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Abstract - -  Zusammenfassung 

Formalization and Implementation of Floating-Point Matrix Operations. The paper shows that 
floating-point matrix operations can be implemented in a way which leads to reasonable mathematical 
structures as well as to sensible compatibility properties between these structures and the structure 
of the real matrices. It turns out, "for instance, that all the rules of the minus-operator for real 
matrices can be saved and that for all elements which are comparable with 0 with respect to _ < 
and >__ the same rules for inequalities hold as for real matrices. These structures also occur in o t h ~  
fields of mathematics [5], [6], [7]. They allow many theoretical considerations with floating-point 
matrices. The proposed implementation, furthermore, leads to a higher accuracy of floating-point 
matrix operations and allows a much simpler error analysis (Theorem 2.5). 

Theorem 2.3 is the main result for the implementation. It reduces the structure of floating-point 
matrices to special properties of the rounding function and to a special definition of the 
operations. In chapter 1 these properties are derived as necessary conditions for an algebraic and 
order homomorphism between the real matrices and the floating-point matrices. 

The last chapter gives the algorithms for the implementation of floating-p0int matrix operations for 
all roundiugs of the set { V, A,  R , ,  I1 = 0(1)b} (for definition see chapter 1) using a special 
accumulator (Fig. 3 in chapter 3). It is an essential result that the implementation of all operations 
can be separated into several independent steps which means that an exchange of the rounding 
does not influence any other part of the algorithm. 

Formalisierung und Implementierung von Gleitkommamatrixverkniipfungen. Die Arbeit zeigt, dal3 
Gleitkommamatrixverkntipfungen in einer Weise implementiert werden k6nnen, welche eine ver- 
ntinftige mathematische Struktur wie auch sinnvolle Vertr~iglichkeitsbedingungen zwischen der 
Struktur der reellen Matrizen und derjenigen der Gleitkommamatrizen erlaubt. Es stellt sich 
beispielsweise heraus, dab alle Regeln ftir den Minusoperator bei reellen Matrizen erhalten werden 
k6nnen und dab fox alle mit Null vergleichbaren Elemente beztiglich < und > dieselhen Regeln 
fox das Rechnen mit Ungleichungen gelten wie fOx reelle Matrizen. Die sich ergebenden Struk- 
turen treten auch in anderen Gebieten der Mathematik auf [5], [6], [7]. Sie erm6glichen viele theoretische 
Untersuchungen mit Gleitkommamatrizen. Die vorgeschlagene Implementierung hat ferner eine h6here 
Genauigkeit der Verknfipfungeu fox Gleitkommamatrizen zur Folge und erlaubt eine wesentlich 
einfachere Fehleranalysis (Satz 2.5). 

Der Satz 2.3 stellt das Hauptergebnis fox die Implementierung dar. Er ffihrt die Struktur der Gleit- 
kommamatrizen zurtick auf spezielle Eigenschaften tier Rundungsfunktion und eine speziefle 
Definition tier Verkntipfungen. Im ersten Abschnitt werden diese Eigenschaften als notwendige 
Bedingungen fiir einen algebraischen und Ordnungshomomorphismus zwischen den reellen 
Matrizen und den Gleitkommamatrizen hergeleitet. 

* Dedicated to J. Weissinger on the occasion ofhis62-ndbir thday.  
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Der letzte Abschnitt behandelt die Algorithmen ffir die Implementierung der Verkntipfungen ffir 
Gleitkommamatrizen ffir alle Rundungsfunktionen der Menge { V, A, [~,, g =0(1)b} (bezfiglich 
der Definition siehe den ersten Abschnitt). Dabei wird ein spezieller Akkumulator verwendet (Abb. 3 
im dritten Abschnitt). Ein wesenfliches Ergebnis besteht darin, dab die Implementierung ffir alle 
Operationen in verschiedene, voneinander unabh~ingige Schritte zerlegt werden kann. Dies bedeutet 
beispielsweise, dab ein Austausch der Rundungsfunktion keinen anderen Teil des Gesamtalgorithmus 
beeinfluBt. 

1. Mathematical Preliminaries 

To be clear let us first define a few well known  order  properties.  

Definition 1.1: A set M with a relat ion _< defined for its elements is called an 
"ordered  set" {M, __< } if it has the following propert ies:  

(O1) A x<x (reflexive) 
x ~ M  

(O 2) A (x __< y A y__< z ~ x < z) (transitive) 
x , y , z ~ M  

(03)  A (x<yAy<x~x=y) (ant isymmetr ic)  
X, y ~ M 

An ordered  set is called "total ly ordered"  or "linearly ordered"  if 

(0 4) A (x =< y v y_<_ x) (linearly ordered) 
x , y ~ M  

holds. 

In an ordered set the relation < is defined as usual by 

A (x<y:~x<yAx#y). 
x , y ~ M  

The real numbers  E with respect to the addi t ion + the mult ipl icat ion �9 and 
the order  relat ion < have the following propert ies" 

(F 1) {E, + , .  } is a field. 

(F 2) { E, < } is a l inearly ordered set. 

(F 3) The  following compat ib i l i ty  propert ies  hold  between the algebraic and 
the order  s t ructure  in [R: 

(a) /~ (x<y~x+z<y+z), 
x,y, ze•  

(b) A (x<yAz>o~x.z<y.z) .  
x,y, z E ~  

I t  is well k n o w n  that  every real n u m b e r  x can uniquely be represented by a 
b-adic expansion.  Let  us now give o n e  of the usual definitions of a floating- 
point  system: 

Definition 1.2: A real number  x ~ R is called a "normal ized  f loat ing-point  number"  
if it fulfils the following condit ions 
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X ~ m  �9 b e 

m:=*o, dl d2... d,, * e { + ,  - }  (1) 

l <=dt <=b-1, o<=di <=b-1 for all i=2(1)n, 

e 1 _< e_< e 2, e 1 __< o, e 2 >__ 1, where e, e 1, e 2 are integers. 

b is called the "base", m the "mantissa" or fraction part and e the "exponent" of 
the representation (1). The union of all normalized floating-point numbers with 
a special representation of the number zero which generally consists of a mantissa 
zero and the exponent e 1 : 

q-O.O0  . . .  o . b e l : = o  

is called a "floating-point system" T~_ N. 

