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Abstract. For an arbitrary uniformly continuous completely positive semigroup (~-t: t >~ 0) on the space B(bo) 
of bounded operators on a Hilbert space 1~ o, we construct a family (U(t):t/> 0) of unitary operators on a 
Hilbert space $o = bo | $ and a conditional expectation E o from B(,~o) to B(%), such that, for arbitrary t >/0, 
X �9 B(bo) ,~,(X) = ~:o [U(t)X | IU(t)*]. The unitary operators U(t) satisfy a stochastic differential equation 
involving a noncommutative gcneralisation of infinite dimensional Brownian motion. They do not form a 
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I. Introduction 

In [2] we constructed a noncommutative extension of the It6 stochastic calculus for 
operator-valued processes. Using the duality transformation to identify L2(w),  where w 
is Wiener measure, with the Boson Fock space ~ = F(L2(0, oo)), classical Brownian 
motion is expressed as the sum A(t)  + At( t )  of two mutually noncommuting operator 
valued processes, which are, respectively, the Fock annihilation and creation operators 
A(t) = a(ZlO, t]), A*(t) = at(g[o, ,i)" The extended It6 product formula for the calculus 
based on A and A t is expressed formally by the multiplication table 

dA* dA dt 

dA* 0 0 0 

dA dt 0 0 

dt 0 0 0 
from which the product formula for classical Brownian motion follows as a special case. 

* Part of this work was completed when the first author was visiting research associate at the Center for 
Relativity, Physics Department, The University of Texas at Austin, Austin, TX 78712, U.S.A., supported 
in part by NSF PHY 81-01381. 
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Using this calculus, we showed in [2] that, for given bounded operators L and At 
in a Hilbert space bo, of which At is self-adjoint, the stochastic differential equation 

dU = U(L|  t - Lt  |  + (iAt - 1L tL) |  U(O) = I (1.1) 

has a unique solution which consists of unitary operators in ~5o = ~o | $. Moreover, if 
I: o is the vacuum conditional expectation from B($o) onto B(l~o) defined by 

(u,F-o[T]v> = (u| Tv| (T�9 VeOo) 

where q~Q is the Fock vacuum vector, then the formula 

~-t(X) = ~:o[ U(t)X| IU(t)- 1] (Xe B([~o), t >/0) (1.2) 

defines a uniformly continuous semigroup of completely positive maps of which the 
infinitesimal generator d is given by 

~LP(X) = i[At, X] - �89 2LtXL + XLtL) (1.3) 

Now in [4] it is shown that the general form of the infinitesimal generator of a 
uniformly continuous semigroup of completely positive maps in B(bo) is 

~ ( X )  = i[Jt~,X] - �89 Z (L fLX - 2LfXLj + XL]L~) (1.4) 
J 

where At �9 B(0o) is self-adjoint, and the operators Lj �9 B(bo) may be infinite in number, 
but must be such that ZjLjLj converges strongly. Our purpose in this paper is to 
construct a stochastic unitary dilation of the semigroup of which (1.4) is the infinitesimal 
generator, by means of a noncommutative stochastic calculus generalising that of [2]. 

An intuitive procedure for carrying out this goal would be as follows; introduce 
independent quantum Brownian motions Aj., corresponding to the terms L/in (1.4), and 
satisfying the product rules 

dA~ dA~ dt 

dA~ 0 0 0 
,I 

dt o o 

dt 0 0 0 

and solve the equation 

u ( o )  = 1. (1.5) 

However, the operator theoretic difficulties of this approach are formidable when there 
are infinitely many Lj, and an alternative strategy is called for. This is to introduce the 
single process Az.(t) = Ej Lf | Aj together with its formal adjoint AL(t) = Ej Lj | A], for 
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which the It6 rules are 

da*~ 0 

dAL EjLf  Lj |  I dt 

dt 0 

and (1.5) becomes 

dU= U(dA*L- 

u ( o )  = ~. 

dA L dt 

0 0 

0 0 

0 0 

d A L + ( i g ~ - l ~ L ] L j ) |  

Because adaptedness no longer forces processes to commute with stochastic differen- 
tials, the appropriate theory of stochastic integration must now distinguish between the 
left and the right integral. We turn this complication to advantage by developing the 
theory of adapted processes and stochastic integrals in such a way that formal 
adjunction is a symmetry converting the left into the right integral and vice-versa. 

In this connection we make constant use of the following extension of the weU-known 
result that an everywhere defined operator in a Hilbert space with a densely defined 
adjoint is bounded. 

THEOREM 1.1. Let 30, ~ be Hilbert spaces and let I) o | ~ be their Hilbert space tensor 
product. Let 8 be a dense subspace of $ and let ~o ~ ~ denote the algebraic tensor product. 
Let T and T* be mutually adjoint operators with common domain 3o ~ ~, so that for arbitrary 
u, Ve~o, r q ' e~ ,  

(u| Tv| W) = ( T*u| v| Ud). 

Then for each ape ~, the operators Tr Ttr given by 

Tcu = Tu| TSu = T*u| (uebo) 

are bounded. 
Proof. Fix q' e b o ~  ~ with II ~,' II < 1. The linear map 

2,e(u) = ( T*qJ, u| = (qJ, Tu| 

is bounded on 3o since 

I ( Z * ' e , u |  ~ IIT*Wll [1r I[u[I. 

Moreover, the 2•, qJ e % |  < II ' e  [I < 1 are pointwise bounded, since 

[(W, Zu |174  forl lWll~<l .  

Hence, by the uniform boundedness principle, there exists a positive number M such 
that, for all W e b o ~  r with II 't' II < 1, 
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I ( q * , T u |  (UCbo) 

and, hence, such that for all W e l~o_~_@ g, 

I(qJ, Z u |  IIOI1, (U~Do). 

