq. (13) is not suitable for computational 
purposes. In this case, we replace the optimization over stopping times on the 
right hand side of (13) by a recursion. This step is based on the following result 
(see Shiryayev [27], ch. 2.2). 

LEMMA 1 
Let (Y, B) be a measurable space and let, for every y ~ Y, Py be a probabihty 

measure on (12, ~ ) .  Moreover, let (y,, f¢,, Py)~zg be a homogeneous Markov 
chain and G: Y ~  [0, oo) a Borel-measurable function. We denote by Ey the 
expectation with respect to Py and by H(s, N) the set of all stopping times o 
with respect to (fCs), ~ zg that satisfy s ~< o ~< N. Then the function 

AN(y~, s )= inf eeG(yo) 
oEH(s,N)  

satisfies the recursion 

AJV(y~, N) = G(yu),  (17) 

Are(y:, s)---min{G(y,), E~:Are(y,+ 1, s + 1)). (18) 

Moreover, the optimal stopping time in the class H(s, N) is 

o*s,N =min(s<~z ~ N I Are(y ~, z) -- G(y~)}. 

We are now in a position to derive the second dynamic programming formula- 
tion suitable for computational purposes. 

THEOREM 2 
Define the value functions 

and 

vre: 

Are: {(t, h, x, s, ~s) lt~Zre+a, t - l ~ h < ~ s < ~ N , ( x ,  s, ~s) ~-~t_l} ~ R  
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recursively by 

VN(N+ 1, x, h, ~*) =0 ,  

V:C(t, x, h, gn)=AU(t, h, x, h, ~h), 

A'V(t, h, x, N, ~ ) =  

and, for h <s~< N -  1, 

inf [k,(x, u, li,, h, N)  
u~U,(x) " 

+aVn(t  + 1, f t(x,  u, ~,), N, ~ ) ] ,  

(19) 

(20) 

(21) 

aU(t, h, x, s, gs')=min{E[aN(t,  h, x, s +  1, 5,+1)15,], 

inf E[k , (x ,  u, li,, h, s) 
uE U,(x) 

+~Z'~(t+l,f,(x,u, ti,),sVt, t:"')lt:]}. (22) 

Then it holds that JU*(Xo) = VU(1, x o, 0, t°). Moreover, the optimal rolling 
horizon h, in period t with augmented state X,_ 1 = (x, h, ~;h) is given by 

h,=min{h <~s<~NfaU(t, h, x, s, li') 

= inf E[k,(x,u, li,,h,s) 
u~U,(x) 

+ 1, : ,(x, u, s v  ,, e v , ) l e ] } .  (23) 

Proof 
From theorem 1 and (20) it is clear that it is sufficient to show that the right 

hand side of (13) is given by Air(t, h, x, h, lib). We do this by applying lemma 1. 
We specify Y = ( ( s ,  d o . . . . .  d , ) l s ~ Z o  u, d i~Di} ,  f f , = ~ ,  and ys=(s,  ~). For 
given y = (s, ~') ~ Y, the probability measure Py on ~ is defined by Py(A) = 
P(AI~ ' (¢0)=~ ") for each A ~#- .  Of course, with these specifications, the 
process (G, if,, Py) is a homogeneous Markov chain. The function G(y) of 
lemma 1 is given by 

G(y)  = G(s, ~s)= inf Es[kt(x, u, e~,, h, s) 
u~ U,(x) 

+aVI~(t + 1, f t (x ,  u, 17;t), sV  t, ~ v , ) ] .  

