J. MicEaEL - Quantification and RM
Duny

§ 1. Introduction *

Routley and Meyer [7] conjecture (with some misgivings) that the
Anderson-Belnap system RQ (R with first order quantifiers) is complete
with respect to a certain extension of their semantics for R. The Routley-
Meyer conjecture has proven intractable. For reasons that will not be
examined here, the distinetive three-placed accessibility relation of the
Routley-Meyer semantics seems to get in the way.

But the semantics of the relevant logic RM can be formulated with
a more orthodox two-placed accessibility relation (cf. [2]). So the purpose
of this paper is to prove an appropriate version of the Routley-Meyer
conjecture for RMQ in terms of a “binary” semanties.

§ 2. Syntax

The language of RMQ is quite ordinary, and is basically the language
of RQ as formulated in [6], except that for convenience negation (~)
is taken as primitive instead of the false sentential constant f, and disjun-
ction (v) is defined in the usual de Morgan manner from conjunction
(A) rather than taken as primitive. The other primitives are implication
(=) and the universal quantifier (V), with the existential quantifier (3)
defined in the standard way.

Note well that a distinction is made between real variables (a, b, ¢,
ete.) and apparent variables (s, ¥, 2, etc.), with only the latter bindable
by quantifiers. A sentence is a formula containing no free occuriences of
apparent variables. We shall always deal explicitly with a denumerable
language, but the results can routinely he extended to languages of larger
cardinality subject to the usual assumptions about the symbols being well-
ordered.

We shall have use in the sequel for the notion of the linguistic extension
L+ 7V of alanguage L by a set of real variables V. We identify this with the
set of sentences constructed from the symbols of L together with the ele-
ments of 17 taken as additional real variables.

* This work was done while I was a visiting fellow at The Australian National
University and held a Fulbright Fellowship from The Australian-American Educational
Foundation. I wish to thank both the ANU and the AAEF for their support, and also
express appreciation to my colleagues, esp. R. K. Meyer and R. Routley, for stimula-
ting discussions over a variety of relevant topiecs.
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The proof theory of RMQ is like that of RQ except that the “mingle”
axiom scheme

A0, A—(Ad—>A)

ix to be inserted at the front of the list of axiom schemes of [6, p. 99].
Also our choice of primitives allows for the deletion of the disjunction
axioms A6 —AS, and requires (cf. [1], § 14.3) the addition of axiom
schenie

Al7. (A—>~ B} (B~ 4)

The reader who does not have [6] in hand ix reminded that all closures
of instances of axiom schemes are taken as axioms so0 ax to dispense with
generalization as a rule, the only rules then being modus pones and adjun-
ction.

Relative to a given language, an RMQ theory is defined analogouxly
to an RQ theory in {6] as any set of sentences containing all axioms
of RMQ which is closed under modus ponens and adjunction. VWe often
identify RMQ with the smallest RMQ theory. We say that a sentence
A is deducible in an RMQ theory . from a set of sentences 6 (in
symbols, 6 t,4 iff 4del” for all RMQ theories [I' such that
Auf < I.

Adapting and extending more notions fiom [6], we say that an
RMQ theory 4 is prime whenever 4 vBe.l implies Aded or Be A,
V-complete whenever A(a)e 4 for all real variables a implies Vad(z)e 4,
J-complete whenever Jxd (x)e 4 implies A(a)e 4 for some real variable
a and straight (the term is Routley’s) whenever A has all three of
these properties. Note well that we have no need for the epithet
“regular” used in [7] to single out theories containing all logical
theorems. Since we have reverted to the earlier usage of [6], which
builds this into the definition of “theory”. That we need consider
only regular theories in proving completeness isx special to RM, and
does not extend to the systems R and E.

It ix convenient to introduce 4 > B = ;(A At)—>B.* The idea of this
benthymematic implication” isx due in principle to Anderson and Belnap,
“ut Meyer has studied it extensively in this particular form (cf. esp.
[5]), finding that it has the behaviour in R of intuitionistic implieation.
Indeed, the superintuitionistic system LC of Dummett may be translated
into RM using that definition of implication, cf. [3].

The following was stated for RQ theories in [6].

1 The sentential constant &, intuitively the conjunction of all true sentences, can be
added cofiservatively to RMQ with the axiom scheme 4« (£ 4), or else contextually
defined (ef. [1], § 27.1.2, or [3]). Although officially ¢ is not part of our language for
RMQ, we shall not hesitate to make use of it when convenient.
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DrpucrioNn THEORY (1sT VERSION). Let 4 be an RMQ theory, 0
a set of senfences, and A, B sentences. Then

Also the following was proven for RM theories in [2] and extends immedia-
tely to RMOQ theories.