Since b o ~  g is dense in bo | $, it follows that 

IITu| (u~%) 

that is T~, is bounded. The argument for T~ is similar. 
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[] 

2. Notation and Preliminaries 

Let a separable Hilbert space bo and a finite or countably infinite index set J be given, 
once and for all. We denote by I~ the direct sum b = @j~sL2[O, oo). The Boson Fock 

space over b may be conveniently characterised as a pair (Ib, W) comprising a Hilbert 
space ~ and a map W: b o i l  such that { ~ ( f )  : f � 9  t~} is total in ~ and, for all f , g � 9  b, 

(W(f) ,  W(g)} = exp ( f ,  g}. 

W(f) is called the exponential vector or coherent state corresponding to f �9 b. The vacuum 

vector is q~o = W(0). We denote by d' the dense subspace of ~b spanned algebraically by 
the exponential vectors. 

The operator-valued processes which concern us live in the tensor product 
$o = ~o | ~ offi with the 'initial space' [2] bo- If T and T t are mutually adjoint operators 
in ~o with domains containing b 0 ~  ~, then for f � 9  b we denote by [I T ]If and II T* Ilfthe 
bounds of the operators on bo 

u ~ Tu | W(f) ,  u ~ Ttu  | W(f) ,  

which are bounded by Theorem 1.1. 
We denote by 

b = b,@b t (2.1) 

the natural decomposition 

and for f �9 b we write f = (f,, f ' )  for its components in these subspaces. Corresponding 
to the direct sum decomposition (2.1), there is a tensor product decomposition 

= $, | $ '  of $ into the Fock spaces $, and ~i t over bt and b t respectively, in which for 

each f �9 

W(f) = W(f,) | W(f'). 

In this decomposition clearly o~= 8 t ~  #t, where 4 and 8' are the spans of the 
exponential vectors in ~i, and ~', respectively. 
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Now let B(~o; J )  denote the set of J-tuples of bounded operators in I~0, L = (Lj : j e J)  
for which Y.j L]Lj converges strongly in B(~9o). Then B(bo; J )  is a complex vector space 
under component-wise operations. Furthermore, for L, M e  B(t~o; J)  the sum Y,: L]Mj 
converges strongly, as is seen from the polarisation identity. For f = (f: : j  ~ J ) ~  t~ and 
0 ~< s ~< t, since 

(fs' )~Qt ) fjI fiI = ~ I ( f , x ( , . t ) ) l z I<~( t -s ) l l f [12I  (2.2) 
�9 j 

the J-tuple (~,fsI)~B(bo;J). Hence, the operators E s. ~ fs.Ls* and Ej ~, fsLs are well 
defined in B(t~o). 

3. Processes 

DEFINITION 3.1. An adapted process is a family of operators F = (F(t) : t >i O) in ~o 
such that for each t I> 0 

(a) D(F(t)) = b o ~ _ ~ ' -  
(b) There is an operator Ft(t) with the same domain adjoint to F(t). 
(c) There are operators Fl(t) and F~(t) on I~o~ ~ such that F(t)= Fl(t)| 

Fr = Ft(t) = F•(t) | I. 
The adjointprocess of F is  be = (be(t) : t > 0). A simple process is an adapted process 

of the form 

F(t) = ~ Fn~(tn, tn+O(t) (t >i O) n~O 
for some sequence 0 = to < t, < �9 �9 �9 < tn --* oo. An adapted process is regular if there 
exists a sequence F ("), n = 1, 2 . . . .  of simple processes such that, for all f e  b, 

llF(t) - Ft">(t)ll:, I l r * ( t )  - b e c " > ( t ) l l :  . , o  

uniformly on compact sets in (0, ~ ) ,  and continuous if for all u e %, f e  1~, the maps 

tw, F(t)u| t ~ F ( t ) * u |  are continuous from [0, oo) to~ o. 

Then every continuous process is regular. We denote by ~r ~t o, d r and de, respectively, 
the sets of adapted, simple, regular and continuous processes. 

Now fix L ~ B(%, J), once and for all. 
We define operators AL(t), t >1 O, initially with domain bo ~ ~', by 

fo-: ) At(t)u @ ~F(f) = u | tp(f). 

Formally, 

AL(t) = E L] @Aj(t), 
J 
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where we make the identification 
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oo)}) 

and set A/(t) = |  lk=l I | 1 7 4  

We wish to establish the existence of an operator A~(t) with the same domain adjoint 
to At(t); formally A*L(t) = s L: | At(t  ). We introduce the notation 

d 
O~W(f, . . . .  ' fJ"" ") = d-a W(fl  . . . . .  f: + aZzx . . . .  )l,,=o 

where Z~ is the indicator function of the finite interval A ___ [0, oo). Then when J is finite, 

A~(t) is given by the action 

AtL(t)u | V ( f )  = ~ Lju | ~o, o V( f ) .  (3.1) 
J 

That this sum converges when J is infinite is a corollary of Theorem 3.2. Before stating 
it we note that, if Fis an operator whose domain includes 1~ o ~ ~ such that for each f E t~, 

the operator u ~ Fu | �9 ( f )  is bounded on I~o, that is II F lit < ~ ,  then for f, g e t~, u ~ ~o 
the sum Zj ( F L #  | ~ ( f ) ,  FLju | ~J(g) ) converges absolutely, Indeed, 

~, t (FL ju |  tP( f ) ,FLju |  ~ (g ) )  [ 
J 

IlgllfllFIl~ Il t ju II 2 
J 

T HEOR EM 3.2. Let 0 <.% s <~ t. Let F and F t be mutually adjoint operators with domain 
b o ~  ~ - ~ *  of form F, | I and U~ | I where F, and < are operators on %@_ g.. Then 
in the case when J is infinite, the sum 

FLju | i~s" tl ~ ( f )  
J 

converges. Moreover 

(a) For arbitrary u �9 bo, f,  g ~ b, 
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+ (t - s) ~ <FLju | q2(f), FLju | V(g)>, 
J 

(b) for arbitrary u, v e 1}o, f,  g ~ t) 