It is straightforward to check that (21) and (22) are identical to (17) and (18) with 
An(y,, s) replaced byAU(t, h, x, s, ~*). This proves the theorem. 71 
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4.2. INTERPRETATION OF D.P. EQUATIONS (19)-(22) 

Equation (19) is obvious, since we are concerned with an N period problem 
with zero terminal value. AN(t, h, x, s, f s) denotes the optimal cost from period 
t to N, if we begin period t with state x and with the information about  the 
demands up to period h and ask the oracle for further information about  the 
demands up to period N (if s = N)  or up to at least period s (if s ~< N - 1) with 
these demands denoted as f ". With this meaning of A N, eq. (20) is obvious. That  
is, VN(t, x, h, ~h) is the optimal cost from period t to N, if the beginning 
inventory of period t is x and if the demands from period 0 to h are known to be 
~h. To interpret (21), we note that the first quantity inside the bracket on the RHS 
is the total t-period cost including the oracle charge in period t to obtain the 
demands from period h to N. The second quantity represents the value function 
in period t + 1 with the inventory f t(x,  u, i t )  and known demands f N. Clearly, if 
we minimize the sum of the quantities in the bracket by a control with the full 
knowledge of demand and the beginning inventory level in period t, then we 
should obtain the LHS of (21). 

Finally, we interpret the general recursion term in (22), i.e., when s ~< N -  1. 
Because of s ~< N - 1, the RHS is the minimum of two terms inside { . . .  }. The  
second term has nearly the same meaning as the one above for (21) except that 
now we have s ~< N - 1 instead of s = N, which requires some additional care in 
writing this term. There are two important  differences. The demand information 
argument inside the value function at t + 1, represented by the second quanti ty 
inside [ . . . ] ,  is f ~vt instead of f s (i.e., ~N) in (21). This is because even if 
s = t - 1, demand f,  becomes realized in period t and will, therefore, be known 
in period t + 1. The other difference is that we need an expectation of the 
quantities inside [ . . . ]  conditioned on (x, s, is), since s < N, before we take the 
infimum with respect to the control in period t. All told, the second term inside 
{ . . .  } represents the optimal cost from period t to N if we begin period t with 
inventory level x and with the information about the demand up to period h and 
ask the oracle for further information about  the demands up to period s ~< N - 1 
with these demands denoted as f s. The  first term inside [ . . .  ], on the other hand, 
represents the same as above except that for  this quantity, we ask the oracle for 
demands up to at least period s ~< N - 1. Therefore,  to obtain the LHS, we must 
compare the second term inside { . . .  } with the first term E[AN(t, h, x, s + 
1, ~s+l) l fS] inside ( . . .  } representing the expected value of the LHS with s + 1 
replacing s. Now it should be clear why the LHS equals the minimum of the two 
terms inside { . . .  } on the RHS. 

Finally, we note that the observations made just above also explain (23). It says 
that, as long as the second term inside { . . .  ) on the RHS of (22) exceeds the first 
term inside ( . . .  ), we continue to ask the oracle for the demand in one additional 
period. We stop asking the oracle for any further demand when the first term 
inside ( . . .  } on the RHS of (22) exceeds the second term for the first time. 
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We can now define the domain of continued additional information 

C"(x, h, ~ )  = {~+~ I A"(t, h, x, s, ~') 

< inf E[k , (x ,  u, ~t, h, s) 
u~V,(x) 

+aViV(t + I, f~(x, u, ~,), s V t, ,,vt)[,,]}, 

where ~+i = (~h+i ..... ~,). Thus, at time t with information (x, h, ~h), if we 
obtain ~' from the oracle, then we continue asking the oracle for additional 
information if, and only if, ~+1 E CrY(x, h, ~h). We stop asking, if the received 
information is not in C,N(x, h, ~h). 

4.3. UNIFORM BOUNDEDNESS OF HORIZONS IN THE DISCOUNTED MODEL 

In this subsection, we assume that the cost functions g, and c, satisfy 

O~g,(x, u, ~)~g, 

c t ( h , s ) = {  K+ i=h+l~ c ( i - t )  f o r s > : h + l ,  (24) 

0, otherwise, 

where c(.)  is non-negative and ~, and K are nonnegative constants. Let us also 
assume that the discount factor a is strictly less than 1. Finally, assume that 
forecasting the distant future is sufficiently expensive; specifically we impose the 
condition 

_ a _ _ +  , ,  ( 2 5 )  lim in fc ( i )  > g I a "  
i - -*  oO 

THEOREM 3 
Under  the assumptions stated above, there exists a constant h independent of 

the problem horizon N such that an optimal sequence of rolling horizon laws 
( 71, ) t ~ z N satisfies 

~,(x,  s, ~s) ~ H(s, t + h), for all (x,  s, ~*) ~ 2:,_ 1. 