DEpucTiON THEOREM (2ND VERSION). Let A, 0, A, B be as in the
Ist Version. Then

0,4+,B and 0, ~Bt,~A iff OF 44—B.
§ 3. Semantics.

RM nodel structures (m. s.) were introduced in [2] as structures (G, K,
R), where K is a non-empty set, B ix a (weak) linear on K, and ¢ is the
R-least member of K. For a constant domain m.s. we add a non-empty set
D (the domain) so as to obtain a structure (G, K. R, D).

In the sequel, we adopt for convenience a “quasi-substitutional” inter-
pretation of the quantifiers of the sort favoured by A. Robinson, R. Smul-
Iyan and others for classical first-order logic. This uses the notion of
a U-sentence (U a non-empty set), which is exactly like a xentence except
that actual elements of U have been substituted for some or all occurrences
of real variables.?

RMOQ Semantics. An RMQ model will be a structuie (G, K, R, D ¢),
where (@, K, R, D) is a constant domain m s. and ¢ (the valuation) is
a function assigning each real variable a nmember of D and each atomic
D-sentence, relative to a member of K, a non-empty subset of {T, F}3.
The obvious “Rose-by-any-other-name” Requirement is made that it
P is an atomic D-sentence and P(¢) is the result of 1eplacing each veal
variable a of P in every occurrence by g¢(a), then ¢ (P, H) = ¢ (P(¢), H)
for each H e K. Finally for each atomic D-sentence P we require the

2 Since on the abstract approach to language common to most recent logical work,
“symbols” can just as well be shoes, and ships, and sealing wax (or prime numbers
for that matter) as marks on paper, U-sentences are just sentences in the linguistic
extension of the given language by the set of “real variables™ U.

3 The idea that sentences can be valued as simultaneously both true and false
is admittedly rather odd. The reader wanting motivation should consul [2]. Inci-
dentally, K. Plcdger has suggested privately that the motivation in [2] is unduly
pessimistic, since the Hereditary Condition has things getting more and more con-
tradictory as time goes on if one regards HRH’ as indicating that the evidential
situation H temporally precedes the one H’. But Pledger suggests that the temporal
order of the accessibility relation should optimistically be thought of in the reverse
order. Thus one starts with a situation in which many sentences (for all one knows)
are just as much true as false, and then one improves on this situation as time
goes on by accumulating evidence that occasionally decides things one way or
the other.
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HereDITARY ConDITION. If HRH', then ¢ (P, H) < (P, H').

We regard ¢ as extended inductively to compound D-sentences accor-
ding to the following rules:

(~T) Teep(~A,H) iff Fep(d, H);

(~F) Fep(~A,H) iff Tegp(d,H);

(AT) Tep(AAB,H) iff Tegp(d,H) and Teqe(B, H);
(AF)  Fe@(dnB,H) iff Fee(d,H) or Feg(B, H);
(=T) Tep(Ad—>B, H) iff for all H'¢ K such that HRH',

(i) Tep(A. H')only it Te (B, H'), and (i) Feg(B, H’) only if Fe p(4, H');
(—=F) Fee(d—B, H) iff either (i) T¢gp(4A—B, H) or
(ii) Tegp(d, H) and Fego(B, H);

(VT) Teo(Vod(z), H) iff Tep(A(a), H) for all aeD.
(VF) Feo(Vazd(z), H) iff Fep(A(a), H) for some aeD.

The following may be verified along the lines of the inductive proof
of the corresponding lemma in [2] (the new case 4 = VzB(z) may be done
by the reader in his mind’s eye).

HEREDITARV LEMMA FOrR RMQ. Let (G, I, R,D,qp) be an RMQ
model. For any D-sentence A, if HRH', then ¢(A, H) < p(A, H').

§ 4. Soundness.

A sentence A is a logical consequence of a set of sentences A in RMQ
iff for all RMQ models with first component @G and last component g,
Tep(B, G), for all Be A, implies Te p(4, ). We write this in symbols
as A Fpapod.

The reader may establish the

SOUNDNESS THEOREM FOR RMQ. If Atgpyod, then Akgpyg A.

In doing so he will find useful both the Hereditary Lemma and also a
ma extending the “Rose Requirement” to compound sentences.

§ 5. Completeness of RMQ

We make a conscious adaptation of the argument of Gabbay in [4]
(which the reader should have at.hand) for the completeness of 2nd-order
intuitionistic propositional calculus augmented with the propositional
quantifier version of Al5. Gabbay’s argument makes frequent use of the
Deduction Theorem for intuitionist implication which just does not hold
tor R-Mingle implication. But it does hold for R-Mingle enthymematic
fmplication (our Deduction Theorem in the 1st Version), and therein lies
ihe secret of the adaptation. An analysis of Gabbay’s argument reveals that
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only ravely is it important that the implication involved in an application of
the Deduction Theorem is the primitive implication of the system, and then
our Deduction Theorem in the 2nd Version can be made to serve instead.