<~j fLju|  v| = <u| ~ ~stgjLJ |174  

Proof Assume J = N and let (p. = Z]= 1FLju|  ~s.,lW(f). Then, for m >/n, 

IlCm -- r  2 

< FLju | 0(~, ,] ~P (f),  FL k u | O,~, t] V ( f )  > 
j , k = n +  l 

< F1Liu| ~F(f~),FtLku| W(L) > x 
j , k = n +  l 

t~ 2 

Oa a~ < v(fl . . . . .  s + ~z(,, ,~ . . . .  ), V(gi, . . . . .  ~ + ~z(,,,~ . . . .  ) > I "~:o: ~ 

359 

(3.2) 

m a 2 

= )_~ <F, Lju|174 - -  X 
.i. k = . + I C3a O'C 

x exp < ( f i  ~ . . . . .  f f  + aZ(~, ,] . . . .  ), ~ . . . . .  ~ + zZ(~, , ] , . . . )  > I ,,= o 
"t'=0 

= ~ <F]Lju|174 x 
j , k = n + l  

= F] ~ L j u |  + 
j = n + ]  

+ ( t -  s)s=,,+t ~ t j r ' L j u | 1 6 3  Ilq"(f)ll2 

= Fj = ~Lju | + (t - s) II FLju | W(f)II 2 
1 j = n + l  

~< IIFII u + ( t - s )  <u, LtLju> ~.---~-;~---+. 0. 
= 1 j = n +  1 

(3.3) 
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Hence, ( ~ )  converges as asserted. A similar calculation to that leading to (3.3) 
establishes (a). To prove (b) we have (assuming J = N is inf'mite) 

(~./ FLju |  ~,tl~'P(f), v |  ~'P(g)> 

= lim ~ (F,  Lju|174 x nj=l 

d 
x - -  < w ( f l , . . . , f ;  + . . . .  ), '{'(g')> Io=o 

da 

~s t =lim ~ ( u | 1 7 4 1 7 4  gj <~P(f~),~P(g~)) n j=l 

--linm(u|174174 > 

[] 

Taking s = 0, F = I in the theorem, we see that the sum (3.1) converges, and defines an 
operator A~(t) adjoint to AL(t) on the domain bo @_~ g. 

The operators Ar(t ) and A~(t) are clearly of form A 1 | 1 and A~ | I, respectively, on 
( l~o@~,)~g ' .  As such they extend naturally to mutually adjoint operators on 
(to ~ g,) |  $', which constitute mutually adjoint adapted processes. Furthermore, these 
processes are additive, in the sense that for 0 <~ s <~ t, AL(t) - AL(s) and A~(t) - A~(s) 
are of form I | 1 7 4  I | 1 7 4  on ([~o ~__~ ~s) @_~ ~ s ~  `, where g7 is the span of the 
exponential vectors in ~] = F(~j~jL2(s ,  t]). Thus A L ( t ) -  AL(s) and Air(t)-  Air(s) 
extend naturally to operators, for which we use the same symbols, on 
(% | $s) ~ g s @__8'. Then if F and F t satisfy the hypotheses of Theorem 3.2, the 
operators F(AL(t) - AL(s)), (AL(t) - AL(s))F, and (At(t) - A~(s))F are well defined on 
[~o @ ~ | fit. We define the operator F(At(t) - At(s)) on the same domain using 
Theorem 3.2 by 

F(At(t  ) - A~(s))u | V ( f )  = Z Frju | O~, tlW(F). 
J 

Theorem 3.2 (b) shows that the operators F(A~(t) - A~(s)) and (AL(t) - AL(S))F t are 
mutually adjoint, and straightforward calculation shows that the same is true of  
F(AL(t) - AL(S)) and (A*(t) - At(s))F t. 

We note that the identity (3.2) can be restated as 

( F(A~(t) - AtL(s))u | tp(f) ,  F(At(t) - A~(s))u | tp(g) ) 

= (F(AL(t) - AL(s))u | ud(f), F(AL(t ) - A~(s))u | W(g)> + 

+ (t - s) ~ (FLju | uZ(f), FLju | ~ ( g ) ) .  (3.3) l 
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4. Stochastic Integrals of Simple Processes 

D E F I N I T I O N  4.1. Let F, G, H e  do  and write 

F =  ~. F~Ztt..~.§ G =  ~. G~ZI,..~.§ 
n = 0  n ~ 0  

n =  ~ H.Z[,., ,.+ ,) (4.1) 
n = 0  

where 0 = to < t~ < ---  < t,, . , c~. The  ramifies of  operators M = (M( t )  : t >_. 0), 

N = (N(t)  : t >i 0) with domains D ( M ( t ) )  = D(N( t ) )  = bo | g, | ~t defined by 
M(O) = O, N(O) = O, 

M ( t )  = M ( t . )  + F.(A*L(t) - AtL(t.)) + G . (AL( t  ) - 

- A L ( t . ) )  + (t - t . ) H .  

N( t )  = N ( t . )  + (AtL(t) -- AtL( t . ) )F.  + (AL(t)  - 

- A L ( t . ) ) G  . + (t - t . ) H .  

for t .  < t <~ t .  + t, are called the right and lefistochastic integrals of(F,  G, H) ,  and denoted 
by 

M(t) J o  (F  dA* L + G dA t + H dO, 

~ (dA~r + dALa + H dz). N(t)  

Clearly M and N are adapted processes and 

= f f  (dA~Gt + ClALF t + H t dT). 

We describe by the differential relations 

dM = F clA~L + GdA L + H d t ,  dN = dAtLF + dALG + H d t  

the situation that, for t >~ 0, 

M ( t )  = M o | I + I ~  (F  dAtL + G d A  L + n dt), 

N(t)  = N O | I + I ~  (dAtLF + d A L G  + H dt) 

where M o, N O e B(%). 

(4.2) 



362 

THEOREM 4.2. Let F, G, He d o and 

dM = F dA~ + G dAL + H dt, dN= dA~F + dALG + H dt. 

