
J. Quantification and R M  
Dmw~w 

w l .  Introduction * 

Routley and Meyer [7] conjecture (with some misgivings) that  the 
Anderson-Belnap system R Q  (R with fh~st order quantifiers) is complete 
with respect to a certain extension of theh" semantics for R. The Routley- 
5Ieyer conjecture h~s proven intracta.ble. For reasons that  will not be 
examined here, the distinctive three-placed accessibility relation of the 
I~outley-BIeyer semantics seems to get in the way. 

But the semantics of the relevant logic R/ l l  can be fornmlated with 
a more orthodox two-placed accessibility relation (cf. [2]). So the purpose 
of this paper is to prove an appropriate ~:ersion of the R outley-Meyer 
conjecture for RMO in terms of ~ "binary" semantics. 

w 2. Syntax 

The language of R M Q  is quite ordinary, and is basically the language 
of RQ as formulated in [6], except that  for convenience neg'ation (~-~) 
is taken as primitive instead of the false sentential constant [, and disjun- 
ction (v )  is defined in the usual de Morgan manner from conjunction 
(A) rather them taken as primitive. The other primitives are implication 
(->) and the universal quantifier (V), with the existential quantifier (3) 
defined in the s tandard way. 

~Note well tha t  a distinction is made between real variables (a, b, c, 
etc.) and apparent variables (x, y, z, etc.), with only the latter bindable 
by quantifiers. A se,t~te,n, ce is a formula containing no free occurrences of 
apparent  variables. We shall always deal explicitly with a denumerable 
language, but  the results can routinely be extended to languages of larger 
cardinality subject to the usual a.ssumptions about the symbols being well- 
ordered. 

We shall have use in the sequel for the notion of the linguistic extension 
L § V of a language .L by a set of real variables V. We identify this with the 
set of sentences constructed from the symbols of Z together with the ele- 
ments of V taken a,~ additional real variables. 

* This work was done while I was a visi t ing fellow at The Austra l ian Nat ional  
Univers i ty  and  held a Ftflbright Fellowship from The .<us~rali~n-American Educat ional  
Foundat ion .  I wish to thank  both the ANU and the AAEF for their  support,  and also 
express appreeia.tion to my  colleagues, esp. R. K. Meyer and R. Routley, for stimlfla- 
t ing  discussions over a var ie ty  of relevant  topics. 
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The proof theory  of R21IQ is like t ha t  of RQ except  t ha t  the  "mingle"  
axionl scheme 

A0. A=~-(A--+A) 

is to be  inser ted at  the  f ront  of the  list of axiom schemes of [6, p. 99]. 
Also our choice of pr imit ives  allows for the  delet ion of the  d is junct ion  
axioms A6--AS,  ;rod requires (cL [1], w 14.3) the  addi t ion  of axiom 
s(_;]lenle 

A17. (A-~,-,~ B)=, ( B ~  A) 

The remodel who does not  have  [6] ill hand  is reminded that. all e losmes 
of instances of a, xiom schemes are taken  as axioms so a,s to dispense with 
generalization as a. rule, the  only rules then being modus pones and adjun-  
etion. 

Re la t ive  to n given language,  an R M Q  theo ry  is defined a.nalogously 
to an R Q  theo ry  in [6] ~s any  set of sentences containing all axioms 
of It3IQ which is closed under  modus po,nens and adjunct ion .  We often 
ident i fy  R ~ I Q  with the  sma.llest R ~ I Q  theory .  We say tha t  a sentence 
A is deducible in an Iti~lQ t heo ry  A from a set of sentences 0 (in 
symbols ,  0 F~ A iff A~ /~  for all ItMQ theories F such tha t  
AwOc_F. 

Adapt ing  and extending more  not ions f.lom [6], we say that  a.n 
R.~IQ theory  A is prime whenever  A v B r  implies A e A  or B~A, 
V-complete whenever  A(a)e A for all real var iables  a implies VxA(x)�9 A, 
3-complete whenever  3xA (x,)�9 A implies A(a)�9 A for some real variM)le 
a and straight (the te rm is Rout ley ' s )  whenever  A has all three  of 
these  propert ies .  Note  well tha t  we have  no need for the epi thet  
" regular"  used in [7] to single out  theories containing all logieM 
theorems.  Since we have  rever ted  to the earlier usage of [6], which 
builds this into the  definition of " theo ry" .  That  we need consider 
only regular  theories in proving completeness  is special to It2tl, and 
does not  ex tend  to the sys tems R and E. 

