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Multi-stage stochastic linear programs for 
portfolio optimization* 

George B. Dantzig and Gerd Infanger 

Department of Operations Research, Stanford University, Stanford, 
CA 94305-4022, USA 

The paper demonstrates how multi-period portfolio optimization problems can be 
efficiently solved as multi-stage stochastic linear programs. A scheme based on a 
blending of classical Benders decomposition techniques and a special technique, 
called importance sampling, is used to solve this general class of multi-stochastic 
linear programs. We discuss the case where stochastic parameters are dependent 
within a period as well as between periods. Initial computational results are presented. 

1. Introduction 

Methods  of  Operations Research, especially Mathematical Programming 
methods,  are receiving broader  acceptance in the financial industry. The increasing 
complexities and inherent uncertainties in financial markets have led to the need of  
mathematical models supporting the decision making process. This paper addresses 
the portfolio selection problem. Since Markowitz  [23], several models  have been 
developed that allow one to determine portfolios with the highest expected returns 
for a given level o f  risk [22, 31, 34]. His model (and certain closely related ones) 
require the solution of  a quadratic program. Other approaches model the stochas- 
tic nature of  the problem directly as a stochastic program. For  example, Mulvey [25] 
and Mulvey and Vladimirou [26, 27] formulate asset allocation problems as a sto- 
chastic network problem. 

The use of  stochastic programming techniques has been hampered until 
recently by the sheer size of  practical problems when they are restated as determin- 
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istic linear problems. To solve them it was necessary that the number of scenarios 
representing uncertainties be kept small. Most models developed so far have been 
single-stage or single-period models, that is to say to the case where the decision 
making process and the future events (foresight) are restricted to a single time 
period. Only few attempts have been made to solve practical multi-stage decision 
making models whose future events are spread over several periods. 

Multi-stage planning problems can often be formulated as linear programs 
with a dynamic matrix structure which, in the deterministic case, appear in a stair- 
case pattern of blocks with non-zero submatrices. These blocks correspond to and 
are different for different time periods. In the stochastic case, the blocks of coef- 
ficients and right hand sides in different time periods are functions of several param- 
eters whose values vary stochastically with dependent and independent distributions 
which we assume to be known. The resulting problem is a multi-stage stochastic 
linear program. Even for problems with a small number of stochastic parameters 
per stage the size of multi-stage problems when expressed in equivalent determinis- 
tic form can get so large as to appear intractable. The simplest case and most studied 
is that with two stages. Stochastic linear programs were first introduced by Dantzig 
[4] and Beale [1]. Since then they have been studied by many authors, some recent 
references are Birge [3], Ermoliev [9], Frauendorfer [11], Higle and Sen [15], Kall 
[21], Pereira et al. [29], Rockafellar and Wets [32], Ruszczynski [33], and Wets 
[36]. See Ermoliev and Wets [10] for a survey of different ways proposed to solve 
the stochastic programs. 

A new approach based on Benders decomposition and importance sampling 
was introduced by Dantzig and Glynn [5] and developed jointly by them and Infan- 
ger [18]. Our approach turned out to be very powerful. We demonstrated its power 
by solving several practical large-scale stochastic linear programs with numerous 
stochastic parameters. Infanger [19] and Dantzig and Infanger [6] report on compu- 
tational results of large-scale problems with up to 52 stochastic parameters, where 
the deterministic equivalent problem - if attempted to express it explicitly - would 
have had several billions of constraints. These probelms were two-stage problems or 
belonged to a restricted class of multi-stage problems which could be re-expressed in 
the two-stage framework. 

2. The multi-period asset allocation problem 

In this paper we formulate a class of multi-period financial asset allocation 
problems [26] and show how they can be solved by adaptations of multi-stage 
stochastic linear programs methodology and software. 

At the initial time period 1 a certain amount of wealth is available to a deci- 
sion maker in assets i = 1 , . . . , n  and in cash which we index as asset n + 1. We 
denote x °, i = 1 , . . .  ,n + 1, to be the dollar value of the initially available assets. 
The decision maker has to decide each period how to rearrange his portfolio to 
achieve best return on his initial investment over time. We consider the problem 
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in discrete time and define time steps t = 1 , . . . ,  T, e.g. by months, with T being the 
end of the planning, horizon. 

At each time period t the investor can either hold on to asset i, buy more, or 
sell off part (or all) of asset i. We denote y~ the amount sold of asset i in period t and 
by x~ the amount of asset i in period t held on to. Selling means decreasing the value 
x~ of asset i and increasing the value of cash, xt~ + i. Also, the investor has the choice 
of using his resulting cash to buy certain amounts of assets i. The amount bought in 
period t is denoted by z~. 

Buying and selling causes transaction costs which we assume to be propor- 
tional to the amount of dollar value of asset traded. We denote by 100ui the trans- 
action costs (expressed as a percentage) associated with buying one unit of i and 
with 100#i the transaction costs (expressed as a ~ercentage) associated with selling 
off one unit of asset i. Buying one unit of asset i requires 1 + v i units of cash and 
selling one unit of asset i results in 1 -/~; units of cash. 

Through buying and selling the investor can restructure his portfolio in each 
time period t. Once this t-th stage decision is made, the holdings x~, i = 1 , . . . ,  n + 1, 
can be calculated. The shares in the portfolio are then kept constant till the next time 
period. The value ofx~ is affected by the returns on the market. For example, a port- 
folio x~ at time t changes its value to R~x~, where R~ denotes the return factors from 
period t to period t + 1. 