Then for arbitrary u, ve bo, f, ge ~ the functions on (0, oo) 

t ~  (u|174 t ~  <u|174 

are absolutely continuous, with generalised derivatives 

d 
-- (u |  qJ(f),M(t)v| ~(g)> 
dt 

R. L. HUDSON AND K. R. PARTHASARATHY 

=<u| f j( t)Lj|174174 
�9 j 

d 
-- <u | W(f), N(t)v | tF(g)> 
dt 

(4.3) 

= (u |  Ul (f), [ ~ fj(t)Lj | IF(t) 

(4.4) 

+ X g:(t)L] | IG(t)+ H(t)]v| ~P(g)>. J 
Proof. We give the proof only for the case of the right integral. Assume F, G and H 

are given by (4.1) and that t e (tn, tn + 1). Then 

( u | qJ(f), M(t)v | ~P(g)> 

= (u|174 + (u|174 + 

+ <u| W(f), G.(Ar(t) - AL(t.))v| ~P(g)> + 

+ ( u |  q~(f), (t - t . ) H . v |  W ( g ) ) .  (4 .5)  

The second term can be written as 

( u | ~F (f), F,(A~(t) - A~(t,))v| ~F(g) > 

= ((AL(t) - AL(t.))F~u| ud(f), v| Ud(g)> 

=<~ ftlf:L]|174174 

= <lt'-qnnU| Ej ftlfjZj|174 > 

f: = X (Ftnu| dz. (4.6) 
J n 

Now for arbitrary $ e ~o, by Schwarz's inequality, 

~, I<(o;fj(z)L:v| qJ(g)> I d'v 
J 

= ~ I <zr fj> I I < ~ t , , L : |  I 
i 
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<~ ( t -  t.)tl2 ~_, llfjll llLjvll [l$[I llV(g)l[ 
J 

<~(t - t , )  I/: [Ifjl[ 2 ~. NzjvN z 11411 II'V(g)ll < ~ .  
J 

Hence, by the dominated convergence theorem, we may reverse the order of summation 
and integration in (4.6) and write the second term in (4.5) as 

, z (F~u|  f j(OLj|174 dz 

which is manifestly absolutely continuous as a function of t, with generalised derivative 

( F~u| qJ(f), f ( t )Lj |  Iv|  V(g) ) 
J 

= ( u |  uL(f), F(t) ~, f j ( t)Lj|174 W(g)) 

since F(t) = F, for t e  (t,, tn+ 1). A similar argument shows that the third term in (4.5) 
is absolutely continuous as function of t with generalised derivative 
< u | q'(f), G(t) Zj &(t)L] | Iv | q'(g) ) .  Since the first term is constant and the fourth 
differentiable with derivative (u | ~P(f), H(t)v | W(g)), the proof is complete. [] 

THEOREM 4.3. Under the hypotheses of Theorem 4.2, / f  0 ~ s ~< t, ~ e % | ~,, f,  g e ~, 

VE bo, 

< ~p| W(f') ,  (M(t) - M(s))v| W(g)) 

+ 

- ' 1  i 

dz> 
J _1 / 

< d? | q/(f:), (N(t) - N(s))v | W(g)> 

Proof We give the proof for the fight integral. Assume first that 

= u |  qJ(~ ' ))  (4.7) 

for u e 1~o, f o ) e  1~. We obtain the theorem in this case by replacing f in (4.3) by 
f~)Zto, sl + fz(s, ~) and integrating from s to t. Since vectors of the form (4.7) are total 
we obtain the general case by passing to limits of finite linear combinations. [] 

THEOREM 4.4. Let F, G, H ~ sr o and 

f t ( F d A ~  + GdAL + Hd~), M(t) 
.1o 
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N(t) = (dA~F + dAtG + H dz). 

Then for arbitrary u ~ % and f, g ~ ~ the functions 

t~  (M(t)u|174 t~, (N(t)u|174 

are absolutely continuous, with generalised derivatives 

d 
-- (M(t)u | qJ(f), M(t)u | W(g)) 
dt 

= tM(t)u| ed(f),[F(t) ~,fj(t)Lj| l + 
J 

+ G(t) ~ gj(t)Lf |  H(t)]u| W(g,))+ 
J 

+ {[F(t) VZ, gj(t)Lj| I + G(t) ~ fj(t)Lf | I + H(t)]u| qT(f), 
J J 

M(t)u| qJ(g)) + ~. ( F(t)Lju| W(f),F(t)Lju| *(g), 
J 

(4.8) 

d 
" ( N(t)u | W(f), N(t)u | W(g) ) 
dt 

= (N(t)u| W(f), I ~  fj(t)Lj| IF(t) + 

+ ~, gj(t)LJ | IG(t)+ H(t)]u| ~P(g))+ 
J 

N(t)v| + ~, (Lj|174174174 (4.9) 
/ i 

Proof We prove the case (4.8) of the right integral; (4.9) is similar, We assume, F, 
G and H given by (4.1) and t~(tn, tn+l). Then 

( M( t)u | W (f), M( t)u | ~P (g) ) 

= ( [M(t . )  + F.(A~(t) - A~(t.)) + G.(AL(t ) - AL(t.)) + 

+ ( t -  t.)H.]u| 

[M(t.) + r.(A~(t) - a~(t.)) + G.(ar(t) - AL(t.)) + 

+ (t - tn )Hnu |  W ( g ) ) .  
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We replace AL(O - AL(t.) by its actions Zj S't. f j L ] |  I on the left and Ej. Sit. g jL] |  I on 
the fight. Similarly, using the commutativity ofAL(t) - AL(tn) with F~, M(tn), Fn, G~ and 
H~, as in proof of Theorem 4.2 we replace A~(t)- A~(tn) by its adjoint actions 
Y'i ~t, ogjLj | on the left and ~,j ~tt.fjLi| I on the right. Since AL(t) - aL(t.) fails to 
commute with A~(t) - A~(t.), we use (3.3) to deal with the crossterm 

( F.(A~(t) - A~(t.))u | ~(f) ,  F.(A~(t) - A~(t.))u | ~g(g) ). 

