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Traditional asset allocation of the Markowitz type defines risk to be the variance of 
the return, contradicting the common-sense intuition that higher returns should be 
preferred to lower. An argument of Levy and Markowitz justifies the mean/variance 
selection criteria by deriving it from a local quadratic approximation to utility func- 
tions. We extend the Levy-Markowitz argument to account for asymmetric risk by 
basing the local approximation on piecewise linear-quadratic risk measures, which 
can be tuned to express a wide range of preferences and adjusted to reject outliers in 
the data. The implications of this argument lead us to reject the commonly proposed 
asymmetric alternatives, the mean/lower partial moment efficient frontiers, in favor of 
the "risk tolerance" frontier. An alternative model that allows for asymmetry is the 
tracking model, where a portfolio is sought to reproduce a (possibly) asymmetric 
distribution at lowest cost. 

Keyworfls: Portfolio optimization, asymmetric risk, lower partial moments, tracking 
models, quadratic programming, stochastic programming. 

1. Introduction 

In his seminal work [13], Markowitz  introduced a mean/variance portfolio 
optimization model  that identifies an "efficient frontier" of  portfolios possessing 
minimum variance of  return for given levels o f  expected return and showed how 
these can be computed  using the technique o f  parametric quadratic program- 
ming. A major  criticism of  this model  is that it does not  account  for asymmetries 
in return distributions and investor preferences. The present paper  presents two 
extensions of  the Markowitz  model  that address these concerns. 

In the 1970s, many papers (e.g. Bawa [1], Fishburn [4]) recommended a 
mean/lower partial mean or mean/lower partial variance f ramework for portfolio 
optimization, whose justification proceeds from the observation that an investor's 
true risk is the downside risk. Levy and Markowitz  [12] responded by arguing 
that mean/variance is to be viewed as a local second-order approximation to utility 
maximization provided the region o f  good approximation was large compared to 
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the standard deviation of portfolio return. In the first part of this paper, we adapt 
the Levy-Markowitz argument to cover asymmetric risk. The key principles we 
follow in the derivation are (1) that the local approximations should themselves 
be utility functions, and (2) that the approximation not involve derivatives higher 
than the second order. The argument begins by introducing a class of linear- 
quadratic risk measures to replace the second-order terms in the utility function 
approximation, and then applies conditions to ensure that they be globally non- 
decreasing. The major aim of the discussion is to clarify the relationship between 
asymmetric risk measures and expected utility. This perspective leads to some 
surprising insights into the use of lower partial variance as a measure of risk - 
namely, that a mean/lower partial variance efficient frontier can over-est imate the 
investor's preference for upside versus downside performance - arguing for some 
caution in the use of asymmetric risk measures until these principles (and their 
value in practice) are better understood. 

Asymmetry can also be treated in a slightly different extension of the 
Markowitz model. Here the idea is to replicate a desired return distribution 
through the market, by purchasing (at a cheaper cost, one hopes) a combination 
of assets that "track" the target distribution [2, 3]. We also discuss, in the final 
section, how quadratic programs can be constructed to generate efficient frontiers 
of risk versus reward for this class of asymmetric risk measures - the construction 
here recalls Konno's [11] use of piecewise linear functions to represent investor risk. 

The empirical justification for the exploitation of asymmetry in investment 
programs awaits a comprehensive research program. There are some indications 
[6, 14] that asymmetry can be found and exploited to yield excess expected returns 
in certain cases. Certainly, the explosion of derivatives markets in response to 
investors' need to hedge risky positions would seem to offer a great opportunity 
for the use of asymmetric risk as a guide to portfolio diversification once the under- 
lying statistical models are understood. A convincing linkage between a reliable 
statistical model for the estimation of asymmetric risk and a computationally 
tractable optimization model to diversify that risk has yet to be discovered. 