At time t, when the decision on rearranging the portfolio has to be made, 
returns R~, for i = 1 , . . . ,  n, are not known to the decision maker with certainty. 
Only the return on cash, Rtn+ 1, is assumed known. However, we assume we know 
the probability distributions of R~. The problem is of the "wait-and-see" type. 
While the decision at t has to be made on the basis of distributions of future returns 
R~, for i =  1 , . . . , n ,  t = 1 , . . . ,  T, the values of prior returns R~, for i =  1 , . . . , n ,  
7-= 1 , . . . , t - 1 ,  have already been observed. We denote by R t =  R~, for 
i = 1, . . .  ,n, the n-dimensional random vector with outcomes rt(wt), u) t E ~')t, by 
p~' the corresponding probability and by f~t the set of all possible outcomes in t. 
The random returns R~ of period t are mutually dependent and dependent on the 
random parameters of the previous period. 

After the last period T no decision is made. Only the value of the portfolio is 
determined by adding all values of assets including the last period returns. We call 

T T this value v . The goal of the decision maker, however, is to maximize Eu(v ), the 
expected utility of the value of the portfolio after period T. The utility function u(v r) 
describes the way the investor views risk. If u(v T) is linear, it describes risk neutral- 
ity, if u(v T) is concave, it models risk averseness. Nonlinear utility functions require 
nonlinear programming techniques for the solution of the problem. Our methodol- 
ogy is not restricted to linear problems. However, for the sake of ease and computa- 
tional speed we approximate the nonlinear function by a piecewise linear function 
with a sufficiently large number of linear segments. 

In the model presented here we do not consider shortselling of assets, 
although this feature could be incorporated easily. Neither do we consider borrow- 
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ing of cash, which also could be incorporated easily. The holdings of assets, as well 
as the amounts of assets sold or bought have to be positive. In general, there are also 
lower (x) and upper (Y) bounds on holdings as well as on amounts of assets to be 
sold ({y, y) or to be bought (z, ~) which are given "by the investor and/or by the 
market. E.g. a certain asset may only be available up to a certain amount or an 
investor wants to have a certain asset with at least a certain amount of dollar value 

t l t in the portfolio. Therefore, in general we formulate _xl < xi < -~[, ~. <_ Yl < yt ,  zi < 
t < U ,  wherex_/t.>0, ~ > 0 ,  ~ > 0 ,  x ° g i v e n f o r i = l ,  . , n + l ,  t = l , .  T. Z i . . . .  • . . . 

We can now state the model: 

0 0 given: t =  1 , . . . , T i =  1 , . . . , n +  1, f i x  i 

t - I  t - I  t 
- - r  i x i -4- X i + y~ - 

t z i = O ,  i =  1 , . . . , n ,  

n n 
t - I  t - I  t 

- rn+,Xn+l  + xn+l - E ( 1  - #i)Yl + E (  1 + vi)z[ = O, 
i = 1  i = 1  

n + l  

_ ~'~ rTx r t t "4- 0 _ _ v T :  ~ 

i = l  

max Eu( vT ) , 

t t t t t x_x_ t. <_ xi <_ ~[, Y_i < Yi < Y[, z,. < zi < 2[, i =  1, . . . ,n ,  t = 1 , . . . ,  T. 

We describe correlation between asset returns using a factor model. Using 
factors is common in the financial industry (e.g. Perold [31]), hence historical 
data of various factors are commercially available. The idea of the factor model 
is to relate the vector of asset returns R t =  ( R 1 , . . . , R n )  t tO factors v t =  
( V 1 , . . . ,  Vh) t. While the number of assets, n, is large, e.g. a model should be able 
to handle about 500 to 3000 assets, the number of factors h is comparatively 
small. Factor models used in the financial industry typically involve no more 
than 20 different time series called factors. The factor matrix F(n × h) relates R t 
to Vt : 

R t = F V  t. 

The coefficients of the factor matrix are estimated using regression analyses on his- 
torical data. By linear transformations of historical factors the transformed factors 
can always be determined in such a way that the factors V t are orthogonal. These 
factors can then be interpreted as independent random parameters assumed nor- 
mally distributed or log normally distributed. Using the factor model, stochasti- 
cally dependent returns can be generated in the computer by using these 
stochastically independent factors. We denote the random factor V/by v~, with cor- 
responding probability p(vl) ,  where p(v~) = prob(Vi t = Z}~). 
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We may also consider inter-period dependency. For example, we may wish to 
have a higher probability of having a high rate of return in period t if it was high in 
period t - 1 than if it was low in period t - 1. We can model this inter-period depen- 
dency as a Markovian type process applied directly on the factors: 

v~=v~-l+~7~, i = l , . . . , h .  

The value of factor i in period t is the sum of the value of factor i in the previous 
period t - 1 plus some independent random variation of the factor in t, denoted 
by r/~. The Markovian type model can be estimated based on historical data. 
Instead of having an additive effect as above, we may prefer to have a multiplica- 
tive effect by applying the Markovian process directly to the logs of the factors. 
We have not explored this alternative. 

Most investors are risk averse. In this case u(v T) is a concave utility function. 
While we approximate the concave utility function with sufficient accuracy by a 
piece-wise linear one, it is also important and of interest to actually solve the non- 
linear problem. This is subject to future research. The methodology, which we 
present below can be easily extended to nonlinear objective functions. 