I t  is convenient  to in t roduce  A ~ B = ~if(A A t)-~B. ~ The idea. of this 
bent.llymenmti(, impl icat ion"  is due in principle to Anderson and Belnap,  
"u t  Meyer  has s tudied it extens ively  in this par t icu lar  form (of. e.~l). 
[5]), findino' tha t  it has the  behaviom'  in R of intuit ionist ic implication.  
Indeed,  the  Sul)erintuitionistie sys tem L C  of D u m m e t t  lnay be  t~anslated 
into R M  using tha t  definition of implica,tion, cf. [3]. 

The following was s la ted  f o r / t Q  theories in [6]. 

1 The sententi,~l emlstant t, intui t ive ly  the conjunction of all true sentences, can be 
added cofIservatively t o / l l ~ l Q  with the a_x-iom scheme A ~-* ( t ~ A ) ,  or else contextual ly  
defined (ef. [1], w 27.1.2, or [31}. Although officially ~ is not part of our 1,~ngn,~ge for 
RMQ,  we shall not  hesitate to make use of it when convenient .  
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])EDUCTr0N T i m e l y  (lST VEBSZ0N). Lct A be a.J~. R.~IQ theory, 0 
a set of se~,tence.% a,~d A,  B sentences. Then 

O, A F dB i f f  O ~-aA ~ B 

Also the following was proven for R M  theories in [2] and extends immedia- 
te ly  to R~/IQ theories. 

DEDUCTIO~ TIt:EOlCESf (2ND VEI'~SION). Let A, O, A,  B be as in the 
1st Version. The.Jr 

O, A ~ s B  a~td O, ~.,B F j ~ A iff O ~- a A ~ B .  

w 3. Semantics.  

R ] I  model structwres (~ .  s.) were in t roduced in [2] as s t ructures  (G, K, 
/g), where K is a non-empty  set, /g is a (weak) linear on K,  and G is the 
/?-least melnber of K.  For  a co~sta.~t domain m.s. we add a. non-empty  set 
D (the domain) so as to obtain a s t ruc ture  (G, K,  /g, D). 

In  the  sequel, we adopt  for convenience a "quas i -subs t i tu t ional"  inter- 
pre ta t ion  of the  quantit:iers of the sort favoured by A. Robinson,  [r Smul- 
lynn and  others for classical first-order logic. This uses the notion of 
a U-scnte,~ce ( U a non-empty  set), which is exact ly  like a sentence except 
t h a t  actual  elements of U have been subs t i tu ted  for some or all occunenees  
of real variables.  ~ 

R M Q  Sema,~tics. An R M Q  model will be a s t r u e t m e  (G, K,  R, D 9), 
where (G, K,  /g, D) is a cons tan t  domain  m s. and 9 (the valuation) is 
a func t ion  assigning each real variable a member  of D and each atomic 
D-sentence, relat ive to a member  of K,  a non-empty  subset of {T, F} a. 
The obvious "P~ose-by-any-other-name" t~.equirement is made that. if 
P is an atomic D-sentence and  P(rp) is the  ~-esult of ~eplaein~" each real 
variable a of P in every occurrence by 9(a), then  ~f (P, H) = ~ (P(9) ,  H) 
for each H e  K.  Final ly  for each atomic D-sentence P we require the 

9. Since on the abstract  approach to language common to most recent  logical work, 
"symbols" can jus t  as well be shoes, and ships, and sealing wax (or prime numbers  
for tha t  matter)  as marks on paper,  U-sentences are just  sentences in the linguistic 
extension of the given language by  the set of "real variables" U. 