More specifically, 

h - -  1 + i n f  j e  Z: c(i) > g ~ - a '  Vi>~j . (26) 

Proof 
Consider the problem defined in section 2 with the additional constraint 

71,(X) ~ H ( t -  1, t -  1) for all X ~  ~ - 1 .  This corresponds to a situation where 
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no forecasting is possible. Because of the additional constraint, the optimal cost 
of this new problem is higher than JN*(Xo). More generally, we have 

N 

vU(t, x, h, ~h) <~ inf • a'- 'g , (x ,_l ,  u,, ~ ) ,  (27) 

where the infimum is taken over all admissible sequences (~t), ~ z N, (~t,)~ ~ z N with 
~/, ~ ,  /~, ~ ¢ / ,  and subject to the constraints (1), (4), (8), (9), ~ , ( X ) ~  H ( r -  
1, ~ - - 1 ) ,  and xt_ 1 = x .  Note that, because of h , =  ~ - - 1  and (25), 
k , (x ,_  1, u,, ~ ,  h "  1, h,) = g,(x,_ 1, u,, ~,). From (24) and (27) follows 

(28) vN(t, x, h, 

Now consider eq. (21). The non-negativity of g, and V N implies 

AN(t, h, x, N, IJ v) >1 c,(h, N).  

Using this inequality and (22) and noting that (25) and c(i)>1 0 imply that 
c,(h, s) is non-decreasing in s, we can see by a simple induction argument that 

AN(t, h, x, s, ~)>1 c,(h, s). (29) 

From (22) and (23), it follows that a sufficient condition for h, <~ s is 

E[AN(t, h, x, s +  1, ~ '+ ' )  I~'] 

>/ inf E[k , (x ,  u, ~,, h, s) 
u e  U,(x) 

+avN(t  + 1, f t(x, u, ~,) ,  s V t ,  ev,)le]. 
Because of (28) and (29), this holds if 

c,(h, s+ l)>~, +c,(h,  s ) + a  l _ a .  

From (25), it follows that this is true whenever 

c ( s  + a - t )  >1 

Hence, the result follows from (26). [] 

5. Infinite horizon problem 

We now treat the problem defined in section 3 with N = ~ .  We assume 
throughout this section that the problem is autonomous (time homogeneous or 
stationary). This means that the functions f,, g,, and c, as well as the sets D,, S,, 
(2, and U,(x) do not depend explicitly on the time argument t (so that we can 
omit the subscript t). Moreover, for the autonomous problem, the disturbances 
(~t),~ z** are independent and identically distributed random variables. 
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The independence assumption for (~,),~ z ® implies that past disturbances are 
not relevant for decision making in a given period. Let us therefore define the set 
of augmented state vectors by 

~ =  {(x, s, ~ ' ) l x ~ S , O ~ s < c o ,  ~,~Z)}, 

with the understanding that s denotes the number of periods in the future 
(counting the current period as the first period in the future), for which the future 
realizations ~ are known. If s = 0, then ~s _ ~0 denotes the null element; in other 
words, no future realizations are known. Any function ~ / : X ~  H(0, co) that 
satisfies 

~l(x,s, ~S)~H(s,  co), f o r a l l ( x ,  s, ~ ) ~ ,  

is called an admissible rolling horizon law and any function/~ : ~ --, C satisfying 

# ( x ,  s, ~') ~ U(x) ,  for all (x,  s, £ ' )  ~ X, 

is an admissible control law. Note that the decision laws ~ and # are stationary, 
i.e., they are time independent functions of the augmented state (x, s, ~s). It can 
be shown (see theorem 6 below) that permitting the decision laws to depend 
explicitly on time t does not improve the optimal cost. 