A linear utility function maximises the expected returns. Using a linear utility 
function and simplifying the model by neglecting transaction costs and bounds on 
the holdings and turnovers, as well as the inter-period dependency of the return fac- 
tors, leads to a model formulation in which the solution of the corresponding 
expected value problem (obtained by replacing the stochastic return factors by their 
expected values) is also optimal to the stochastic problem. In fact, in this case there 
is no carry-over of states from one period to the next, so that the myopic strategy of 
looking ahead one period is also optimal for the long-run multi-period model. See, 
for example, Hakansson [13, 14] in this respect. 

Multi-stage stochastic programs have a variety of possible applications in the 
area of finance. Besides the selection of equity portfolios, our approach can also be 
adapted to the selection of fixed income portfolios and to the pricing of options. In 
the latter applications, interest rates are one of the most important factors used to 
model returns or prices. References [20] and [24] point to an important effort involv- 
ing the development of interest rate models. See Zenios [37] for designing large port- 
folios of mortgage backed securities using two-stage stochastic programming 
models. 

3. Multi-stage stochastic linear programs 

As one can now see easily, the multi-period asset model proposed fits exactly 
into the framework of a general class of multi-stage stochastic l inearprograms 
with recourse. The factor model for generating dependent returns and the Marko- 
vian process for inter-period dependency define a special class of dependencies 
between stochastic parameters which we will exploit to solve the problem. Before 
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doing so, we state the general problem and the methodology we have developed to 
solve it. 

The multi-stage stochastic linear program can be formulated as follows: 

m i n z  = clxl + E(c2x~ 2 + " "  + E ( C T - I X T ~  t ..... w2 -4- E(CTX~ r ..... w2)) ." ") 

subject to 

a l X l  = bl, 

- S ( 2 x ,  + = 

Xl~ 

_ R~r ,.~r- l ..... ~ A TXWr ..... ~'2 wr " T -  I '~T- 1 + = bT , 

x7 x7 >o, , , ..... 
, . .  ~ - -  

O.)tE~'~t, t = 2 , . . . , T .  

The problem is the stochastic extension of a deterministic dynamic linear 
program• While the first stage parameters c l , A l , b l  are known to the planner 
with certainty, the parameters of stages 2 , . . . ,  T are assumed known only by their 
distribution. We assume uncertainty in the coefficients of the transition matrices 
B t ' ,  t = 2 , . . . ,  T, and the right hand sides b~/', t = 2 , . . . ,  T, and assume the coeffi- 
cients of the technology matrices At ,  t = 2 , . . • ,  T, and the objective function coeffi- 
cients ct, t = 2 , . . . ,  T,  to be known with certainty. The goal of the planner is to 
minimize the expected value of present and future costs. Note that this formulation 
refers to a general class of multi-stage stochastic linear programming models and 
the multi-stage portfolio optimization problem is a sub-species of that class. We 
will state the correspondence between the parameters of the multi-stage stochastic 
linear program and the parameters of the portfolio optimization problem below. 
First we state the nature of the decision making process in multi-stage stochastic 
programs. 

The underlying "wait-and-see" decision making-process is as follows: The 
decision maker makes a first stage decision -~1 before obvserving any outcome of 
random parameters. Then he waits until an outcome of the second stage random 
parameters gets realized. The second stage decision then is made based on the 
knowledge of the realization w2 but without observing any outcome of random 
parameters of stages 2 , . . . ,  T, and so forth• As the state (the actual outcome) is car- 
ried forward to the following period, the decision tree grows exponentially with the 
number of stages. We consider discrete distributions of random parameters with 
finite number of outcomes, e.g. w t E f~t, f~t = { I , . . .  , K t ) ,  t = 1 , . . . ,  T. With Kt 
being the number of scenarios in period t, the total number of scenarios for all T 
stages is IIrt=lKt. The number Kt is expected to be large, as it is computed by the 
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crossing of the sets of possible outcomes of the different random parameters within 
a period. E.g. the dimension of the random vector in period t is h t and f~t j contains 
elements; then Kt =IIf'___ lk~. For example, in the asset allocation problem, consider 
the case of 20 factors, rnodeled as random parameters with 5 outcomes each: the num- 
ber of scenarios per period is 520 ~ 1014. If there are 3 periods, then the total number 
of scenarios grows to 1028. The dimensions of an equivalent linear program of an asset 
allocation problem with a universe of about 500 assets is approximately 5 x 1030 rows 
and 1.5 x 1031 columns. It is of course impossible to write down this linear program 
explicitly. 

It is clear that the multi-period asset allocation problem defined above is a 
special case of the multi-stage stochastic linear program. The correspondence is 
as follows: the vector xt now denotes the vectbr of all decision variables (hold- 
ings, amount to be bought and to be sold) in period t. Uncertainty occurs only in 
the transition matrices Bt_ 1 which contain in their diagonal the return factors 
R~ -1 . Thus the product B t _  lXt _ 1 give the vector of holdings of each asset and of 
cash available for disposition in period t. The technology matrix A t contains the 
coefficients according to the formulation of the transactions made in period t. 
The model formulated above follows a network structure. In period t, for each 
asset, the holding from the previous period, multiplied by the return factor, plus 
the amount bought, minus the amount sold, minus the holding at the end of the 
transaction of period t adds up to zero. Therefore A t contains entries of "1" in 
the rows corresponding to the different assets for each decision variable. The last 
row of A t accounts for cash and contains the loss factors corresponding to the trans- 
action costs of buying or selling each asset. The right hand sides b2, . . . ,  b r  are zero, 
as well as the objective function coefficients c2, . . . ,  Cr-1. The right hand side bl 
denotes the initial holdings of each asset and of cash, and the objective function 
coefficients cr  represent the piecewise linear utility of the wealth accumulated up 
to period T. We now describe the techniques we have developed to solve the 
multi-stage program. 