a The idea tha t  sentences can be valued as s imultaneously both true and false 
is admi t ted ly  ra ther  odd. The reader want ing  mot iva t ion  should eensul [2]. Inci- 
dentally,  K. Pledger has suggested pr ivate ly  tha t  the mot ivat ion  in [2] is undu ly  
pessimistic, since the Heredi tary Condition has things gett ing more and more con- 
t radlctory as t ime goes on i f  one regards HIGH.' as indicat ing tha t  the evidential  
s i tuat iml 17 temporaUy precedes the one H.'. But  Pledger suggests tha t  the temporal  
order of the accessibility relat ion should optimistically be thought  of in the r e v e r s e  

order. Thus  one starts  with a s i tuat ion in which many  sentences (for all one knows) 
are just  as much t rue as false, and then  one improves on this s i tuat ion as t ime 
goes on by  accumulat ing cvidenee tha t  occasionally decides things one way or 
the other. 
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HEI%:EDITAI~Y CO:NDITION. I f  HRH', then q~ (P, H ) c  ~(p, H'). 

We regard ~ as extended inductively to compound D-sentences accor- 
ding to the following rules: 

(~-~T) T ~ 9 ( N A ,  H) iff F � 9  
("oF) F e g ( N A , H )  iff T e g ( A , H ) ;  

(AT) T ~ 9 ( A A B , H )  iff T ~ ( A , H )  and T e 9 ( B , H ) ;  
(AF) F�9  H) iff F � 9  or F � 9  

(-+T) T~ 9(A--->B, H) iff for all H ' � 9  such that  HRH', 
(i) T E ~ (A, H') only if T �9 ~ (B, H'), and (ii) F �9 q)(B, H') only if F E ~ (A, H') ;  

(-+F) Fecf(A~B,H) iff either (i) T i q ~ ( A ~ B , H ) o r  
(ii) T � 9  and F � 9  

(VT) Te~(VxA(x) ,H)  iff T�9 for all a�9 
(VF) F�9 iff F�9 for some a�9 

The following may be verified along the lines of the inductive proof 
of the corresponding lemma in [2] (the new ease A ---- VxB(x) may be done 
by the reader in his mind's eye). 

HEREDITAI%V :LEM~IA F01% R M O .  I~et (G, K,I~, D, q~) be an RMQ 
model. _Eor any D-se~tence A~ 'if HIGH', then ~r(A, H) c ?(A,  H'). 

w 4. Soundness. 

A sentence A is ,~ logical consequence of a set of sentences A in R~IQ 
iff for a.ll RMQ models with first component G and last component ~0, 
TEq~(B,G), for all BE A, implies T ~ ( A , G ) .  We write this in symbols 
as A ~R~QA. 

The reader m~y establish t.he 

SOU:NDR~ESS TI~OlCE~ FOR R / l l ~ .  I f  A kaMoA, then A ~R~O A. 

In  doing so he will find useful both the t Ieredi tary Lemma and also a 
ma extending the "Rose l~equhement"  to compound sentences. 

w 5. Completeness of R M Q  

We make a conscious ada.ptation of the argument  of Gabbay in [4] 
(which the ~eader should have at. lmnd) for the completeness of 2rid-order 
intuitionistic propositional calculus augmented with the propositional 
quantifier version of A15. Gal)bay's argument makes frequent use of the 
Deduction Theorem for intuitionist implic~ttion which just does not hold 
tor R-lllingle implication. But it does hold for R-~lh~gle enthymemat ic  
fmt)lication (our Deduction Theorem in the 1st Version), ~nd therein lies 
ihe ~ecret of the adaptation. An analysis of Gabbay's argument  reveals thnt  
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only rarely is it impor t an t  tha t  the implicat ion involved in an appl icat ion of 
the  Deduc t ion  Theorem is the  pr imi t ive  implicat ion of the  sys tem,  and then  
our Deduc t ion  Theorem in the  2nd Version can be  made  to serve instead.  

We  shall bo r row te rminology  f rom [4], b u t  we do not  follow G a b b a y  
in his use of the  word  " t h e o r y "  since the  word  has a l ready  been  used in 
this 1)aper and in earlier papers  on re levant  logic in a more  s t anda rd  sense. 
We  shall ins tead call an ordered pair  (A, 0) of non -empty  sets of R M Q  
,~entences .~imply an R~IQ pah'. 