Our first aim is to prove a counterpart of theorem 1, i.e., the existence of a 
value function that satisfies the dynamic programming recursion. To obtain this 
result, we apply the monotone operator approach developed in Bertsekas and 
Shreve ([8], ch. 5). Let us, therefore, denote by F the set of all extended 
non-negative real-valued functions V: X ~ [0, col. The basic mapping H : X  × C 
x H[0, co) × F---> [0, co] is defined by 

H(x, h, ~", u, o, V) = E lk ( x ,  u, 1~,, h, o) + aV( f (x ,  u, ~,), 

( o - 1 )  V O , ~ ) l ~ c h ] ,  

where ~ ° -  . . . ,  2 - (~2, ~o) if o >I 2 and ~ = ~0 if o ~< 1. Moreover, let us define the 
function V ° : X  ~ [0, co] by V ° ( X ) =  0 for all X ~ X. The following properties 
are true for all X = ( x ,  h, ~h)~X, u~  U(x), o ~ H ( h ,  co), V ~ F ,  V ~ F ,  and 
r > 0 :  

V° <~ V<~ V ~  H(X,  u, o, V)< H(X,  u, o, -if), (30) 

v°( x)  X, o, v°), (31) 
V>~ V ° ~  H(X,  u, o, V)<~H(X, u, o, V + r ) < H ( X ,  u, o, V )+ar .  

(32) 

The validity of (30)-(32) follows trivially from the definitions of H and V ° and 
from the non-negativity of the cost function k. Finally, the monotone conver- 
gence theorem implies 

tim H ( X ,  u, o, V ~) = H ( X ,  u, a, tim V ~) (33) 
t l  --t. O0 n --I' o 0  
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V n V 0 V n+l  for any sequence ( )n~z ~ satisfying ~< V n ~< . The following theorem is 
an immediate consequence of (30)-(33) and proposition 5.2 in Bertsekas and 
Shreve [8]. 

THEOREM 4 

The optimal cost satisfies J°°*(xo) = V°°(Xo, 0, ~o), where V~°: ,~ ~ [0, oo] is 
a solution of the dynamic programming equation 

h, 

= inf E[k(x ,  u, ~1, h, o)+ aV°°(f(x, u, ~) ,  
oE H(h,oo),uE U(x) 

( o -  1) V 0, ~)[~h].  (34) 

In the same way as in the finite horizon case, we can resolve the optimization 
over stopping times on the right hand side of (34). The proof of the following 
result is an obvious modification of the one for theorem 2 and it is therefore 
omitted. 

THEOREM 5 

Define the function 

A~°: {(h, x,  s, ~ ) 1 0  ~ h ~ s  < oo, (x,  s, ~ ) ~  ~} --. [0, o~] 

as the largest function satisfying 

x, s, ~S )=min{E[A°~(h ,  x, s +  1, A°°( h, ~+1) [ ~ ] ,  

inf E[k(x ,  u, ~1, h, s) + aA°~((s- 1) v 0, 
u~ U(x) 

f ( x ,  u, ~1), ( s - 1 ) V 0 ,  ~ ) I / ~ ' ] ) .  (35) 

Then, J°~*(Xo) =A°°(0, x0, 0, ~0). 

We conclude this section by the following important remark. We have shown 
that the problem under consideration is a particular instance of the abstract 
sequential optimization problem treated in Bertsekas and Shreve [8]. Therefore, 
other results proved for the abstract problem are also valid for our model. In 
particular, the value function V ~ of the autonomous finite horizon problem 
converges to V °° as N approaches infinity if, and only if, the limit function 
(lim,~ooV u) satisfies eq. (34). Moreover, we have the following result on the 
stationarity of the optimal policies. 

THEOREM 6 
Under the assumptions stated above and a < 1, the optimal cost J°°*(Xo) of 

the given problem is the same as the optimal cost of a relaxed problem in which 
the decision laws 7/ and # are allowed to be explicit functions of time. 
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Proof 
See proposition 5.1 in Bertsekas and Shreve [8]. 