2. Linear-quadratic risk approximations to utility functions 

When all returns are known, the mathematical statement of the portfolio 
optimization problem is to maximize the total portfolio return 

rrx (2.1) 

over all portfolios x = ( X l , . . .  , xn) with single period net returns r = (rl, •. •, rn) in a 
portfolio universe X defined by finitely many linear constraints 

X = { A x  = b, x >_ 0}. (2.2) 



A.J. King~Asymmetric risk measures 167 

(The reader should note that in specifying the constraint x > 0, we do not rule out 
short-selling. Short sales of  an asset - selling an asset one does not  own - can be 
modeled by introducing short and long positions in each asset as separate variables 
and adjusting the corresponding "returns".) 

The difficulty arises, of  course, when the returns r are unknown. In such a 
case one wishes to design an investment program that results in the best possible 
distribution of portfolio returns. There are two steps in such a design: first, one 
must estimate the probability distribution of  r, and second, one must design a 
mathematical procedure to find the portfolio giving the best distribution of  
return. We are concerned in this paper with the second step, the design of  a 
mathematical procedure to select portfolio return distributions with favorable 
qualities. 

The best known mathematical procedure for portfolio selection under 
uncertainty is due to Markowitz [13], who proposed modeling the selection prob- 
lem as one of  finding a desirable trade-off between mean return and variance of  
return and designed a procedure to display an "efficient frontier" of  portfolios 
with minimum variance for a given level of mean return. This procedure has been 
criticized because it penalizes upside variations equally as severely as the downside 
variations, whereas it is the latter which are presumably of  greater concern to the 
investor. These criticism are well-known in the literature; see, for example [1, 4-6, 
14]. What seems less well-known is the connection between mean/variance and 
the theory of utility maximization. 

This was explained in a paper of Levy and Markowitz [12], where it is argued 
that any utility function describing investor's risk is well approximated by a combi- 
nation of mean and variance. The argument may be paraphrased roughly like this. 
Letting u be the investor's true utility function for wealth at the end of the invest- 
ment period, the portfolio selection problem may be characterized as one of maxi- 
mizing expected utility: 

/ ,  

maximize Eu(rTx) = J u(rrx) dP(r) 

subject to x E X. 

In this problem, r is the random vector of  portfolio returns with probability 
distribution P, and E represents the operation of taking the mathematical expec- 
tation over this distribution. Suppose, for the moment,  that the utility-maximizing 
portfolio ~ has been found by some means or other. We can compute the expected 
return of  this portfolio, say /2 = ErrS. Next, define the function u2 to be the 
second-order Taylor expansion of u about the given point 12: 

u2(t) = u(/2) + u'( /2)( t- /2)  +luU(/2)(t -/2)2. (2.3) 

If the variation of total portfolio return about /2 is so low that u 2 is a good 
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approximation to u over this range of variation, then we may find a portfolio that is 
nearly as good as ~ by substituting u2 for u in the utility maximization and 
restricting the maximization to all portfolios with expected return R. This leads 
to the following problem (after eliminating the constant term and observing that 
the linear term integrates to zero) 

maximize ½u"(R)E(rZx- R) 2 

subject to x E X, 

ErVx = R. 

Making the reasonable assumption that the utility function u is concave and twice 
differentiable, the factor u" in the objective term will be negative. Clearing this term 
converts the maximization to a minimization, and thus, the optimization problem 
appears in its familiar form as none other than the traditional mean/variance 
quadratic program for one particular value/~ of the expected return. By running 
through all possible levels of return R, it follows that we will identify the entire class 
of portfolios that optimize the second-order approximation to concave twice- 
differentiable utility functions. This would be, of course, the mean/variance efficient 
frontier 

minimize E(rT x - rTx)2 
subject to f'rx > R, (2.4) 

x E X .  

Levy and Markowitz end their argument by presenting evidence that this class of 
portfolios seems sufficiently rich that any risk-averse investor would not feel 
unduly restricted in choosing from among them. 

This argument leaves one assumption in place: that the distribution of 
return r about its expected return be such that the approximation of u by u2 
remains valid. Of course, any asymmetry in the return distribution would render 
the approximation invalid. The simplest condition of validity we could impose, 
given that it is difficult to know one's utility function precisely enough to 
estimate the derivatives and given that we do not wish to make distributional 
assumptions concerning r, is that the approximations themselves have the 
attributes of  a utility function. 