An R 3 I Q  pair (/A, 0) is co,J~siste~t iff for no A1, . . . ,  A,~E J ,  B1, . . . ,  B ,  
E 0 do we h~ve t-R.,i Q (A~A ... ^ A ~ )  ~ ( B l v  . . .  vBn) ,  4 and complete in 
a cer tain language iff for each sentence A of theft language, A e A or A E 0. 

An t t l l lQ pair ( 3 ,  0) is saturated iff A is a prime, 3-complete  R M Q  
theory .  An R~/IQ pair (/_1, 0) is of co~tstaut domain in ,~ certain language 
if[ whenever  ( J ,  Ow{VxB(x)}) i.~ consistent ,  then  for some real va r iab le  
a of the  language (3,  0w{VxB(x) ,  B(a)}) is consistent.  The reader  may  
easily ver i fy  tha t  a.n R M Q  pair  ( J ,  0)is  sa tura ted ,  consistent ,  comple te  
and of cons tan t  domain  iff (1) /A is a s t ra ight  R M Q  theory  which is 
"p rope r "  (not. all ..entence.~ a~e theorems)  and (2) 0 = set of sen tences - -  
- - J .  

An R/~IQ pair (/A*, 0*) e.rtcnds another  ( J ,  0) iff /A _~ ,3* and 0 ___ 0". 
We now have  a, ~eries of l emma ~ Ia Gabbay .  

LE~La  1. .Let (3 ,  O) be a consistent R ] I Q  pair. Then (/A, O) can be 
exte~lded to a complete saturated, and consistent ttI~IQ pair (A*, 0") of 
cowdant domain in a language with denumerably many new real variables. 

PI~OOF is 1)a.sically the  sa.me a.s Gabbay ' s ,  wherein (Ao, 0o) is set to 
be (/A, 0) a.nd (/A,~.+~, 0,~+~) is defined induct ive ly  f rom (/An, 0~), and finally 
(.3". 0") is defined so 3" = I._)~ A~, O* = (_),.~0,~. Howeve r  we shall 
cha.nge the  induct ive  step of the  cons t ruc t ion  .,omewhat. s 

Thus let V be a set. of R0 new ~eal variables  and let B~, B2, .. .  be an 
enumer,~tion of all the  sentences in the  linguistic extension of the  given 
h~n~uage by  V. 

~Now if (/A,~w{B,~+~} is consistent ,  cons t ruc t  /A~+l b y  adding B,~+~ to 
/A,~. At the  same t ime if B,~+~ = ] x F ( x ) ,  ~dd _F(a), where a is the  first  
read v~riable ( n some .~t~u~dard enumera, t ion including those in V) such 

4 We could have alternatively defined consiste~wy with ~ in place of ~ if we 
had at the same t ime built  into our definition of an R M Q  pair (2,  O) that t~A, making 
further changes in the sequel as necessitated. 

5 N. D. Behlap, Jr. communicated to me in 1973 a result which is in effect the 
precise analogue for /r  of Gabbay's Lemma 1 (but of course completely independent) ,  
with consistency defined using ~a.nd no requirement made that  t~ A (cf. note 
4). The structure of the proof of our Lemma  1 borrows fl'om Belnap, and also the 
proof of our Lemma 4, bringing out (I think) more clearly the similarities between 
the proofs. 
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t ha t  (AnW{3xF(x),/~(a)}, 0n) is consistent.  Set 0~+ 1 = 0=. On the  other  
h.~nd, if (zl,~u {B=+~}, 0,~) is not  consistent,  cons t ruc t  0,~+~ by  adding Bn+ ~ 
to 0~. Add as well if B=+~ =- ~x_~(x), F(a),where a is the first  real va.riable 
such tha t  (An, O,~w{Vx~(x),/~(a)}) is consistent.  Set A,,+~ = A, .  

Of course it has to be shown i n ,  ach case t h a t  there  is such a real va- 
riable a. Pr ior  to arguing this we ob,~erve tha t  ei ther (A~w{B~+~}, 0n) or 
(s 0,.~{B~+,}) is consis tent ;  otherwise (An, 0,) would be inconsistent  
on account  of 

A = (BvC) ,  ( A v B )  ~ C F RMoA ~ C. 