A floating-point system therefore is characterized by four constants 

T =  T(b, n, e 1, e 2). 

It consists of a finite number of elements and has the property 

(S) o, l e T A  A - x e T  
x ~ T  

which, among others, means that T is symmetric to zero. 

Let now M r ~ denote the set of real r • r matrices, O the zero matrix and E the 
unit matrix. Then {M~ ~, + , . ,  __< } with the usual addition and multiplication 
for matrices and the order relation defined by 

/~ (X< Y.cc.xlj<yij for all i , j=l  (1)r) 
X-(xli), r=(y~j) e M, R 

is an ordered ring with unit element E, i.e. 

(M 1) {Mr R, +,  �9 } is a ring with unit element E. 

(M2) {Mr R, <} is an ordered set. 

(M3) The following compatibility properties hold between the algebraic and 
the order structure in M, ~: 

(a) A ( X <  Y ~ X + Z <  Y+Z).  
X, Y , Z ~ M ~  

(b) A (X < Y A Z > O ~  X . Z < Y. Z). 
X,Y, Z e M , ~  

Let now M, T denote the set of all r x r matrices with components out of a given 
floating-point system T =  T(b, n, e 1, e 2). Then also M r T consists of a finite 
number of elements and it also has the property 

(S) O, E E M  r T A  A - X ~ M r T "  
X ~ M , T  

This means that also M r T is symmetric to the zero matrix O. 

Definition 1.3: Let M be a set and S ~ M .  A mapping V ] : M ~ S  is called a 
"rounding" if it has the property 
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(R1) A [] x=x.  
x ~ S  

If {M, < } is a ordered set a rounding is called "monotone" if 

(R 2) A (x < y =~ []  x _ [] y). (monotone) 
x , y ~ M  

A rounding is called "directed" if 

(R 3) A []  x < x (downwardly directed) 
x@M 

v A x < [] x. (upwardly directed) 
x ~ M  

If in M a minusoperator is defined a rounding is called "antisymmetric" if 

(R 4) A []  ( -  x) = - []  x. (antisymmetric) 
x e M  

Let now T again denote a given floating-point system. Then according to [7] we 
shall use special notations for the following special roundings from R into T: 

A v x < x monotone downwardly directed rounding 

A x < A  x monotone upwardly directed rounding 
x ~ R  

A [] b x < x A A []b x = - � 9  ( -  x) monotone rounding toward zero 
x ~ o  x < o  

A x =< Do x A m Do x = - Do ( -  x) monotone rounding away from zero 
x ~ o  x < o  

Further let 

S, (x): = V  x +  (& x - V  x) b .#, # = 1  ( 1 ) b - 1 .  

Then we define roundings [ ] . "  ~--* T, # = 1 (1) b -  1 by 

A D.x=o 
xe[o,b ~z-l) 

b . . . .  -~X~_~B ( A  X for xe[Su(x) ,Ax  ] 

A [].x=-[].(-x), 
x < o  

where B:-~o . (b-1) (b-1) . . . (b -1) .b  ez denotes the greatest representable 
floating-point number. 

If b is an even number then [~b/2 : ~---' T denotes the rounding to the nearest num- 
ber of T: 

Since it is not necessary for the purpose of this paper we do not define the roundings [ ]~ ,#=1 ( 1 ) b -  1, 
f o r l x l > B .  
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Further special roundings [ ] , :  N ~  Twith the property 

A ([xl~[bel-* ,B]~[S]* x = x ( 1 - e )  with [el_-<e*) (2) 
x E R  

will be of interest where e* is a constant independent of x. 

Theorem 1.1: Let [] : ~--, T be a rounding. I f  we define a mapping [] : M, ~ ~ M, T 
by 

A [] X: = ( m  xu) (3) 
X = (x0) ~ M ,  N 

then also N : M, N ~ M ,  T is a rounding. I f  further the rounding [] : N--,T is 
monotone, directed, antisymmetric respectively then also the rounding [] : M, N--* M, T 
is monotone, directed, antisymmetric respectively. 

Above we have defined special notations for the special roundings of the set 
{ V , A , [ ] , , # = o ( 1 ) b ,  [ ] ,}  where each element was a mapping of N into T. 
Using (3) we can now generalize the same symbols and define mappings 
{V,A, [], ,  #=o(1)b ,  IN,} of M , N  into M, 7". Then it is easy to see that the 
rounding N ,  : M, N ~ M ,  Thas the property 

A (A  [ x u l ~ [ b ~ - ~ , B ] ~ [ ] , X = ( x u ( 1 - e u ) )  =~ 
X=(xu) eMrR i , j  (4) 

~lX-m,  Xl<~*lXI) 
where I@l<e* and e* is defined by (2) and the absolute value is defined 
componentwise. 

The central question of the following chapters will be how the operations for 
elements of M, T are to be defined. In order to find an answer for this question 
we are now going to derive a few plausibility reasons by similar considerations 
than in [7]. 

A structure {M, 57/} is defined by a set M of elements and a set ~/ of rules 
(axioms) given for the elements of M. 

Definition 1.4: Let {M, ~/} and { T, 2r} be two ordered algebraic structures and let 
a one to one correspondence exist between the operations and order relation(s) 
in M and T. Then a mapping [] : M--, T is called a "homomorphism" if it is an 
algebraic h6momorphism, i. e. if 

A ([] x )  [] ([-710 = [] (S * h (5) 
X,Y~M 

for all corresponding operations * and [] and if [] is an order homomorphism, 
i.e. 