4. Benders decomposition 

A description of how Benders' [2] Decomposition Algorithm can be applied 
to solve stochastic linear programs can be found in Van Slyke and Wets [35] and 
Birge [3]. Using Benders decomposition we decompose the problem into sub- 
problems of diffferent stages t. In the most general case, where there is a depend- 
ency of stochastic parameters between stages, the number of subproblems is 
equal to the number of scenarios in each stage t. To distinguish one subproblem 
from another, each is indexed with w t , . . . ,  w2, where wt is the random event in stage 
t and w t_ 1, . . . ,  w2 is the path of previous events which gave rise to the-particular 
subproblems in stage t. 

For expository purposes, we assume initially the random events that happen 
in one stage are independent of those that happen in the next stage. For example, 
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when the probability of having a high rate of return in period t is the same for all 
values of rate of return in period t -  1. In the independent case, scenarios 
wt+l E f~t+l in period t +  1 are identical for each scenario wt E f~t in period t. 
The history is only carried forward through optimal decisions ¢'~"-' ..... ,o2 from " ~ t -  1 

previous periods. In the special class of Markovian dependency which we described 
~'+~ where e t represents a matrix of random parameters earlier, B t  '+~'~' = Bt'_ I + et , 

independent of those in period t - 1. 
The idea of using Benders decomposition is to express in each stage, 

t, t = 1 , . . . ,  T -  1, and scenario wt the expected future costs (the impact of stages 
t + 1 , . . . ,  T) by a scalar Ot and "cuts", necessary conditions for feasibility and 
optimality which are expressed only in terms of the stage t decision variables x t 
and 0 t. Cuts are initially absent and then sequentially added to the stage t prob- 
lems. Each scenario subproblem wt in stage t collects the information about 
expected future costs by means of the cuts. Clearly, in the case of the asset allo- 
cation problem, each stage subproblem of the decomposed multi-stage stochastic 
linear program represents the asset allocation decision to be made in the corre- 
sponding period, where the right hand, side BtL 1.,~t_ 1 represents the holdings of 
each asset and cash initially available in period t. The cuts represent an outer linear- 
ization of the future expected utility of wealth, expressed in terms of the decisions of 
holding, selling or buying assets in period t. 

The relation between the stages and scenarios in the decomposed multi-stage 
problem is summarized as follows: 

Stage 1 problem: 

m i n z  I = ClX 1 -4-01 

subject to 

71-1: AlX  1 = bl, 

Pill : -G~I xl + Ol > gl 

x l ,  01 > O. 

l 1 = 1 , . . .LI ,  

Stage t, t = 2 , . . . ,  T -  1, problem: 

~d t m i n z t ' =  c,x, +0~" 

subject to 

7r t wt: AtxtW' = bt ,  _]_ Bt t_ i fCt_l ,  

l,,wt It ~,, 
Pt : - G r x  t + 0  t '  > g~, I t =  l , . . . L t ,  

o,, 0~" > 0. Xt , 
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Stage T problem: 

min z~: = crx 7 

subject to 
+ 71" T : 

°~r>O" X T _ 

min z 1 represents the optimal objective function value in the first stage, xl, 0i 
represent the optimal solution, the vector 7qdenotes the optimal dual prices asso- 
ciated to the original stage 1 constraints, and tile scalars p~ are the optimal dual 
prices associated to the cuts, which have been added so far in iterations 
ll = 1 , . . . ,  Ll. The optimal objective function values min z~" = min z'~' (xt- 1), 
and the optimal dual prices 7r~" = 7r°/'(Yct_ 1) associated to the original stage con- 
straints in stages t, t = 2 , . . . ,  T, and the optimal dual prices ^t,,,o, _ t,,,,, :~. Pt  - -  /Jt k-~t - 1 ] a s s o -  

c i a t e d  to the cuts in stages t, t = 2 , . . . ,  T -  1, are all dependent upon :~t-1, the 
optimal solution passed as input from the previous stages t -  1. According to 
the scenario development in the previous stages, an optimal solution ~t- 1 is actually 
indexed by the scenario outcomes of all previous stages and is therefore denoted as 
~oJ,_, ..... ~2 For the sake of exposition, we suppress the scenario history and present t - t  
the optimal solution of subproblems in stage t, scenario wt as a function of the input 

£t-1. 
We compute the expected future costs as z t+l  = E~ .z~.'.+.l', the right hand 

sides of the cuts as gt: = E~,,+,(~r~.+l, bt~_+11 + ~klp~,l,tO,'~(~glt~Sl) and the coeffi- 
cients of the cuts as G[' = E,o,+, zc t~ i' By,+ ,,  where p-~r = 0, G~ r = 0, and g~r = 0. 