We define now a general class of linear-quadratic risk measures that will 
allow us to retain the local quadratic feature of the Taylor approximation but 
give us the flexibility to adjust the slope so that the approximation is concave and 
nondecreasing. 
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DEFINITION 

Functions of the type 

I q - t -½(q- )  if t < q-, 
pq-,q+(t) ~- l t2  if q- < t < q+, 

L q+t-  1(_+,2 q+ _ ~ q  ) if < t  

are called linear-quadratic risk measures. The parameters are the left slope q-, and 
the right slope q+. (We require q- < q+ to preserve convexity.) A wide choice of 
linear-quadratic risk measures are available. One useful variant is the "robust" 
version of the lower partial variance 

- k t  - ½ k 2 i f t < - k ,  

P-k,o(t)= ½t 2 i f - k < t < 0 ,  

0 i f 0 <  t. 

This risk measure is less influenced by "outliers" than the lower partial variance, 
and may perhaps be useful when the distribution of random returns is formed 
from sample data. We will not pursue this issue here; interested readers can consult 
Huber [7]. 

Returning now to the definition of the second order approximation u 2 in 
(2.3), let us modify it so that the local approximation is concave and nondecreasing: 

U2(/) = u(R)  --~ u ' (R) ( I  - R)  --J- u ' ( R ) p q -  q+(t - R) .  (2.5) 

That is, we replace the quadratic term in (2.3) by the linear-quadratic term 

u"(R)pq-,q+(t- R). 

In more detail, the replacement term is: 

u"(R)q-( t -  R)-½u"(R)(q-)  2, if ( t -  R) < q-, 

u t t ( R ) p q - , q + ( t  - R )  = ½u't(R)(t - R) 2, if q- <_ (t - R) < q+, 

uU(R)q+(t - R)-½u"(R)(q+) 2, if q+ _< ( t -  R). 

We now discuss the setting of the two parameters q- and q+ which represent the left 
and right slopes, respectively, of the linear-quadratic term. To fulfill u2's role of 
providing a local approximation to the utility function u, it is clear we must have 
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pq-,q+(O) = O. This condition is satisfied if and only if q - <  0 < q+. Next, we 
want u2 to be a nondecreasing, concave utility. (Note that u"(R) < O, always, and 
thus, q - <  q+ implies u2 is concave.) To see what is required to have u2 be 
nondecreasing, consider the terminal right slope of u 2 

lim u~2(t) = u'(R) + u"(R)q +. 
l-'--* O 0  

It follows from this expression that u2 will be nondecreasing if and only if 

q+ _< -u'(R_______2) 
u"(R) 

Combining these observations, it follows that the appropriate range of q- and q+ is 

q - < 0 < q + < ~  
-u ' (R)  
u"(R) " 

The value of q- is of less importance in the remainder of the discussion (although 
may be important in reference to statistical robustness, as noted above) 
and we shall henceforth assume that q - = - o o .  Varying q+ over the range 
[0, -u ' (R) /u" (R)]  preserves the quality of Uz'S approximation to u at the point R 
while keeping u2 in the class of concave, nondecreasing utility functions. 

The two ends of this range have special significance. If we place q+ at the 
lower side of the range, the Levy-Markowitz argument leads directly to the 
mean/lower partial variance efficient frontier generated by 

minimize Ep_oo,o(rT x - ~Tx) 

subject to ~Tx _> R, 

x E X .  

(2.6) 

The term Ep-oo,o (rZx - ~Tx) is the lower partial variance of the random total return 
rTx. Mean/lower partial moment efficient frontiers appear in the theory of 
stochastic dominance; see, for example, Fishburn [4] or Bawa [1] for details. How- 
ever, in the present context where we are deriving the risk measure from principles of 
expected utility, there is a surprise. 