A (X < Y ~  [] X __< [] I0. (6) 
X, Y~ M 

If X, Y are elements of M, T_~M, N and �9 is one of the operations + ,  - ,  �9 for 
elements of M, N then in general X * Y is not again an element of M r T. 
Therefore the operations �9 e { +,  - ,  �9 } for real matrices on a computer only can 
be approximated. From algebra it is known that the homomorph image of a ring 
is again a ring. On the other hand we know already that the operations + or. even for 
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floating-point numbers are no longer associative. We come, therefore, imme- 
diately to the conclusion that it is impossible to realize an homomorphism between 
the two ordered algebraic structures {M r R, M, N} and {M r T, M r T}. We shall 
see, however, that it is possible to implement a few necessary conditions for an 
homomorphism. Doing this we go as far to an homomorphism as possible. We 
are now going to derive these necessary conditions. 

We already mentioned that the set M, T has the property 

(S) O, E e T A  //~ - X e M r T .  
XEMr T 

Further a rounding [] : M r R--*M r Twas defined by 

(R1) /~ [-1X=X.  
X e M r T  

Let us now for a moment assume that the rounding [] : M r E ~ M  r Twould define 
an homomorphism between the ordered algebraic structures {M, R, M, R} and 
{M, T, M r ~r}. If we then for M = M, R restrict (5) to elements of M r T we get 
immediately because of (R 1) 

(R) A X N1Y= [] (X * Y). 
X, Y e M r T  

We shall use this formula later to define the operation [] ,  �9 ~ { +,  - ,  �9 ), in M r T 
by the corresponding operations �9 ~ { +,  - , .  } in M, R and the rounding function 
[] : M r ~ M  , T. 

From (6) we get for M = M ,  R immediately that the rounding has to be a 
monotone function 

(RS) A (x<__r~�9 r). 

If we further replace X = - E in (5) we get in the case of multiplication: 

/~ � 9  Y = ( - E )  V q � 9  Y = [ ] ( - D Y )  = - [ ] Y ,  i.e. 
Ye M, N (S), (R 1) (R) (S), (R 11 

(R4) /k [ ] ( - - X ) = - - [ ] X "  
XeM,  N 

This means that the rounding also has to be an antisymmetric function. 

The conditions (R 1), (R 2) and (R 4) do not define the rounding function uniquely. 
For instance we have already seen that the special roundings []u : Mr ~--*M, T, 
g = o  (1)b, which we have defined above all have these properties. However, as 
we shall see in the next chapters, these properties together with formula (R) for the 
operations of floating-point matrices do already define the structure {M, T, M, T} 
of the floating-point matrices. 

It still remains the question whether an arithmetic for floating-point matrices 
which fulfills all our assumptions (R 1), (R2), (R4) and (R) can be implemented 
on computers by fast algorithms. We shall answer this question positively within 
the last chapter for all roundings of the set {V,A, D, ,  # = o (1) b}. 
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2. The Structure {MrT, MrT} of Floating-Point Matrices 

(R 2) 

(R4) 

and 

(R) 

Let us first summarize our main results. We have seen that the floating-point 
matrices M, T have the property 

(S) O,E~M, TA A -XeMrT" 
X ~ M r  T 

A rounding [] : M, ~ M ,  Twas defined by 

(Ra) A DX=X. 
Xe Mr T 

As necessary conditions for an homomorphism between Mr E and M r T we have 
derived the further properties 

A (X< Y ~  [] X_-< [] I1) monotone 
X e M ,  R 

A [] ( -  X) = - [] X antisymmetric 
X, Y e M , ~  

A X ~ Y : = [ ] ( X , Y )  forall , e { + , - , . } .  
X, Y~Mr T 

We are now going to define the special structure of an ordered ringoid and shall 
later prove that this under the assumptions (S), (R 1), (R2), (R4) and (R) is the 
structure of the floating-point matrices. 

Definition 2.1: A set S in which an addition, a multiplication and an order relation 
are defined is called an "ordered ringoid" if 

(D1) A X+Y=Y+X 
X, Y e S  

(D2) V A x + o = x  
0 eS  X ~ S  

(D3) V A X .E=E.X=X 
EeS\{O} X e S  

(D4) A X.O--O.X=O 
X e S  

(D 5) There exists an element T ~ S\{E} such that: 

(a) T.  T = E  

(b) A T . ( X . Y ) = ( T . X ) . Y = X - ( T . Y )  
X, Y e S  

(c) A 
X, Y e S  

(D 6) 7 j is unique. 

{S, <} is an ordered set, i.e. the order properties (01), (02), (03) hold as well 
as the following compatibility properties between the algebraic and the order 
structure: 
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(OD1) A ( x < = Y ~ X + Z ~ Y + Z )  
X , Y , Z ~ S  

(OD2) i ( X < Y ~ T . Y < T - X )  
X, Y~S 

(OD3) f ( O < X < _ Y A Z > O ~ X . Z < Y . Z A Z . X < = Z . Y ) .  
X, Y, Z e S  

We are now using the uniqueness of T for the following 

Definition 2.2: Let {S, + , . ,  _~} be an ordered ringoid. Then we define a minus- 
operator and a subtraction by 

i - X : - = T . X  (1) 
X e S  

A X -  Y : = X + ( -  Y). (2) 
X, YES 

Simple consequences" 

(1) ~ T = - E  
X=E 

(D5a) ~ ( - E ) . ( - E ) = E  

(D5b) ~ - ( X . Y ) = ( - X ) . Y - - - - X . ( - Y )  

(D5c) ~ - ( X +  Y ) = ( - X ) + ( -  I1) 

(OD2) ~ (X<__ Y ~ -  Y_<_-X). 

Theorem 2.1: In an ordered ringoid {S, + , . ,  <} the following properties hold: 

(a) E+-O,-E+O,-F~+F~. 

Further the same rules for the minus-operator hold as in ~, for instance" 

(b) f o - x = - x  
X s S  

(c) A -X=( -~ ) .X=X. ( -E )  
X a S  

(d) A - ( - X ) = X  
X a S  

(e) /~ - ( X -  Y)= - X + Y= Y -  X 
X , Y ~ S  

(f) i ( - X ) .  ( -  Y)=X. Y 
X, Y e S  

(g) 0 respectively E is the only neutral element of the addition resp. multiplication. 