Now a ca.n be picked as the  first  member  of V not  in any of An, 0,~, 
Bn+ 1. Otherwise,  on the  b~sis of the  prior observa.tion it is easy to see 
th,~t ei ther (I) (An, O,~w{VxF(x)}) is consistent  while (An, O,,w{Vx_F(x). 
P(a) ) )  is inconsistent,  or (II) (A,~w{:Ix~'(x)}, On)is con.qstent while 
(A~u{3,r,/~(,v), ]~'(a)}, 0~) is inconsistent.  Bu t  both  can 1)e shown impos- 
sible. 

We t lca t  only (I), (II)  being similar. I f  (An, O,,u{Vx]?(x),F(a)}) 
is inconsistent ,  then  sonic .41, . . . , A i e  Jn ,  Ba, " " ,  B~e O n qre .~ltch t h a t  

But  they  1)y Lemm~ 5 of [6] and the  Deduct ion  Theorem (1st Version), 
toge ther  with the  idempotence of v ,  

~ M Q ( A , ^  ... ~ . 4 i ) =  (B,v .. .  v B ; v W F . ( x ) ) ,  

cont rad ic t ing  the  consistency of (A,, O,~tJ{Vx_~'(x)}). 
I t  is now rout ine  tha t  (A*, 0") is consistent,  complete,  sa. tmated,  ~md 

of cons tant  domain  in the  linguistic extension by the  new constants .  

L:nsr~A 2. Suppose that the R2IIQ pair (A, 0) is cmtsiste~t a.J~d of 
consta)tt domain in a certain la,t~guage and that 0 is fi~tite. Let A ,  I3 be two 
se.~tences oJ this language so that (A', 0') ---- (A u{A},  0w {B}) is co l~siste,J~t. 
Then ( A', 0') is of tv.nsta.t~t domain. 

Plr is exact ly  like tha t  of Gabbay 's  L e m m a  2, bu t  ~ i th  en thyme-  
mat ic  implication in the  ~ole of intuit ionistic implication. 

L : E ~ A  3. Let (A, O) be a co.nsiste,~tt, complete, saturated ttJllO pair 
of co~.sta~tt domain i.~ a certain language, a.~d let(A=,B)e O. The~ at least 
o,~e of (Aw{A},  {B}), ( / J w { ~ B } ,  {--~A}) is a co~~siste.~t t t ] IQ pair of 
co,~tsta~t domai,~ i~, the same la~g,uage. 

P]~oo~. By the  Deduct ion  Theorem (2nd Version) at least one of 
(A ~ {A}, {B}), (A w {~-~ 13} {~-~ A}) is consistent,  since otherwi,,e J I- ~ e  
A-+B, cont]adic t ing  the  consistency of (A, 0). 
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I f  (A w{A}, {B}) is consistent ,  the  a rgument  procedes as for G a b b a y ' s  
L e m m a  3, using e n t h y m e m a t i c  impl icat ion in the  definit ion of the  key  
sentence F '  = V y ( A  ~ ( B v V x _ ~ ( x ) v F ( y ) ) ) .  I f  ( A u { ~ B } ,  {~-oA}) is 
the  consis tent  one, then  there  is a precisely parallel  a rgument  with :F" 
= Vy(~-~B ~ ( ~ A v V x F ( x ) v F ( y ) ) )  in place of F ' .  

LEM~.~ 4. Let ( A , 0 )  be a consistent, complete, saturated t t M ~  pa ir  
of constant domain in a certain language. Assume  that _E----(A-+B)E O. 
Then, there exists a consiste,nt, complete, saturated t t M Q  pair  (AF, 0~,) of 
constant domain in the same language such that A c_ A F and either (1) A e AF, 
Be 0F, or (2)~-~BE AF, ,..~Ae 0~.. 