A subproblem in stage t and in scenario wt interacts with its predecessors and 
descendants by passing forward optimal solutions and backwards cuts. Benders decom- 
position splits the multi-stage problem into a series of two-stage relations which are 
overall connected by a nesting scheme. We call the stage t, scenario wt problem the cur- 
rent master problem. It receives from its ancestor in period t - 1 a solution 3¢ t _  1" The 
current scenario is determined by the outcome to t of the random parameters in stage t 
which are reflected in the fight hand side bt '  + B tw'_ 1 x t  ^ - I. As stated above, ~t-  1 has a 
history. The history has to be considered when nesting several stages. Given and subject 
to xt-  1 we solve the stage t problem in scenario tot and pass the obtained solution ~ "  
to the descendant problems. By solving all problems wt+ i E f~t+ 1 (referred to as the 
universe case) we compute the expected value of the descendant stage costs z t + 1 = 

E,o,+lZt'++l ' and the coefficients Gt = Ewt+,Tr t~ l 'B t  '+) and the right hand side gt = 
O)t+, tot+, Lt+, lt+,,~ot+, lt+l Ew,+~(Trt+lbt+l "kEl t ~ lPt+l gi+l) of a cut. The cut is added to the current 

master problem (stag+e t ,  scenario tot  problem) and by solving the problem again 
another trial solution is obtained. 

The optimal solution of the current master problem in stage t, scenario tot 
gives a lower bound, and the expected cost of the trial solution gives an upper 
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bound of  the expected costs of  all scenarios descendant from the stage t scenario wt. 
If lower bound and upper bound are sufficiently close, the current master problem is 
said to represent the future expected cost and contains (by means of a sufficient 
number of  cuts) all the information needed from ftrture scenarios. In this case we 
say the current master is balanced with its descendant problems. 

Note that the current master problem represents the expected future costs 
only subject to the trial solution ~t-  1 which was passed from its ancestor and sub- 
ject to the current scenario wt. Note also that we have implicitly assumed that the 
descendant problems in stage t + 1 are also balanced with their descendant prob- 
lems in stage t + 2 by means of  having collected a sufficient number of  cuts to repre- 
sent the expected costs of  descendant scenarios from t + 2 on, and so forth. 
However, note that the solution of the current stage t scenario ~.o t problem gives 
a lower bound of  the expected costs of all scenarios descendant from the stage t 
scenario o3 t problem regardless of  having collected a sufficient number of cuts. We 
shall exploit this fact. 

Two properties of cuts are crucial for the solution procedure: 

(1) In the case o f  independence o f  stochastic parameters between stages." 
The cuts derived from any trial solutions -~t' are valid cuts for all subproblems wt E f~t. 
17,~ th,~ ,~11t- • > i t ; "  ~wt+lR~ot+2~- _a_it;' (~..ws+2/~°at+2 .a_v~L~+l ~t+2,~ot+l , r l t+t~ i t  
~"~'~" "~*'~ "'~" vt -- ~L~at+l'~t+l~'t "~t ~ ' ~ w t + 2 k " t + l U t + l  ~ " l t + l = l l - ' t + l  6 t + l /  *" " 
constraint whose coefficients do not depend on xt, hence isvalid for all values of  
xt. To see this, note ~'+' ~'+2t^ ~ and ,~,,,÷2 ,o,+2 7rt+l = 7r/+l ~xt/ V t + l  = Pt+l (xt) are optimal dual prices 
that do depend on ~t for optimality but they remain dual feasible independent of  
the values of the right hand side as a function of ~2 r. The validity of  the cuts depends 

~ t +  2 only on the dual feasibility of  the 7rt+~'+lt and Pt+ 1 • It represents an outer linearization 
of  the future expected cost function Z t + l ( X t )  , evaluated at ~t- Different scenarios 0d t 
in stage t are distinguished by different right hand sides of the original stage t con- 

^ l, It = straints,, e . g .  A t x  t = b t L  1 x t -  l -  T h e  set of cuts - G  t x t + 0 t > g t ,  It 1 , . . . ,  L t ,  r e p r e -  

s e n t s  an outer linearization of  the expected future costs independent of  scenarios 
wt E f~t. The outer linearization defined by the set of cuts equals the expected future 
cost function, if r ~"+' (~2t) 0t, where 0t is the value of  Ot corresponding to the sol- l~Zt + I 
ution Xt of any stage t problem. If  P °~'+2(~2~') ^" z~zt+l = Ot , wt E f~t, then a sufficient 
number of necessary cuts have been generated to represent the expected future 
costs for all solutions ~t '  of  scenarios w t E f~t in stage t and we say stage t is 
balanced with stage t + 1. 

(2) In the case o f  dependency o f  stochastic parameters between stages: 
Cuts now depend on scenario wt in period t. Sharing of  cuts between different 
scenario subproblems 0d t E ~'~t is no longer directly possible. However, for additive 
dependency (e.g. Markovian type dependency) up to three stages, cuts can be 
easily adjusted to different scenarios. For example in the case of  the Markovian 
type dependency which we introduced in the multi-period asset allocation prob- 

= , . , + 2 ,  lem we may model B t  '+2''' = B t _  1 + , for t 1,2, and Bt'+' = for 
t = 3 , . . . ,  T -  1 (additive dependency up to stage 3 and independence thereafter). 
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Here et represents a matrix whose elements are functions of  random parameters 
which are independent of the period t - 1 random parameters. (The elements of  
e~ are the inter-stage independent part of  the random returns and are generated 
by the product Fr h.) For example, in the case of  the additive dependency up to three 
stages and independence of  all further stages, a cut in stage 2 and scenario w2 has the 