(h) 0 is the only right neutral element of the subtraction. 

Furthermore in an ordered ringoid for all elements which are comparable with 0 
with respect to the relations <= and >= the same rules for inequalities hold as in ~, 
for instance 

(i) A (x<=r~u<=v~x+u<=r+v) 
X , Y , U , V ~ S  
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(J) A (O<_X<_YAO<_U<_V~O<XU<=YVAO<=UX<=VY) 
X , Y , U , V ~ S  

(k) A ( X < Y < - O A U < V < O : ~ X U > Y V > =  O A U X > V Y > O )  
X , Y , U ,  V e S  

(l) A ( x g Y < _ O A O < _ U < V ~ X V < Y U < = O A V X < = U Y < O ) .  
X, Y, U, V E S 

Proof: 

(a): follows immediately from (D 3), (D 4) and (D 5). 

(b): 

(c): 

(d): 

(e): 

(f): 

o - x = o + ( - x ) =  - x .  

from (D 5 b) we get with Y= E immediately - X = ( -  E). X = X .  ( -  E). 

- ( -  x )  = ( -  E) ( ( -  E) X) = ( ( -  E) ( -  E)) X = X. 
(D5b) (D5a) 

- ( X -  Y ) = ( - E ) ( X + ( -  Y)) = ( - E ) X + ( - E ) ( ( - E )  ] I ) = - X + Y = Y - X .  
(D 5 c) (a) 

( - x ) ( -  ~ = (( - E) X) (( - E) Y) = ( - E) ((( - E) X) Y)=((-E)(-E))XY=XY. 
(O5b) (D5b) (O5a) . 

(g): we assume that E' would be another neutral element of the multiplication, 
then E = E.  E' = E ' .  E = E'. 
The proof for the addition follows analogously. 

(h): ( D 4 ) ~ X - O = X + ( - O ) = X + O = X ,  i.e. 0 is right neutral element o f  
the subtraction. Let us assume O' would be another right neutral element 
of the subtraction. Then because of definition 2.2: 

A X - O ' = X + ( - O ' ) = X ~ - O ' = O  :~ - ( - 0 ' ) = 0 ~ 0 ' = 0 .  
X ~ s (0) (D 4) (d) 

(i): ( O D 1 ) ~ X + U < = Y + U < Y + V  

(j): ( O D 3 ) ~ O < = X U < Y U < Y V  

(k): ( O D 2 ) ~ O < = - Y < - X ^ O < = - V < = - U  ~ XU>YV>=O 
(j), (D S b) 

(1): ( O D 2 ) ~ O < -  Y < - X  A O < U < _ V ~ O < - ( Y U ) < - ( X V ) ~  XV<= YU<=O. 
(]) (OD2) �9 

Remark: In general there do not exist inverse elements of the addition in an ordered 
ringoid. But nevertheless the subtraction is no independent operation. It can be 
defined by the multiplication and the addition. 

Theorem 2.2: Let {S, + , . ,  <} be an ordered ringoid with the special elements 
( -  e, o, e} and let us by M, S denote the set of all r x r matrices with components 
out of S. In M, S the equality, addition, multiplication and order relation are 
defined by the usual formulas over the components. Then also {M, S, + , . ,  < } is an 
ordered ringoid with the special elements { ~, O, E} with 

( - e  o ... o~ (o  o ... o~ e o ... o~ 

o:/~ g j = _ E : = /  o - e  ... o ] ,  o. . . . . . . . .  e ... ~ 

\ o ' "o ' " ' - - ' e ]  ~ o " o ' i . i ' o j  o o ... e] 
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Proof: (see [5] and [9]) (D 1), (D2), (D3) and (D4) are immediately clear. Further, 
the matrix T = -  E fulfills (D 5 a). It is also easy to see that for all X, Y s M r S 
the properties 

(D5b): T . ( X .  Y ) = ( T . X ) .  Y = X . ( T .  Y)and 

(D5c): T . ( X + Y ) = ( T . X ) + ( T . Y )  

hold. In order to prove (D6) we have to show that T = - E  is the only matrix 
of M r S which satisfies (D 5). 

Let T = ((i j )+ E be any element of M r S which satisfies (D 5). Then we get by 
(D 5 b) with Y= E for all X ~ M r S: T .  X = X .  T, i.e. the element commutes with 
all X e M r S. For  X we now choose special matrices k. k X .=(x~j), k =  1 (1)r, with 

k. ( e  for i , j=k 
X i j .  = ], o else. 

Then from T .  x k = x  k �9 T follows immediately ~ik={ki=O for i+k, i, k = l  (1)r. 
That means that T is a diagonal matrix. Now we choose a matrix X = (xij) with 
xij=e for all i,j= 1 (1) r. Then from T .  X = X .  T follows (ii= ~j~ for all i,j= 1 (1) r. 
This means that all diagonal elements of T are equal. We denote this element by (. 
Let now x, y be arbitrary elements of S and X, Y the matrices 

x o ... o~ y o ... o~ 
X =  o x . . .  O ] , y =  o y . . .  o . 

; o ;o2y/ 
If we then apply (D 5 a, b, c) of Mr S for these matrices T, X, Y we get 

a) ~ . ~ = e  

b) A ~ ' ( x ' Y ) = ( ( ' x ) ' y = x ' ( ~ ' Y )  
x, y e S  

c) /~ ~. (x + y)=(~,  x) + (~. y) 
x , y ~ S  

This means that the diagonal element ~ of T fulfills (D5a, b, c) in S. Since 
T + E  it is ~ : e .  By (06) in S therefore ( =  - e  and (06) in M r S is proved. 