We obtain in this way 

( M(t)u | qJ(f), M(t)u @ W(g) ) 

([ = M(t.)+F. ~jLj|  
n 

+O.~j f j L f |  u @ W(f), 
n 

i' 1 + G. ~ ~L:OJ+ ( t -  t.)~. u |  + 
�9 n 

+ ( t -  t . )Z  (F~Lju|174 
J 

Taking the summations and integrations out of the inner product and reversing their 
order, as is possible by the argument used in the proof of Theorem 4.2, we see that 
( M ( t)u | ~? ( f  ), M( t)u | ~P (g) ) is absolutely continuous, with generalised derivative 

( I  ~J~t t ~J f t  t 1 M(t.)+F. . ~ jL j |  . f j L f |  u |  
n n 

J J 

+([F.~gj ( t )  J H.]u| 

ft ] + G. ~ g iL l |  ( t -  t.)H. u| + 
J n 

+ ~ (F,,Lju | qJ(f), F,,Lju | qJ(f)). 
/ 
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Once more, extracting summations and integrations from the inner product, reversing 

their order and applying Theorem 3.4, having observed first that 

I F , ~  fJ(t)Lj| + Gn~  gj(t)Lf |  + Hnl u|  j 

= ~, | V(g 'o) 

[F. ~ g:(t)L:| I + G. ~ fjt)L] | e + H . ] u |  J 

= cp2 | V ( f  t") 

for q)~, q~2 e % | fit. and that for z e (t., t) 

ro = V(r), G. = G(~), H.  =/-/(~), 

we obtain the result. [ ]  

5. Stochastic Integrals of Regular Processes 

In the following we use the identity 

\ 1/2 11/2 ,:L ,J I 
for scalars zj, j ~ J with Ej I zjl 2 < •.  This holds because for arbitrary u e t~ o 

2 

z-II 
= ~ zj-zk (Lju, Lku) 

j , k  

<~ Y. Iz:l Izkl IILjull IIL~ult 
j , k  

<~ ~ Izj[ z E IIe&ll z 
J J 

Now let 
(4.2), 

M(t)* = I t (dAnG* + dALF t + I-I t dz) 
do 

(5.1) 

F, G, HE do and M(t) = ~to (F dA~ + G dA L + H d~) so that, according to 
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From Theorem 4.4 we have, for arbitrary u ~ %, f ~  t~, 

d -- 11M(t)u | tp(f)II 2 
dt 

= 2 Re (M(t)u| W(f),[F(t) ~ fs(t)Lj@ I + 

+ G(t) ~ fj(t)Lf |  H(t)lu| gl(f))+ J 
+ ~ F(t)Lju | tp(f) 2 

<~2]'M(t)u| [rlF(t)llf ~j fj-~L/ + ]IG(t)Hf ~fj(t)L] + IlH(t)nflx 

• II u 11 + II F(t)I[} ~ L]Lj II u l[ 2 

<~ 2 IlM(t)u| W(f)[[ Ifj(/)l 2) ~ t)Z s (llF(t)llf + II a(t)llf) + rlH(t 

• II u rl + ]1F(t)I]~ ~ L]Lj II u II 2, 

where we use (5.1). Using the arithmetic-geometric mean inequality gives 

d 
--IIM(t)u| 2 
dt 

<~ 2 "M(t)u| ~J 'fJ(t)'2 + ll~ L]Lj (][F(t),]~ + 11G(0,,~)][u,,2 + 

+ IIM(t)u| []H(t)[]~ ]lull2+ ][F(t)l]ff ~ L~tLj Ilull ~ 

+[ ~L:Lj (2 ,[ F(t) ,[} + I,G(t),]~)+ [[H(t)l,}] Hull 2. 

Multiplying by the integrating factor exp( - 2 ]1 f II 2 _ t) and integrating the differential 
inequality, we obtain 

II M(t)u | W(f)II 2 

fo <~ exp{2llfrlz- 2llfTl[2 + t - z} • 

• IF ~ z~zj (2 IIF(OII~+G(OII~)+ ,/n(r),[~] ,lull =d~. (5.2) 
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The corresponding estimate for the left integral, 

II M*(t)u | rE(f)[I z 

~< : ~  exp{2 Ilf, ll 2 - 2 IIf~ll 2 + t -  "c} • 

is proved similarly. 
Now let F, G, H be regular processes, so that these exist simple processes F ('), G ('), 

H ('), n = 1, 2 . . . .  such that for each f e  l~ 

]IF(z) - F(")('c)l[f, II a('c) - G(")('c)IIT, l iB( '0  - H(")  ('c) ll: n ' 0 

and 

[[ F(v)* - F(" ) (z )  t llf, lI G ( z :  - G( " ) ( ~ :  Itw/I n (~ )  t - H ( " ) ( ~ :  tit . , 0 

uniformly on each finite interval. Then if 

M(")(t) = I [  (F(") dA~ + G (") dAL + H (") d,) ,  

the estimates (5.2) and (5.3) show that, for each u e %, f e  ~ and t > 0, the sequences 
M (') (t)u | �9 (f), M (') (t)*u | q ~ (f) ,  n = 1, 2 , . . .  converge to limits independent of the 
choice of approximating simple processes. We define the stochastic integrals 

= I ~  ( F d a L  + GalA,. + Hd~), M(t) 

Mr(t) = ~ (dAnG t + dALF* + H* dz) 

in the first instance on the domain %~_ g by 

M(t)u | R ~ ( f )  = lira M (') (t) | W(f),  
n 

M*(t)u | W(f)  = tim M(')(t)*u | ~r 
n 

The operators M(t) and M*(t) inherit from M (') (t) and M (')(t) ? the property of being 
of form Ml( t ) |  I, Ml(t) +c | I on (%@_ 4 ) |  g" and, hence, extend naturally to the 
domain ( ( t o |  t. M =  (M(t):t>~O) is then an adapted process of which 
M* = (M*(t)" t ~> 0) is the adjoint process. 