At the lower side of the range where q+ = 0, the approximating function u2 
has a slope equal to u'(R) for all values of t greater than R. Such functions lie on 
or above the true utility function; in other words, they over-estimate the investor's 
utility of obtaining an increase in return above R. We may conclude that selecting 
assets solely on the basis of mean return and lower partial variance (or indeed, any 
other lower partial moment) leads to portfolios that are riskier than the investor 
may wish. 
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This surprising conclusion has been completely unanticipated by the litera- 
ture on downside risk, much of which seems to have been inspired by Markowitz's 
observation [13] that in the presence of asymmetric return distributions the mean/ 
semivariance frontier would yield a superior set of  portfolios to those identified 
by the mean/variance frontier. In the light of Levy and Markowitz's (later) 
argument relating mean/variance to utility maximization, one sees that the issue 
is more complex than it at first seemed. The discussion of  the previous paragraph 
shows that while one should try to modify the mean/variance model to reduce the 
penalization of upside variation implied by the minimization of  variance, the 
Levy-Markowitz argument demonstrates that some upside penalty should be 
applied in order to reduce the impact of the linear preference implied by the 
maximization of expected return. 

Indeed, in the design of an asymmetric ri~k penalty for a risk averse investor, 
it would seem prudent to ensure that the risk penalty be consistent with a utility 
approximation that understates as far as possible the advantage of upside return 
while still remaining a valid utility. This leads us to propose the upper limit of  
the range for q+ as the proper choice of  design parameter for asymmetric risk 
penalties, namely, 

q+ = A(R) := -u ' (R)  
u"(R) ' 

which is the value of q+ that causes the approximate utility u2 eventually to have 
slope 0 as t ~ c~. The inverse of this ratio is known to students of  utility theory 
as the investor's "local risk aversion" parameter - the risk premium that an 
investor would wish to receive in order to be compensated for accepting an 
additional unit of risk measured by variance [15]. We may characterize A(R) as 
the investor's "risk tolerance" parameter - the amount  of risk (variance) that an 
investor is willing to accept for an infinitesimal increase in expected return above 
R. The greater the value of A(R), the more risk tolerant the investor. For 
example, for an investor whose utility is the logarithm function, the risk tolerance 
parameter is 

1 

At a return value o fR  = 1.05, the risk tolerance is A(R) = 0.95 and at a return value 
of R = 1.20, the risk tolerance is A(R) = 0.83. (The explanation is that an investor 
with this utility will accept some risk to raise a low level of expected return.) We now 
make a very important observation with respect to this utility: namely that over the 
range 0 < t < 2 (approximately) the asymmetric (risk-tolerance) risk measure is 
identical to the symmetric (variance) risk measure. In other words, if this is your 
utility and you think that there is no reasonable prospect that any asset in your 
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portfolio universe will return more than 100%, then going to an asymmetric model 
will not buy you much! On the other hand, if you do wish to consider assets with 
such a high potential upside return, then going to an asymmetric model is the 
only way to cause such assets to appear in an efficient frontier. 

The risk-tolerance frontier may be drawn by generating the efficient frontier 
for the following optimization 

minimize Ep_oo,;~(gl(rT x -  ~'rx) 

subject to fTx > R, 

x E X .  (2.7) 

This imposes the additional burden of knowing the investor's risk tolerance ratios 
over the range of R. The examination of the logarithmic utility above shows that 
there is much to be gained, however, from even a simple exploration of  an 
investors risk-tolerance ratios relative to the gains anticipated from the investor's 
portfolio universe. 

Some general comments about the relevance of  asymmetric risk 
measures are in order here. When the asset returns are symmetrically distributed, 
the mean/variance, mean/semivariance, and the risk tolerance efficient frontiers 
are all identical, of course. It makes sense to go to asymmetric risk measures 
only when the investor anticipates some asymmetry in the asset return 
distributions. There is some evidence that historical asset returns are asym- 
metric; see [5, 6, 14]. We comment  briefly on two other possible sources of 
asymmetry. 

First, and perhaps most importantly, many financial assets such as options are 
designed to have an asymmetric return when held for any reasonable length of  time. 
Portfolios containing options with expiration dates on the order of the portfolio 
revision cycle will show asymmetric return distributions even when all underlying 
primary assets are symmetrically distributed. Alternatively, some financial assets 
contain embedded options, such as mortgage-backed securities. Programs that 
now price such assets can also be used to model a distribution of  returns at a future 
date. Such distributions can be used for portfolio optimization, and they are not 
likely to be symmetric. 