We still have to prove that in Mr S also the order- and the compatibility 
properties hold. Since (O 1), (O 2), (O 3), (OD 1) and (OD 2) are easily to see we just 
prove 

(OD3): O<_X <_ Y/~Z>O~o<xij<=YljAzii>oforalli ,  j = l  (1) r ~  

o<xi~z~j<yi~z~jforalli, j , v=l (1)r  ~ X . Z < Y . Z .  �9 
(OD3).~ Theorem 2,1 (i) 

Remark: Theorem 2.2 allows many applications. Let for instance R be the real 
number field, T a given floating-point system and S another floating-point 
system let us say of double length. Then R __ S m_ T and it is proved in [7] Theorem 
5.1 that, if the arithmetic in S and T is properly implemented, {R, + , . ,  <}, 
{S, + , . ,  _-__ } and { T, + , . ,  < } are all ordered ringoids. It follows by Theorem 2.2, 
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therefore, that also {Mr N, + , . ,  _---}, {Mr S, + , . ,  <} and {Mr T, + , . ,  __<} are 
ordered ringoids (Fig. 1). 

[7] Theorem 5.1 [-7] Theorem 5.1 
~ S , T 

i Theorem2.2 I Theorem2.2 I Theorem2.2 

Mr ~ Mr S Mr T 

Fig. 1. Definition of the operations in M r S  and M , T  by Theorem 2.2 

This remark describes exactly the way how matrix-operations on computers are 
usually defined. The matrix-operations in Mr T for instance are defined by the 
floating-point operations in T and in general there are no obvious compatibility 
properties valid between the matrix operations in M r S or M r T and M r N. 

We shall in the last chapter propose another implementation of floating-point 
matrix operations by fast algorithms which leads to such compatibility properties 
as well as to a much higher accuracy of floating-point matrix computations. 
This implementation is based on 

Theorem 2.3: Let {S, + , . ,  <} be an ordered ringoid with the special elements 
{ - e ,  o, e} and {M r S, + , . ,  < } an ordered ringoid in the set of matrices over S 
with the special elements { - E ,  O, E}. Let further T be a subset of S with the 
property (S), [] : S ~ T  a roundin9 with the properties (R1), (R2), (R4) and 
{ T, [], V], < } again an ordered ringoid with the same special elements { - e, o, e} 
where the operations in T are defined by the roundin9 [] and formula (R). 

Then the set M r T of matrices over T has also the property (S) and the mapping 
[] �9 M r S ~ M r T which is defined by 

A [] x:=([]  x,j) 
X = (xu) ~ M, S 

is a roundin9 with the properties (R1), (R2), (R4). I f  in M r T operations N], 
�9 ~ { +, �9 } are defined by 

(R) A x [] Y: = [] ( x  �9 !0 for all �9 ~ { + , .  } 
X, Y6 M, T 

then {M r T, Rq, [], <} also is an ordered ringoid with the special elements 
{ - E ,  O, E}. Further between the structure in M r S and that in M r T the followin9 
compatibility properties hold: 

(RG1) A (X* Y ~ M r T ~ X [ ]  Y = X *  Y) f ~  
X , Y ~ M . T  

(RG2) A ( x ,  Y<=U, v ~ x � 9  Y<=U[] V ) f o r a l l , ~ { + , - , . } .  
X , Y , U ,  V E M r T  

Proof: The properties (D1), (D2), (D3), (D4) and (D5) of M r T can easily be 
verified. As an example we prove the property 

(D 5 c): ( - E )  [] X = [] ( ( -  E). X) = [] ( -  X)(~)- [] X = - X. (3) 
(R) (R 1) 
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(- E) [] (X [] ~0g [] ((- E). [] (X + r))(a q ([] (- (X + :0))(~, 

=[] (-(X+ r))(osg.,~ [] ((-X)+(- h)~(-X)[] (- r)~ 
= ((-E) [] X) [] ((-E) [] Y). 

The proof of (D 6) follows simi~r steps than the proof of (D 6) in Theorem 2.2. 

(D 6): We have to show that - E  is the only element in My T which fulfills 
(D 5 a, b, c). Let 71 = ((i j) ~= E be any element of M r T which satisfies (D 5), 
Then we get from (D 5 b) with Y= E for all X e M r T: }P [] X = X [] 71, 
i.e. the element t/J commutes with all X e Mr T. For X we now choose the 
special matrices xk:= (X~j), k = i (i) r, with 

k. ( e  for i,j=k 
Xij" = "~ o else. 

Then from 7J [] x k = x  k [] ~ followsimmediately (ik=fki=O for i+k, 
i, k = 1 (1) r. This means that 7 j is a diagonal matrix. Now we choose a 
matrix X = (xu) with x u = e for all i,j = 1 (1) r. Then from h u []  X = X [] 7 ~ 
follows (~ = (j~ for all i , j= 1 (1) r. This means that all diagonal elements of 
7 ~ are equal to an element (. 

Let now x, y be arbitrary elements of T and X, Y the matrices 

X 0 ... O~  

x = [ O  x . . .  o 1 ,  

\ o  o . . .  x j  

y o ... o I  :qo y: o / 
\ o  o . . .  y ~  

If we now apply (D 5 a, b, c) of My T for these matrices 7 j, X, Y we get 

a) ~ � 9  

b) A ~ [] (x [] y)=(( Vq x) [] y= x Vq (~ l-q y) 
x, yeT 

c) A ~[] (xEqy)=(~Vlx ) [ ] (~b-qy) ,  
x, yeT 

where [] and []  denote the addition and multiplication in the ringoid 
{T, m, I-q, <}. This means that the diagonal element ~ of kg fulfills 
(D 5 a, b, c) in T. Since 7 j ~ E it is ( +  e. By (D 6) in T therefore ( =  - e  
and (D 6) in M r Tis  proved. 

We still have to prove that in Mr T also the order- and compatibility properties 
hold. As a subset of M r S M r T of course is again an ordered set, (OD 1) is a 
simple consequence of (OD 1) in Mr S, (R) and (R2). 