6. Generalizations 

In this section, we briefly outline how our model can be modified in order to 
describe more general and more realistic situations. Moreover, we point out the 
connection with the theory of forecast horizons. 

6.1. ORACLE WITHOUT PERFECT FORESIGHT 

In most realistic situations, it is not possible to resolve the future uncertainty 
entirely regardless of the effort devoted to forecasting research. This means that 
the oracle can only provide some information on the future but  not a perfect 
forecast. Also, in some cases, the interpretation of the forecast might not be 
unambiguous so that some uncertainty remains unresolved. Both of these cases 
can easily be captured by our model, if we allow for two stochastic processes 
(~,),~z", (St),~zN instead of only (~t) t~z  N. The oracle can only reveal the 
realizations of (~t ) ,~z  N but not those of (St),~z~. The functions f~ and g, will 
now depend on both ~t and 8,  and the augmented state at the end of period t - 1 
will be of the form X,_ 1 = (xt_ 1, h;_l, ~h;_,, 8t-1), since the (t - 1)-th realization 
of the 8-process becomes known automatically at the beginning of the t-th 
period. Without going into details, we just note that the dynamic programming 
equations of theorem 2 have to be modified in the following way 

WV(N + 1, XN)----O , 

v"( t ,  z, h, ~h, ,,-,)=AN(t, h, x, h, ~h, , ,  ,), 

AN(t, h, x, N, C ,  8'-') 

= inf E[kt (x ,u , l ' ; t ,  8 , , h , N )  
uE U, tx) 

+~v~(t  + 1, I,(x, u, ,,, 8,), N, ,~, 8')1, ~, 8 t-'] 
and, for h ~<s< N -  1, 

AN(t, h, x, s, ~*, 8 ' -1)  

= min{ e[  AN( t, h, x,  s +  1, ~,+1, 8 , -1 )1~ ,  8 , -1] ,  

inf E[k , (x ,  u, ~t, 8,, h, s) 
uEV, tx) 

+aV"( t  + 1, f~(x, u, l~t, 8,), s V ,, ~ ,v , ,  8,)1~, ' 8t--l]}. 
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Note  that the equation corresponding to (21) now has also an expectation 
because 8t is a random variable. 

An important  special case arises when the distribution of the random variable 
8~ is known up to some parameters, for which forecasts can be obtained from the 
oracle. For  example, demand 8 t in a production planning problem may be 
geometrically distributed with mean ~,. This implies that 6t(60)= dt(~t(60), 60), 
where d t (~ , .  ) is a geometrically distributed random variable with mean ~. 
Moreover, we have ft(xt_l, u,, ~t, ~t) =f~(x,-1,  ut, St) and similarly for the cost 
functions. 

Another  example for an imperfect oracle arises when the oracle can rule out a 
future disturbance with certainty. Let, for example, dl, d 2 . . . .  be the possible 
values of the disturbance 8 t in period t and let A t = (~t = dt }, l ~ Zoo, be the 
corresponding events. Moreover, let (Ar,)k ~ z ~, be a given partit ion of A 1, l ~ Z°°, 
into mutually disjoint sets. Each partit ion that satisfies A n = 0 ,  1 ~ Z °°, defines 
an oracle via 

~,(60) = d/, for all 60 ~ U Ak/- 

The interpretation of this is that the oracle announces that d r will not happen in 
period t whenever 60 ~ A~/ for some k ~ Z °°. Note that the oracle cannot give an 
incorrect forecast, because we have assumed that the sets A n are empty. The 
extension of this example to oracles which rule out more than one of the possible 
disturbances d 1, d:  . . . .  is straightforward. 

Finally, let us demonstrate how to model an unreliable oracle that gives the 
correct answer only in /3-  100% of all cases. As in the above example assume that 
the possible values of 8, are given by d r, l ~ Zoo, and that a partit ion of each of 
the sets A/, l ~  Zoo, is given. If this partit ion satisfies P(Au)=  tiP(A/) for all 
1 ~ Zoo, then the oracle defined by 

~ , (60) - -d  r, fo ra l l  60~ U Ak/ 
k ~ Z "° 

has the following property. In ft .  100% of all cases in which the the state of 
nature at time t is going to be dr, the forecast of the oracle for period t is ~r = dr. 