Second, many investor models of  equity return distributions are designed 
around a linear factor model of  the type r =/3v + e. The factors v may relate to 
various macro-economic and/or  policy indices. The investor may wish to design a 
simple asymmetric distribution to model the future trend of  the factors; 
alternatively, careful statistical study may have lead the investor to the conclusion 
that some of  the factors have historically displayed an asymmetry. Either 
would lead to asymmetric distributions for the equity returns through the factor 
model. 
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3. Tracking models and minimum regret 

Asymmetry.can be treated in a model that is closer in spirit to the sort of 
decisions that arise in practical financial situations. (The discussion in this section 
summarizes developments in the three refs. [2, 3, 10].) To motivate the ideas, we 
view the Markowitz mean/variance model in the form of a "tracking model" 

minimize E(rT x - 7-)2 

subject to x E X. 
(3.1) 

(See [10], where it is shown that the mean/variance efficient frontier can be generated 
via a model of this type, for 7- varying betweeri suitable limits.) In [2], two simple 
modifications were proposed. First, the target 7- in the objective may be general- 
ized, for example, by letting it be a random variable. Second, the efficient frontier 
may be generalized by parametrizing a different criterion, for example, the cost of 
assembling the portfolio. 

These generalizations lead to the following formulation of the tracking 
model: 

minimize E(rV x - 7-)2 

subject to cV x < d, 

x G X .  

(3.2) 

An efficient frontier is drawn by letting d increase from zero up to the cost of 
purchasing the distribution 7- in the marketplace. The interpretation of this 
tracking model is as follows. The investor desires a portfolio x E X with two 
competing characteristics: 

rTx  > 7-, almost surely, and 

cTx a s  low as possible. 

Such may arise when a portfolio with given performance distribution -/- is sought at 
lowest cost d. The efficient frontier reveals portfolios that optimally track this 
required performance for different levels of cost; portfolios with a suitable tradeoff 
of tracking quality and cost may be selected from this frontier. This formulation 
gives a natural way to introduce asymmetric distributions into the portfolio 
universe. If the distribution of the target return 7- is asymmetric, then the mix of 
assets chosen to replicate the target will match the asymmetry (in the least squares 
sense) for the given cost d. Obviously, the more one is willing to spend, the closer the 
match. 
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But what performance would an investor require of a portfolio? One natural 
answer to this question was explored in Dembo and King [3]. Let us suppose that 
perfect foresight allows us to predict the actual value of returns r. Let T(r) be the 
optimal return with perfect foresight; that is, 

"r(r) = max {rTx : X e X}. 

This optimal return is a random variable, since it depends on the random vector of 
returns r. Tracking this optimal return leads to the following problem: 

minimize E(rTx -- T(r)) 2 

subject to x E X. 
(3.3) 

Because T(r) is the best that can be achieved, the risk measure in effect penalizes 
only the downside risk. The solution to this problem is called the "minimum 
regret" portfolio. Regret is the performance sacrificed because of the impossibility 
of perfect foresight, namely R(x)= "r(r)- rTx. One possible measure of the 
performance of a portfolio x is how closely its regret R(x) matches perfect 
foresight. In [3] it is shown that the solution to (3.2) minimizes this regret 
measure. 

Tracking as a measure of portfolio performance is virtually unlimited in its 
versatility. For example, one can specify performance goals over a number of 
time periods and design a tracking model to find a portfolio that tracks these 
goals, period by period. 

It is interesting to compare the two philosophies, that of utility maximization 
as described in section 2 and that of tracking as discussed in the present section. In 
the decision problem that motivated the present discussion, the decision maker is 
seeking to hedge an exposure ~- with a portfolio x returning rTx and costing cTx. 
Thus the investor is in effect paying cTx now to receive r T x -  ~- later. Framing 
the decision as a utility maximization problem, one would seek to maximize the 
expected utility of ( r -  c )Tx-  r. The procedure of utility maximization would 
determine the appropriate cost d of purchasing the hedging portfolio indirectly 
from the shape of the utility function and the distributions of r and r, since this 
cost has an impact on the expected return of the portfolio. Framing the decision 
as a tracking problem, one is seeking to find a portfolio that matches (in some 
sense) the distribution of the exposure ~- at least cost d. This has more the flavor 
of risk arbitrage, where one is selling r, buying x at a cost d, and accepting a risk 
r T x -  "t-. The question then is: what is the price one should set for ~- in order to 
accept the risk? Presumably, the answer to this would be based on the net effect 
on the arbitrageur's total portfolio. 
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4. Computation of linear-quadratic efficient frontiers 