The estimates (5.2) and (5.3), together with their generalisations obtained by replacing 
F, G, H by FZ(s, oo), GZ(~, ~), HX(,, oo) respectively, namely 

II (M(O - M(s))u | ~ ( f )  II ~ 
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f t < exp{2 [If, II : - 2 Ilf, II e + t - ~} x 
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(5.4) 

II (g( t )  t - M(s)t)u | W(f)II : 

f; exp{211s 211f, ll: + t -  T} x 

persist in the transition to the limit, showing that the processes M and M t are 
continuous, hence, regular and, in particular, that the maps z~M(z)u |  
~ M(r)u | u?(f) are continuous and, hence, bounded on each finite interval [0, t]. 
From this it follows that we may pass to the limit in the integrated forms of (4.3), (4.4), 
(4.8) and (4.9) and deduce that Theorems 4.2, 4.3 and 4.4 hold for arbitrary F, G, 
H e  ~r" We summarise. 

T H E O R E M  5.1. Theorems 4.2, 4.3 and 4.4 hold for arbitrary F, G, H e d r. Furthermore, 
~f 

then 

M(t) = f /  (FdA~ + GdA L + HdT) 

i.t 
Mr(t) = J o  (dA~Gt + dALFt + Ht dz) 

and the estimates (5.2) and (5.3) are satisfied. 

6. T h e  U n i t a r y  P r o c e s s  

Let ~ be a bounded self-adjoint operator in bo, fixed once and for all. 

T H E O R E M  6.1. There exists a unique adapted process (U(t) : t >>. O) satisfying 

d U = U ( d A ~ - d A L + ( i A ' ~ - � 8 9 1 7 4  U(0) = / .  (6.1) 

Proof. We establish existence by iteration. Thus, define Uo(t) = I and, assuming that 
the regular process (U.(t) : t >~ 0) has been defined, det'me 

I L~Lj) d O .  (6.2) U . + , ( t ) = l + ~ o U n ( z ) ( d A ~ - d A L + ( i o ~ - ~  |  
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The process Un + 1 is then continuous, hence, regular. We write 

U.+ l(t ) - U.(t) = [[ (Ur(z) - U._ ,(z)) x 

and use the estimate (5.2) to write, for u ~ bo, f ~ b, t > 0 

II U. + i(t) - U,(t))u | V(f)II  2 

~< f o e x p  {2 IIf, II 2 _ 2 tlLII 2 + t -  3} 

[3 ~ Z~jZj 1[ Un('C ) - Un_ ,("g) l[)~ -~- 

t~t 
c I~ e x p { 2  tlFttl z - 2 IIF~II = + t -  r} Lt U~(~) - Un-  ~(r) I1~ Ilu112 dr 

where 

Hence  

II U.+ 1(0 - U.(t) I1~ 

< ~ C f f e x p { 2 1 1 f [ I z - 2 1 l L [ t 2 + t  - ~} II U~(z) - Un_a(v) ll}dz. (6.3) 

By induction on n we obtain that  

II Un (t) - Wn -1 (t) II ff ~< (n !) -1  C"t ~ exp (2 II ft II 2 + t). 

From this and from the corresponding argument  for the adjoint processes based on (5.3) 

it is clear that, for u e bo and f ~ b, the limits 

U(t)u | q~(f)  = lim Un(t)u | W(f) ,  
(6.4) 

Ut(t)u | q J ( f )  = lim U~,(t)u | q'( f) ,  n 
exist and define mutually adjoint adapted processes.  Moreover  the convergence in (6.4) 
is uniform for t in bounded intervals, enabling us to take strong limits in (6.2) and 

conclude that  (U(t):t  t> 0) satisfies (6.1). 
I f  (V(t) : t >~ 0) is a second adapted process  satisfying (6.1), then, from the estimate 

(5.2) we obtain as above 

C l "  exp {2 [1 ft  I[ 2 _ 2 t] f~ It 2 + t - z} t] U(z) - V(z)11} dz. U(t) V(t) <~ 
.Io (6.5) 
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Since U - V is a stochastic integral, the m a p  z ~  (U(z) - V(z))u| v?(f) is continuous 

for each u ~ ~o, f e  b, and hence bounded  on [0, t]. Hence,  by the uniform boundedness  
principle there exists M >  0 such that, for all ~ [0, t], 

II u ( ~ )  - v ( ~ ) I I }  ~ M. 

But then by iterating (6.5) we find that  I1 U( t )  - V(t) llf = 0. This being so for all f e b  
shows that  U = V. [ ]  

The adjoint process  U t to U satisfies 

dUt=(-dA~+dAL-(Df~+�89174  t 

in view of  Theorem 5.1. We apply (4.9) to write, for arbitrary u e ~o, f ,  g ~ b, 

d ( Ut(t)u | ~P(f), Ut(t)u | qA(g)) 
dt 

= (Ut(t)u| U~(f),[- ~ fj(t)Lj| I + 

+~gj(t)Lf|  +l~LfLj)|174 

(~ -  ~ gj(t)Lj |  ~ fj(t)Lf |  + 
\ L  j J 

+ ~ (Lj|174 ud(f), Lj|174 W(g)) 
J 

=0.  

Since Ut(0) = I we conclude that, for all t I> 0, 

( Ut(t)u| uT(f), Ut(t)u| W(g)) = (u| ud(f), u| ~g(g)). 

By polarisation we obtain that  

( Ut(t)u| q?(f), Ut(t)v| ~P(g)) = (u| tp(f), v| W(g)) 

for arbitrary u, v ~ bo, f ,  g ~ ~. Thus Ut(t) is isometric. 