~,3 w2 ,- ,,3 ~3~ ~, ~3h~3 It can be easily seen that the form: 02 _> [(E~37r 3 )B 2 + z:w31r 3 (2 ix2 q -  ~ " w 3 " 3  " 2  " 

coefficients of  the cut consist of  a part  independent of scenarios w2 and a dependent 
part. The cut can be adjusted to different scenarios w2 E ft2 by adding the scenario 
dependent part (E~37r~'3)B~2 according to scenario w2. This requires storing of  the 
expected value of the dual variables E~37r~3. Sharing of  cuts in the case of  additive 
dependency for more than three stages seems at best difficult, as in this case also the 
dual feasible regions of stages 3 till T depend on the scenario history, and therefore 
dual feasibility of the optimal dual variables for different scenario history is not 
automatically guaranteed. 

Taking advantage of the above stated properties we actually only need to 
store one subproblem per stage t. For different scenarios wt and different solutions 
2t-1 passed from the previous stage we determine the right hand side accordingly. 
The cuts are valid for all scenarios wt C f~t in the case of independence of the sto- 
chastic parameters between stages or are adjusted in the gradient according to the 
actual scenario wt in case of Markovian type dependency between stages. Therefore 
it is easily possible to generate any w~ subproblem. Future information is repre- 
sented in the cuts which have been generated so far and can be efficiently used in 
any scenario wt E f~t independently of which scenario originated it. 

5. Multidimensional integration 

The computat ion of  the expected future costs zt+l, the coefficients G t and the 
right hand side gt of  the cuts requires the computat ion of multiple integrals or multi- 
ple sums. The expected value of  the second stage costs in period t + 1 (we suppress 
the index t for this discussion), e.g. z = Ez '° = E(C) ,  is an expectation of  functions 
C(v '°), w E f~, where C(v ~) is obtained by solving a linear program. V (in general) is 
an h-dimensional random vector parameter, e.g. V =  (V1,. . . ,  Vh), with outcomes 
v '° = ( v l , . . . ,  Vh) '°. For  example, V/represents the value of  the i-th factor v~, the 
observed random outcome. The vector v" is also denoted by v, and p(v  ~°) alias 
p(v) denotes the corresponding probability, f~ is the set of all possible random events 
and is constructed by crossing the sets of outcomes f~ = ~21 x f~2 x -..  x Oh. With P 
being the probability measure under the assumption of independence, the integral 
E C ( V )  = f C ( v ' ° ) P ( d w )  takes the form of a multiple integral E C ( V ) = . [ . . .  
f C ( v ) p ( v ) d v l . . .  dvh, or, in case of discrete distributions, the form of a multiple 
sum E C ( V )  = Nv, . . . I9,vh C(v)p(v),  where p(v) = Pl (vl) .. "Ph (vh). 

The number of terms in the multiple sum computat ion becomes astronomi- 
cally large and therefore the evaluations of multiple sums by direct summation is 
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not practical. This is especially true because function evaluations are computation- 
ally expensive since the evaluation of  each term in the multiple sum requires the 
solution of  a linear program. In the following we discuss a scheme for estimating 
the expected values with a sufficiently low estimatiorr error without having to evalu- 
ate each term. 

6. Importance sampling 

Monte Carlo methods are recommended to compute multiple integrals or 
multiple sums for higher h-dimensional sample spaces [8, 12]. Suppose C ~ =  
C(v ~) are independent random variates of  v ~, w = 1 , . . .  ,n, with expectation z, 
where n is the sample size. An unbiased estimator of  z with variance a 2 = ~r2/n, 
a 2 = var(C(V)) is 

n 

Y . = ( 1 / n ) E C  °j. 
w = l  

Note that the standard error decreases with n -°5 and the convergence rate of  
to z is independent of the dimension of the sample space h. We rewrite z = 

w w ~,eaC(v )p(v ) a s  
C(v ' )p(v ' )q(v")  

E q(vO~) 
w E f ~  

by introducing a new probability mass function q(v ~) and we obtain a new estimator 
o f z  

1 c(v )p(v 
-z = n = q(v ~) 

by sampling from q(v~). The variance of  ~ is given by 

var(-2) = ~ (C(vu)p(v~) \ ]2 z..., " ~ z q(v~). 
,,,en \ q(v ) / 

Choosing q*(v ~) = C(v~)p(v~)/(E~aC(v~)p(v~))  would lead to var(-~)=0, 
which means one could get a perfect estimate of the multiple sum from only one 
estimation. Practically, however, this is useless since to compute q(v ~) we have 
to know z = Eo~enC~p(v °~), which is what we are trying to compute in the first place. 