We shall borrow terminology from [4], but we do not follow Gabbay
in his use of the word “theory” since the word has already been used in
thix paper and in earlier papers on relevant logic in a more standard sense.
We shall instead call an ordered pair (4, 6) of non-empty sets of RMQ
sentences simply an RMQ pair.

An RMQ pair (4, 6) ix consistent iff for no 4,,..., 4, ¢4, B, ..., B,
e/ do we have Fgag (41A ... A4, 2 (Byv ... vB,),* and complete in
a certain language iff for each sentence A of that language, A< 4 or A 6.

An RMQ pair (4, 0) is saturated iff A is a prime, I-complete RMQ
theory. An RMQ pair (4, 0) is of constant domain in a certain language
itt whenever (4, §U{VaB(x)}} is consistent, then for some real variable
a of the langnage (4, 0U{VaB(2), B(a)}) is consistent. The reader may
easily verify that an RMQ pair (4, 0) is saturated, consistent, complete
and of constant domain iff (1) 4 is & straight RMQ theory which is
“proper” (not all rentences ale theorems) and (2) 6 = set of sentences —
— .

An RMQ pair (1%, 6%) extends another (4, ) iff 4 < A* and 6 < 6%,
We now have a reries of lemma & la Gabbay.

LeMMA 1. Let (4, 0) be a consistent RMQ pair. Then (A4, 6) can be
extended to a complete saturated, and consistent RMQ pair (A%, 6%) of
constant domain in a language with denwmerably many new real variables.

PrOOT ix basically the same as Gabbay’s, wherein (4,, 6,) is set to
he (.1, 0) and (4, ., 0,,,) is defined inductively from (4, 6,), and finally
(4*, 0% ix defined s0 4% = U, dn 0" = Unw 0, However we shall
change the inductive step of the construction somewhat.’

Thus let 77 be a set of R, new real variables and let B,, B,, ... be an
enumeration of all the sentences in the linguistic extension of the given
language hy V.

Now if (4,U{B,,,} is consistent, construct 4,., by adding B, ,, to
A,. At the same time if B, , = JaF(x), add F(a), where a is the first
real variable {( n come standard enumeration including those in V) such

4 We could have alternatively defined comsistency with — in place of > if we
had at the same time built into our definition of an RMQ pair (4, 6) that ted, making
further changes in the sequel as necessitated.

5 N.D. Belnap, Jr. communicated to me in 1973 a result which is in cffect the
precise analogue for RQ of Gabbay's Lemma 1 (but of course completely independent),
with consistency defined using —and nmo requirement made that te A4 (cf. note
4). The structure of the proof of our Lemma 1 borrows from Belnap, and also the
proof of our Lemma 4, bringing out (I think) more clearly the similarities between
the proofs.
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that (4,0{3aF (x), F(a)}, 0,) is consistent. Set 6,,, = 6,. On the other
hand, if (1, V{B,}, 6,) is not consistent, construct 6,,, by adding B,
to 0,. Add as wellif B, = VaF (x), F(a),where a is the first real variable
such that (4,, 6,U{VaF (@), F(a)}) is consistent. Set A, ., = 4,.

Ot course it has to be shown in cach case that there is such a real va-
riable a. Prior to arguing this we observe that either (d,U{B, .}, 6,) or
(d,,0,9{B,,;}) is consistent; otherwise (1,, 6,) would be inconsistent
on account of

A> (BvC),(AvB)> CF pyed > C.

Now a can be picked as the first member of V not in any of 4, 6,,
B, .. Otherwise, on the basis of the prior observation it ix easy to see
that either (I) (4,, 6,V {VaF(2)}) is consistent while (d,, 6, U {VaF(z).
F(a)}) ix inconsistent, or (II) (4,u{JxF ()}, 0,) is consistent while
(4,u{FeF(x), F(a)}, 0,) is inconsistent. But both can be shown impos-
sible.

We tieat only (I), (II) being similar. If (.1, 6, V{VaF(x), F(a)})
is inconsistent, then rome d4,,..., A;e d,, By, ..., Bje 0, are such that

Frao(A A oo Ady) 2 (Byv ... vBvVaeF(z)v F(a)).

But they by Lemma 5 of [6] and the Deduction Theorem (Ixt Version),
together with the idempotence of v,

I-RI‘IQ(I11A e /\A’i,,:) o (Bl\/ oo V_BJVVQGF(.’D)).

contradicting the consistency of (d,, 6, U{VaF(x)}).
It is now routine that (4%, 6%) ix consistent, complete, satwrated, and
of constant domain in the lingnistic extension by the new constants.