T H E O R E M  6.2. Each U(t), t >~ O, is unitary. 
Proof Since U(t) is the adjoint o f  an isometry it is bounded.  To prove it is unitary 

we need only prove that  its action on a total family of  vectors is isometric. For  these 
we choose the vectors u | ~g(f)  where u ~ t~ o is arbitrary and f = (fj) has only finitely 
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many nonzero components, each of which is piecewise constant. For such vectors 
u@ q~(f) and v |  qU(g) by (4.8) 

d 
T ( U(t)u | qJ(f), U(t)v | qJ(g)) 
tO 

= (U( t )u  | ud(f), U(t) [ ~  fj(t)Lj | I - 

-~j  g j ( t ) L f | 1 7 4  

+ l U ( t ) [ ~  g~{)Lj| I -  ~ fj(t)LJ | I + 
J 

+ E ( U(t)Lju| re(f), U(t)Ljv| W(g)). 
J 

It follows that the bounded operator K~ g(t)  o n  I? o defined by 

(U, Kf, g(t)v) = ( U(t)u| W(f) ,  U(t)v| U/(g)) (u, ve 30) 

satisfies the weak sense differential equation 

d l dt Ky. g(t) = Kf, g, fj(t)Lj - ~ gj(t)L~j + i;,~ - 
�9 j 

- �89 E (LfLjKf, g -  2LfKf, gL + Kf, gLfLj) 
./ 

with initial condition 

g f ,  g(O) = (k I - / ( f ) ,  Idt/(g)) 1. 

Since Kf, g = ( qJ (f) ,  W (g)) I satisfies this equation we may appeal to the uniqueness 
theorem for the differential equation 

dK 
- Ls 

dt 

in the Banach space B(~o), LP being a bounded operator in B(bo), within each interval 
of constancy of the functions fj and gj, to conclude that Kf, g(t) is indeed equal to 
( ~ ( f ) ,  qJ(g)) I for all t. Hence, U(t) is isometric as required. [] 

T H E O R E M  6.3. Let s >1 0 and let T be a bounded operator of form I |  T l |  where 
T 1 e B(I~s). Then for t >t s, Ut(s)U(t) commutes with T. 
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Proof. Define processes J and K by 

J(t) = ~'0 if t <~ s K(t) = [ T, J(/)] 
(Ut(s) U(t) if t > s. 

These clearly inherit adaptedness and regularity from U. Subtracting the corresponding 
equation with t replaced by s from 

and multiplying by Ut(s) gives 

J 

Using Theorem 4.3 we deduce from this that, for t > s, u, v ~ bo, f,  g e b, 

<u | w(f), K(t)v| W(g)) 

= ( Ttu | re(f), J(t)v | Ug(g)) _ (Jt(t)u | ud(f), Tu | ~d(f)) 

-~j  g j ( z ) L * j | 1 8 9 1 7 4 1 7 4  

fol = u | ~ ( f ) ,  K(~)  f j (~)Lj  | I - 

- ~ & ( ~ ) L f | 1 8 9 1 7 4 1 7 4  

Since this holds trivially for t < s, we conclude that K satisfies 

! 

But then adding K to the solution U of (6.1) would yield a different solution U + K, 
contradicting uniqueness unless K -= 0. [] 

7. The Reduced Sernigroup 

Let S be a contraction on 0. There is a contraction F(S) on ~ called the second 
quantisation [3] of S whose action on exponential vectors is F(S) tF( f )  = W(Sf). 
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We denote by 7(S) the operator I |  F(S) in ~o. From corresponding properties of 
second quantisations [3] we have 

~(S,$2) = y(S,)y(S2), 7(S t) = 7(S)*, y(I) = I (7.1) 

for arbitrary contractions S~, $2, S on b. Also if S = S~ | $2 is the direct sum of 
contractions S~ and Sz, F ( S ) =  F(S~) |  F(S2). 

We denote by St, t >/0, the shift in b 

St~.(~ ) = ~0_ if r < t 

�9 [Jj(z - t) ifz>~ t. 

St is isometric and S,S ~, is the projector E t onto 0 t. 

T HEOR EM 7.1. For arbitrary s, t >>. 0 

v( t )  = ~(ss) ~ V(s) t 8(s  + t)~(ss). 

Proof Fix s/> 0 and consider the family of bounded operators 

V(t) = ~(Ss)* U(s)* U(s + t)~(Ss), t >~ 0. 

We prove that this is an adapted process, that is each V(t) is of the form V(t) = V~(t) | 1 
on (% | ~ , ) |  ~'. To do this write Ss as the direct sum Ss = S~ • $2 of its restrictions 

S~ : 0, ~ 0~ + t, $2: 0' ~ O ~ § '. Correspondingly 

r(s~) = r ( s ,  ) | r(s2),  v(L)* -- r ( s , )*  | r(s2)*, 

where F(S1) maps ~3t to ~ +t and r ( s z )  ~t to ~s+ t. Because U is adapted we can write 

Ut(s) U(s + t) = U~ | I for some operator U~ on Oo | ~s +t- Thus, 

V(t) = T(S~) ~t V(s)* U(s + t)~(S~) 

= ( ( I |  F(S,)*) | F(S2)t) U, | I((I| F(S,))  | F(S2)) 

= (I | F(s , )t)  v~ (~ | r ( s , ) )  | r(s~)* r(s~) 

= V l |  

where V~ = I | F(S~)t U~I | F(S~) is a bounded operator on bo | St, as required. 
The adapted process V inherits regularity from U. Let us show that it satisfies the 

stochastic differential equation (6.1); by the uniqueness of the solution we shall then be 
able to conclude that U = V. Applying Theorem 4.3, in which we take s = 0, ~p = u and 

for arbitrary t > 0, u, v ~ bo, f,  g ~ 0, 

(u |  ~( f ) ,  fo' V('c)(dA~ - dAL + ( i ~  - l ~ LtjLj)| l d'r)v| ~(g) I 
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fo{ = u| ~P(f), ?(S*~)U(s) t U(z + s)~(S,) x 