( o D  2): / ~  ( -  E) [ ]  x = [ ]  ( ( -  E) .  x )  = [ ]  ( -  x )  = - [ ]  x = - x .  (4) 
X ~ Mr T (g) (R 4) (R 1) 

X < Y  ~ - Y < - X ~ ( - E ) V q  Y<_(-E) D X ~ [ ]  Y < B X .  
(O D 2)M;; s (4) 
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(OD3): O < X < _ Y A Z > O  ~ X . Z < Y .  Z A Z . X < Z .  Y 
(OD 3)M, s (R 2), (R) 

~ X D Z < = Y D Z A Z D X < = Z D  K 

The compatibility properties (RG1) and (RG2) are simple consequences of (R 1), 
(R 2) and (R). (RG 1) and (RG 2) for the subtraction can be proved by the definitions 
(1) and (2), (4) and the corresponding properties for the addition. �9 

Remark: Theorem 2.3 allows many applications. Let again N be the real number 
field, T a give n floating-point system and S another floating-point system for 
instance the system with double length in the mantissas. Then R_~ S_~ T. If the 
mappings from R into S respectively from S into T are monotone and antisymme- 
tric roundings and the operations in S respectively T are defined by formula (R) 
then it is proved by [7] Theorem 5.1 that {R, + , . ,  <}, {S, + , . ,  =<} and 
{ T, + , . ,  __< } are all ordered ringoids. Theorem 2.2 proves that also {M, N, + , . ,  __< } 
is an ordered ringoid. If we now define operations in M, S by formula (R) 
Theorem 2.3 proves that also {M, S, + , . ,  __< } becomes an ordered ringoid with 
compatibility properties (RG1) and (RG2). Now we can repeat this step and 
define operations in M, T by the operations in M, S and formula (R). Then by 
Theorem 2.3 also {M, T, + , . ,  __< } becomes an ordered ringoid and again the 
compatibility properties (RG 1) and (RG 2) hold (Fig. 2). 

[7] Theorem 5.1 [7] Theorem 5.1 
, S ~ T  

Theorem 2.2 

Theorem 2.3 Theorem 2.3 
, M,  S ~M, T 

Fig. 2. Definition of  the operations in M,S and M,T by Theorem 2.3 

The ringoids in M, S and M r T which we mentioned in this remark differ by the 
definition of the operations essentially from those which we have discussed in the 
remark after Theorem 2.2. The following considerations show that floating-point 
matrix computations using the operations of Theorem 2.3 lead to much higher 
accuracy and allow a much simpler error analysis than those using the operations 
of Theorem 2.2. 

Without giving the proof we mention the following well known 

Theorem 2.4: Let T= T(b, n, e 1, e2) be a floating-point system and [] " R ~  T a 
monotone rounding and let 6 (I7 x ) : = x - [ ]  x denote the absolute rounding error 
and e:= 6 (D x)/x the relative rounding error. Then 

/~ (bel-l<lx[<__B~ [ ] x = x ( 1 - e )  w i t h t e l < e * ~ l x - D x l < e * . l x l )  (5) 

where f �89 b 1-" for [ ] =  

e* :=~b 1-" for [5]+D 

Computing 16/3 

(6) 

17 
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is independent of x and ~ : ~ ~ T denotes the rounding to the nearest floating-point 
number. 

If we apply this theorem to floating-point operations we get immediately the 
following 

Corollary: Let T= T (b, n, e 1, e 2) be a floating-point system, [] : ~ ~ T a monotone 
rounding and 

(n) A x [] y: = [] (x * y) for all * ~ { +, - , . , / } .  
x , y ~ T  

Let further (3(x [] y ) : = x * y - ( x  [] y) be the absolute rounding error and 
e: =~5 (x [] y)/(x * y) the relative rounding error. Then we get for all * ~ {+, - ,  .,/} 

A ( b ~ l - t < l x * y l < B ~ x [ ] y = ( x * y ) ( 1 - e ) w i t h l e l < e * ~  
x , y ~ T  (7) 

~ l x * y - x  [] y l<~ * . l x * y [ )  

where e* is defined by (6). 

Theorem 2.4 and the Corollary are the base for most rounding error estimations 
in Numerical Mathematics. It should, however, be clear that such estimations 
only lead to reliable error bounds if formula (R) is correctly implemented. Error 
estimations for floating-point matrix computations have to take into account 
that the matrix multiplication is defined by scalar products. If the floating-point 
matrix operations are defined in the sense of Theorem 2.2 by the basic floating- 
point operations, therefore, we get relatively complicated and inaccurate formu- 
las. If we define the floating-point matrix operations, however, by Theorem 2.3 
we get by corresponding considerations which led to the Corollary above imme- 
diately the 

Theorem 2.5: Let ~ be the real number field, {M, R, + , . ,  __<} the real matrices, 
T= T (b, n, e 1, e2) a floating-point system and [N : ~ ~ T a monotone and anti- 
symmetric rounding and let in T operations be defined by formula (R). Then by [-7] 
Theorem 5.1 also { T, [~, ~ ,  <__ } is an ordered ringoid. I f  we now define a rounding 
[] :M,  N ~ M ,  Tby  

A []x:=(Dx 0 
X = (x~i) e M ,  

then 

A 
X = (xlj) ~ M, 

( A  I x i i ] ~ [ b e ~ - a ; B ] ~ [ ] X = ( x i j ( 1 - % i ) ) = ~ [ X - N X ] < e * ' ] X ] )  (8) 
i,j 

where B:=o.  ( b -  1) (b -  1) ... ( b - l ) .  b e2, [e/jl<~* and e* is defined by (6) and 
the absolute value is defined componentwise. 

I f  in M, T operations [], �9 E { +, �9 } are defined by 

(n) A x [] Y:= [] ( x  , Y) 
X , Y ~ M r T  

then with Z: = (zij): = X �9 Y for all * ~ { +, - ,  . } the following formula holds: 



Formalization and Implementation of Floating-Point Matrix Operations 253 

A (A ]zqle[b e l -* ;B]~X[]  Y=(ziy(1-e,j)) 
X,Y~MrT i,j 

(9) 
=>IX*Y--X[] YI<e*.IX * Yt). 