We conclude this subsection by remarking that more complicated oracles as 
well as combinations of the oracles defined above can easily be modelled in our 
framework with two processes (8,) , ,z,~ and (~ , ) t~z  ~. Moreover, the perfect 
oracle defined in section 3 is the special case in which these two processes are 
identical. 

6.2. MORE THAN ONE ORACLE 

Now consider the situation where the uncertainty of  the model is described by 
m different random processes (~1~) t ~ z N . . . . .  (~m~)t ~ z N. As an example, consider 
a firm that produces for markets in m different countries. Let ~ o  denote the 
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demand in country i during period t. Research institutes may conduct surveys in 
different countries to obtain forecasts for the future demands in these countries. 
There might be one research institute for each country (parallel oracles) or there 
might be some institutes which can conduct surveys in more than one country 
(possibility of hierarchical oracles). The firm (i.e., the decision maker) has now an 
additional decision variable describing which oracles to ask for information. For  
each of the oracles chosen, a sequential information gathering procedure is 
applied as described in section 3. It should be noted that the presence of 
hierarchical oracles can incorporate the realistic case in which the decision maker 
in a given period can decide to update or revise the past forecasts (i.e., forecasts 
requested in prior periods) along with obtaining forecasts for additional future 
periods. It should be clear that this generalization of our model to incorporate 
several oracles can also be formulated as a dynamic programming problem 
similar to the one in theorem 2. The notation, however, becomes very cumber- 
some and, therefore, we have chosen not to present the relevant equations here. 

6.3. INTEGRATION WITH THEORY OF FORECAST HORIZON 

As mentioned in section 1, there are situations when forecasts beyond a certain 
period in the future are simply unavailable. In these cases, the probability 
measure is not defined for events that are related to these future periods and our 
model will not apply. However, we can use the theory of forecast horizons in 
conjunction with our model. To be more specific, then, let us assume that we have 
a measure space { fg, ~ ' }  over which a measurable process (~, } ,~z = is defined 
and that ~ ,  is the o-field generated by the process ~,. Moreover, we let ~ denote 
a set of probability measures on (12, ~ } for which the only event with zero 
probability is the empty set. As in Bes and Sethi [9], we define a space of 
forecasts D. Let {12, .~ ,  P f } t ~ z  ~ denote a sequence of probability spaces for 
d ~ D with the requirement that p d ~ ~ for all d ~ D and all t ~ Z °O and that 
P,d+ 1 agrees with Pt d on the events in ~ __C_~+~. 

Furthermore, we define the sets 

I , ( d ) = { e ~ D l P a = P f ,  l <~s<~t) c D 

and the partitions 

..f~={I,(d), deD}, t E Z  °° 

in D. We can now define the concept of a forecast horizon. Let T ~  Z ~ and 
I E J r .  We say that T is an /-forecast horizon, if there exist policies 7[ ~ 
and O[~./g 1 such that, for all N~> T and for all d ~ l ,  there is at least one 
optimal pair of strategies ,/f'a~a~ff 1 and #~'d~e/t'~ for the N-period problem 
with forecast d such that 

. f . ' =  and o/. 
Of course, as in Bes and Sethi [9], other parameters such as oracle costs etc. 

could also be made dependent on d ~ D. 
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7. Numerical example 

In this section, we apply the algorithm developed in section 4 to a simple 
production planning model with quadratic holding/backordering cost and linear 
production cost. The model is constructed so as to illustrate simply the possible 
cases that can occur and is not an attempt to describe any realistic situation. 
More specifically, we assume the running cost function 

g, (x ,  u, ~) = x 2 / 2  + u 

and the transition function 

f ,(x,  u, ~ ) = x + u - ~ .  