PROOF. B y  L e m m a  3 at  least  one of ( A w { A } , { B } ) ,  ( A w { ~ , ~ B } ,  
-[~-~ A}) is consis tent  and of cons tan t  domain  in the  same language. Set 
one such to be (Ao, 0o). Define ( * * A~+~, 0,~+~) in precisely the  same induct ive  
fashion tha t  (A~+I, 0,~+~) was defined in L e m m a  1 except  no new real 
var iables  are added.  In  tha t  earlier cons t ruc t ion  we were able to depend upon  
the new real var iables  so as a lways  to be  able to cons tan t ly  add "witnesses"  
to exis tent ia l  sentences on the left  and "hosti le wi tnesses"  to  universal  
sentences on the  right.  This t ime we are s tuck  with the  given language, 
and so must  exploit  the  cons tan t  domain p rope r ty  instead. 

We  argue then  t ha t  if (A,*, 0") is defined, consistent,  and of cons tan t  
domain,  so is * * (A~+I, 0,~+1 ). I t  follows readi ly f rom (A*, 0") being of con- 
s tant  domain tha t  if B,~+~ = VaN(w), then  (An+ ~ *  , 0n+~) is defined and 
consistent,  The ease when Bn+ ~ = ~xY(x) is more interesting, bu t  is argued 
l)reeisely like Gabbay ' s  Case (1(1) in the  proof  of his L e m m a  4, again put-  

ing ent hymenm.tie implicat ion in to do the  job of intui t ionist  implication.  
That  (.:1,+~, 0,+~) continues to be of cons tant  domain follows f rom Lem- 

I l i a ,  0 

Finally,  set A F = U, ,~A,* ,  O F = Un,~0,*. A rout ine  a rgument  shows 
{.:iF, 0F) to have all the desired propert ies  of the  lemma. 

Before s ta t ing the last l emma we need a definition. Where  A is a 
.,t.raight l l M O  theory ,  the  ca,nonical R2tIQ model determi,~wd by A,  ( G ~, K j ,  

~ A t R~, / )~ ,%a) ,  is as follows: G.a A; K~ {A' :  is a straight R M Q  
theory a~,d .d _c A'}; A~R~, A~ iff A~ __c A2; D~ -- {a: a .is a real variable}; 

t 
q.,~(a) = a for each real var iable  a; and (i) TE ~v4(P, A') iff PE A,  and (ii) 
F E ~ ( P ,  :1') iff ~-~Pe A'. That  ( G ~ , K ~ , R ~ )  is an IRI~I m.s. follows di- 
rect ly  f rom L e m m a  2 of [2]. 

LE3~3IA 5. ~Let A be a straight R111 O theory. Then in the canonical R2IIQ 
model deter,min, ed by :l, (i) Te~0~(A, A') i f f  A e  A', a,nd (ii) Fe~od(A, A') 
i f f  ~o A E .~'. 

PI~OOF. By  induct ion on the  length of A, much  as in [2], bu t  the  ease 
A = B - , C  deserves some new at tent ion,  and of eour.,:e there  is the  eomple- 
te ly  new but. rout ine  ease A = V x B ( x ) .  
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As for the fir,~t, in [2] it was needed to show tha t  for a pri,ne R M t h e o r y  
A, t h a t  B ~ C E  A iff for all prime R M  theolies A' _~ A, B~ A' o~ly if CE A', 
and ~-~ C~ A' only if ,-~ B~ A'. The same th ing  now needs to be .~ho~n Ior 
straight R211() theories. :But the  gut  of this is just. our L e m m a  4. 

PROOF OF COMPLETEEESS OF R 3 I Q .  Su])po~e not  A t-R~)~oA. Then 
(A, {A}) is con~:i.~tent. By  L e m m a  1 there  is a consistent,  complete,  satnra-  
ted 22110 pair (A* , 0") of cons tan t  domain  (albeit in a lingni.~tie exten- 
sion). By  the  obselvat ion  preceding Lemnm. 1, A* is a ,,~aio.ht R211Q 
theory .  Consider the  canonical 112110. model  de te rmined  by A*. :By L e m m a  
5 (since A ~ A* and Ar A*), not  A r a~,oA. 

COI~OLLAIC]-ES. The us,ual corollaries, e.g. the compaetmess Theorem a,Hd 
the LOwe'~heim-Skolem Theorem, follow in the ~sval ways. 
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