Proof: The proof follows immediately from the definition of the matrix operations 
and formula (4) in chapter 1. �9 

The results of (5), (7), (8), (9) respectively can simply be transformed into 

x-~*lxl < ~ x  <x+e*lxl 

x * y - e * ] x * y ]  < x [ y  < x * y + e * l x * y l  

x - ~ * l x l  <~2x  <x+~* lXl  

X ,  Y - e ' I X ,  YI<=X[ Y<=X, Y + e * l X ,  Y[ 

Remark: Theorem 2.5 remains valid if N respectively M, R are replaced by an 
ordered ringoid in a floating-point system {S, + , . ,  __< } respectively {MRS, +,., <= }. 
Then, for instance, it covers also the mapping from a floating-point matrix 
system M, S with a mantissa of n digits into a system M, T with a n 1 < n 
digit mantissa. 

3. Implementation of Floating-Point Matrix Operations 

We are now going to discuss the question whether and how the structures which 
we have derived in the last chapter can be implemented on computers by fast 
algorithms. Theorem 2.3 is the basic theorem for the implementation. It reduces 
the structure of floating-point matrices to a special definition of the operations 
and special properties of the rounding function. In chapter 1 we have derived 
these properties as necessary conditions for an homomorphism. 

By Theorem 2.3 formula (R) the operations N], �9 e { + ,  �9 }, in M, T have to be 
defined by 

(R) /~ X [ ]  Y : = [ ] ( X , Y )  for all , ~ { + , . } .  
X,Y~MrT 

If X = (xlj) and Y= (yij) then in case of the addition we get 

X [] Y: = [] (X+ Y)=(xij [] Ylj). 

Therein the addition on the right hand side means the addition in T which by 
assumption is properly defined and there is no problem connected with the addi- 
tion. 

In the case of multiplication, however, we get 

where in 

~xi~  y~ (2) 
v = i  

17" 
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the multiplications and additions denote the real multiplication and addition. 
In order to generate (1), (2) seems to be necessary. But (2) even on computers 
with a so called accumulator of double length is only very seldom exactly 
representable. It will turn out, however, that in such cases it is sufficient to 
replace (2) by an appropriate and representable value 

~xi~  y~j (3) 
v = l  

with the property 

r 

[--I(X. Y)=V-l (~lx~yvj )=[~(X~.Y)=l~(~=lx~,v j ) .  (4) 

Then (4) can be used to define X [] Y. By the following algorithms we shall 
especially prove this assertion.This proof should be understood as an existence- 
proof. Although it is given by a realizable and fast algorithm even faster al- 
gorithms might possibly exist. 

In order to realize (4) we first have to calculate the products xi~. Yvj. If xij and 
yij are floating-point numbers of n digits in the mantissa x~v .y~j can exactly 
be generated within an accumulator of L = 2 n digits. Let us assume that this is 
done. Then (4) can be generated if we show that the sum 

can be implemented on the computer where the x~, i=1  (1)r, denote L=2n 
digit floating-point numbers and z is an n digit floating-point number. It should 
be mentioned that the algorithm which we shall discuss below also could be 
used to produce a floating-point number z defined by (5) of n, n + 1 . . . . .  L = 2 n 

correct digits just by rounding the intermediate result ~ x i to other lengths. 
i = l  

The following algorithms give the implementation of formula (5). The whole 
algorithm can in principle be separated into the following nine steps: 

1. Decomposition of x i, i=  1 (1)r, i.e. separation of x~ into exponent part e~ 
and mantissa my 

2. Elimination of zeros among the xi, i=  1 (1) r. 

3. Execution of the exponent order e 1 > e 2 > . . .  > e r. 

4. Execution of a strong exponent order el > e2 > . . .  > % 

5. Addition from left to right. 

6. Addition from right to left. 

7. Normalization. 

8. Rounding. 

9. Composition, i.e. combination of the resulting exponent part and mantissa 
to a floating-point number. 
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xi = mi - b ci DC Decompos i t ion  A L R  Addi t ion  from left  to right 
ZE Zero el iminat ion A R L  Addi t ion  from right to left  

z - m �9 b e EO Exponen t  order  N Normal iza t ion  
SEO Strong exponen t  order  R Rounding 

C Composi t ion  

length of  the  accumulator :  

II I I I  II 
binary L + 2 digits o f  binary 
digit base b d igit 

L = 2 n  

eig'3Fl~176176 
Fig. 3 gives a graphical diagram of these nine steps. Between these steps labels 
are used to denote the cuts of the explicit flow diagrams which we shall discuss 
below. The whole algorithm uses an accumulator of one digit which can be a 
binary digit in front of the point and L + 2 digits of base b plus one further binary 
digit after the point. If n denotes the number of digits of the floating-point 
mantissa then L = 2 n. 

The algorithms have especially to take care that the formulas (R 1), (R2), (R4) 
and (R) are strictly realized. This means that they really have to be valid for all 
X, Ye M, T respectively M, ~ and not only for some of them or mostly. Under 
these requirements a further reduction of the length of the accumulator should be 
difficult respectively impossible. 