Demand is assumed to be a finite state stationary Markov chain with values in 
D t = {0, 1, 2, 3, 4} and 

{i14 if i = 1 ,  
P ( ~ = i ) =  6 if i = 3 ,  

otherwise. 

The transition probabilities P(~,+1 = J l ~ ,  = i) = qij, i, j = 0 . . . . .  4, are given by 
the matrix 

0.2 0.8 0 0 
0.2 0 0.8 0 

Q =  o o.5 o o.5 
0 0 0.7 0 
0 0 0 0.6 

We specify the oracle charge by 
h, 

o / 
0:4/  

c,(h;_ 1, hi) = E 0 . 0 1 ( i -  t + 1). 
i=h~_l+l  

This means that forecasting demand for a period that is "r time units ahead incurs 
the cost 0.01~-. By specifying the parameter values N = 5, a = 1, x 0 = 0 and the 
control set U~(x)= {0, 1, 3.5} for all t ~  {1, . . . ,5} and all x ~ R ,  the model is 
completely determined. 

Applying the algorithm of theorem 2 we obtain, for the first period, the 
optimal rolling horizon 

1, ~1 = 3, 

h 1=~11(1,0, ~0)= 2, ~ l - - l a n d  ~2=0 ,  

3, ~l = 1 and ~2 = 2. 

This shows that it is optimal to go to the oracle in period one and ask for a 
forecast of at least the first period.-The first period demand can be 3 (with 
probability 0.6) or 1 (with probability 0.4). If the oracle tells us that the first 
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period demand will be 3 units, then we stop asking for more information and 
produce 3.5 units of the product since 

u, = ~,(0, 1, (~0, 3 ) ) =  3.5. 

Let us denote this as case A. 
Now consider the case that the oracle tells us that demand in period 1 will be 

one unit. In this situation, the optimal decision is to ask also for the demand in 
period 2. According as the oracle announces ~2 = 0 or ~2 = 2 we stop asking and 
produce 1 unit (case B) or we continue asking for the demand of period 3 (case 
C), respectively. Whatever information on the demand ~3 we obtain in case C, it 
turns out to be optimal to stop the sequential information gathering process. The 
optimal amount of units to produce, however, depends on ~3 in the following 
way: u I = 0 if ~3 = 1 and u I = 1 if ~3 = 3. Formally, the above optimal decisions 
can be written as 

u, =/~,(0, 2, (~5o, 1, 0 ) ) =  1, 

u, =/*,(0,  3, (~0, 1, 2, 3 ) ) = 1 ,  

u, =/*,(0,  3, (f0,  1, 2, 1)) = 0 .  

Note that the above mentioned cases constitute a complete discussion of the 
optimal decisions in period 1. The "curse of dimensionality" leads to a tremendous 
increase of possible cases in period 2. We, therefore, restrict the following 
discussion to one particular scenario (one realization oa). Let us assume that case 
A has occurred in period 1. This means that, at the beginning of period 2, we 
know only the demand fl = 3. The inventory contains x a = 0.5 units, because we 
have produced 3.5 units and demand has been 3 units. From theorem 2, we 
obtain 

h 2 = 72(0.5, 1, (~0, 3)) = 2, for all oa ~ I2. 

This means that it is optimal to ask the oracle for a forecast of the second 
period's demand but nothing more (independently of the information obtained). 
Moreover, 

u 2 = #2(0.5, 2, (f0,  3, 2)) = 1, 

u 2 =#2(0 .5 ,  2, (f0,  3, 4)) = 3.5. 

Let us assume that the oracle tells us that demand in period 2 will be 4 units and, 
therefore, we produce 3.5 units. This implies that, at the beginning of period 3, we 
have an empty inventory, x z = 0, and we know the demands fa = 3, fz = 4. We 
obtain for the third period 

h a = % ( 0 ,  2, (~0, 3, 4)) = 2, for a l l o a ~ O ,  

which shows that it is optimal to make the production decision without any 
information on the demands in the current and the future periods. The solution 
of this (usual) stochastic dynamic programming problem is to produce 3.5 units 
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again. The reason for the suboptimality of asking for any information in this case 
is that, from the known probability distribution of demand and from 42 = 4, we 
can conclude that the demand in the following periods will remain relatively high. 
This knowledge is enough to make the optimal decision of producing at the 
highest level possible, i.e., 3.5 units. Formally, we have 

u 3 =p3(0 ,  2, (40, 3, 4)) = 3.5. 