We now presume that we have selected a generic linear-quadratic tracking 
function 

p(t):=pq-,q+(t) 

and proceed to discuss how to compute solutions to the parametric linear-quadratic 
stochastic program 

minimize Ep(r'r x - "r) 

subject to cTx  < d, (4.1) 

x E X .  

It is not possible in general to compute a closed-form expression for the objective 
function x ~-~ E p ( r ' r x -  7"). Indeed, it would not be clear how we should proceed 
even if we did find one, since this would place the problem in the realm of large- 
scale nonlinear programming for which reliable techniques are not yet available. 
The whole point of restricting attention to piecewise linear-quadratic tracking 
functions is to retain access to the technology of quadratic programming. 

The procedure to form a quadratic program from (4.1) was explained in King 
and Jensen [10]. The first step in the conversion of (4.1) to a quadratic program is to 
discretize the probability measure if it is not already finitely supported. We suppose 
that the investor has in mind a finite set {r~ : s E S } of scenarios that describes (or 
approximates) the investor's view of the range of uncertain returns, and for each 
scenario a probability Ps that indicates the weight of belief to be ascribed to each 
scenario. We may suppose the probabilities are normalized so that ~], p~ = 1. 

With this finite distribution, the objective function (4.1) is a finite sum of 
piecewise linear-quadratic functions and can be solved using large scale quadratic 
programming techniques. The quadratic program emerges from the usual trick of 
introducing variables to take the value of the various pieces of the objective. For 
each scenario s we introduce up to three variables v~, vj-, and v +, and the equations 
and inequalities 

vs - v s  + v + = rrs x - %, (4.2) 

v s f r ee ,  v j - > q - ,  v +_>q+. 

The first variable takes the quadratic part of p and the latter two take the lower 
linear and upper linear parts, respectively. The contribution-to the objective 
function from this scenario is 

1 2 i v s  - q vs + q+v +. (4.3) 
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It is easy to verify that  minimizing this objective in the new variables subject to (4.2) 
produces the value pq-,q+ (rTx -- R) .  Collecting all the rows (4.2) and  objective terms 
(4.3) produces the quadrat ic  program 

minimize E P s [ ½ V  2 - q vs + q+v+]" 
sES 

subject to c'r x < d, 

Vs - v s  + v + = r T x -  "rs, 

vsfree,  i f > q - ,  v+ > q +, 

x E X .  

Vs E S, 

VSE S, 

(4.4) 

The quadratic p rogram (4.4) is entirely equivalent to the l inear-quadrat ic  
tracking model  (4.1) under  the finite distr ibution for r, and it is in a form that  
can be solved by quadrat ic  p rogramming  compute r  codes. Note  that  the quadrat ic  
contr ibut ion is a sum of  squares - this is a rather simple quadrat ic  form. The 
difficulty lies in the matr ix whose rows are the samples rT. When  IS[ is large, this 
forms a large, dense matr ix that  can cause all sorts o f  numerical  crises in the course 
of  solution. Nevertheless, RISC hardware and specialized opt imizat ion software 
gives surprisingly good  performance on problems of  this type. To  generate a 
complete efficient frontier for (4.4), with the r ight-hand side d varying over its 
entire feasible range, on a practical problem with 100 scenarios and 1015 assets 
takes about  ninety seconds using currently available commercial  opt imizat ion 
codes (IBM's Optimizat ion Subrout ine Library [8]) on a mid-level scientific work- 
station (IBM's RISC System/6000 Model  530). For  further performance details, 
see [10]; and for a description of  a software package " F R O N T I E R "  designed to 
solve problems like (4.4) see Jensen and King [9]. 
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