The result, however, helps to derive a heuristic for choosing q. It should be 
proportional to the product  C(v ~ )p(v ~) and should have a form that can be inte- 
grated easily. Thus, a function F(v ~) ~ C(v ~) is sought which can be integrated 
with less effort than C(v~). Additive and multiplicative (in the components  of  
the stochastic vector v) approximation functions and combinations of  these are 
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potential candidates for our approximations. Especially for financial investment 
problems, we have.been getting good results using C ( V )  ~ E~=ICi(Vi). We com- 
pute q as 

C(v'~)p(v =) 
q(v  '~) 

s~= ~ s,,,~ n,c,(v')p~(v=)" 

In this case one has to compute only h one-dimensional sums instead of one h- 
dimensional sum. The variance reduction depends on how well the approximation 
function fits the original cost function. If the original cost function has the property 
of additivity (separability), the multiple sum can be computed exactly by h one- 
dimensional sums. If the additive model is a bad approximation of the cost func- 
tion, the only "price" that has to be paid is increasing the sample size. If the 
observed variance is too high using a starting sample size, the sample size is 
adjusted higher. Actually, we use a variant of the additive approximation func- 
tion. By introducing C(7-), the costs of a base case, we make the model more sensi- 
tive to the impact of the stochastic parameters v. 

h 

r (v)  = c(~) + ~ r,(v~), r,(v,) = c ( ~ , , . ,  Ti_l, Vi, Ti+I,... , Th)- C(T)- 
i=1 

We denote this as a marginal cost model. ~- can be any arbitrarily chosen point of the 
set of values vi, i = 1 , . . . ,  h. For example, we choose ri as that outcome of V/which 
leads to the lowest costs, ceteris paribus. 

Summarizing, the importance sampling scheme has two phases: the prepa- 
ration phase and the sample phase. In the preparation phase, we explore the cost 
function C(V) at the margins to compute the additive approximation function 

h r'(V). For this process nprep = 1 + Y].i=l(ki-  1) subproblems have to be solved. 
Using F(V), we compute the approximate importance density 

q(v " )  = 
r(v~)p(~ =) 

c(~) + z~= ~z=~a,r;(v=)p(v~)" 

Next, we sample n scenarios from the importance density and, in the sample phase, 
solve n linear programs to compute the estimation of ~ using the Monte Carlo esti- 
mator. We compute the gradient G and the r ight  hand side g of the cut using the 
same sample points at hand from the expected cost calculation. See Infanger [19] 
for the computation of the cuts and details of the estimation process. 

We apply importance sampling directly on the independent random varia- 
tions rh of the factors. In the case of inter-stage independence, we translate an obser- 
vation rh into the random outcome of the vector of factors, vt = rh, in the case of 
inter-peri0d dependency up to three stages, according to the additive dependency 
model, we translate an observation ~t into the random outcome of the vector of fac- 
tors, vt = ~t '[-vt-l .  We then compute the corresponding random outcome of 
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returns, r t = F v  t according to the factor model. By doing so we obtain a random 
outcome of  the matrix Bt, as Bt contains the returns r t in its diagonal. 

7. The algorithm 

By solving a sample of  subproblems wt+l according to the importance sam- 
piing scheme, we compute estimates of  the expected future costs zt~_ 1, the gradients 
G~' and the right hand sides gt /o f  the cuts in each stage t and scenario wv The objec- 
tive function value of  the solution of  each stage t, scenario wt subproblem gives a 
valid lower-bound estimate of the expected costs zT' = ct2~' + Ot' subject to sce- 
nario wt and subject to 2t-1, the (optimal) solution passed forward from the pre- 
vious stage. The obtained lower-bound estimate is the tightest lower bound that 
can be generated, if in stage t = 1 a sufficient number of  cuts have been added to 
represent the expected future costs with respect to stage t + 1 for all scenarios 
wt+l E f~t+t, and is a weaker lower-bound estimate if there is not a sufficient num- 
ber of  cuts. 

We are especially interested in the lower-bound estimate of  the first stage 
costs which we obtain by solving the first stage problem. If the first stage problem 
is balanced with the second stage, that is, if the cuts added so far to the first stage 
problem fully represent the expected second stage costs, and if the second stage is 
balanced with the third stage for all scenarios w2 E [2 2 and all values of 21, passed 
to it from the first stage, and so forth till stage T -  1, then the solution of  the first 
stage problem is the opt imum solution of  the multi-stage stochastic linear program. 
In this case the lower bound estimate of  zl takes on the value of the total expected 
costs of the multi-stage problem. 

To obtain an upper bound of  the total expected costs of  the multi-stage 
problem, we evaluate the expected costs of the current first stage trial solution 21. 
This can be accomplished by sampling paths from stages 2 , . . . ,  T. For  a refer- 
ence, see Pereira and Pinto [30]. To efficiently sample a small number  of  paths 
to obtain an accurate estimate of the expected costs associated with 21, we also 
use importance sampling. We define a path g~ = (21,x2, . . . ,  XT) ~°, w E f~, where 
f~ = {f~2 x f~3 x --- x fiT}, as a sequence of  optimal solutions 2 t '  of  stage t sce- 
nario wt problems, t = 2 , . . . ,  T, and 21 being the first stage trial solution. A path 
is computed by observing the "wait-and-see" requirements: We pass 21 to the 
second stage and solve the second stage problem for scenario w 2 and obtain the 

^ ~ 2  optimal solution x 2"~'. Next, we pass the obtained second stage solution x 2 to 
the third stage and solve the third stage problem for scenario w3 to obtain 2~ '3. 
We continue in this way until we obtain 2~- T in stage T. Note that when solving 
the stage t problem no future outcomes w t + l , . . . ,  Car are used. All future informa- 
tion at each stage is solely represented by means of the cuts added in stage t so 
far. The costs of a path g"~, C(g') ,  is given by C(g ~) ~rt= ^ ~' = - l C t X t  • The expected 
value of  the costs of  all paths g~o, w E [2, Eg ~, gives an upper bound to the costs 
of a trial solution 21. 
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We sample paths by applying the importance sampling scheme to the dimen- 
sional space of size. Etr=2ht of all random parameters V .t i t 1,. , h t ,  t = 2 ,  Z .  