Let us assume that the demand actually realizing in period 3 is 3 units, i.e., 
~3 -- 3. Then the augmented state vector at the beginning of period 4 is 

X 3 = (0.5, 3, (40, 3, 4, 3)). 

We obtain 

h ,  = ~/4(0.5, 3, (40, 3, 4, 3)) -= 4, 

and 

for all to ~ 12, 

u 4 =/~4(0.5, 4, (40, 3, 4, 3, 2)) = 0, 

u4 =/x,(0.5,  4, (40, 3, 4, 3, 4)) = 3.5. 

The result h 4 = 4 says that it is optimal to go to the oracle but to ask only for the 
current period's demand. Assuming that we obtain the information 44 = 2, the 
control law it4 implies that we should produce nothing at all. This leads to a 
backlog of x 4 = - 1.5 units at the beginning of period 5 and because of 

h 5 = , / 5 ( - 1 . 5 ,  4, (40, 3, 4, 3, 2)) = 4 ,  

u, = /~5 ( -1 .5 ,  4, (40, 3, 4, 3, 2)) = 0 ,  

we neither go to the oracle in the last period nor do we produce anything. Of 
course, this follows from the fact that we did not include a salvage value function 
evaluating a terminal inventory or a terminal backlog. 

8. Concluding remarks 

In this final section, we point out several directions for further research. First 
of all, we would like to mention that the purpose of this paper was to develop a 
general theoretical framework for stochastic dynamic optimization problems in 
which the future uncertainty can partly be resolved at some cost. An obvious next 
step would be to evaluate various existing heuristic methods of roiling horizon 
decision making (like those mentioned in section 2) in this framework. Since we 
believe that costly forecasts are one of the major reasons for the application of 
rolling horizon methods, we expect that such a performance evaluation of 
heuristics should yield good results under reasonable assumptions. We hope that 
our framework will further clarify these assumptions and probably lead to new 
heuristic methods. 
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The second research topic follows from the obvious computational difficulties 
of solving our optimization problem. Since the augmented state vector X t con- 
tains the usual state x t as well as the known realizations ~h;, its dimension is quite 
large even for simple problems. It might be possible to reduce the computational 
complexity of our dynamic programming algorithm by taking into account the 
special structure of the problem under consideration. Moreover, it might be 
useful to develop other algorithms like policy iteration, value iteration, or even 
heuristic methods to solve the non-standard optimization problem. 

Another direction of research is concerned with sensitivity analysis with 
respect to various parameters. Let us mention just two particular questions. First, 
we would like to know under what conditions the optimal rolling horizon h~ of 
the N-period problem is monotonic with respect to the problem horizon N. 
Together with a boundedness result like the one in section 4.3, such a monotonic- 
ity condition would ensure finite convergence of the optimal rolling horizon as N 
tends to infinity. The second question concerns the influence of fixed cost of 
going to the oracle on the structure of the optimal solution. Of course, increasing 
the fixed part of ct(h, s), if any, will likely reduce the number of periods in which 
the oracle is approached for information. The exact relation between the fixed 
costs and the number and lengths of forecasts would be worthwhile to explore. 

In some special cases, it might be possible to obtain an explicit solution of our 
problem. Consider a simple model with stationary demand and simple cost 
structure (e.g., only fixed costs) as an extension of the lot size model. Is it possible 
to derive a production policy of the (s, S)  type? What is the structure of the 
optimal forecast policy? 

Finally, we would like to mention that a continuous time version of our 
problem, especially of the forecasting cost, might be difficult, if not impossible, to 
obtain. 
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