The following algorithms give the implementation of formula (5) for all roundings 
of the set {V, A, [] u,/~ = o (1) b}. It is an essential result that the whole implemen- 
tation can be separated into nine independent steps as indicated in Fig. 3 and its 

context. This means that the intermediate result ~ xi can be chosen independ- 
i = l  

ently of the rounding function such that 

A A [] =n  
[2] E {~7,A, []~, # = o (1) b} x ~ T  i i 

In the flow diagram of Fig. 3, therefore, instead of the rounding R any one of 
the roundings [ ~ { V , A ,  Flu, #=o(1)b} can be substituted and we get the 
correct result which is defined by this rounding and (5) without changing any 
other part of the algorithm. Explicit algorithms for the steps 8 (rounding) and 9 
(composition) are not given in this paper. With respect to these algorithms we 
refer to [-7]. 
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In the following flow diagrams, as usual, rectangles denote statements; circles, 
lables; and figures with six edges, conditions. A further special and obvious 
symbol is used to denote the "for statement". The input numbers xi, i =  1 (1) r, are 
denoted by xi = mi~ b e the output by z = m. b e. The k-th digit of mi respectively 
m is denoted by mi [k I respectively m [k]. 

true 

I J:=~+'i I 
l 

I 

mj : = m a n t  ( x i )  I 
e i : = e x p  (x i )  I 

t, 

t ,:=lO>r I ' 

< x,,o 
false 

Fig. 4. Decomposition and zero elimination 

[ i: = 1mr-1 [ 

[ ~:(i I 

ej �9 ek , >  

l false 

false 

true 

true 

. . .  ] 

e : = e k ; m  : = m k ;  
ek : = e i ;  m k  : = mi; 
e i : = e ;  In i : = m ;  

Fig. 5: Execution of exponent order el > e2 > .v > e, 
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F 
,(~ 

I i I :| 

> 
~ false 

mj§ : = sign(mi) ,~ 0 .10 . . .0  

I 
: = ' -  [ [ j j 1 

t 
e m : = 
mj§ 1 ; = rla] 

,roo t 

i :  = i - 1  I 

I true ~ I false 
ei :~ ei_l > 

1 false 

I m:om,+m,, I 
, r u e @  

1 ~  j : = i - l ( 1 ) r - 2  h I . . . . .  . 
I ~ "1 < [m I>--1 ~ . . . . . .  ig~a(m) 

- . = . _  

f 

Fig .  6_ Execution of a strong exponent order e~ > e2 > . . .  > e,  

2 5 7  

The algorithm works similarly than the "algorithm for the execution of the addi- 
tion with a short accumulator" as given in [7] where fl~r ~ur purposes n is re- 
placed by L. Since we have to add not only two but r"flo~ating-point numbers 
of length L we first order the xi by their exponents. Figs. 4, 5 and 6 give the 
algorithms for the decomposition, zero elimination, the execution of an exponent 
order and a strong exponent order. After these steps the x~, i =  1 (1)r, are ordered 
into a strong decreasing chain of their exponents 

e I > e 2 >  . . .  > e , .  (6) 

The mantissas ml of the x~, i =  1 (1) r, have no carry. But they can have leading 
zeros.  

r elements xi, i =  1 (1) r, with the property (6) could be added in a natural way 
without accumulation of rounding errors by addition from right to left. 
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The whole sum 

xi, (7) 
i = l  

however, can be suffering from catastrophic cancellation. Since in general the 
magnitude of the result z is not known at the beginning it is difficult to estimate 
the number of digits over which this addition would have to be carried out. We 
begin, therefore, the whole addition with an addition from left to right as described 
in Fig. 7. It delivers the magnitude of the result z. If no further addition from left 
to right by the algorithm of Fig. 7 is possible the mantissa m has no leading zeros 
(but possibly a carry) and L + 2 digits of base b on the right hand side of the 
point. If k -  1 elements of the x i are already added we have 

m:=O 
e:=el 

I in: = In I [ 

I e:=el 

k : @ + i  ] 

true 
true 

e: = e-I t' ~ l s e  
m:=m.b 

t r u e ~  true >-- 3 < e-ei false > 
Iml ~b-J > 

I fal . . . . .  m+b-(e-*k)xrnk ] 

I ..... I e I : =e 

r 

ei : = el+k-2 
mi : = rni+k 2 

r : = r-(k-2) ] i 

Fig. 7. Addition from left to right 
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e-ek>3 

m'be+ ~ mi "be' >= b~- l -  b~>= b~-l-b% 2 b-i> 
i=k  i=k  (6) i=o 

>be_~ .be ~ ~,, b_i>be_l__be_ 3 1 > b ~ - i  b ~ - 2 > b ~ - 2  

i = o  (8) 1 - b  - t  - - = " 

259 

(8) 

e :=ei  I m : = rill 

true 

J : = L+2-(ei-e)+l I 

m : = sign(m) X0,0. . .0rail  1. �9 -m[L+2-(ei-e)]d 

I e i -e  

false 

m : : mr;e:=er } 

.9 
<--; 0--> ---W~ 

false 

F 0 - ?  ~r 
true 

true ~ ~  

I . . . .  0, ] 

L+2 

false I 

I 

I . . . . .  .m I 
~' true 

. ~ miL+2l * 0vrnIL+3] • 0 - ~",,,,.~I -e 

[ m . . . .  b-1 ] [m : : sign(m) x o.lm[1] . . . .  [L,+]I ],1] 
I r 

I 

Fig. 8. Addition from right to left 
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I.e. in the whole sum at most a cancellation of one further digit can occur and 
the rest can be added from right to left as described in Fig. 8. We use for this 
purpose again the accumulator which we have described in Fig. 3. In order to 
allow a simple description we have assumed in the algorithm of Fig. 8 that the 
(L+  3)-rd digit is a full digit of base b. It could, however, be represented by a 
single binary digit. 

The algorithm in Fig. 8 is following the strategy that after every addition the 
intermediate or final result m is correct within the possible carry digit and the 
first L + 2 digits on the right hand side of the point. The (L + 3)-rd digit on the 
right hand side of the point carries the information which is necessary to get the 
correct results in all cases of the roundings V,/x,, [] o and [] b. 

Since after the addition from left to right m in general has already L +  2 digits 
of base b the case e i - e  < 2 can not be treated in a separate and simpler branch 
as in the case of an addition of two elements of length L. 

Fig. 9 finally gives the algorithm for the normalization. 

false ~ true 

? ~  false 

I~ le-Wl I # <1, := -- m:=m~ b-1 t 

t m 

[m[<b-t > true t 
[ false _ 9 

m[L+2l * ~m[L§ 0 N true 

m : = sign(m) x0.1rn[l]...m[L+l ]1 

I 

Fig. 9. Normalization 
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