X E~ f j (OLj-  ~j g j ( z )L]+i~- l~ j .  L:Lj]|174 

X E~ j f j(z)Li- ~j gj(z)L}+i~-�89 L:Lj]|174 
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X [~j S~fj(*+ s)Lj-  ~j S~gj(z+ s)L~+i~o-�89 LJLjI|174 

= U(s)u @ ~P(Ssf), U(O • 

x [~j S~fj(OLj- ~j S, gj(r)L]+i~o - 1  ~j L:Lj]|174 

= ( U(s)u | ~F (S,f), (U(s + t) - U(s)) v | q' (S~g)), 

where we use the adaptedness of U to write U(s)u| uT(S,f) in the form 4 |  ~P((S,f),) 
for 4~ ~o | 5s, so that Theorem 4.3 is applicable again, and (6.1), 

= (u |  q'(Sff), (Ut(s)U(s + t) - I)v| "7(S,g)) 

= ( u |  qJ(f), (?(Ss) t Ut(s)U(s + t)7(Ss) - I)v| Ul(g)) 

= (u | qJ(f), (V(t) - I)v| ~P(g)), 

where we use the isometry of S s and (7.1) to write 

?(S~)* I~(S,) = ?(S~*S,) = 7(0 = I. 

It follows that V satisfies (6.1) and the proof is complete. [] 

For each t/> 0 we def'me a conditional expectation map~:/from B($o) onto B(~ o @ St) 
(= B(~o) when t = 0) as follows. For T~ B($o), l:t(T ) is the unique bounded operator 
on bo | St such that, for arbitrary ~b], 42 ~ l)O | ~t 

( 4 , ,L(T)4z)  = (4,  | ~'o, r4~| 'V'o) 

where W~ is the vacuum in ~b'. We write H:t(T) = F_t(T ) | I, where I is the identity in ~t. 
The maps ~' have the easily verified properties of conditional expectations 

(a) ~:slF*=~ for 0~<s~<t, (7.2) 

(b) ff:'(S, TS2) = S, ff:t(T)S2 
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if Sl and $2 are both of form S | I for S ~ B(t~ o | ,~s) 

(c)  ~ ' ( I )  = I. 

We also note 

(d) If for s >/0, T commutes with all operators of form I | S @ I on bo | ,~s | 6s, 
then ~:~(T) = E~ 

To prove (d) observe that under the given hypothesis, for S e B(5s), 

(r | S)  | I = r ( I |  S | I) 

= E S ( T I | 1 7 4  by (b) 

= E s ( I | 1 7 4  

= (I@ S~_s(T)) |  

reversing the previous steps, hence, IZs(T ) commutes with I@ S for all S ~ B($s). But 
then ~-s(T) is necessarily of form $1 @ I with S l s B(Igo), and so by (a), (b) and (c) 

nZ~ = IF~ = r176 l | I)  = SI | 1E~ = $1 | I = r 

Finally we note that, since the second quantisations F(Tj) map the vacuum to itself, 

(e) E~ = rF~ for arbitrary contractions TL, T2 on 19. 

We are ready for our main Theorem. 

THEOREM 7.3. For t >_, 0 define ~,,: B(bo) --" B(~o) by 

y,,(x) = ~o [ u ( t ) x  | IU(t)* ], x ~ BOo). 

Then (~-,: t >t 0) is a uniformly continuous one-parameter semigroup of  completely positive 
maps, whose infinitesimal generator 

= d ~  

dt t=o 

is given by 

~ ( X )  = i[~f~ - 1 y. (L fL jX  - 2L]XLj + XLfLj) .  (7.3) 
J 

Proof Being the product of a conditional expectation with a unitary conjugation, both 
of which are necessarily completely positive, ~-t is also completely positive. 

To prove the semigroup property, for s, t >~ 0 and Xe  B(~o) write 

~-s+t(X)| = ~ ~  -1- t ) X |  + t)*] 

= E~ U(s)U(s)* U(s + t)X | IU(s + t)* U(s)U(s) t ] 

= ~_~ U(s + t ~ |  + t)* U(s)} u(s)*] 

= ~_~176 U(s + t ) X |  + t) t U(s)} U(s)*] (7.4) 
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using properties (a), (b) and (d) of conditional expectations, respectively, the use of (d) 
being justified by Theorem 6.3. On the other hand, by Theorem 7.1 and (e), 

3"~,(X ) | I = ~o [ U(t)X | IU(t)* ] 

= ~~ U(s) ~ U(s + t)7(S~)X| t Ut(s + t)U(s)7(Ss)] 

= iE~ U(s) t U(s + t)7(Ss)7(S~)X| IUt(s + t)U(s)] 

= I[~ * U(s + t)7(E~)X| + t)U(s)]. 

Now by Theorem 6.3, since ~(E t) = I |  F(0) | I in bo | ~ | ~5 ~, 7(E ') commutes with 
U(s)* U(s + t). 

Hence, using (e) again, 

~ (X)@ I = ~_~ U(s + t)X@ IUY(s + t)U(s)] 

--- ~~ U(s + t)X| IUt(s + t)U(s)]. 

Substituting in (7.4) we obtain 

~+, (x )  | t = E~ U(s) (~(x) | I) U(s) ~] 

= ~~ [~-t(X)] | I 

~- = . q - y -  
a n d  so Js+, ~svt - 

To complete the proof use the polarised form of (4.9), in which we set f = g = 0, to 
write 

d 
- <u,  ~ ( x ) v )  
dt 

d 
= -- ( Ut(t)u | Wo, (X@ l)Ut(t)v| ~o> 

dt 

= < U t ( t ) u |  q%, -X(iJt~189174174 
] 

+<-( i3 / t~+�89174174 Ut(t)v| 

+ ~ < L~ | IUt(t)u | ~o, XLj | IUt(t)v | ~o ) 
J 

= (u ,  ~ ' ( X ) v > ,  

where L,~is given by (7.3). From this it is clear that ~'t is uniformly continuous and has 
infinitesimal generator s [] 
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