LEMMA 2. Suppose that the RMQ pair (A, 0) is consistent and of
constant domain in a certain language and that 0 is finite. Let A, B be two
sentences of this language so that (4', ') = (du{d}, 0U{BY}) is consistent.
Then (A, 8') is of constant domain.

ProoF 15 exactly like that of Gabbay’s Lemma 2, but with enthyine-
matic implication in the role of intuitionistic implication.

LEMMA 3. Let (d, 0) be a consistent, complete, saturated RMQ pair
of constant domain in a certain language, and let(A-—=B)e 6. Then at least
one of (Aduid}, {B}), (4du{~ B}, {~ A4}) is a consistent RMQ pair of
constant domain in the same language.

Proor. By the Deduction Theorem (2nd Version) at least one of
(Au{d}, {B}), (du{~ B}{~ 4}) is consistent, since otherwise F pamg
A—B, contiadicting the consistency of (4, 6).
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If (4u {4}, {B}) is consistent, the argument procedes as for Gabbay’s
Lemma 3, using enthymematic implication in the definition of the key
sentence F' =Vy(A > (BvVaF(2)vF(y))). If (4u{~ B}, {~4}) is
the consistent one, then there is a precisely parallel argument with F”
=Vy(~ B> (~AvVzF(z)v F(y))) in place of F'.

LeMMA 4. Let (4, 0) be a consistent, complete, saturated BRMQ pair
of constant domain in a certain language. Assume that F = (A—B)e 0.
Then there cxists a consistent, complete, saturated RMQ pair (Ap, 05) of
constant domain in the same language such that A = A, and either (1) Ae Ap,
Be Op, or (2)~Be dp, ~ A€ bp.

ProoF. By Lemma 3 at least one of (du{d}, {B}), (4u{~ B},
{~ A}) is consistent and of constant domain in the same language. Set
one such to be (47, 6;). Define (45, ,, 05,,) in precisely the same inductive
fashion that (4,.,, 0,,,) was defined in Lemma 1 except no new real
variables are added. In that earlier construction we were able to depend upon
the new real variables so as always to be able to constantly add “witnesses”
to existential sentences on the left and “hostile witnesses” to universal
sentences on the right. This time we are stueck with the given language,
and so must exploit the constant domain property instead.

We argue then that if (4}, 67) is defined, consistent, and of constant
domain, so is (4}, 6},,). It follows readily from (4, 6;) being of con-
stant domain that if B,,, = VaF(x), then (4),,, 0,,,) is defined and
consistent, The case when B, , = J&F (2) is more interesting, but is argued
precisely like Gabbay’'s Case (1d) in the proof of his Lemma 4, again put-
ting enthymematic implication in to do the job of intuitionist implication.

That (15.,, 0r,,) continues to be of constant domain follows from Lem-
ma 2.

Finally, set dp = Unewdns 07 = Uneo0p- A routine argument shows
(g, 0p) to have all the desired properties of the lemma.

Before stating the last lemma we need a definition. Where 4 is a
straight RMQ theory, the canonical RMQ model determined by A, (G4, K,,
Ry, Dy, q4), is as follows: Gy = 4; K, ={4":4" is a straight RMQ
theory and A < A'}; A/ R, A, iff 4, < Ay; Dy = {a: a is a real variable};
p4(a) = a for each real variable a; and (i) Te g (P, 4') iff Pe 4", and (ii)
Feqgu(P, A') iff ~PeA'. That (G4, K4, R,) is an RM m.s. follows di-
rectly from Lemma 2 of [2].

LEMMA 5. Let A be a straight RMQ theory. Then in the canonical RMQ
model determined by A, (i) Teq (A, A") iff Ae A, and (ii) Fegy(d, A")
iff ~Ae. 1.

Proor. By induction on the length of 4, much as in [2], but the case
4 = B—( deserves some new attention, and of course there is the comple-
tely new but routine case 4 = VaB(%).
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As for the first, in [2] it was needed to show that for a prime RM theory
4, that B—>Ce A iff for all prime RM theories 4" 2 4, Be A" only if Ce A,
and ~ Ce A" only if ~ Be A’. The same thing now needs to be shown for
straight RMOQ theories. But the gut of this is just our Lemma 4.

PROOF oF COMPLETENESS OF RMQ. Suppose not 4t pyoed. Then
(4, {4}) is consistent. By Lemma 1 there is a consistent, complete, satura-
ted RMQ pair (4%, 6%) of constant domain (albeit in a linguistic exten-
sion). By the observation preceding Lemma 1, A% is a stiaight RMQ
theory. Consider the canonical RMQ model determined by 4*. By Lemma
5 (since 4 < A" and A¢ 4%), not A F gppd.

COROLLARIES. The usual corollaries, e.g. the compactness Theorem and
the Lowenheim-Skolem Theorem, follow in the usual ways.
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