For sampling paths the importance density q(V) is computed based on the additive 
marginal approximation function analogous to the way it was defined earlier: 

T ht 

r (V)  : C(T)-I- E E C(TI,1,...,Tt, i,_1, Vt, i,' Tt, it+l''' ' 'TT, hr) - C(T), 
t = l  i t=l  

where V = ( VI' , . . . , V~, , V12, . . . , Vj; T )  and r = ('r~ , . . . ~'~, , r 2 ,  . . . r ~  ) .  Sampling 
paths w E f~ according to this importance sampling scheme we obtain an equal 
number of sample points wt E fit in stages t = 2 , . . . ,  T. At these sample points we 
define the current stage t scenario wt subproblems and generate cuts to be added 
at stages t = 1 , . . . ,  T -  1 by employing importance sampling as described above 
for cuts. 

The overall procedure works as follows: Solving the stage 1 problem in itera- 
tion 1 we obtain a trial solution ~l and a lower bound estimate of the expected costs 
z 1 . Now we employ the path sampling procedure to obtain an upper bound estimate 
of the expected costs Zl. If the upper bound estimate and the lower bound estimate 
are within a given optimality tolerance, we call the first stage solution the optimal 
solution of the multi-stage problem, and quit. Otherwise, we generate cuts in stages 
1 , . . . ,  T -  1. The path sampling procedure used for the upper bound estimate has 
produced sample points w t E ~'-~t in stages t = 2 , . . . ,  T with corresponding ancestor 
solutions ~l and ~ "  in stages t = 2 , . . . ,  T -  1 to be passed to the current stage t 
scenario w t  problem. Starting at stage T -  1 and moving backwards till stage t 
we take each sample problem w t in stage t and finally the stage 1 problem as the 
current master problem and compute cuts by sampling again w t + l  E 9 t t + l  descen- 
dant problems until each scenario problem w t  in stage t is balanced with stage 
t + 1 with regard to ancestor solutions -~t- l which have been passed from stage 
t - 1. Arriving at stage 1 we obtain a new solution ~l and a new lower bound esti- 
mate. We continue as defined above by sampling new paths for the upper bound 
estimate. Finally, after a finite number of iterations, upper and lower bound esti- 
mates will be sufficiently close. Upper and lower bound estimates can be seen as 
the sum of i.i.d, random terms which for sample sizes of 30 or more can be assumed 
normally distributed with known (derived from the sampling process) variances. A 
95% confidence interval of the obtained solution is computed. 

8. Computational experience 

Computational results of using Benders decomposition and importance sam- 
piing for two-stage asset allocation problems can be found in Infanger [19] and 
Dantzig and Infanger [6], where we report on the solution of test problems with 
up to 52 stochastic parameters and a number of universe scenarios of more than 
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1 0  24 . These problems were formulated as two-stage stochastic programs. Using 
importance sampling and sample sizes between 200 and 600, very accurate results 
were obtained, e.g. the estimated 95% confidence interval was less than 0.8% on 
each side based on the optimal objective function value. Additional tests on these 
examples showed that the ratio of variance reduction obtained by using importance 
sampling versus crude (naive) Monte Carlo sampling was about 10 -6 . 

Inspired by these results we implemented an earlier version of the methodol- 
ogy described above for the multi-stage case which did not consider dependency 
between stages. Instead of the path sampling procedure for obtaining upper 
bounds, we implemented a procedure where we sampled points rather than paths, 
which requested the handling of an exponentially expanding decision tree. There- 
fore, even when we used very small sample sizes, the number of stages that was prac- 
tical to solve was limited. 

We did test up to 3-stage problems. FI3 is a 3-stage test problem derived from 
a 2-stage financial portfolio problem found in Mulvey and Vladimirou [26]. The 
problem is to select a portfolio which maximizes expected returns in future periods 
taking into account the possibility of revising the portfolio in each period. There are 
transaction costs and bounds on the holdings and turnovers. Our test problem cov- 
ers a planning horizon of 3 periods whereas the original Mulvey-Vladimirou test 
problem was a 2-stage problem which compressed all future periods into a single 
second stage. They solved the stochastic problem by restricting the number of sce- 
narios in fL 

We assumed the returns of the stocks in the future periods to be independent 
stochastic parameters with 3 outcomes each. With 13 assets with uncertain returns, 
the problem had 26 stochastic parameters instead of 39 because after the last stage 
decision was made, the expected money-value of the portfolio can be evaluated. The 
number of universe scenarios was 2.5 x 1012. (The deterministic equivalent formu- 
lation of the problem has more than 1014 rows and a similar number of columns.) 
We obtained an estimated optimal solution of the 3-stage stochastic problem using 
a sample size of only 50 per stage. The optimal objective function value was esti- 
mated to be 1.10895 with an estimated 95% confidence interval off 0.004% on 
the left side and 0.001% on the right side of the obtained objective function 
value. Thus the optimal objective value lies within 1.10881 < z* < 1.10895 with 
95% probability. Note how small the confidence interval is. 

9. Conclusion 

We have demonstrated how real-world multi-period asset allocation problems 
can be efficiently solved as multi-stage stochastic linear programs using our approach 
of combining Benders decomposition and importance sampling. The numerical results 
obtained so far are very promising: We obtained very accurate solutions for a 3-stage 
asset allocation test-problem using remarkably small sample sizes. 
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